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Abstract

In this paper we give an axiomatization of differential geometry com-

parable to model categories for homotopy theory. Weil functors play a

predominant role.

1 Introduction

It is well known that the category of topological spaces and continuous mappins
is by no means cartesian closed, which has harassed algebraic topologists. In
1967 Steenrod [33] popularized the idea of convenient category by announcing
that the category of compactly generated spaces and continuous mappings ren-
ders a good setting for algebraic topology. The advertised category is cartesian
closed, complete and cocomplete, and contains all CW complexes. In the same
year, Quillen [27] finally succeeded in axiomatizing homotopy theory, which is
now known as model categories.

Turning to differential geometry, more than a few geometers have tried to
give a convenient category for differential geometry, say, [2], [3], [4], [5], [6], [7],
[13], [19], [29], [30] and [31]. Some acute mathematicians compared these pro-
posed convenient categories, say, [1] and [32]. Now what is completely missing
is an axiomatization of differential geometry comparable to model categories for
homotopy theory. We hastily home in on one so as to fill in the rift, at least as
far as infinitesimal aspects of differential geometry are concerned.

Weil algebras were introduced by Weil himself [36]. They were intended for
the algebraic realization of fabulous nilpotent infinitesimals. It is presumably
synthetic differential geometers who have used Weil algebras systematically in
differential geometry for the first time. They prefer to enjoy tangled relations
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among various Weil algebras. In particular, they have reached the crucial no-
tion of microlinearity. To synthetic differential geometers, Weil functors are
merely the exponentiation by infinitesimal objects corresponding to Weil alge-
bras, while, to orthodox differential geometers, they are a natural generalization
of the tangent bundle functor so that they can be defined without any refer-
ence to legendary infinitesimal objects. Roughly speaking, our axiomatization
of differential geometry is a convenient category endowed with Weil functors.
Generally speaking, any proposed convenient category is so broad as to contain
spaces which are not necessarily amenable to the study by methods of differen-
tial geometry. From our standpoint, the notion of manifold is a flawed concept,
or politely saying, a transitory concept to be replaced by another more appro-
priate one, just as Riemann integrals were to be replaced by Lebesgue integrals.
It is the notion of microlinearity that enables us to delineate the class of spaces
adequate for the study of differential geometry. It gives us a great pleasure to
see that the full subcategory of the convenient category consisting of all spaces
susceptible of differential-geometric investigation is cartesian closed, whatever
the convenient category may be. We will discuss our axiomatization in §3.

In orthodx differential geometry, just as smooth manifolds are spaces which
are locally Euclidean (namely, locally diffeomorphic to some open subsets of
Rm), fibered manifolds are locally the canonical projections Rm+n → Rm. As
Mangiarotti and Modugno [17] have stressed, a large portion of differential geom-
etry (at least up to connections and their related concepts) could be developed
upon fibered manifolds. We should say that the othodox notion of fibered mani-
fold is slightly distorted, simply because the map is required to be a submersion
so as to make every emerging entity amenable to the realm of manifolds. From
our standpoint, the story goes as follows. Given a convenient category provided
with Weil functors, its arrow category is also naturally endowed with derived
Weil functors. Our notion of fiber bundle is simple enough. It is microlinear
objects in the arrow category. This point will be discussed in detail in §4. In
§5, we will discuss vertical Weil functors.

2 Preliminaries

2.1 Category Theory

There are many good textbooks on category theory. By way of example, [15]
and [28] are recommendable classics. Therefore it would be absurd to try to
explain category theory from scratch. However we must fix our own notation
and terminology in this arena. A category K is called left exact if it has finite
limits. A functor between left exact categories is called left exact if it preserves
finite limits. A diagram in a category K is a functor D from a category Λ to the
category K. Its limit in K is usually denoted by Limλ∈Λ Dλ. Given a natural
transformation ρ : J

·
→ K between two functors F ,G : J → K and an object

X in J , the morphism F(X) → G (X) induced by the natural transformation
ρ is denoted by ρ(X) or ρX .Given a category K, its arrow category is usually
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denoted by
−→
K in preference to K→.

2.2 Weil Algebras

Let k be a commutative ring. The category of Weil algebras over k (also called
Weil k-algebras) is denoted by Weilk. It is well known that the category Weilk
is left exact. The terminal object in Weilk is k itself, and, given an object W
in Weilk, the unique morphism W → k in Weilk is denoted by τW . Since any
object W in Weilk is a k-algebra, there is a canonical morphism k →W , which
we denote by ιW . Given two objectsW1 andW2, we denote their tensor algebra
by W1 ⊗k W2. For a good treatise on Weil algebras, the reader is referred to §

1.16 of [11]. Given a left exact category K and a k-algebra object R in K, there
is a canonical functor R⊗· (denoted by R⊗ · in [11]) from the category Weilk
to the category of k-algebra objects and their homomorphisms in K.

