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Abstract 1 

Increasing trends of dissolved Si measured by a colorimetric method and ICP (DSicol 2 

and DSiICP, respectively) and total Si concentrations were detected at the center of Lake 3 

Kasumigaura during 1980–2006 (mean DSicol concentration in the 1980s and 2000s was 4 

1.3 mg l
–1

 and 4.0 mg l
–1

, respectively). The observation of such trends is rare; therefore, 5 

the elucidation of the causes could be useful to understanding silicon dynamics in inland 6 

waters. Based on statistical analysis, we found that the increases in DSicol and lithogenic 7 

Si accounted for most of the total Si increase (44% and 45%, respectively) and that 8 

biogenic Si, consisting of diatom frustules, also increased with them. Increases in DSiICP 9 

concentration were not detected near the mouth of the inflowing rivers, suggesting that 10 

the increase was caused by in-lake processes. Because the increase in suspended solids 11 

(SS) caused by sediment resuspension had been observed in the lake for the same period, 12 

we assumed that the Si release from SS containing diatom frustules contributed to the 13 

increase. The results of the laboratory experiments in which surface sediments were 14 

stirred in lake waters showed that the change in DSicol concentration depended mainly 15 

on SS concentration, water temperature, and the elapsed time of diatom frustules 16 

dissolution. An estimation of the released amount of Si from SS using the sediment 17 

resuspension model was (1.0–2.7) × 10
9
 g y

–1
 in the 2000s, which was about 30–90% of 18 

the increase in the DSicol outflow of 3.0 × 10
9
 g y

–1
 from the 1980s to the 2000s. We 19 

also determined the Si release rates from bottom sediments through laboratory 20 

experiments. The Si amount released from bottom sediments in the lake in the 2000s 21 

was estimated to be 4.3 × 10
9
 g y

–1
, which was about 2–4 times higher than the 22 

estimated Si amount released from SS. These findings suggest that the sediment 23 

resuspension might be the cause of the latest DSi increase. 24 

 25 
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Introduction 1 

 2 

Silicon (Si) is one of the most abundant elements in the biosphere, and essential 3 

nutrients for siliceous phytoplankton, i.e. diatoms, playing an important role in the 4 

global primary production (Schelske 1999; Conley et al. 2000; Kristiansen and Hoell 5 

2002; Conley et al. 2006; Harashima et al. 2006). Some plants like paddy also need Si 6 

(Derry et al. 2005). Therefore, changes in Si concentration in surface waters could affect 7 

the phytoplankton dominance, food web and biogeochemical cycling (Humborg et al. 8 

1997; Krivtsov et al. 2000; Harashima et al. 2007; Li et al. 2007; Koszelnik and 9 

Tomaszek 2008). 10 

The dissolved Si (DSi) load from land to coastal areas may be declining globally 11 

(Humborg et al. 1997; Duan et al. 2007; Li et al. 2007). Humborg et al. (1997) reported 12 

that decreases in the DSi load were observed in the Danube River–Black Sea system 13 

and impacts of dam constructions on Si depletion were indicated. Teodoru et al. (2006) 14 

suggested that the large number of impoundments on the Danube and its tributaries 15 

changed Si transport to the coastal Black Sea. In Japan, a possible decrease in DSi 16 

transport was also suggested. The Foundation of River & Watershed Environment 17 

Management (2007) reported that the mean DSi concentration of 18 Japanese rivers in 18 

the 2000s was lower than that in the 1940s and 1950s, opposite to the trends of nitrogen 19 

and phosphorus. However, the scarcity of long-term Si monitoring data makes it 20 

difficult to elucidate the cause. Although few studies of long-term trends of Si 21 

concentrations in inland waters around the world exist, Vesely et al. (2005) showed the 22 

increasing trends of DSi concentration in five glacial lakes in the Bohemian Forest over 23 

the last two decades. They concluded that the higher mobility of Si from the soil to 24 

surface waters resulted from a decrease in dissolved Al and faster dissolution of 25 
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biogenic Si (BSi). Several studies indicated that, as a consequence of diatom 1 

sedimentation, Si was released back to the water column (Rippey 1983; Schelske et al. 2 

1988; Szczepocka and Szulc 2006). 3 

Annual DSi and BSi budgets for lakes were assessed and the importance of Si cycling 4 

within a lake was indicated in several studies. Bailey-Watts (1976b) assessed the Si 5 

budget in the shallow, eutrophic Loch Leven based on the monitoring of DSi and BSi in 6 

the water column and on laboratory experiments determining diatom cell sinking rates 7 

and Si release rates from diatom frustules and sediments. The authors suggested that the 8 

incorporation of diatom frustules into the sediments and the release of DSi from the 9 

sediments were more important than the inflows and outflow in the lake. Cornwell and 10 

Banahan (1992) calculated the Si budget in shallow, ultraoligotrophic Lake Toolik based 11 

on the monitoring of DSi concentrations in streams and the water column and on 12 

estimated Si burial and release rates; these estimations were obtained through analyzing 13 

pore water and BSi concentrations in 
210

Pb-dated sediment, respectively. Although the 14 

internal cycling of DSi was about half of the flux through inflows, the study indicated 15 

that internal cycling can supply a significant part of the biologically utilized amount in 16 

the lake. Also, the budgets in other shallow lakes reported in previous studies suggested 17 

that Si cycling within lakes played an important role in determining the available Si for 18 

diatoms (e.g., Gibson et al. 2000; Miretzky and Cirelli 2004). On the other hand, 19 

Hoffman et al. (2002) found that the main source and export of DSi in the North basin 20 

of Lake Lugano, permanently stratified below a 100-m depth, were river input and final 21 

burial of diatom frustules in the bottom sediment, respectively, indicating that the North 22 

basin of Lake Lugano acted as an important permanent sink for Si. While a number of 23 

studies have assessed the annual Si budgets in shallow lakes, detailed studies analyzing 24 

the long-term Si dynamics are scarce. 25 
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In Lake Kasumigaura, various forms of Si have been monitored for the last 3 decades 1 

and several trends were detected. Understanding the dynamics of Si in a shallow 2 

eutrophic lake is extremely valuable. Considerable increases in turbidity and inorganic 3 

content in suspended solids (SS), due mainly to the resuspension of bottom sediments, 4 

were also observed in the lake from the mid 1990s to mid 2000s, which could cause the 5 

decline in primary production and the increase in phosphorus concentration (Fukushima 6 

et al. 2005; Seki et al. 2006). Si release rates from SS and its impact on long-term 7 

change in DSi concentrations were not assessed in previous studies. The objectives of 8 

the present paper are fourfold: (1) to detect the long-term trend of Si concentrations in 9 

