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Abstract

Allais and Nichèle (2007) proposed a Markov-switching almost
ideal demand system (MS-AIDS) model by extending the idea of
Hamilton (1989). This model enables us to determine when the regime
shifts occurred and to estimate parameters characterized across the
different regimes. Moreover, degree of belongingness to each of the
regimes and transitions between regimes are quantified by the prob-
abilities. In this paper, we propose a Bayesian estimation for MS-
AIDS model and illustrate applicability of our proposed method. The
Bayesian estimation has some important advantages. First, it en-
ables us to avoid the singularity problem suggested by Hamilton (1990,
1991). Second, our proposed Bayesian estimation ensures that tran-
sition probabilities lie between zero and one. Third, Bayesian esti-
mation is able to avoid the messy calculations entailed in the score
functions of log-likelihood. We then run a simulation study to con-
firm the validity of the proposed method. In the empirical study on
the Japanese meat market, we found that our Bayesian estimation
improves the mean squared errors for all meat products over the max-
imum likelihood estimation, while successfully capturing the regime
shifts of meat demand coinciding with the timing of Bovine Spongi-
form Encephalopathy (BSE) cases in Japan and U.S.

Keywords: Bayesian estimation, Gibbs sampler, Markov-switching model,
Almost ideal demand system, Japanese meat market

JEL codes: C11, C51, D12, Q11

∗Doctoral Student, Graduate School of Systems and Information, University of
Tsukuba. E-mail: k0420214@sk.tsukuba.ac.jp.

†Professor of Statistics, Department of Social Systems and Management, University of
Tsukuba. Email: kanazawa@sk.tsukuba.ac.jp.



1 Introduction

In empirical demand analysis, the almost ideal demand system (AIDS) model
proposed by Deaton and Muellbauer (1980) has been widely used. This model
assumes that market demand can be thought of as if it were the outcome
of decisions by a rational representative consumer. The AIDS model is able
to test the homogeneity and symmetry restrictions of demand theory as the
Rotterdam model (Theil, 1965) is able to and applies the second-order ap-
proximation to any arbitrary functions in the PIGLOG expenditure function
such as the Translog model (Christensen et al., 1975). Several researchers
made modifications to the original AIDS model. For instance, Cooper and
McLaren (1992) modified the model so that the range restrictions placed on
the budget share can be reflected on the model. Banks et al. (1997) also
made modification to the linear relationship between the expenditure and
the demand. These models have also been employed extensively.

In the previous studies on the structural shifts in demand, Moosa and
Baxter (2002) developed the time-varying coefficient AIDS model. They
introduced the stochastic trend and seasonality terms into the linear approx-
imated AIDS (LA-AIDS) model so that it can be applied to unstable demand
structure in the alcoholic beverage market in the U.K. Ishida et al. (2006,
2010) employed the gradual switching AIDS model. They set the transition
functions into the AIDS model to capture the gradual shifts following Bovine
Spongiform Encephalopathy (henceforth BSE) and bird flu outbreaks in the
Japanese meat market. The latter model assumes that researchers know the
structural change points in demand in advance.

Obviously modeling abrupt changes in demand caused by the unique ex-
ogenous events and estimating these change points are the next step. Allais
and Nichèle (2007) seem to be the first to propose a Markov-switching al-
most ideal demand system (MS-AIDS) model extending the idea of Hamilton
(1989) 1. This model enables us to determine when the regime shifts occurred
and to estimate parameters characterized across the different regimes. More-
over, degree of belongingness to each of the regimes and transitions between
regimes are quantified by the probabilities. They analyzed the French meat
and fish demands over the period 1991 - 2002 and detected the abrupt changes
due to the two BSE crises in France. Kabe and Kanazawa (2012) also as-
sessed the structural change points in the Japanese meat market during 1998
- 2006 via MS-AIDS model. They found the structural change point coincid-

1Hamilton (1989) proposed the Markov-switching model to date the timing of recessions
and booms with real gross national product (GNP) data in U.S. He found that the regime
shift from positive to negative growth rate has a recurrent feature of the U.S. business
cycle.
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ing with the timing of first reported case of BSE, but not of bird flu. In both
of these instances, MS-AIDS model is found to be quite effective in detecting
abrupt changes in demand using monthly aggregate data.

In Allais and Nichèle (2007), they estimate the parameters including tran-
sition probabilities via maximum likelihood (ML) estimation. However, when
the variance-covariance matrices differ between regimes, a singularity prob-
lem arises when the determinant of variance-covariance matrix is close to zero,
sending log-likelihood of MS-AIDS model to infinity, and making numerical
optimization methods (e.g., Newton-Raphson method) break down. This
problem is well-known in the literature on estimation of mixture of normal
distributions. They also estimate the transition probabilities via ML estima-
tion without any constraints, although the transition probabilities have to lie
between zero and one inclusive.

To avoid the singularity problem, subjective judgment is required in de-
ciding what constitutes a suitable region for plausible value of the variance-
covariance matrices, so that Hamilton (1990, 1991) suggests the Bayesian
estimation as a simple solution of the singularity problem. Hamilton (1991,
p.37) stated that “the [Bayesian] approach is intuitively appealing and trivial
to implement. Monte Carlo analysis suggests that this approach can consis-
tently improve the MSE’s for a wide variety of underlying models.”

Bayesian estimation enables us to incorporate the prior information on
the variance-covariance matrices to the conjugate prior distributions. More-
over, Bayesian estimation can provide us with the posterior distributions of
transition probabilities in the unit intervals, avoiding problems associated
with unconstrained ML estimation. Finally, Bayesian estimation is able to
replace the messy calculations entailed in the score functions of log-likelihood
for MS-AIDS model with computationally simple Gibbs sampler. To the best
of our knowledge, no Bayesian estimation method is proposed to solve theses
problems associated with the MS-AIDS model.

In this paper, we propose a Bayesian method to estimate parameters
in MS-AIDS model along with the transition probabilities. We then run a
simulation study to confirm the validity of the proposed Bayesian method.
To illustrate its applicability, we take the proposed method to the Japanese
meat market data and examine the regime shifts caused by the food safety
concerns such as BSE and bird flu.

The rest of this paper is organized as follows. Section 2 briefly describes
the Markov-switching AIDS model and introduces the necessary notations.
Then section 3 proposes the Bayesian estimation, and we illustrate our pro-
posed method by simulation in section 4. Section 5 presents the empirical
study on the Japanese meat market via the proposed Bayesian estimation
method. Finally, section 6 discusses the merits of the proposed Bayesian
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method relative to the ML estimation we employed in Kabe and Kanazawa
(2012), and then we point to future directions of the research.

2 Markov-Switching AIDS model

Suppose that st is an unobserved random variable that takes an integer value
in 1, 2, . . . , K to express “regime” or “state” at time t, then budget share of i-
th product at time t, w̄it which is defined as pitqit/m0t with price pit, quantity
qit and expenditure (or budget) m0t (=

∑
i pitqit) takes the following form:

w̄it = αi,st +
N∑

j=1

γij,st log pjt + βi,st log

(
m0t

Pt

)
(2.1)

where Pt is a price index which is defined by

logPt = α0,st +
N∑

k=1

αk,st log pkt +
1

2

N∑

k=1

N∑

j=1

γkj,st log pkt log pjt (2.2)

and α0,st , αi,st , γij,st and βi,st (i, j = 1, 2, . . . , N) are regime-dependent pa-
rameters.

The parameters in (2.1) and (2.2) have the theoretical constraints 2 as
follows

[Adding up]
N∑

i=1

αi,st = 1,
N∑

i=1

γij,st = 0,
N∑

i=1

βi,st = 0, (2.3a)

[Homogeneity]
N∑

j=1

γij,st = 0, (2.3b)

[Symmetry] γij,st = γji,st . (2.3c)

Following the previous studies (Rickertsen, 1996; Allais and Nichèle, 2007;
Ishida et al., 2010), we include a trend effect, seasonal effect and habit effect
into the intercept term αi,st as

αi,st = ᾱi,st + νi,stt+ δ1,id1,t + δ2,id2,t +
N∑

j=1

φijw̄j,t−1 (2.4)

2“Adding up” guarantees that the total expenditure is equal to the sum of expenditures
on the category of products under consideration. “Homogeneity” guarantees that if prices
of products increase to τp1t, . . . , τpNt for a scalar τ > 0, representative consumer has to
increase his expenditure fromm0t to τm0t to keep his utility level. “Symmetry” guarantees
that the substitution effect in the Slutsky equation is symmetric.
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where d1,t and d2,t are dummy variables

d1,t =

{
1 if t is August

0 otherwise
d2,t =

{
1 if t is December

0 otherwise.

As for seasonal effect, we set the dummy variables to adjust the seasonality
in budget shares. The budget shares for meat and fish are considered to shift
due to the seasonal habits (e.g., summer camp, gift-giving tradition, year-
end party and so forth) in August and December. Furthermore, we include
a habit effect which is defined as a linear function of one-lagged budget
shares (Rickertsen, 1996; Allais and Nichèle, 2007). In order to satisfy the
adding up condition, we impose the restriction

∑N
i=1 ᾱi,st = 1,

∑N
i=1 νi,st = 0,∑N

i=1 δ1,i =
∑N

i=1 δ2,i = 0 and
∑N

i=1 φij = 0. We also impose the restriction∑N
j=1 φij = 0 to avoid the identification problem.
Using the theoretical constraints in (2.3a), (2.3b) and (2.3c), the MS-

AIDS model (2.1) can be rewritten as

w̄it = αi,st +
N−1∑

j=1

γij,st log

(
pjt
pNt

)
+ βi,st log

(
m0t

Pt

)
(2.5)

where i = 1, 2, . . . , N − 1. Imposing the restriction
∑N

j=1 φij = 0, intercept
term αi,st in (2.5) is expressed as

αi,st = ᾱi,st + νi,stt+ δ1,id1,t + δ2,id2,t +
N−1∑

j=1

φij(w̄j,t−1 − w̄N,t−1).