Lake Kasumigaura, (2) to discuss the factors influencing this trend, (3) to estimate the 10 

Si release rates from SS and bottom sediments by laboratory experiments, and (4) to 11 

assess the contribution of these Si releases to the trend. 12 

 13 

Study area 14 

 15 

Lake Kasumigaura is the second largest shallow lake in Japan, located in the Ibaraki 16 

Prefecture, approximately 50 km northeast of Tokyo. It has a surface area of 171.5 km
2
, 17 

a mean depth of 4 m, and a maximum depth of 7.3 m. Mean water retention time is 18 

about 200 days. The lake is so shallow that vertical stratification is easily destroyed by a 19 

moderately strong wind. The lake has two large bays, Takahama-iri and Tsuchiura-iri. 20 

The Koise and Sakura rivers are the main rivers influent into Takahama-iri and 21 

Tsuchiura-iri, respectively. Water tends to flow through the lake from the northwest, 22 

where Takahama-iri and Tsuchiura-iri are located, to the southeast, to the effluent 23 

Hitachitone River. Its catchment area of 1426 km
2
 consists of paddy fields, plowed 24 

fields for other row crops, orchards (51%), forest (30%), and urban, industrial, and 25 
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residential uses (12%). Major surface geology in the catchment is loam. The climate of 1 

the area is similar to other regions on the Pacific side of Japan with the annual average 2 

air temperature of about 14°C and an annual precipitation of 1250 mm. The lake was 3 

turned from a brackish into a freshwater lake 5 years after a floodgate to the Pacific 4 

Ocean was implemented in 1963. 5 

The lake is well known for eutrophication. Mean (min.–max.) chlorophyll a, total 6 

nitrogen (TN), and total phosphorus (TP) concentrations at the center of the lake during 7 

April 1980 – March 2007 were 53 (3–140) μg l
–1

, 1.03 (0.52–1.99) mg l
–1

, and 0.091 8 

(0.021–0.203) mg l
–1

, respectively. Nitrogen and phosphorus load from the basin to the 9 

lake increased during the high economic growth period. 10 

 11 

Materials and methods 12 

 13 

Silicon concentrations and other water qualities in Lake Kasumigaura 14 

 15 

The database of water quality used for this study was based on the investigation by two 16 

institutes during April 1980 – March 2007. The National Institute for Environmental 17 

Studies (NIES) collected surface waters once a month at 10 sites (A1–A4, B1–B3, and 18 

C1–C3; Fig. 1). C1 is located at the center of the lake. Water filtered through 0.45-μm 19 

glass-fiber was analyzed by inductively-coupled plasma (ICP) to determine the 20 

concentrations of DSi (expressed as DSiICP in this article) and other elements (B, Ca, K, 21 

Mg, Na, and Sr). Diatom, SS, and chlorophyll a concentrations taken by a 22 

column-sampler (upper 2 m) and data on basic water quality (e.g., water temperature, 23 

pH, DO, transparency observed in the field) were also used for statistical analysis. 24 

Diatoms were counted on an inverted microscope and quantified as biovolume by 25 
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multiplying counted cell number by mean cell volume.  1 

The Kasumigaura River Office (KRO) collected surface waters once a month at 3 2 

sites. They are relatively close to A2, B2, and C1; therefore, we call them by the same 3 

names as the NIES stations for the sake of simplicity. The concentrations of DSi were 4 

measured by silicomolybdate yellow colorimetric method JIS K 0101 after filtering the 5 

sampled water through a 0.45-μm membrane filter. In this article, “DSicol” indicates the 6 

Si determined by the colorimetric method. Total Si (TSi) concentrations were 7 

determined by the same method as DSicol after alkaline digestion of solids in water as 8 

specified by method JIS K 0101. 9 

Monthly precipitation data at Tsukuba meteorological weather station were obtained 10 

from the web site (http://www.jma.go.jp/jma/) and used for analysis. 11 

Particulate Si (PSi) concentrations were estimated through the subtraction of DSicol 12 

from TSi at C1. PSi consists of biogenic and lithogenic one. In Lake Kasumigaura, BSi 13 

concentrations could be estimated from diatom concentrations and mean Si density of 14 

diatom frustules (1.1 × 10
–10

 mg μm
–3

), determined by averaging the values found in 15 

Bailey-Watts (1976a) and Sicko-Goad et al. (1984). Lithogenic Si (LSi) concentrations 16 

were estimated through the subtraction of BSi from PSi. 17 

 18 

Silicon concentrations of the rivers inflowing Lake Kasumigaura 19 

 20 

Si concentrations of the main rivers inflowing Lake Kasumigaura were used in this 21 

study. In 1994, DSiICP concentrations of 10 rivers (Sakura, Koise, Sonobe, Ono, 22 

Hanamuro, Seimei, Sannou, Amano, Shin, and Takahashi Rivers) were seasonally 23 

measured by NIES (N = 4). In 2007, DSicol concentrations of 5 rivers (Sakura, Ono, 24 

Seimei, Tomoe, and Hokota Rivers) were measured almost monthly by KRO (N = 11). 25 
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Only 3 rivers (Sakura, Ono, and Seimei Rivers) were investigated by both institutions. 1 

In addition, we measured both DSiICP and DSicol concentrations of 12 rivers (Sakura, 2 

Koise, Sonobe, Ono, Hanamuro, Seimei, Kajinashi, Ichinose, Hishigi, Shin, Tomoe, and 3 

Hokota Rivers) by ICP and colorimetric method, respectively, in December 2009. There 4 

was no rainfall for 3 days before almost all samplings. 5 

 6 

Silicon release experiments in the laboratory 7 

 8 

Sampling 9 

 10 

We sampled the surface sediments with an Ekman-Birge type bottom sampler at the 11 

center of the lake (C1) in August 2008 and June and October 2009. Sediments at A3 and 12 

B3 were also sampled in August 2008. Lake waters were collected at A3, B3, C1, and 13 

C3 in August 2008, at B0 (located at Tsuchiura-Port) in November 2008, and at C1 in 14 

June and October 2009. Lake waters were filtered through 0.45-μm membrane filters. 15 

Filtrates and sediments were stored at 1°C under dark conditions before the incubation 16 

experiments. BSi contents of sediments were determined by colorimetric method after 17 

wet alkaline digestion according to DeMaster (1981). 18 

 19 

Experiment design 20 

 21 

Si release rates from SS were assessed in the laboratory (Table 1). The sediments 22 

were mixed with lake water or distilled water at various SS concentrations (about 23 

50–500 mg l
–1

) in a polycarbonate bottle (500 ml or 1 l) and stirred continuously by 24 

magnetic stirrer under dark conditions at room temperature (25°C). Two additional 25 
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water temperature conditions, 1 and 15°C, were used, for which the samples were not 1 

stirred continuously but mixed once a day by hand. Aliquots of 3–10 ml were taken 2 

from the bottles at the beginning of the experiment, every day or every second day in 3 

the first week, and then every other week. pH, EC, and DO were measured to be 8.0–8.3, 4 

290–330 μS cm
–1

, and 5–8 mg l
–1

, respectively, for the experiments using lake waters. 5 

Si release rates from bottom sediments were also assessed in the laboratory (Table 1). 6 

Distilled or lake water was added to the sediments gradually in polyethylene bottles 7 

under dark conditions. In the series of experiments on B1 and B2, three sediment-water 8 

volume ratios were used at 25°C. In the series of experiments on B3, various sediment 9 

thicknesses and three water temperature conditions (1, 15, and 25°C) were used. 10 

Aliquots of 3–10 ml were taken from the bottles at the beginning of the experiment, 11 

every 2–7 days in the first month, and several times later. Before sampling, the water 12 

was stirred softly. In the experiments B3-2, -5, and -6, almost all of the water was 13 

siphoned, and the same volumes of new distilled water were replaced at Days 90 and 14 

104. pH, EC, and DO were measured to be 6.7–7.8, 290–410 μS cm
–1

, and 1–8 mg l
–1

, 15 

respectively, for the experiments using lake water. 16 

 17 

Analysis 18 

 19 

All aliquots were filtered through 0.45-μm membrane filters and kept at 1°C, under dark 20 

conditions. DSi concentrations were determined by silicomolybdate yellow or blue 21 

colorimetric method. 22 

For checking the budget in the system, aliquots of 30 ml were taken at the start and 23 

end of experiments S4-3 and S5-4, respectively. Aliquots of 20 ml were filtered through 24 

0.45-μm membrane filters for analyzing BSi by the method according to DeMaster 25 
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(1981). Aliquots of 10 ml were used for analyzing TSi by silicomolybdate yellow 1 

colorimetric method after alkaline digestion according to JIS K 0101. 2 

 3 

Results 4 

 5 

Long-term trends of silicon concentrations in Lake Kasumigaura 6 

 7 

Mean (min.–max.) of DSicol, DSiICP, and TSi concentration were 2.4 (0.0–9.3), 3.1 8 

(0.0–10.3), and 4.7 (0.1–22.2) mg l
–1

, respectively, at C1 during April 1980 – March 9 

2007. Although we cannot make a fair comparison because of the difference in the 10 

sampling date, about 80% of DSiICP concentrations were larger than DSicol 11 

concentrations at C1, which might be caused by the difference in the method for 12 

analysis. The annual average DSicol and TSi concentrations significantly increased (p < 13 

0.001), along with DSiICP concentrations (p < 0.01), at C1 during this period (Table 2; 14 

Fig. 2). The annual maximum of each Si concentration and the minimum of TSi also 15 

significantly increased (p < 0.001), except in 2006, when declines were observed. From 16 

the 1980s to 2000s, the averages of DSicol, DSiICP, and TSi concentrations at C1 17 

changed from 1.3, 2.2, and 2.2 to 4.0, 4.8, and 8.4 mg l
–1

, respectively, which represents 18 

210, 120, and 290% increases, respectively. On the other hand, ratios of change for the 19 

other dissolved elements (B, Ca, K, Mg, Na, and Sr) were within ± 15% (data not 20 

shown). 21 

Similar Si changes were also observed at A2 and B2 (Table 2). With the exception of 22 

DSiICP at A2, increasing trends of DSicol, DSiICP, and TSi concentrations were detected; 23 

however, these increases (37–180%) were lower than those at C1. Increasing trends of 24 

DSiICP concentrations were seen around the center of the lake, such as at A4 and B3 25 
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(Table 2). In contrast, DSiICP concentrations decreased at A1, near the Koise River (p < 1 

0.05), and a clear trend was not detected at B1, near the Sakura River. The temporal and 2 

spatial variations of DSiICP concentrations in Fig. 3 represent the Si loads from 3 

inflowing rivers and progressive decreases in Si as the flows approach the center of the 4 

lake. The concentrations at C1 were transiently higher than those at the stations near the 5 

inflowing rivers (A1 and B1) in every summer during the period of 2002–2005. 6 

Changes in the annual averages of DSicol, BSi, and LSi concentrations at C1 are 7 

shown in Fig. 4. Increasing trends of DSicol, BSi, and LSi concentrations were detected 8 

(p < 0.001). The increases in DSicol, BSi, and LSi accounted for 44, 11, and 45%, 9 

respectively, of the TSi increase of 6.2 mg l
–1

 from the 1980s to 2000s. 10 

 11 

Silicon release rates from suspended solids 12 

 13 

The BSi contents of sediments sampled at A3, B3, and C1 in August 2008 and at C1 in 14 

June and October 2009 were 23, 29, 38, 40, and 43 mg g
–1

, respectively. Si release rates 15 

from the sediments sampled at A3 and B3 were within ± 20% of the rate at C1 (Table 1, 16 

S1). C1 is representative of the center area of the lake; therefore, we applied the rates 17 

obtained at C1 to the whole lake. DSicol concentrations were approximately proportional 18 

to SS concentrations at the same condition in the experiment S2 and S3 (r
2
 = 0.90–1.00, 19 

Fig. 5). This result means that Si release rates from SS were independent of SS 20 

concentrations in this experiment. Si release rates in lake water were higher than those 21 

in distilled water (Fig. 5). Loucaides et al. (2008) suggested that such an enhancement 22 

of the Si release rate was due to the catalytic effect of seawater cations, which may 23 

cause the difference in the rates in this study. In addition, Si release rates strongly 24 

depended on water temperature (Table 1, S4). 25 
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Changes in DSicol concentrations from Day 0 for various combinations of sediment 1 

and lake water are shown in Fig. 6. Concentration changes could be largely divided into 2 

two parts, until and after Day 1. Until Day 1, Si release rates were quite different among 3 

used lake waters. DSicol concentrations increased in S3 using C1 lake water in June 4 

2009 (1.10 ± 0.16 mg g
–1

 day
–1

), remained almost constant in S5-4 using C1 lake water 5 

in October 2009 (–0.09 mg g
–1

 day
–1

), and decreased in S5-1 using B0 lake water (–0.36 6 

mg g
–1

 day
–1

). On the other hand, after Day 1, Si release rates were not so different 7 

among the waters, but gradually decreased with time. Si release rates of S3 during Days 8 