The MS-AIDS model employs the Markov switching mechanism which
is developed by Hamilton (1989). The Markov switching mechanism can
express switching of regimes by using the unobserved random variables that
follow the Markov process. To apply the Markov switching mechanism, we
assume that transitions between regimes are governed by a K-state Markov
chain with transition probabilities:

Pr (st = j|st−1 = i) = πij, i, j = 1, 2, . . . , K (2.6)

and the transition matrix is defined as

Π =





π11 π21 . . . πK1

π12 π22 . . . πK2
...

...
. . .

...
π1K π2K . . . πKK




(2.7)

where πi1 + πi2 + · · ·+ πiK = 1, i = 1, 2, . . . , K.
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3 Bayesian Estimation

Letwt be a (N−1)×1 vector of budget shares at time t, w̄it (i = 1, 2, . . . , N−
1) and we define the matrix of explanatory variables for regime-dependent

parameters ᾱi,st , γi1,st , γi2,st , . . . , γiN−1,st , βi,st , νi,st as X
(1)
t and for regime-

independent parameters δ1,i, δ2,i, φi1, φi2, . . . , φi,N−1 as X(0)
t .

Given the value of price index (2.2), the MS-AIDS model (2.5) can be first
rewritten by separating the parts that depend on regimes and by including
the error term εit as

w̄it = ᾱi,st +
N−1∑

j=1

γij,st log

(
pjt
pNt

)
+ βi,st log

(
m0t

Pt

)
+ νi,stt

+ δ1,id1,t + δ2,id2,t +
N−1∑

j=1

φij(w̄j,t−1 − w̄N,t−1) + εit (3.1)

and thus can further be rewritten as the matrix form:

wt = X(1)
t θst +X(0)

t θ0 + εt (3.2)

where εt ∼ N (0,Σst) and Σst is also regime-dependent parameter such that

Σst = Σj if time t belongs to regime j. The size of the matrices X(1)
t and

X(0)
t are (N − 1)× [ 3(N − 1)+N(N − 1)/2 ] and (N − 1)× (N − 1)(N +1).

Example

Let us consider the case that the number of products N is four. Then 3× 15
matrix X(1)

t is defined as

X(1)
t ≡

[
I3 P t M t T t

]

where I3 is a 3× 3 identity matrix,

M t ≡




log(m0t

Pt
) 0

log(m0t
Pt

)
0 log(m0t

Pt
)



 , T t ≡




t 0

t
0 t



 ,

and

P t ≡




log(p1tp4t

) log(p2tp4t
) log(p3tp4t

) 0 0 0
0 log(p1tp4t

) 0 log(p2tp4t
) log(p3tp4t

) 0
0 0 log(p1tp4t

) 0 log(p2tp4t
) log(p3tp4t

)



 .
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The 15 element parameter vector θst is defined as

θst ≡





ᾱst

γst

βst

νst





where ᾱst ≡ [ ᾱ1,st ᾱ2,st ᾱ3,st ]
′, γst ≡ [ γ11,st γ12,st γ13,st γ22,st γ23,st γ33,st ]

′,
βst ≡ [ β1,st β2,st β3,st ]

′ and νst ≡ [ ν1,st ν2,st ν3,st ]
′.

The 3× 15 matrix X(0)
t is defined as

X(0)
t ≡

[
D1t D2t W 1t W 2t W 3t

]

where

D1t ≡




d1,t 0

d1,t
0 d1,t



 , D2t ≡




d2,t 0

d2,t
0 d2,t



 ,

and

W jt ≡




w̄j,t−1 − w̄4,t−1 0

w̄j,t−1 − w̄4,t−1

0 w̄j,t−1 − w̄4,t−1



 .

The 15 element parameter vector θ0 is defined as

θ0 ≡





δ1

δ2

φ1

φ2

φ3





where δ1 ≡ [ δ11 δ12 δ13 ]′, δ2 ≡ [ δ21 δ22 δ23 ]′ and φj ≡ [ φ1j φ2j φ3j]′.

Since the MS-AIDS model is parameterized nonlinear due to the price in-
dex (2.2), the estimate cannot be written as closed form. Instead, we assume
that value of price index is already known and draw samples of parameters
via Gibbs sampler. Afterward, these samples are used to update the value
of price index and then samples of parameters are generated with the new
price index. We repeat this process until convergence.

To obtain the likelihood function of MS-AIDS model, we denote the set
of variables obtained from t = 1 through time t as

Yt ≡ {w1,w2, . . . ,wt}, St ≡ {s1, s2, . . . , st},
Xt ≡ {x1,x2, . . . ,xt}
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where xt is a 1 × (2N + 3) vector of explanatory variables at time t in
(3.1): xt ≡ [ 1 log(p1t/pNt) · · · log(pN−1t/pNt) log(m0t/Pt) t d1,t d2,t
w̄1,t−1 − w̄N,t−1 · · · w̄N−1,t−1 − w̄N,t−1].

Then likelihood function L(·|·) is defined as

L(θ,π|YT ,ST ,XT ) = L(π|ST )L(θ|YT ,ST ,XT ) (3.3)

where θ ≡ {θ0,θ1,θ2, . . . ,θK ,Σ1,Σ2, . . . ,ΣK} and π ≡ {πij : i, j = 1, 2, . . . , K}.
Given a prior distribution p(θ,π) = p(θ)p(π) 3, we obtain the posterior dis-
tributions with respect to θ and to π as

p(θ,π|YT ,ST ,XT ) ∝ L(θ,π|YT ,ST ,XT )p(θ,π)

= L(π|ST )p(π)× L(θ|YT ,ST ,XT )p(θ)

∝ p(π|ST )× p(θ|YT ,ST ,XT ). (3.4)

Now we compute each of the terms on the right hand side of (3.4). To be able
to do this, we first need to generate discrete latent variables s1, s2, . . . , sT to
represent regimes.

3.1 Sampling of latent variables s1, s2, . . . , sT

Since ST ≡ {s1, s2, . . . , sT} is a sequence of unobservable finite discrete ran-
dom variables, we need to generate samples s1, s2, . . . , sT to compute the
posterior distributions in (3.4). To generate samples of latent variables
s1, s2, . . . , sT , we apply the multi-move sampler (e.g., Carter and Kohn, 1994;
Chib, 1996): Given the data obtained through time t, Ωt ≡ {Yt,Xt} and set
of parameters Θ ≡ {θ,π}, we consider a joint distribution f(ST |ΩT ,Θ) as

f(ST |ΩT ,Θ) = f(s1, s2, . . . , sT |ΩT ,Θ)

= Pr(sT |ΩT ,Θ) Pr(sT−1|sT ,ΩT−1,Θ) · · ·Pr(s1|s2,Ω1,Θ)

= Pr(sT |ΩT ,Θ)
T−1∏

t=1

Pr(st|st+1,Ωt,Θ) (3.5)

if ST ≡ {s1, s2, . . . , sT} is assumed to follow Markov process. This usage of
Markovian in reverse order is justified by virtue of Bayes theorem as we see
below

Pr(st|st+1,Ωt,Θ) =
Pr(st+1|st) Pr(st|Ωt,Θ)

Pr(st+1|Ωt,Θ)

3That is, the prior of θ and the prior of π are independent.
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=
Pr(st+1|st) Pr(st|Ωt,Θ)

∑K
st=1 Pr(st+1|st) Pr(st|Ωt,Θ)

(3.6)

where Pr(st+1|st) is a transition probability. Notice that Pr(st|st+1,Ωt,Θ) in
(3.5) can be computed from (3.6). The quantity Pr(st|Ωt,Θ) can be derived
by using the Hamilton filter (Hamilton, 1989).

Example

Suppose that the number of regimes K is two, we generate the samples
of s1, s2, . . . , sT as follows: Drawing a random number from the uniform
distribution between 0 and 1. If the generated number is less than or equal
to the Pr(sT−1 = 1|sT ,ΩT−1,Θ) in (3.6) for t = T − 1, we set sT−1 = 1,
otherwise, set sT−1 = 2. We can generate the sample of st for t = T − 1, T −
2, . . . , 1 backwards this way.

In order to calculate Pr(sT−1 = 1|sT ,ΩT−1,Θ), we use sT ∼ Pr(sT |ΩT ,Θ)
from the Hamilton filter as stated before in both the numerator and the
denominator of (3.6). We also need π11 = Pr(sT = 1|sT−1 = 1) and π22 =
Pr(sT = 2|sT−1 = 2) for st = 1 and 2. Generate π11 and π22 from (3.10) and
(3.11) respectively and calculate π12 = 1− π11, π21 = 1− π22 from (3.8) and
(3.9) respectively.