0–1, 1–7, and 7–28 were 1.10 ± 0.16, 0.29 ± 0.04, and 0.24 ± 0.03 mg g
–1

 day
–1

, 9 

respectively. Loucaides et al. (2008) determined the Si release rates from fresh diatom 10 

frustules and two diatomaceous lake sediments in freshwater at 25°C under stirred, 11 

flow-through conditions, which were 0.6, 0.9, and 1.6 mg g
–1

 day
–1

, respectively. They 12 

used BSi-rich materials; therefore, our results were lower than those values but of the 13 

same order. 14 

TSi concentrations of S4-3 and S5-4 were not so different between the start and end 15 

of the experiment (± 10%, within the measurement error); therefore, the closed system 16 

was confirmed. The sum of DSicol and BSi concentrations was nearly the same between 17 

them (± 8%; for example, DSicol and BSi concentrations in the experiment S5-4 were 18 

4.3 and 10.2 mg l
–1

 at Day 0 and 5.3 and 8.5 mg l
–1

 at Day 28, respectively), suggesting 19 

that the main source of DSi was BSi, mostly consisting of diatom frustules. In addition, 20 

Si release rates from LSi are typically five orders of magnitude slower than those from 21 

BSi (Hurd 1983), and as such, we expected a negligible influence of LSi on Si release. 22 

The estimated degradation ratios of BSi of S3 at Days 1, 7, and 28 were 2.7 ± 0.4, 7.1 ± 23 

0.5, and 20.0 ± 2.0%, respectively. The ratios of S5-1 at Day 32 and S5-4 at Day 28 24 

were 7.3% and 6.5%, respectively, and they were lower than those of S3. The variability 25 



14 

 

may be affected by diatom frustules. Bailey-Watts (1976b) determined the degradation 1 

ratio of BSi using dead diatom frustules at 20°C under dark conditions, which were 17% 2 

after 38 days and 19% after 50 days, and our values at Day 28 were not far from those. 3 

 4 

Silicon release rates from bottom sediments 5 

 6 

Si release rates from bottom sediments were not significantly different between distilled 7 

water and lake water (initial concentration was 0.1 mg-Si l
–1

), indicating that the 8 

catalytic effect of cation was saturated by release from sediments in this experiment 9 

(Table 1, B1 and B2). The release rates were also independent of sediment thickness in 10 

the range of this experiment (Table 1, B3). On the other hand, they largely depended on 11 

water volume (B1 and B2) and temperature (B3). The rates during Days 0–8 at 1, 15, 12 

and 25°C were 0.020 ± 0.006, 0.051 ± 0.001, and 0.084 ± 0.002 g m
–2

 day
–1

, 13 

respectively. Also, they gradually decreased with time (Fig. 7a). In series B3, Si release 14 

rates at 25°C during Days 0–8, 8–15, and 15–25 were 0.084 ± 0.002, 0.039 ± 0.002, and 15 

0.023 ± 0.001 g m
–2

 day
–1

, respectively. DSicol concentrations gradually reached 16 

constant values, depending on water temperature. After replacing the old water with 17 

distilled water in the experiments of B3-2, -5, and -6, Si release rates were much 18 

enhanced (Fig. 7b). This result suggests that the decrease in the rates with time was not 19 

caused by a change in sediment qualities, such as aging of diatom frustules, but caused 20 

by the change in overlying water qualities, such as DSi concentration. The variance of 21 

the rates among the three water volumes in the experiments of B1 and B2 also supports 22 

this consideration because the rates were independent of sediment thickness. 23 

Bailey-Watts (1976b) and Rippey (1983) measured Si release rates in laboratory cores 24 

sampled at shallow eutrophic lakes (0.02–0.10 and 0.05–0.39 g m
–2

 day
–1

, respectively), 25 
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and our results in the first week were within those values. 1 

 2 

Discussion 3 

 4 

Relationship between silicon concentrations and other water quality items 5 

 6 

DSicol concentration was positively correlated with DSiICP concentration (Table 3). 7 

DSicol, DSiICP, and BSi concentrations were also related to LSi concentration. In 8 

addition, each Si concentration was significantly related to SS, inorganic content of SS, 9 

and transparency. These correlations indicate that the Si increases were related to 10 

sediment resuspension. In fact, the increase in LSi appears to be directly caused by it. In 11 

contrast, DSi, BSi, and LSi were insignificantly correlated with chlorophyll a, water 12 

temperature, DO, and precipitation. 13 

 14 

Potential causes of the silicon increase around the center of Lake Kasumigaura 15 

 16 

Contrary to the detected trends around the center of the lake, DSiICP concentrations near 17 

the inflowing rivers did not increase, suggesting that the loads from the inflowing rivers 18 

had not increased. Si loads through rivers were compared between different two years as 19 

follows. In 1994, the average (min.–max.) of annual mean DSiICP concentration of the 20 

10 NIES-monitored inflowing rivers was 12.7 (9.9–15.6) mg l
–1

, with that of the 3 21 

“overlapping” rivers (i.e., the Sakura, Ono, and Seimei Rivers) being 12.2 (10.6–13.3) 22 

mg l
–1

. In 2007, the average (min.–max.) of annual mean DSicol concentrations of the 5 23 

KRO-monitored rivers was 9.4 (7.8–10.9) mg l
–1

, with the 3 “overlapping” rivers being 24 

8.8 (7.8–9.8) mg l
–1

. In addition, our investigation showed that the ratio of DSicol to 25 
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DSiICP concentration was 0.98 (r
2
 = 1.00). These results suggest that DSi concentrations 1 

of inflowing rivers did not increase but rather decreased. The discharge of inflowing 2 

rivers also did not increase; therefore, Si loads through the rivers could not have caused 3 

the increase in DSi concentrations in the lake. 4 

Changes in the rate of Si uptake by diatoms might cause the observed changes in Si 5 

concentrations. However, no decrease in volume concentrations of diatoms at C1 was 6 

detected. Bailey-Watts (1976a) and Sicko-Goad et al. (1984) suggested that the Si 7 

contents in freshwater diatom cells are almost in the same order among species. These 8 

considerations suggest that the diatom production could not have caused the increasing 9 

trend. 10 

In other studies, the Si release rates from lake sediments were enhanced by increases 11 

in water temperature and pH (Rippey 1983; Loucaides et al. 2008). In Lake 12 

Kasumigaura, however, the annual average water temperature and pH have not 13 

significantly increased during the last 3 decades. On the other hand, the turbidity 14 

increase due to sediment resuspension observed in the lake from the mid 1990s caused 15 

the increase in LSi concentration, and might provide the opportunity for increases in 16 