3.2 Sampling of transition probabilities πij

Given the samples of latent variables s1, s2, . . . , sT , the likelihood function
L(π|ST ) appears on the right hand side of (3.4) is defined as

L(π|ST ) =
K∏

i=1

K∏

j=1

π
nij

ij

where nij is the total number of transitions from i to j from t = 1 to t = T .
Suppose that the i-th column vector of transition matrix (2.7) is denoted

by πi = [πi1 πi2 · · · πiK ]′ and let the prior distribution of πi, independently
of πj (j '= i) be a K-dimensional Dirichlet distribution 4 :

πi ∼ Dir(ui1, ui2, . . . , uiK),

4The Dirichlet distribution for πi is defined as

p(πi|ui1, ui2, . . . , uiK) =
Γ(ui0)

Γ(ui1) · · ·Γ(uiK)
πui1−1
i1 · · ·πuiK−1

iK

where 0 ≤ πij ≤ 1,
∑K

j=1 πij = 1, uij > 0, and ui0 =
∑K

j=1 uij .
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then posterior distribution of πi is given as

p(πi|ST ) ∝ L(πi|ST )p(πi)

∝
K∏

j=1

π
nij

ij × (πui1−1
i1 · · · πuiK−1

iK )

= πni1+ui1−1
i1 πni2+ui2−1

i2 · · · πniK+uiK−1
iK . (3.7)

Therefore we have

πi|ST ∼ Dir(ni1 + ui1, ni2 + ui2, . . . , niK + uiK), i = 1, 2, . . . , K.

This corresponds to the first term on the right hand side of (3.4).

Example

Suppose that the number of regimes K is two, likelihood function is defined
as

L(π|ST ) =
2∏

i=1

2∏

j=1

π
nij

ij

= πn11
11 (1− π11)n12 × πn22

22 (1− π22)n21

= L(π11, π22|ST )

because
π11 + π12 = 1, (3.8)

and
π21 + π22 = 1. (3.9)

Then we can use beta distribution as the conjugate prior distributions with
respect to π11 and to π22 5 :

π11 ∼ Beta(u11, u12), π22 ∼ Beta(u22, u21).

Since posterior distributions for π11 and π22 are given as

p(π11, π22|ST ) ∝ L(π11, π22|ST )p(π11)p(π22),
5The beta distribution for π11 is defined as

p(π11|u11, u12) =
Γ(u11 + u12)

Γ(u11)Γ(u12)
πu11−1
11 (1− π11)

u12−1

where 0 ≤ π11 ≤ 1 and u11, u12 > 0.
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∝ πn11+u11−1
11 (1− π11)n12+u12−1 × πn22+u22−1

22 (1− π22)n21+u21−1,

we have
π11|ST ∼ Beta(n11 + u11 − 1, n12 + u12 − 1), (3.10)

and
π22|ST ∼ Beta(n22 + u22 − 1, n21 + u21 − 1). (3.11)

Here n11, n12, n21, and n22 are the numbers of transitions from regime 1 to
1, 1 to 2, 2 to 1, and 2 to 2 observed over the course of s1, . . . , sT , and these
s1, . . . , sT are generated in Example in section 3.1.

3.3 Sampling of parameters θ0, θj, j = 1, 2, . . . , K

To evaluate the posterior distribution p(θ|YT ,ST ,XT ) in (3.4) via Gibbs
sampler, we need conditional distributions of {θj}Kj=0 given {Σj}Kj=1 and of
{Σj}Kj=1 given {θj}Kj=0. To make the formulation clear, we assume that prior
distribution p(θ) 6 can be written as

p(θ) ≡ p({θj}Kj=0, {Σj}Kj=1)

= p({θj}Kj=0)p({Σj}Kj=1).

Since posterior distribution p(θ|YT ,ST ,XT ) in (3.4) can be rewritten as

p(θ|YT ,ST ,XT ) ≡ p({θj}Kj=0, {Σj}Kj=1|YT ,ST ,XT ),

we have

p({θj}Kj=0, {Σj}Kj=1|YT ,ST ,XT )

∝ L({θj}Kj=0, {Σj}Kj=1|YT ,ST ,XT )p({θj}Kj=0)p({Σj}Kj=1). (3.12)

Given {Σj}Kj=1, YT , ST , and XT , conditional posterior distributions for {θj}Kj=0

is expressed by dividing both sides of (3.12) by p({Σj}Kj=1)

p({θj}Kj=0|YT ,ST ,XT , {Σj}Kj=1)

∝ L({θj}Kj=0, {Σj}Kj=1|YT ,ST ,XT )p({θj}Kj=0). (3.13)

Given the samples of latent variables s1, s2, . . . , sT obtained in section
3.1 and variance-covariance matrices Σj (j = 1, 2, . . . , K) to be described in
(3.17), we re-express the MS-AIDS model (3.2) as

wt = X tθ
∗ + εt (3.14)

6In other words, we assume that the prior distribution’s location parameters {θj}Kj=0

and scale-like parameters {Σj}Kj=1 can be freely moved and form a K-dimensional rectan-
gular parameter space.
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where εt ∼ N (0,Σst). The matrix X t in (3.14) is defined as

X t =
[
1{st = 1}X(1)

t 1{st = 2}X(1)
t · · · 1{st = K}X(1)

t X(0)
t

]

with indicator function 1{st = j} taking scalar value 1 if st = j, or 0 other-
wise 7 , and parameter vector θ∗ is defined as

θ∗ ≡





θ1

θ2
...

θK

θ0




.

To generate samples of θ∗, we derive the posterior distribution of θ∗ con-
ditional on Σ1, Σ2, . . . , ΣK from (3.13). Applying the multivariate normal
distribution N (µ,V ) as a conjugate prior p(θ∗), conditional posterior distri-
bution of θ∗ in (3.13) is derived as

p(θ∗|YT ,ST ,XT , {Σj}Kj=1)

∝
T∏

t=1

[
(2π)−

N−1
2 |Σst |−

1
2 exp

{
−1

2
(wt −X tθ

∗)′Σ−1
st (wt −X tθ

∗)

}]

× |V |− 1
2 exp

{
−1

2
(θ∗ − µ)′V −1(θ∗ − µ)

}

∝ exp
{
(θ∗ − b)′B−1(θ∗ − b)

}

where

b = B

(
T∑

t=1

X ′
tΣ

−1
st wt + V −1µ

)
, B−1 =

T∑

t=1

X ′
tΣ

−1
st X t + V −1.

Then the conditional posterior distribution of θ∗ is

θ∗|YT ,ST ,XT , {Σj}Kj=1 ∼ N (b,B) . (3.15)

7That is, when st = k, the matrix Xt consists of k − 1 of matrices of size (N − 1) ×
[3(N − 1)+N(N − 1)/2] whose elements are all zero, X(1)

t , and K − k of matrices of size

(N −1)× [3(N −1)+N(N −1)/2] whose elements are all zero, and X(0)
t , all aligned from

left to right.
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3.4 Sampling of parameters Σj, j = 1, 2, . . . , K

We assume that Σ1,Σ2, . . . ,ΣK are independent, then conditional posterior
distribution for {Σj}Kj=1 is expressed as

p({Σj}Kj=1|YT ,ST ,XT , {θj}Kj=0) =
K∏

j=1

p(Σj|YT ,ST ,XT , {θj}Kj=0)

∝
K∏

j=1

L(Σj, {θj}Kj=0|YT ,ST ,XT )p(Σj).

(3.16)

To generate samples of Σj, j = 1, 2, . . . , K, we derive the conditional
posterior distribution of Σj from (3.16). Applying the inverse Wishart dis-
tribution IW (νj,Λj) as a conjugate prior p(Σj), conditional posterior dis-
tribution of Σj is derived as

p(Σj|YT ,ST ,XT ,θ
∗)

∝
∏

t∈{t:st=j}

[
(2π)−

N−1
2 |Σj|−

1
2 exp

(
−1

2
ε′tΣ

−1
j εt

)]

× |Σj|−
νj+(N−1)+1

2 exp

(
−1

2
tr
{
Σ−1

j Λj

})

∝ |Σj|−
νj+(N−1)+1+nj

2 exp

(
−1

2
tr

{
Σ−1

j

(
T∑

t=1

εtε
′
t1{st = j}+Λj

)})

where nj is the total number of time t belonging to regime j. Then conditional
posterior distribution of Σj is

Σj|YT ,ST ,XT ,θ
∗ ∼ IW

(
νj + nj,

T∑

t=1

εtε
′
t1{st = j}+Λj

)
(3.17)

where j = 1, 2, . . . , K.
From (3.15) and (3.17), we are able to construct Gibbs sampler algorithm

by generating θ∗ and substituting these into (3.17) and then generating Σj

with the generated θ∗ and substituting those back into (3.15).

4 Simulation study

In this section, we illustrate our proposed method by simulation. To generate
simulation data, we consider the case that the number of products N =
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4, the number of regimes K = 2, and the number of observations T =
800. The price data of four products p1t, p2t, p3t, and p4t generate from
the uniform distributions such that p1t ∼ U(240, 380), p2t ∼ U(130, 150),
p3t ∼ U(90, 100), and p4t ∼ U(120, 200). Total expenditure (or budget) on
four products, m0t, generates from U(7500, 16000). We specify unobserved
latent variables ST = {s1, s2, . . . , sT} such that st = 1 if 1 ≤ t ≤ 400, and
st = 2 if 401 ≤ t ≤ 800 8 .

To simplify the MS-AIDS model (2.1), parameter αi,st in (2.4) is set to
αi,st = ᾱi,st and we estimate the parameters via the Gibbs sampling algorithm
with (3.6), (3.10), (3.11), (3.15) and (3.17). The prior distributions are
parameterized by setting µ = 0, V = 104I24, νj = 10, Λj = 10−3I3 (j =
1, 2), u11 = u22 = 5, and u12 = u21 = 2. When we generate the samples of
parameters via the Gibbs sampling algorithm, we restrict a priori that, in
our simulated data, at least 40% of observations lie in each regime in order
to avoid identification problem.