DSi concentration through regeneration of Si. DSi of sediment pore water might also be 17 

released with resuspension. However, surface sediments less than 2 cm depth were 18 

affected by sediment resuspension (Seki et al. 2006), and DSi concentrations of those 19 

pore water were considered to be not so different from those in the water column; 20 

therefore, the Si release from pore water might be neglected. Fukushima et al. (2005) 21 

roughly discussed the causes for the increased resuspension like the changes in 22 

meteorological condition, physical properties of sediments, benthic ecosystem, aquatic 23 

plants, and geomorphologic conditions. The plausible causes were suggested such as the 24 

changes in the organic content and water content of the sediments perhaps resulted from 25 
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the recovery of the lake from hyper-eutrophicated condition and/or the transition from 1 

blackish water to freshwater; however, the authors indicated that the further 2 

investigation was needed. 3 

 4 

Factors influencing the silicon release rates 5 

 6 

Our experimental conditions were aerobic, as was the field condition; therefore, no 7 

anaerobic biodegradation of diatom frustules should have occurred. Si uptake by 8 

diatoms (that might be alive in the sediments) can be neglected under dark conditions. 9 

Therefore, inorganic processes are the focus of the following discussion. Experimental 10 

results revealed that Si release rates from SS depended mainly on water temperature and 11 

used lake waters whose DSicol concentrations had a large variability (0.1–11.4 mg l
–1

). 12 

The latter was observed only at the beginning of the experiment, but the rates were 13 

nearly constant among lake waters after Day 1. Notably, the rate during Day 0–1 was 14 

negative in B0 lake water, whose DSicol concentration was the highest. These results 15 

suggested that the DSicol concentrations were not only affected by dissolution of diatom 16 

frustules, but also by the transport of adsorbed Si on SS. The dissolution of LSi can be 17 

neglected (Hurd 1983). From these considerations, the change in DSicol concentration in 18 

the Si release experiment from SS can be expressed as follows: 19 

t

B
SS

tt

C

d

d

d

d

d

d



   (1) 20 

where C is the DSicol concentration (mg l
–1

), t is the time (day), α is the Si adsorbed on 21 

the surface of SS (mg g
–1

), SS is the suspended solids concentration (g l
–1

), and B is the 22 

BSi concentration (mg l
–1

). α can be described as following equation: 23 

X     (2) 24 
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where α’ is the Si adsorbed on the carrier (mg mg
–1

) and X is the carrier content of SS 1 

(mg g
–1

). X was assumed to be constant in this experiment. Therefore, when the Si 2 

dissolved in water comes to equilibrium with the Si adsorbed on SS, α depends only on 3 

the surrounding DSicol concentration and can be expressed as following formula: 4 

C     (3) 5 

where γ is a constant (l g
–1

). Using Eq. 3, the change in C can be determined by the 6 

following equation: 7 

t

B

SSt

C

d

d

1

1

d

d


    (4) 8 

In the field, the adsorption equilibrium can be assumed. The constant γ and the change 9 

in BSi concentraitons (dB/dt) are unknown and can be determined as described below. 10 

Experimental results suggested that the Si dissolved in water and adsorbed on the 11 

surface of SS might not have been at equilibrium on Day 0, but had reached equilibrium 12 

by Day 1 at the latest. Therefore, we can assume that α was independent of C on Day 0 13 

and dependent on it on Day 1 (α1 = γ C1). Applying this assumption to Eq. 1, the 14 

following equation was obtained: 15 

  1

01

0
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01 C
SS
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SS
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SS

CC
 








   (5) 16 

where the subscripts indicate the days since the experiment started. The values of α0 are 17 

specific to the used sediments, and B1 – B0 is subject to the Si dissolution rate of diatom 18 

frustules, which might be independent of C. Thus, the left part of Eq. 5 was linearly 19 

correlated with C1; as a result, γ was determined through a regression analysis to be 0.12 20 

by assuming that the α0 and B1 – B0 are not so different among the used sediments (Fig. 21 

8). 22 

Figure 9 shows the changes in the Si dissolution rates, R (mg g
–1

 day
–1

), calculated by 23 
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the following equation derived from Eq. 4: 1 

t

C

SS

SS

t

B

SS
R

d

d1

d

d1 
    (6) 2 

The rates decreased exponentially, which suggests that the following reaction rate 3 

equations can be applied to the experimental results:  4 

ktBB  e0    (7) 5 

ktkB
t

B  e
d

d
0    (8)

 
6 

where k is the dissolution rate constant (day
–1

) and the subscript indicates the initial 7 

value (t = 0). The rates decreased notably within about a first week, but were almost 8 

constant after that (Fig. 9). It suggests the decrease in the BSi amount of comparatively 9 

fresh diatom frustules which is dissolved more rapidly than old diatom frustules due to 10 

alternations of the bulk structure and surface chemistry (Van Cappellen et al. 2002; 11 

Gendron-Badou et al. 2003). Now, we assumed that the BSi can be divided into two 12 

parts, contained in fresh and old diatom frustules with same temperature dependence of 13 

dissolution, and the dissolution rates of old ones were approximately constant on the 14 

time scale of this experiment. Defining β as the BSi content of SS (= B/SS, mg g
–1

), the 15 

dissolution rate can be described as following equation:  16 

0 oo0 ff0 oo0 ff
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
kkkk

t
R
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   (9) 17 

where the subscripts f and o indicate the fresh and old diatom frustules, respectively (β 18 

= βf + βo, kf > ko). The equation could fit well to the experimental results (Fig. 9). The 19 

initial BSi content, β0 was 40 mg g
–1

 in the experiment S3 and 43 mg g
–1

 in the 20 

experiment S5-4; therefore, βf 0, βo 0, kf, and ko were determined to be 1.2, 39, 1.2, and 21 

6.2 × 10
–3

 in the experiment S3 and 0.8, 42, 1.3, and 3.8 × 10
–3

 in the experiment S5-4, 22 
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respectively. It suggests that the dissolution rate constants, kf, and ko, were almost 1 

constant for the diatom frustules in the lake. In addition, the experimental period of 2 

about 30 days was sufficiently smaller than 1/ko of 160–260 days, suggesting that the 3 

assumption is reasonable. The mean values of kf and ko (1.3 and 5.0 × 10
–3

, respectively) 4 

were used to the estimation for the field as described later. The dissolution rates also 5 

correlated positively with water temperature (Fig. 10). Finally, the rates and the change 6 

in DSicol concentration can be expressed as follows: 7 
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where T is the water temperature (K), Ta is a constant (298.15 K), and a is a constant 10 