The Gibbs sampling algorithm is run so that the first 40, 000 samples
are discarded as burn-in and then the next 40, 000 samples are recorded.
To test the convergence of samples to the posterior distributions, we apply
the Geweke (1992)’s convergence diagnostic. The first 10% and last 50% of
the recorded simulated data are used to conduct this test, as suggested by
Geweke (1992).

Tables 1 and 2 show the posterior means, posterior standard deviations
(SD), 95% credible intervals (sometimes referred as 95% Bayesian confidence
intervals as well), and Geweke’s convergence diagnostic statistics (CD) for
all parameters in regimes 1 and 2. We confirm that Geweke’s convergence
diagnostic statistics for all parameters are within ±1.96 range. For α’s, γ’s,
and β’s, their posterior distributions are all normal, so that the means and
50% percentiles in principle coincide for the same estimated, while this is
not the case for σ’s because the posteriors for σ’s are inverse Wishart and
they are not symmetric. The Geweke’s convergence diagnostic statistics in
Tables 1 and 2 show that we do not reject the null hypothesis for equality of
the means of the first 10% and the last 50% of the recorded simulated data
at the 5% significant level. Tables 1 and 2 also show that posterior means
of all parameters are similar to those true values and 95% credible intervals
include true values.

In Table 3, transition probabilities π11 and π22 pass the Geweke’s con-
vergence diagnostic and posterior means of transition probabilities indicate

8These number are set to mimic Japanese meat (beef, pork, chicken and fish) market
from 1998 to 2006 to be analyzed in this paper, so that the prices and the expenditures
are in Japanese yen. In the actual analysis, the number of observations are only available
monthly with 108 observations.
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Table 1: Estimated Parameters in Regime 1

Mean SD 2.5% 50% 97.5% CD True value
α1 0.4101 0.0114 0.3879 0.4101 0.4322 1.3850 0.40
α2 0.4955 0.0110 0.4740 0.4955 0.5170 -1.3797 0.50
α3 0.2937 0.0109 0.2725 0.2937 0.3151 -0.2398 0.30
γ11 0.0188 0.0035 0.0119 0.0188 0.0256 -1.2725 0.02
γ12 -0.0177 0.0033 -0.0241 -0.0177 -0.0112 1.2060 -0.02
γ13 -0.0437 0.0032 -0.0500 -0.0437 -0.0375 0.0054 -0.04
γ22 0.0437 0.0071 0.0298 0.0437 0.0577 -0.2960 0.05
γ23 -0.0290 0.0063 -0.0414 -0.0291 -0.0168 0.2734 -0.03
γ33 0.0973 0.0071 0.0835 0.0973 0.1112 -0.7818 0.10
β1 -0.0626 0.0025 -0.0674 -0.0626 -0.0577 -1.1847 -0.06
β2 -0.0595 0.0024 -0.0642 -0.0595 -0.0549 1.2374 -0.06
β3 -0.0182 0.0023 -0.0227 -0.0182 -0.0138 -0.0367 -0.02
σ211 0.000108 0.000008 0.000094 0.000107 0.000124 1.8725 0.00010
σ12 0.000007 0.000005 -0.000003 0.000007 0.000017 -1.0644 0.00000
σ13 0.000006 0.000005 -0.000003 0.000006 0.000016 0.2284 0.00000
σ222 0.000099 0.000007 0.000086 0.000099 0.000114 -1.2798 0.00010
σ23 0.000001 0.000005 -0.000008 0.000001 0.000010 0.3664 0.00000
σ233 0.000091 0.000006 0.000079 0.000090 0.000104 0.4843 0.00010
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Table 2: Estimated Parameters in Regime 2

Mean SD 2.5% 50% 97.5% CD True value
α1 0.2797 0.0130 0.2540 0.2797 0.3051 0.8683 0.30
α2 0.4065 0.0140 0.3792 0.4064 0.4340 -1.7004 0.40
α3 0.5098 0.0140 0.4821 0.5098 0.5370 -0.9716 0.50
γ11 0.0217 0.0040 0.0140 0.0217 0.0296 -1.4201 0.02
γ12 -0.0279 0.0039 -0.0356 -0.0279 -0.0202 0.4881 -0.03
γ13 -0.0542 0.0039 -0.0619 -0.0542 -0.0467 0.2647 -0.05
γ22 0.0531 0.0093 0.0348 0.0531 0.0715 0.6860 0.05
γ23 -0.0223 0.0085 -0.0391 -0.0222 -0.0056 -0.9342 -0.02
γ33 0.1092 0.0094 0.0907 0.1092 0.1279 0.7255 0.10
β1 -0.0459 0.0027 -0.0511 -0.0459 -0.0406 -0.5835 -0.05
β2 -0.0719 0.0029 -0.0777 -0.0719 -0.0663 1.5217 -0.07
β3 -0.0305 0.0028 -0.0360 -0.0306 -0.0250 1.1880 -0.03
σ211 0.000137 0.000010 0.000119 0.000136 0.000157 -1.5203 0.00015
σ12 0.000003 0.000007 -0.000012 0.000003 0.000017 -1.5000 0.00000
σ13 0.000000 0.000007 -0.000014 0.000000 0.000014 0.1945 0.00000
σ222 0.000162 0.000011 0.000141 0.000161 0.000186 1.1823 0.00015
σ23 -0.000002 0.000008 -0.000017 -0.000002 0.000013 -0.1355 0.00000
σ233 0.000150 0.000011 0.000131 0.000150 0.000172 -0.7952 0.00015

that simulated budget share data tends to stay for a long time in the same
regime. This result obviously reflects the specification of latent variables
ST = {s1, s2, . . . , sT} such that st = 1 if 1 ≤ t ≤ 400, and st = 2 if
401 ≤ t ≤ 800. We also calculate the probability of being regime j, (j = 1, 2)
at time t as

Pr{st = j} =
1

n

n∑

i=1

1{s(i)t = j} (4.1)

where n is the number of recorded samples to summarize the posterior dis-
tributions, and s(i)t is a i-th sample of latent variable st. Figure 1 shows that

Table 3: Estimated Transition Probability

Mean SD 2.5% 50% 97.5% CD
π11 0.9951 0.0035 0.9863 0.9958 0.9994 -0.8778
π22 0.9975 0.0025 0.9908 0.9983 0.9999 -0.5904
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regime shift from st = 1 to st = 2 is observed at time t = 400.
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Figure 1: The left panel shows probability of st = 1, while the right panel
shows the probability of st = 2.

5 Empirical study on Japanese meat market

In the previous studies on structural changes of demands in the Japanese
meat market, for example, Jin and Koo (2003) identified a structural change
point coinciding with the first BSE case in Japan by using the non-parametric
tests. Peterson and Chen (2005) focused on the type and origin of beef prod-
ucts (i.e., wagyu 9, dairy, U.S., and Australian beef) and showed the differ-
ence of impacts on the beef products due to the first BSE case in Japan.
Ishida et al. (2006, 2010) examined not only the structural change due to
the BSE but also the bird flu in Japan. Previous studies such as Peterson
and Chen (2005) and Ishida et al. (2006, 2010) applied the gradual switching
model proposed by Ohtani and Katayama (1986) to examine the gradual
shifts in demands of meat products. This model utilizes a transition func-
tion to express a gradual shift pattern in demand under the assumption that
starting-points of structural shift are already known. In this study, we exam-
ine the structural change points without any prior information about change
points in the Japanese meat market via the proposed Bayesian MS-AIDS
model. Also, we compute the elasticities of price and expenditure in each
regime to examine the change of consumers’ purchasing behavior pattern of
meat products in Japan.

9Japanese native beef cattle

16



The Ministry of Internal Affairs and Communications in Japan provides
us with the household expenditure survey data (i.e., Family Income and
Expenditure Survey). The household expenditure survey data includes the
monthly time series data about average expenditure and price of meat and
fish products along with others. In this study, we used the average expen-
diture and price data of beef, pork, chicken and fish over January 1998 to
December 2006 (108 months). Figure 2 plots the budget shares of meat
products from January 1998 through December 2006.
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Figure 2: Plot of budget share data

In the Japanese meat market, there exists serious food safety concerns
regarding to the BSE and bird flu during the period under this study. The
BSE was initially recognized in Japan in September 2001. The budget share
of beef dramatically declined after the first reported case of BSE in Japan,
while those of pork and chicken increased (see Figure 2). After the first
BSE case, budget share of beef gradually recovered, however it was still rel-
atively small as compared with that of pork. During the study period, the
first BSE case in U.S. was confirmed on December 2003. Although the U.S.
was one of the largest exporters to Japan, Japanese government announced
a ban on import of American beef immediately. On December 2005 the
Japanese government resumed importing American beef under stricter con-
ditions. Nevertheless banned specified-risk materials of beef products were
found from the imported beef from the U.S. on January 2006. Afterward,
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Japanese government imposed a ban on import of U.S. beef until July 2006.
The bird flu is an infectious disease caused by avian influenza viruses

(e.g., H5N1 virus). The H5N1 virus is the most highly pathogenic strain.
Many people infected with the H5N1 virus have died in Vietnam, Indonesia,
Thailand and other Southeast Asian countries. On January 2004, the first
H5N1-infected poultry were discovered in Japan. The budget share of chicken
declined slightly and then it recovered within a short period of time.