(K). The value of a was determined from the experiment of S4 to be (4.1–4.4) × 10
3
 11 

(Fig. 10). We applied the mean value of a of 4.2 × 10
3
 to the estimation for the field as 12 

described later. 13 

Our results of Si release experiment from bottom sediments fit well to the equation 14 

described in Fig. 7 (a). DSicol concentrations reached constant values, which could be 15 

regarded as the equilibrium concentration, Ce. Ce was correlated with water temperature 16 

(11.7, 14.9, and 25.3 mg l
–1

 at 1, 15, and 25°C, respectively), and fit to the equation in 17 

Fig. 11 (r
2
 = 0.86). Assuming that the concentration close to the surface of the sediments 18 

was equal to Ce, and that the concentration adequately far from the sediments was equal 19 

to the observed concentration (C), Si diffusion can be limited by the concentration 20 

difference, that is, the subtraction of C from Ce. Figure 12 shows that the rates were 21 

linearly correlated with this difference, suggesting that the above assumptions could be 22 

applied. Si release rates from bottom sediments, J (g m
–2

 day
–1

) and the change in DSicol 23 
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concentration can be written as follows: 1 

 CCKJ  e    (12) 2 

h

J

t

C


d

d
   (13) 3 

where K is the rate constant (m day
–1

) and h is the water depth (m). In this experiment, a 4 

temperature dependence of K was not clearly seen, but it was determined to be 4.9 × 5 

10
–3

 (r
2
 = 0.73, Fig. 12). We applied this equation to the estimation for the field as 6 

described later. 7 

 8 

Estimation of silicon release rate in Lake Kasumigaura 9 

 10 

The annual amount of Si released from SS in Lake Kasumigaura in 2004 was estimated 11 

by assuming that: (1) the particle size distribution of SS in this experiment is the same 12 

as that of the entire lake, (2) X is constant, (3) the influence of variance in the 13 

concentrations of cations in lake water can be neglected, (4) SS concentrations 14 

contributing to the Si release are subject to sediment resuspension driven by a critical 15 

wind, and (5) background SS remaining constantly in the water column (mainly 16 

consisting of clay minerals) does not affect the Si release. Using Eq. 11, the annual 17 

amount of Si released from SS, Y (g y
-1

), can be estimated by following equation: 18 
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where V is the water volume of the lake (m
3
) and τ is the time (day). The hourly 20 

concentrations of SS derived from sediment resuspension at C1 in 2004 were simulated 21 

in the range of 10–299 mg l
–1

 by a numerical model with wind speed and sediment 22 

parameters such as the critical bottom shear stress (Seki et al. 2006). A minimum value 23 
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of simulated concentrations could be regarded as background SS. The difference 1 

between simulated concentrations and background concentrations was applied to SS in 2 

the Eq. 14. The hourly water temperature at C1 measured by KRO was also used in Eq. 3 

14. Y was estimated by two methods. The first method assumes that the initial BSi 4 

contents of SS were constant to be experimentally determined as the average of 5 

experiment S3 and S5-4, that is, βf 0 = 1.0 and βo 0 = 40. The time since the latest 6 

resuspension event (wind speed of above 12 m s
–1

) was applied to τ at each t in Eq. 14. 7 

This estimated value was regarded as a maximum one. The second method assumes that 8 

the dissolution of BSi is only of old diatom frustules, that is, βf 0 = 0 and βo 0 = 40. This 9 

estimated value was regarded as a minimum one. As a result, the minimum and 10 

maximum values of Y were 1.0 × 10
9
 and 2.7 × 10

9
 g y

–1
, respectively. 11 

The annual amount of Si released from bottom sediments at C1 in 2004 was also 12 

estimated from Eq. 12 and 13. DSicol concentrations at C1 observed monthly by KRO 13 

were interpolated to hourly values and used in the estimation. As a result, the annual 14 

amount of Si released from bottom sediments was estimated to be 4.3 × 10
9
 g y

–1
. These 15 

results suggest that the Si released from SS accounted for about 20–40% of the Si 16 

recycling in the lake in 2004. 17 

 18 

Budgetary analysis 19 

 20 

Table 4 summarizes the DSi and BSi budgets in Lake Kasumigaura. The DSi load 21 

through inflows was estimated using the mean DSi concentration of rivers in 1994 and 22 

2007, which might be overestimated because the dilution effect on the concentration by 23 

rainfall was not considered (Muraoka and Hirata 1988; Neal et al. 2005). Inflows of BSi 24 

were not observed, but considered to be negligible. The amount of Si released from SS 25 
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and bottom sediments in 2004 were assumed to be representative of those in the 2000s. 1 

The amount of Si released from SS in the 1980s was assumed to be zero because mean 2 

concentration of SS derived from sediment resuspension in the1980s was estimated to 3 

be 5.5 mg l
–1

 by the method of Seki et al. (2006), about half of the background 4 

concentration of it in 2004. The DSi input through atmospheric precipitation was also 5 

estimated using the annual mean precipitation and the DSi concentration of precipitation 6 

in Tsukuba, as averaged over 4 years by Hirata and Muraoka (1991). It was 2.2 × 10
7
 g 7 

y
–1

, two orders of magnitude lower than other fluxes; therefore, it could be neglected. 8 

Table 4 suggests that the primary source of DSi in the lake is river inflow, but Si 9 

recycling plays a significant role. The main export is diatom sedimentation. The 10 

increases in DSi load over the last 3 decades were estimated to be 3.0 × 10
9
 g y

–1
, based 11 

on the change in the outflow loads. The Si release from SS could account for about 12 

30–90% of the increases in DSi load through outflow. 13 

 14 

Conclusions 15 

 16 

Significant increases in DSicol, DSiICP, and TSi concentrations were observed at the 17 

center of the lake over the last 3 decades. DSiICP concentrations did not increase near the 18 

mouth of the inflowing rivers, suggesting that the Si increase was caused by in-lake 19 

processes. We assumed the contribution of Si release from SS, which had increased in 20 

the lake lately, to be the cause of this Si increase. Our laboratory experiments, 21 

suspending the sediments in filtered lake water, provided the formula of change in DSi 22 

concentration as a function of SS concentration, water temperature, and the elapsed time 23 

of dissolution of diatom frustules. The annual amount of Si released from SS in the 24 

2000s accounted for 30–90% of the increase in DSi load through outflow over the last 3 25 
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decades, as well as 20–40% of the total recycling of Si in the lake. These findings 1 

suggest that the sediment resuspension might be the cause of the latest DSi increase. Si 2 

budgets in the lake were estimated; however, we have to analyze dated sediment core 3 

and estimate the sedimentation rate of BSi in the past and present to determine the Si 4 

retention more quantitatively. 5 
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Figures and Tables 1 
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Fig. 1 Sampling points in Lake Kasumigaura 4 
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Fig. 2 Changes in DSicol (a), DSiICP (b), and TSi (c) concentrations at C1 during 4 

1980–2006. Bars indicate standard deviations. Legends (+, ++, +++, –, – –, and – – –) 5 

are the same as in Table 2 6 

 7 



31 

 

0 5 10 15 20 25

April

1995

April

1980

April

1985

A1  A2    A3     A4         C1
Distance from A1 (km)

0

2.0

4.0

6.0

8.0

10.0

12.0

April

1990

April

2005

April

2000

0 5 10 15 20 25
missing

value

DSi
ICP

 (mg l
-1
)

B1  B2          B3                  C1     C2        C3
Distance from B1 (km)

 

0

2.0

4.0

6.0

8.0

10.0

12.0

 1 

Fig. 3 Temporal and spatial variation of DSiICP concentrations in Lake Kasumigaura 2 

A
p

r 
0

2
Ju

n
 0

2
A

u
g
 0

2
O

ct
 0

2
D

ec
 0

2
F

eb
 0

3
02468

1
0

1
2

DSiICP (mg l
-1
)

 B
1

 B
2

 C
1

A
p

r 
0

5
Ju

n
 0

5
A

u
g
 0

5
O

ct
 0

5
D

ec
 0

5
F

eb
 0

6
02468

1
0

1
2

DSiICP (mg l
-1
)

 B
1

 B
2

 C
1



32 

 

during April 1980 – March 2007 1 
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Fig. 4 Changes in annual averages of DSicol concentration (observed) and BSi and LSi 2 

concentrations (estimated) at C1 during 1980–2006. Legends (+, ++, +++, –, – –, and – 3 

– –) are the same as in Table 2 4 
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Fig. 5 Relationship between SS concentrations and DSicol concentrations using the 2 

sediments sampled at C1 in June 2009. Distilled water and lake water sampled at C1 in 3 

June 2009 were used. DSicol concentrations at Day 0 were subtracted from those at each 4 

day. Details are shown in Table 1 (S2 and S3) 5 
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subtracted from those at each day. Details are shown in Table 1 (S3-3, S5-1, and S5-4) 3 
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Fig. 7 DSicol concentrations in the series of the experiment B3 with no water 3 

replacement (a) and with replacing the overlying water by distilled water at Days 90 and 4 

104 (b) 5 
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Fig. 8 Relationship between DSicol concentrations (C1) and (C1–C0) / SS in the 2 

experiment S3 (averaged), S5-1, -2, -3, and -4 3 
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Fig. 9 Change in Si dissolution rate of SS at 25°C in the experiment S3 (averaged) and 2 
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Fig. 10 Relationship between water temperature and Si dissolution rate of SS in distilled 2 

water in the experiment S4 3 
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Fig. 11 Relationship between water temperature and the equilibrium concentration of 2 

DSicol (Ce) in the experiment B3 3 
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Fig. 12 Relationship between the difference between DSicol and equilibrium 2 

concentrations (Ce–C) and Si release rate in the experiment B3 3 
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Table 1 Summary of experimental design and results of Si release experiments from SS 1 

(A) and bottom sediments (B) 2 

(A) From suspended solids

Type
d

Site Temp. Day  0 Day  1
Day  7

(or 8)

Day  28

(or 32)
Days 0–1

Days 1–7

(or 8)

Days 7 (or 8)–

28 (or 32)

S1-1 A3
a

500 DW 25
°
C 0.11 0.43 0.81 1.59 0.64 0.11 0.06

S1-2 B3
a

500 DW 25
°
C 0.06 0.38 0.84 1.55 0.63 0.13 0.06

S1-3 C1
a

500 DW 25
°
C 0.09 0.35 0.80 1.47 0.53 0.13 0.06

S2-1 C1
b

59 DW 25
°
C 0.01 0.05 0.11 0.15 0.61 0.16 0.03

S2-2 C1
b

100 DW 25
°
C 0.02 0.08 0.16 0.25 0.61 0.13 0.04

S2-3 C1
b

210 DW 25
°
C 0.03 0.16 0.32 0.50 0.61 0.13 0.04

S2-4 C1
b

360 DW 25
°
C 0.05 0.25 0.52 0.84 0.56 0.12 0.04

S3-1 C1
b

56 LW C1
b

25
°
C 0.12 0.18 0.30 0.63 1.07 0.34 0.28

S3-2 C1
b

120 LW C1
b

25
°
C 0.14 0.26 0.48 1.09 1.01 0.32 0.24

S3-3 C1
b

190 LW C1
b

25
°
C 0.14 0.40 0.66 1.58 1.37 0.23 0.23

S3-4 C1
b

340 LW C1
b

25
°
C 0.19 0.51 1.05 2.47 0.95 0.27 0.20

S4-1 C1
c

260 DW 1
°
C 0.03 0.07 0.12 0.21 0.15 0.03 0.02

S4-2 C1
c

240 DW 15
°
C 0.03 0.11 0.21 0.35 0.34 0.07 0.03

S4-3 C1
c

240 DW 25
°
C 0.03 0.17 0.34 0.64 0.58 0.12 0.06

S5-1 C1
a

530 LW B0
g

25
°
C

Day 0, 0.5, 1,

2, 4, 8, 16, 32
11.40 11.21 11.53 12.87 -0.36 0.09 0.11

S5-2 C1
a

1600 LW
e

25
°
C 4.71 5.08 - - 0.23 - -

S5-3 C1
a

820 LW
f

25
°
C 6.01 6.09 - - 0.10 - -

S5-4 C1
c

230 LW C1
c

25
°
C

Day 0, 1, 2, 3,

7, 14, 21, 28
4.26 4.24 4.49 5.25 -0.09 0.18 0.16

(B) From bottom sediments

Site Thickness Volume Site Temp. Day  0 Day  7 Day  14 Day  28 Days 0–7 Days 7–14 Days 14–28