5.1 Estimation Results

We estimate parameters of MS-AIDS model (2.1) with the intercept parame-
ters in (2.4). The Gibbs sampling algorithm is run so that the first 5, 000 sam-
ples are discarded as burn-in and then the next 25, 000 samples are recorded.
The prior distributions are parameterized by setting µ = 0, V = 104I45,
νj = 10, Λj = 10−3I3 (j = 1, 2), u11 = u22 = 5, and u12 = u21 = 2. We
also restrict a priori that, in our observed data, at least 40% of observations
lie in each regime in order to avoid identification problem within the Gibbs
sampling algorithm.

In this study, we examine the following four models: model 1 only includes
intercept parameter ᾱi,st . Model 2 includes seasonal effects on August and
December into model 1, and model 3 adds a habit effect into model 2. Finally,
model 4 further incorporates a trend effect into model 3.

Model 1 αi,st = ᾱi,st

Model 2 αi,st = ᾱi,st + δ1,id1,t + δ2,id2,t

Model 3 αi,st = ᾱi,st + δ1,id1,t + δ2,id2,t +
∑N

j=1 φijw̄j,t−1

Model 4 αi,st = ᾱi,st + νi,stt+ δ1,id1,t + δ2,id2,t +
∑N

j=1 φijw̄j,t−1

Table 4: Log-Marginal Likelihood and Log-Bayes Factor

Model1 Model2 Model3 Model4
Model1 1098.416 — — —
Model2 18.927 1117.343 — —
Model3 62.157 43.230 1160.573 —
Model4 63.452 44.525 1.295 1161.868

Table 4 shows the logarithmic marginal likelihood of model i, log-MLi (i =
1, 2, 3, 4) as diagonal elements and logarithmic Bayes factors (see Appendix
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C), log-BFij for model i against model j as off-diagonal elements. To obtain
the marginal likelihoods for candidate models, we use the method proposed
by Newton and Raftery (1994). Although models 3 and 4 have large loga-
rithmic marginal likelihoods relative to the other models, logarithmic Bayes
factor for model 4 against model 3, log-BF43 (= 1.295) indicates “positive”
(Kass and Raftery, 1995, p.777) evidence in favor of model 4. Therefore we
conclude that model 4 fits the data best.

Table 5: Estimated Parameters of MS-AIDS model in Regime1

Mean SD 2.5% 50% 97.5% CD
ᾱ1 0.2866 0.1262 0.0416 0.2850 0.5373 0.6055
ᾱ2 0.6046 0.0925 0.4118 0.6074 0.7780 -0.3348
ᾱ3 0.3285 0.0794 0.1694 0.3290 0.4824 -0.7486
γ11 0.0245 0.0613 -0.1131 0.0350 0.1229 -0.0015
γ12 -0.0039 0.0437 -0.0701 -0.0129 0.0951 0.3383
γ13 -0.0549 0.0335 -0.1315 -0.0534 0.0060 -0.4092
γ22 0.0335 0.0473 -0.0693 0.0368 0.1174 -0.1208
γ23 -0.0110 0.0403 -0.0947 -0.0096 0.0653 -0.7934
γ33 0.0891 0.0480 -0.0020 0.0879 0.1892 0.7943
β1 -0.0301 0.0265 -0.0817 -0.0301 0.0226 -0.6585
β2 -0.0936 0.0193 -0.1320 -0.0936 -0.0553 -0.0383
β3 -0.0195 0.0170 -0.0524 -0.0198 0.0147 0.7026
σ211 0.000061 0.000013 0.000041 0.000060 0.000091 1.3920
σ12 -0.000003 0.000008 -0.000018 -0.000003 0.000013 -0.5299
σ13 -0.000008 0.000007 -0.000022 -0.000008 0.000006 -0.1079
σ222 0.000035 0.000008 0.000024 0.000034 0.000053 0.4690
σ23 0.000006 0.000005 -0.000004 0.000006 0.000016 0.2985
σ233 0.000029 0.000006 0.000019 0.000028 0.000044 1.1468

Tables 5 and 6 show the results of parameters for beef, pork and chicken.
The parameters for fish are estimated from the adding-up condition (2.3a).
Tables 5 and 6 show the the posterior means, posterior standard deviations
(SD), 95% credible intervals, and Geweke’s convergence diagnostic statistics
(CD) for all parameters in MS-AIDS model (2.1) and variance-covariance
matrices in regimes 1 and 2. To carry out the Geweke’s convergence diag-
nostic, we used the first 10% and last 50% of the recorded simulated data
and Tables 5 and 6 show that all parameters pass the Geweke’s convergence
diagnostic at 5% significant level. In the Bayesian framework, if a 95% cred-
ible interval does not include zero, estimated parameters are interpreted as
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Table 6: Estimated Parameters of MS-AIDS model in Regime2

Mean SD 2.5% 50% 97.5% CD
ᾱ1 0.1926 0.1858 -0.1418 0.1817 0.5981 -0.4185
ᾱ2 0.6542 0.1255 0.3993 0.6593 0.8891 -0.4349
ᾱ3 0.2838 0.1017 0.0812 0.2843 0.4830 -0.6659
γ11 0.1032 0.0682 -0.0267 0.1056 0.2270 -0.1384
γ12 -0.0484 0.0355 -0.1164 -0.0489 0.0185 0.4018
γ13 -0.0560 0.0299 -0.1154 -0.0555 0.0011 0.9316
γ22 0.0432 0.0417 -0.0368 0.0425 0.1272 0.0669
γ23 0.0236 0.0343 -0.0436 0.0234 0.0923 -0.3294
γ33 0.0628 0.0399 -0.0146 0.0620 0.1429 -1.1898
β1 -0.0329 0.0385 -0.1131 -0.0318 0.0392 0.8659
β2 -0.0949 0.0246 -0.1421 -0.0954 -0.0454 0.5194
β3 -0.0112 0.0210 -0.0529 -0.0111 0.0301 0.0316
σ211 0.000161 0.000045 0.000096 0.000154 0.000267 -0.7579
σ12 -0.000033 0.000018 -0.000074 -0.000031 -0.000004 0.2701
σ13 -0.000029 0.000015 -0.000062 -0.000027 -0.000003 0.3091
σ222 0.000045 0.000010 0.000030 0.000044 0.000069 -1.0053
σ23 0.000004 0.000008 -0.000011 0.000004 0.000020 -0.0595
σ233 0.000042 0.000010 0.000027 0.000041 0.000065 -1.3308

the significant parameters. Thus ᾱ1, ᾱ2, ᾱ3, β2, σ211, σ
2
22, and σ

2
33 in Table 5

and ᾱ2, ᾱ3, β2, σ211, σ12, σ13, σ
2
22, and σ

2
33 in Table 6 are regarded significantly

different from zero. These parameters in MS-AIDS model (2.1) are used to
calculate the price and expenditure elasticities.

Next we show the results of estimated parameters in the intercept term
(2.4). In Table 7, only trend effect of beef in regime 1 has a significant nega-
tive effect, while the other parameters include zero within the 95% credible
intervals. As for seasonal effects in Table 8, beef has a significant positive
effect, while chicken has a significant negative effect both in August. On
the other hand, seasonal effects on December are not significant for all meat
products. Finally, Table 9 shows that the budget shares of beef and pork for
previous period have positive impacts on the current budget shares.

To compare our proposed Bayesian estimation with the ML estimation
proposed in Allais and Nichèle (2007) and employed in Kabe and Kanazawa
(2012), we calculate the mean squared errors (MSEs) for estimated budget
shares. The MSEs of Bayesian estimation are evaluated by the posterior
means of estimates of budget shares generated within the Gibbs sampler. The
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Table 7: Trend Effect in MS-AIDS model

Trend (Regime 1)

Mean SD 2.5% 50% 97.5% CD
ν11(beef) -0.00038 0.00014 -0.00064 -0.00040 -0.00007 0.2165
ν21(pork) 0.00003 0.00010 -0.00018 0.00004 0.00021 -0.9640
ν31(chicken) 0.00002 0.00008 -0.00016 0.00002 0.00017 -0.6504

Trend (Regime 2)

Mean SD 2.5% 50% 97.5% CD
ν12(beef) 0.00016 0.00022 -0.00029 0.00017 0.00058 0.9870
ν22(pork) 0.00019 0.00012 -0.00005 0.00019 0.00044 -0.0507
ν32(chicken) 0.00015 0.00012 -0.00009 0.00015 0.00038 -1.7246

Table 8: Seasonal Effect in MS-AIDS model
Seasonal (Aug)

Mean SD 2.5% 50% 97.5% CD
δ11(beef) 0.0108 0.0040 0.0031 0.0108 0.0189 -0.1119
δ12(pork) -0.0040 0.0026 -0.0093 -0.0040 0.0010 0.8173
δ13(chicken) -0.0054 0.0024 -0.0101 -0.0054 -0.0006 0.7323

Seasonal (Dec)

Mean SD 2.5% 50% 97.5% CD
δ21(beef) 0.0119 0.0124 -0.0111 0.0114 0.0375 0.0939
δ22(pork) -0.0142 0.0104 -0.0355 -0.0137 0.0045 -0.3565
δ23(chicken) 0.0128 0.0079 -0.0028 0.0128 0.0281 -0.6845

Table 9: Habit Effect in MS-AIDS model

Mean SD 2.5% 50% 97.5% CD
φ11(beef) 0.3183 0.0772 0.1636 0.3197 0.4696 -0.0619
φ22(pork) 0.0510 0.0776 -0.1010 0.0513 0.2030 0.0906
φ33(chicken) 0.4454 0.1158 0.2136 0.4478 0.6683 -1.1871

results of MSEs with respect to our proposed Bayesian estimation (Bayes)
and ML estimation (MLE) are given in Table 10. Our Bayesian estimation
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improves the MSEs for all products over ML estimation. This result reflects
the goodness of fit to the budget share data of our Bayesian estimation.