B1-1 C1
b

3.3 cm 750 ml DW
d

25
°
C 0.5 6.9 11.6 15.9 0.089 0.064 0.030

B1-2 C1
b

6.6 cm 500 ml DW
d

25
°
C 0.8 10.1 14.1 17.8 0.090 0.038 0.017

B1-3 C1
b

9.9 cm 250 ml DW
d

25
°
C 1.6 16.6 17.7 19.5 0.070 0.005 0.004

B2-1 C1
b

3.3 cm 750 ml C1
b

25
°
C 0.5 6.9 9.9 14.2 0.099 0.047 0.033

B2-2 C1
b

6.6 cm 500 ml C1
b

25
°
C 0.8 9.5 13.3 16.9 0.081 0.035 0.017

B2-3 C1
b

9.9 cm 250 ml C1
b

25
°
C 1.6 17.4 18.1 19.2 0.074 0.003 0.003

Day  0 Day  8 Day  104 Day  110 Days 0–8 Days 8–15 Days 104–110

B3-1 C1
c

2 cm 700 ml C1
c

1
°
C 5.2 6.4 11.1 11.2 0.014 0.013 0.001

B3-2 C1
c

4 cm 700 ml C1
c

1
°
C 4.3 6.6 0.6

h
1.7

h
0.026 0.016 0.018

h

B3-3 C1
c

2 cm 700 ml C1
c

15
°
C 4.8 9.3 - - 0.051 0.024 -

B3-4 C1
c

4 cm 700 ml C1
c

15
°
C 4.5 9.1 - - 0.052 0.023 -

B3-5 C1
c

2 cm 700 ml C1
c

25
°
C 4.6 12.4 0.6

h
7.2

h
0.086 0.038 0.099

h

B3-6 C1
c

4 cm 700 ml C1
c

25
°
C 4.9 12.2 0.6

h
9.0

h
0.083 0.041 0.127

h

B3-7 C1
c

6 cm 700 ml C1
c

25
°
C 5.0 12.4 25.2 25.4 0.082 0.036 0.002

Site

Day 0, 0.5, 1,

3, 8, 16, 32

Day 0, 1, 2, 3,

5, 7, 14, 21, 28

Label

Sediment
SS conc.

(mg l
-1

)

Water Sampling

day

a
 August 7th, 2008, 

b
 June 10th, 2009, 

c
 October 7th, 2009, 

d
 DW and LW indicate distilled water and lake water, respectively, 

e
 Mixture of

lake waters sampled at A3, B3, C1, and C3 on August 7th, 2008, 
f
 Mixture of lake waters sampled at A3 on August 7th and at B0 on

November 13th, 2008, 
g
 November 13th, 2008, 

h
 After replacing the overlying water by distilled water

DSicol (mg l
-1

) Si release rate (g m
-2

 day
-1

)

Day 0, 7, 14,

21, 28, 35, 42

Day 0, 7, 14,

21, 28, 35, 42

Day 0, 2, 4, 6,

8, 10, 15, 20,

25, 30, 44, 60

(, 90, 92, 99,

104, 106, 110,

200)

Day 0, 1, 2, 3,

5, 7, 14, 21, 28

Day 0, 1, 2, 3,

5, 7, 14, 21, 28

Day 0, 1

Label
Sediment Water Sampling

day

DSicol (mg l
-1

) Si release rate (mg g
-1

 day
-1

)

 3 
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Table 2 Mean Si concentrations in the 1980s/1990s/2000s and yearly trends detected by 1 

t-test 2 

A1 8.1/ 7.1/ 7.1 
-

A2 3.0/ 4.0/ 5.1 
+++

5.4/ 4.9/ 5.8 4.8/ 7.2/ 9.4 
+++

A3 3.4/ 3.6 /5.0 
++

A4 2.6/ 3.0/ 4.9 
++

B1 7.2/ 6.0/ 7.3

B2 2.1/ 3.1/ 4.6 
+++

4.5/ 4.5/ 6.2 
+

3.7/ 6.9/ 10.4 
+++

B3 2.7/ 3.1/ 4.9 
+

C1 1.3/ 2.4/ 4.0 
+++

2.2/ 2.8/ 4.8 
++

2.2/ 4.8/ 8.4 
+++

C2 2.2/ 2.9/ 4.9 
++

C3 2.2/ 3.0/ 5.0 
++

+, increase; -, decrease

+ or -, p  < 0.05; ++ or --, p  < 0.01; +++ or ---, p  < 0.001

Site
Mean concentrations in the 1980s/1990s/2000s (mg l

-1
)

TSiDSicol DSiICP

 3 
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Table 3 Correlation coefficient matrix of annual mean water quality items at the center 1 

of Lake Kasumiguara and annual precipitation at Tsukuba meteorological weather 2 

station during 1980–2006. N = 27 for all relationships except pH versus others (N = 24). 3 

Legends (+, ++, +++, –, – –, and – – –) are the same as in Table 2 4 

DSicol DSiICP BSi LSi SS ISS Chl-a WT pH DO Transp PT

DSicol 0.95 0.30 0.64 0.61 0.64 -0.27 -0.03 -0.55 -0.35 -0.61 0.27

DSiICP +++ 0.27 0.60 0.61 0.63 -0.26 -0.09 -0.46 -0.35 -0.56 0.23

BSi 0.53 0.64 0.61 -0.05 0.04 0.16 -0.07 -0.59 -0.22

LSi +++ +++ ++ 0.88 0.88 -0.24 0.08 -0.21 -0.37 -0.75 0.01

SS +++ +++ +++ +++ 0.97 -0.15 0.10 -0.22 -0.29 -0.87 0.13

ISS +++ +++ +++ +++ +++ -0.38 0.15 -0.26 -0.37 -0.78 0.08

Chl-a -0.17 0.33 0.32 -0.13 0.20

WT 0.16 -0.40 -0.08 0.20

pH -- - 0.22 0.11 -0.21

DO - 0.08 -0.21

Transp --- -- -- --- --- --- -0.22

PT

ISS , inorganic suspended solids estimated by Seki et al. (2006); Chl-a , chlorophyll a ; WT , pH  and DO , water

temperature, pH and dissolved oxygen at 0.5 m depth; Transp , transparency; PT , precipitation  5 
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Table 4 DSi and BSi budgets in Lake Kasumigaura 1 

Processes

1980s 2000s

Inputs

Inflows
a b 11.3 11.3

Release

from bottom sediments
c 4.3 4.3

from SS
c 0 ? 1.0–2.7

Atmospheric precipitation
d 0.0 0.0

Outputs

Outflow

DSi
b e 1.4 4.4

BSi
b e 0.4 1.2

Diatom sedimentation
f 13.8 11.0–12.7

Si fluxes (× 10
9
 g y

-1
)

a
 Estimated using the mean DSi concentratioon of

inflowing rivers in 1994 and 2007, 
b
 Flow rate was

estimated using lake area, mean water depth, annual mean

precipitation or evaporation, and mean water residence

time, 
c
 Experimental estimation in this study, 

d
 Muraoka

and Hirata (1991), 
e
 Estimated using DSicol and BSi

concentrations at C1, 
f
 Estimated by residual analysis  2 

 3 