Table 10: Mean squared errors (MSEs)

Beef Pork Chicken Fish
Bayes 0.805× 10−4 0.172× 10−4 0.152× 10−4 0.603× 10−4

MLE 1.177× 10−4 0.264× 10−4 0.158× 10−4 0.657× 10−4

Figure 3 plots the probability of being regime 2 and budget share data of
beef and pork from January 1998 through December 2006 under the proposed
Bayesian method. We calculate the probability Pr{st = 2} from (4.1). In
Figure 3, regime shift from st = 1 to st = 2 is observed at the timing of first
BSE case in Japan in September 2001 and then the probability Pr{st = 2}
gradually declines until the end of 2003 along with increase in budget share
of beef. With the timing of first BSE case in U.S. in December 2003, we
observe a high probability of being regime 2 once again. Since then, structure
of budget share tends to stay in regime 2.

The first regime shift in Figure 3 reflects the switching of consumers’
preference from beef to pork triggered by the BSE scare in Japan in Septem-
ber 2001. The second regime shift after the first BSE discovery in U.S. in
December 2003 might have arisen due to the ban on import of American
beef. Since the ban on importing U.S. beef led to the shortage of beef supply
in the domestic meat market, consumers may have been forced to purchase
more pork instead of beef. In addition, Table 11 shows that posterior means
of transition probabilities π11 and π22 are relatively high. This implies that
there is little chance for switching from regime 1 to regime 2 and from regime
2 to regime 1.

Figure 4 shows the results of probability of being regime 2, Pr(st =
2|Ωt, Θ̂) under the ML estimation. We estimated the probability from the
Hamilton filter using data set obtained through time t, Ωt, and ML esti-
mates Θ̂ in model 4 (see Kabe and Kanazawa, 2012). The regime shift at
the timing of first BSE case in Japan in September 2001 is observed in Figure
4. Nevertheless, when compared with the result of regime shift in Figure 3,
the probability’s gradual decline due to the recovery of beef budget share
following the first BSE case in Japan observed in Figure 3 no longer can be
observed in Figure 4. Unlike Figure 3, we cannot identify the regime shift at
the timing of first BSE case in U.S. in December 2003 in Figure 4.

We calculate the average budget share of i-th product at regime st = j
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Figure 3: Probability of being regime 2, Pr{st = 2} and budget share data of
beef and pork under the proposed Bayesian estimation. Two vertical dashed lines
indicate the first BSE case in Japan on September 2001 and the first BSE case in
U.S. on December 2003.

Table 11: Estimated Transition Probabilities

Mean SD 2.5% 50% 97.5% CD
π11 0.9520 0.0282 0.8830 0.9572 0.9911 -0.1400
π22 0.9619 0.0300 0.8868 0.9689 0.9979 1.0742

as

w̄i,st=j =

∑T
t=1 1{st = j}w̄it∑T
t=1 1{st = j}

.

Table 12 shows that regime 1 is characterized by a higher beef budget share
relative to that of pork, while regime 2 is characterized by the reversal of
these two budget shares.

Since substitution occurs mostly between beef and pork in regimes 1 and
2 (see Table 12), we focus on the price and expenditure elasticities for beef
and pork. Using the estimated parameters in Tables 5, 6, 7, 8 and 9, we
calculate the Marshallian price elasticity ηPij,st and expenditure elasticity ηEi,st
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Figure 4: Probability of being regime 2, Pr(st = 2|Ωt, Θ̂) and budget share data
of beef and pork under ML estimation.

Table 12: Posterior mean of average budget share

Regime 1 Regime 2
Beef 0.2075 0.1799
Pork 0.1825 0.2071
Chicken 0.0878 0.0961
Fish 0.5222 0.5170

at regime st for each 25, 000 samples generated via Gibbs sampler as

ηPij,st = −κij +
γij,st
w̄i,st

− βi,st
w̄i,st

[
αj,st +

N∑

k=1

γkj,st log p̄k,st

]
, (5.1)

ηEi,st =
βi,st
w̄i,st

+ 1, (5.2)

where κij = 1 for i = j and κij = 0 for i '= j, and p̄k,st is an average price at
regime st.

In Table 13, we show the posterior means and 95% credible intervals of
price and expenditure elasticities for beef and pork. Although own-price elas-
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ticities of pork have significant negative impacts in both regimes, own-price
elasticity of beef in regime 2 includes zero within the 95% credible interval.
Since American beef was banned and in short supply then, beef prices tended
to increase in regime 2. Hence this price inelastic beef purchasing behavior
in regime 2 in Table 13 implies that those who had kept purchasing beef in
regime 2 did so regardless of its price.

Moreover substitution between beef and pork due to the change of their
relative prices is rejected statistically because cross-price elasticities are not
significant in both regimes. This consumer behavior represented in Table 13
shows that this insignificance stayed almost unchanged over the two regimes.

Finally, expenditure elasticities of beef and pork are as expected sig-
nificantly positive in both regimes and they do not seem to have changed
significantly between these regimes. In Japan, since beef unit price is almost
as twice as high as pork unit price, it is not surprising that beef expenditure
elasticity is much higher than pork expenditure elasticity.

Table 13: Price elasticities and Expenditure elasticities
Regime1 Price ( ηPij ) Expenditure ( ηEij )

Beef Pork
Beef -0.8171 0.0600 0.8552

(-1.4682, -0.3440) (-0.2839, 0.5459) (0.6088, 1.1092)

Pork 0.1483 -0.5142 0.4874
(-0.2299, 0.7208) (-1.0636, -0.0365) (0.2783, 0.6939)

Regime2 Price ( ηPij ) Expenditure ( ηEij )

Beef Pork
Beef -0.3357 -0.1679 0.8168

(-1.0458, 0.3696) (-0.5573, 0.2385) (0.3694, 1.2182)

Pork -0.0961 -0.5050 0.5421
(-0.4100, 0.2209) (-0.9362, -0.0620) (0.3172, 0.7797)

1) 95% credible interval in parentheses

6 Conclusion

In this paper, we proposed the Bayesian estimation for MS-AIDS model pro-
posed by Allais and Nichèle (2007) and illustrated the applicability of our
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proposed method via simulated and real data. The proposed Bayesian es-
timation has some important advantages. First, it enables us to avoid the
singularity problem suggested in Hamilton (1990, 1991). In the Bayesian
framework, we can use conjugate prior distributions to incorporate the prior
information about variance-covariance matrices in advance. On the other
hand, ML estimation via numerical optimization methods (e.g., Newton-
Raphson method) has to depend on sensible selection of initial values of
parameters to avoid singularity points on the parameter space. Second, our
proposed Bayesian estimation by design ensures that transition probabilities
be located between zero and one by generating the samples from the beta
distributions within the Gibbs sampler. Third, there is no need to calculate
the score functions of log-likelihood, unlike ML estimation which employed
in Allais and Nichèle (2007) and Kabe and Kanazawa (2012), is computa-
tionally very intensive. In our Bayesian estimation, posterior distributions of
parameters are expressed as the standard formula (e.g., multivariate normal
and inverse Wishart distributions). Thus each of parameters can be easily
simulated via Gibbs sampler.

In the empirical study on the Japanese meat market, we found that our
Bayesian estimation improves the mean squared errors for all meat products
compared with the ML estimation. Moreover we found the regime shift in
the budget shares of meat products in Figures 3 depicts much more sophisti-
cated and realistic picture of regime transition than Figure 4. Specifically, in
Figure 3, probability of being regime 2, Pr{st = 2}, estimated via Bayesian
estimation shows the regime shifts at the timing of first reported cases of
BSE both in Japan in September 2001 and also in U.S. in December 2003.
On the other hand, Figure 4 shows a single regime shift at the timing of
first BSE case in Japan. Since ML parameter estimates are given as the
point solutions, the probability of being regime 2, Pr(st = 2|Ωt, Θ̂) in Fig-
ure 4 ignores the uncertainty about parameters and making the probability
Pr(st = 2|Ωt, Θ̂) in Figure 4 closer to zero or one. Perhaps as Scott (2002,
p.345) observed, ignoring uncertainly about the parameter may have con-
tributed to such result.

Finally, we discuss the further extension of MS-AIDS model. Several
studies have extended the Hamilton (1989)’s Markov-switching model. In
particular, they focused on a useful modification of transition probabilities.
For example, Diebold et al. (1994) introduced the time-varying transition
probabilities into the Markov-switching model, and also they allowed the
transition probabilities to evolve as logistic functions of economic variables.
Alternatively, Markov-switching model assumes that latent variables control-
ling regime shifts are exogenous. Kim et al. (2008) relaxed this exogenous
regime-switching assumption and proposed a Markov-switching regression
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model with endogenous regime switching. The extensions to MS-AIDS model
in these directions will be interesting for future research.

A Conditional posterior distributions of θ∗

and Σst

To generate samples of θ∗, we derive the conditional posterior distributions
of θ∗ from (3.13). Since Σ−1

st is symmetric and positive definite, there exists

a nonsingular matrix Σ−1/2
st such that

Σ−1
st = Σ−1/2′

st Σ−1/2
st .

Multiplying Σ−1/2
st on the both sides of (3.14), we have

Σ−1/2
st wt = Σ

−1/2
st X tθ

∗ +Σ−1/2
st εt. (A.1)

Let us denote w̃t ≡ Σ−1/2
st wt, X̃ t ≡ Σ−1/2

st X t, and ε̃t ≡ Σ−1/2
st εt. Applying

the multivariate normal distribution N (µ,V ) as a conjugate prior p(θ∗),
conditional posterior distribution of θ∗ is derived as

p(θ∗|YT ,ST ,XT , {Σj}Kj=1) ∝
T∏

t=1

[
exp

{
−1

2
(w̃t − X̃ tθ

∗)′(w̃t − X̃ tθ
∗)

}]

× |V |− 1
2 exp

{
−1

2
(θ∗ − µ)′V −1(θ∗ − µ)

}

= exp

{
−1

2

T∑

t=1

(w̃t − X̃ tθ
∗)′(w̃t − X̃ tθ

∗)

}

× |V |− 1
2 exp

{
−1

2
(θ∗ − µ)′V −1(θ∗ − µ)

}
.

(A.2)

Let us consider the OLS estimator θ̂∗ = (
∑T

t=1 X̃
′
tX̃ t)−1(

∑T
t=1 X̃

′
tw̃t),

then (A.2) is written as

p(θ∗|YT ,ST ,XT , {Σj}Kj=1)

∝ exp

{
−1

2

T∑

t=1

(
w̃t − X̃ tθ̂

∗ + X̃ tθ̂
∗ − X̃ tθ

∗
)′ (

w̃t − X̃ tθ̂
∗ + X̃ tθ̂

∗ − X̃ tθ
∗
)}

× |V |− 1
2 exp

{
−1

2
(θ∗ − µ)′V −1(θ∗ − µ)

}
. (A.3)
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Since the orthogonality condition for OLS estimator θ̂∗ implies that

T∑

t=1

X̃
′
t

(
w̃t − X̃ tθ̂

∗
)
= 0,

the first term in (A.3) is expressed as

exp

{
−1

2

T∑

t=1

(
w̃t − X̃ tθ̂

∗
)′ (

w̃t − X̃ tθ̂
∗
)
− 1

2

T∑

t=1

(
X̃ tθ̂

∗ − X̃ tθ
∗
)′ (

X̃ tθ̂
∗ − X̃ tθ

∗
)}

= exp

{
−1

2

T∑

t=1

(
w̃t − X̃ tθ̂

∗
)′ (

w̃t − X̃ tθ̂
∗
)
− 1

2

T∑

t=1

(
θ̂∗ − θ∗

)′
X̃

′
tX̃ t

(
θ̂∗ − θ∗

)}

∝ exp

{
−1

2

T∑

t=1

(
θ̂∗ − θ∗

)′
X̃

′
tX̃ t

(
θ̂∗ − θ∗

)}

= exp

{
−1

2

(
θ̂∗ − θ∗

)′
(

T∑

t=1

X̃
′
tX̃ t

)(
θ̂∗ − θ∗

)}
. (A.4)

Substituting (A.4) into (A.3), we have

p(θ∗|YT ,ST ,XT , {Σj}Kj=1)

∝ exp

{
−1

2

(
θ̂∗ − θ∗

)′
(

T∑

t=1

X̃
′
tX̃ t

)(
θ̂∗ − θ∗

)}

× |V |− 1
2 exp

{
−1

2
(θ∗ − µ)′V −1(θ∗ − µ)

}

∝ exp

{
−1

2

(
θ̂∗ − θ∗

)′
(

T∑

t=1

X̃
′
tX̃ t

)(
θ̂∗ − θ∗

)
− 1

2
(θ∗ − µ)′V −1(θ∗ − µ)

}

= exp

{
−1

2
tr

[(
T∑

t=1

X̃
′
tX̃ t

)(
θ̂∗ − θ∗

)(
θ̂∗ − θ∗

)′
+ V −1(θ∗ − µ)(θ∗ − µ)′

]}

(A.5)

where “tr” denotes the trace of matrix. We notice that

tr

[(
T∑

t=1

X̃
′
tX̃ t

)(
θ̂∗ − θ∗

)(
θ̂∗ − θ∗

)′
+ V −1(θ∗ − µ)(θ∗ − µ)′

]

= tr

[(
T∑

t=1

X̃
′
tX̃ t

)(
θ̂∗θ̂∗′ − θ̂∗θ∗′ − θ∗θ̂∗′ + θ∗θ∗′

)
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+ V −1
(
θ∗θ∗′ − θ∗µ′ − µθ∗′ + µµ′

)]

= tr

[(
T∑

t=1

X̃
′
tX̃ t

)(
θ̂∗θ̂∗′ − 2θ̂∗θ∗′ + θ∗θ∗′

)

+ V −1
(
θ∗θ∗′ − 2µθ∗′ + µµ′

)]

= tr

[(
T∑

t=1

X̃
′
tX̃ t + V −1

)
θ∗θ∗′ − 2

{(
T∑

t=1

X̃
′
tX̃ t

)
θ̂∗ + V −1µ

}
θ∗′

+

(
T∑

t=1

X̃
′
tX̃ t

)
θ̂∗θ̂∗′ + V −1µµ′

]

= tr

[(
T∑

t=1

X̃
′
tX̃ t + V −1

)
θ∗θ∗′ − 2

{(
T∑

t=1

X̃
′
tX̃ t

)
θ̂∗ + V −1µ

}
θ∗′ +C0

]

(A.6)

where

C0 =

(
T∑

t=1

X̃
′
tX̃ t

)
θ̂∗θ̂∗′ + V −1µµ′.

Substituting the OLS estimator θ̂∗ =
(∑T

t=1 X̃
′
tX̃ t

)−1 (∑T
t=1 X̃

′
tw̃t

)
into

(A.6), we have

tr

[(
T∑

t=1

X̃
′
tX̃ t + V −1

)
θ∗θ∗′

−2






(
T∑

t=1

X̃
′
tX̃ t

)(
T∑

t=1

X̃
′
tX̃ t

)−1( T∑

t=1

X̃
′
tw̃t

)
+ V −1µ




θ∗′ +C0





= tr

[(
T∑

t=1

X̃
′
tX̃ t + V −1

)
θ∗θ∗′ − 2

(
T∑

t=1

X̃
′
tw̃t + V −1µ

)
θ∗′ +C0

]

= tr




(

T∑

t=1

X̃
′
tX̃ t + V −1

)

θ∗θ∗′ − 2

(
T∑

t=1

X̃
′
tX̃ t + V −1

)−1( T∑

t=1

X̃
′
tw̃t + V −1µ

)
θ∗′






+C0

]
. (A.7)
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Let us denote

b = B

(
T∑

t=1

X̃
′
tw̃t + V −1µ

)
, (A.8)

B−1 =
T∑

t=1

X̃
′
tX̃ t + V −1, (A.9)

then (A.7) can be rewritten as

tr
[
B−1

(
θ∗θ∗′ − 2bθ∗′

)
+C0

]

= tr
[
B−1 (θ∗ − b) (θ∗ − b)′ −B−1bb′ +C0

]
. (A.10)

Substituting (A.10) into (A.5), we have

p(θ∗|YT ,ST ,XT , {Σj}Kj=1)

∝ exp

{
−1

2
tr
[
B−1 (θ∗ − b) (θ∗ − b)′ −B−1bb′ +C0

]}

∝ exp

{
−1

2
tr
[
B−1 (θ∗ − b) (θ∗ − b)′

]}

= exp

{
−1

2
(θ∗ − b)′ B−1 (θ∗ − b)

}
. (A.11)

Since w̃t = Σ
−1/2
st wt and X̃ t = Σ

−1/2
st X t, (A.8) and (A.9) can be rewritten

as

b = B

(
T∑

t=1

X ′
tΣ

−1
st wt + V −1µ

)
, (A.12)

B−1 =
T∑

t=1

X ′
tΣ

−1
st X t + V −1. (A.13)

From (A.11), (A.12) and (A.13), conditional posterior distribution of θ∗ is

θ∗|YT ,ST ,XT , {Σj}Kj=1 ∼ N (b,B) . (A.14)

To generate samples of Σj, j = 1, 2, . . . , K, we derive the conditional
posterior distribution of Σj from (3.16). Applying the inverse Wishart dis-
tribution IW (νj,Λj) as a conjugate prior p(Σj), conditional posterior dis-
tribution of Σj is derived as

p(Σj|YT ,ST ,XT ,θ
∗) ∝

∏

t∈{t:st=j}

[
(2π)−

N−1
2 |Σj|−

1
2 exp

(
−1

2
ε′tΣ

−1
j εt

)]
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× |Σj|−
νj+(N−1)+1

2 exp

(
−1

2
tr
{
Σ−1

j Λj

})

=
∏

t∈{t:st=j}

[
(2π)−

N−1
2 |Σj|−

1
2 exp

(
−1

2
tr
{
Σ−1

j εtε
′
t

})]

× |Σj|−
νj+(N−1)+1

2 exp

(
−1

2
tr
{
Σ−1

j Λj

})

∝ |Σj|−
nj
2 exp

(
−1

2
tr

{
Σ−1

j

T∑

t=1

εtε
′
t1{st = j}

})

× |Σj|−
νj+(N−1)+1

2 exp

(
−1

2
tr
{
Σ−1

j Λj

})

= |Σj|−
νj+(N−1)+1+nj

2 exp

(
−1

2
tr

{
Σ−1

j

(
T∑

t=1

εtε
′
t1{st = j}+Λj

)})

(A.15)

where nj is the total number of time t belonging to regime j, and 1{st = j}
is indicator function which takes 1 if st = j, otherwise, takes 0. From (A.15),
conditional posterior distribution of Σj is

Σj|YT ,ST ,XT ,θ
∗ ∼ IW

(
νj + nj,

T∑

t=1

εtε
′
t1{st = j}+Λj

)
(A.16)

where j = 1, 2, . . . , K.

B Geweke (1992)’s convergence diagnostic

Geweke (1992) proposed a convergence diagnostic for Markov chains based
on a test for equality of the means of the first and last part of a Markov
chain after a burn-in period. Given the samples of parameter {θ(j)}nj=1, we
consider the two sample averages θ̄A and θ̄B such that

θ̄A =
1

nA

nA∑

j=1

θ(j) and θ̄B =
1

nB

n∑

j=n∗

θ(j) (B.1)

where n∗ = n− nB + 1. From these values in (B.1), Geweke (1992) proposes
the following statistic called convergence diagnostic (CD):

CD =
θ̄A − θ̄B√

Var(θ̄A) +Var(θ̄B)
(B.2)
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where Var(θ̄A) and Var(θ̄B) are variances of θ̄A and θ̄B. If the sequence of
θ(j) is weak stationary, (B.2) converges in distribution to the standard normal
from the central limit theorem (see Hamilton, 1994). Hence if absolute value
of CD in (B.2) is greater than 1.96, null hypothesis H0 : θ̄A = θ̄B is rejected
at 5% significant level and the convergence of Markov chain is judged not
yet achieved.

To carry out the convergence diagnostic test proposed by Geweke (1992),
we need to evaluate the variances Var(θ̄A) and Var(θ̄B) in (B.2). Let us
define the autocovarivance γt−s such that

γt−s = Cov
(
θ(s), θ(t)

)
(B.3)

then Var(θ̄A) in (B.2) is

Var(θ̄A) = Var

(
1

nA

nA∑

j=1

θ(j)
)

=
1

n2
A

nA∑

s=1

nA∑

t=1

Cov
(
θ(s), θ(t)

)

=
1

n2
A

nA∑

s=1

nA∑

t=1

γt−s. (B.4)

Here we can assume (B.3) because we assume the sequence of θ(j) is weak
stationary. Let r = t− s, (1− nA ≤ r ≤ nA − 1), (B.4) can be rewritten as

1

n2
A

nA∑

s=1

nA∑

t=1

γt−s =
1

n2
A

nA−1∑

r=−(nA−1)

(nA − |r|)γr

=
1

nA

nA−1∑

r=−(nA−1)

(
1− |r|

nA

)
γr. (B.5)

We define the population spectrum at frequency ω to be

fA(ω) =
1

2π

∞∑

r=−∞
γr exp(−i∗ωr) (B.6)

where i∗ =
√
−1. To evaluate (B.5), we construct the sample analog of (B.6),

which is known as the sample periodogram:

f̂A(ω) =
1

2π

nA−1∑

r=−(nA−1)

γ̂r exp(−i∗ωr). (B.7)
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If the sample size nA is large enough, then γ̂r is close enough to γr and ω = 0,
then

nA−1∑

r=−(nA−1)

(
1− |r|

nA

)
γr ≈ 2πf̂A(0). (B.8)

ThereforeVar(θ̄A) is estimated by 2πf̂A(0)/nA. In a similar fashion, Var(θ̄B)
is also estimated by 2πf̂B(0)/nB.

C Estimation of marginal likelihood

Given the parameter θ ∈ Θ, marginal likelihood for data y ≡ {y1, y2, . . . , yT}
conditional on model M is defined as

p(y|M) =

∫

Θ

L(θ|y,M)p(θ|M)dθ (C.1)

where

L(θ|y,M) =
T∏

t=1

p(yt|θ,M)

and p(θ|M) is a prior distribution for model M . To evaluate the marginal
likelihood p(y|M) in (C.1), we suppose that p(θ|M) is a proper density. Then
we notice that

1 =

∫

Θ

p(θ|M)dθ

=

∫

Θ

[
p(y|M)p(θ|y,M)

L(θ|y,M)p(θ|M)

]
p(θ|M)dθ

= p(y|M)

∫

Θ

1

L(θ|y,M)
p(θ|y,M)dθ (C.2)

where
p(y|M)p(θ|y,M)

L(θ|y,M)p(θ|M)
=

p(θ|y,M)
L(θ|y,M)p(θ|M)

p(y|M)

=
p(θ|y,M)

p(θ|y,M)
= 1.

Given the samples {θ(j)}nj=1 from the posterior distribution p(θ|y,M), New-
ton and Raftery (1994) estimates the marginal likelihood p(y|M) in (C.2)
as

p̂(y|M) =

[
1

n

n∑

j=1

1

L(θ(j)|y,M)

]−1

(C.3)
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and the Bayes factor for model i against model j is obtained as

BFij =
p̂(y|Mi)

p̂(y|Mj)
. (C.4)
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Allais, O., and V. Nichèle (2007) ‘Capturing structural changes in french
meat and fish demand over the period 1991–2002.’ European review of
agricultural economics 34(4), 517–538

Banks, J., R. Blundell, and A. Lewbel (1997) ‘Quadratic engel curves and
consumer demand.’ Review of Economics and Statistics 79(4), 527–539

Carter, C., and R. Kohn (1994) ‘On gibbs sampling for state space models.’
Biometrika 81(3), 541–553

Chib, S. (1996) ‘Calculating posterior distributions and modal estimates in
markov mixture models.’ Journal of Econometrics 75(1), 79–97

Christensen, L. R., D. W. Jorgenson, and L. J. Lau (1975) ‘Transcendental
logarithmic utility functions.’ American Economic Review 65(3), 367–383

Cooper, R. J., and K. R. McLaren (1992) ‘An empirically oriented demand
system with improved regularity properties.’ Canadian Journal of Eco-
nomics 25(3), 652–668

Deaton, A., and J. Muellbauer (1980) ‘An almost ideal demand system.’ The
American Economic Review 70(3), 312–326

Diebold, F. X., J. H. Lee, and G. Weinbach (1994) ‘Regime switching with
time-varying transition probabilities.’ in C. Hargreaves (ed.), Nonstation-
ary Time Series Analysis and Cointegration.(Advanced Texts in Econo-
metrics, CWJ Granger and G. Mizon, eds.), 283-302. Oxford: Oxford Uni-
versity Press.

Geweke, J. (1992) ‘Evaluating the accuracy of sampling-based approaches
to the calculation of posterior moments.’ In Bayesian Statistics, ed.
A. P. Dawid J. M. Bernado, J. O. Berger and A. F. M. Smith, 4 ed.
(Oxford: Oxford University Press)

34



Hamilton, J. D. (1989) ‘A new approach to the economic analysis of nonsta-
tionary time series and the business cycle.’ Econometrica: Journal of the
Econometric Society 57(2), 357–384

(1990) ‘Analysis of time series subject to changes in regime.’ Journal of
Econometrics 45(1-2), 39–70

(1991) ‘A quasi-bayesian approach to estimating parameters for mixtures
of normal distributions.’ Journal of Business & Economic Statistics pp. 27–
39

(1994) Time Series Analysis (Princeton University Press)

Ishida, T., N. Ishikawa, and M. Fukushige (2006) ‘Impact of bse and bird flu
on consumers’ meat demand in japan.’ DISCUSSION PAPER SERIES in
Osaka university

Ishida, T., N. Ishikawa, and M. Fukushige (2010) ‘Impact of bse and bird flu
on consumers’ meat demand in japan.’ Applied Economics 42(1), 49–56

Jin, H. J., and W. W. Koo (2003) ‘The effect of the bse outbreak in japan
on consumers’ preferences.’ European Review of Agricultural Economics
30(2), 173–192

Kabe, S., and Y. Kanazawa (2012) ‘Another view of impact of bse cri-
sis in japanese meat market through the almost ideal demand system
model with markov switching.’ Department of Social Systems and Man-
agement Discussion Paper Series No.1288 (University of Tsukuba), forth-
coming in Applied Economics Letters (Accepted on December 2011). URL:
http://www.sk.tsukuba.ac.jp/SSM/libraries/list1276.php

Kass, R. E., and A. E. Raftery (1995) ‘Bayes factors.’ The Journal of the
American Statistical Association 90(430), 773–795

Kim, C. J., J. Piger, and R. Startz (2008) ‘Estimation of markov regime-
switching regression models with endogenous switching.’ Journal of Econo-
metrics 143(2), 263–273

Moosa, I. A., and J. L. Baxter (2002) ‘Modeling the trend and seasonal within
an aids model of demand for alcoholic beverage in the united kingdom.’
Journal of Applied Econometrics 17(2), 95–106

Newton, M. A., and A. E. Raftery (1994) ‘Approximate bayesian inference
with the weighted likelihood bootstrap.’ Journal of the Royal Statistical
Society, Series B 56(1), 3–48

35



Ohtani, K., and S. Katayama (1986) ‘A gradual switching regression model
with autocorrelated errors.’ Economics Letters 21(2), 169–172

Peterson, H. H., and Y. J. K. Chen (2005) ‘The impact of bse on japanese
retail meat demand.’ Agribusiness 21(3), 313–327

Rickertsen, K. (1996) ‘Structural change and the demand for meat and fish
in norway.’ European Review of Agricultural Economics 23(3), 316–330

Scott, S. L. (2002) ‘Bayesian methods for hidden markov models.’ Journal
of the American Statistical Association 97(457), 337–351

Theil, H. (1965) ‘The information approach to demand analysis.’ Economet-
rica 33(1), 67–87

36