3 Axiomatics

Definition 1 A DG-category (DG stands for Differential Geometry) is a quadru-
ple (K,R,T, α), where

1. K is a category which is left exact and cartesian closed.

2. R is a commutative k-algebra object in K.

3. Given a Weil k-algebra W , TW : K → K is a left exact functor for any
Weil k-algebra W subject to the condition that Tk : K → K is the identity
functor, while we have

TW2 ◦TW1 = TW1⊗kW2 (1)

for any Weil k-algebras W1 and W2.

4. Given a Weil k-algebra W , we have

TW
R = R⊗W

5. αϕ : TW1
·
→ TW2 is a natural transformation for any morphism ϕ :W1 →

W2 in the category Weilk such that we have

αψ · αϕ = αψ◦ϕ

for any morphisms ϕ : W1 → W2 and ψ : W2 → W3 in the category
Weilk, while we have

αidW
= idTW

for any identity morphism idW : W →W in the category Weilk.
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6. Given a morphism ϕ : W1 →W2 in the category Weilk, we have

αϕ (R) = R⊗ϕ

Now some comments on the above definition are in order.

Remark 2 1. How far the category K should be exact is undoubtedly dis-
putable. Every geometer with the seven cardinal virtues agrees that the
category of smooth manifolds and smooth mappings is by no means ex-
act enough. However the requirement that K should be a topos would
presumably be demanding too much so long as K is expected to be nat-
urally realizable in our real world. Synthetic differential geometers have
constructed their well-adapted models, which are toposes, in their favotite
imaginary world. Our requirement in this paper that K should be left exact
and cartesian closed is barely minimal without doubt. This point will be
discussed further in subsequent papers.

2. The functors TW ’s stand for so-called Weil functors.

3. The conditions 4 and 6 in the above definition correspond in a sense to
(abstrct) Taylor expansion theorem in calculus or to what is dubbed the
(generalized) Kock-Lawvere axiom in synthetic differential geometry.

4. The formula (1) has been inspired by Proposition in 35.18 of [12].

5. What is to be called the integration axiom should undoubtedly be consid-
ered. This point will be discussed in subsequent papers.

Notation 3 The natural transformation ατ
W

: TW ·
→ idK is denoted by τW .

Notation 4 The natural transformation αι
W

: idK
·
→ TW is denoted by ιW .

It is easy to see (cf. Chapter II, §3, Proposition 1 of [15]) that

Proposition 5 Given a DG-category (K,R,T, α), the pair (T, α) defines a bi-
functor ⊗T,α : K ×Weilk→K in the sense that we have

X ⊗T,αW = TWX

for any object X in the category K and any Weil k-algebra W , while we have

f ⊗T,α ϕ

= αϕ,Y ◦TW1f

= TW2f ◦ αϕ,X

for any morphism f : X → Y in the category K and any morphism ϕ : W1 →W2

in the category Weilk.
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Notation 6 We will often write X ⊗ W in place of X ⊗T,α W unless any
confusion may occur.

We shall fix a DG-category (K,R,T, α) throughout the rest of the paper.

Definition 7 An object X in the category K is called Weil exponentiable if

(X ⊗ (W1 ⊗k W2))
Y = (X ⊗W1)

Y ⊗W2 (2)

holds naturally for any object Y in the category K and any Weil k-algebras W1

and W2.

Remark 8 If Y = 1, then (2) degenerates into

X ⊗ (W1 ⊗k W2) = (X ⊗W1)⊗W2 (3)

If W1 = k, then (2) degenerates into

(X ⊗W2)
Y = XY ⊗W2 (4)

Proposition 9 If X is a Weil exponentiable object in the category K, then so
is X ⊗W for any Weil k-algebra W .

Proof. For any object Y in the category K and any Weil k-algebrasW1 and
W2, we have

((X ⊗W )⊗ (W1 ⊗k W2))
Y

= (X ⊗ ((W ⊗k W1)⊗kW2))
Y

= (X ⊗ (W ⊗k W1))
Y ⊗W2

= ((X ⊗W )⊗W1)
Y ⊗W2

so that we have the desired result.

Proposition 10 If F : Λ → K is a finite diagram in the category K such that
Fλ is Weil exponentiable for any λ ∈ Λ, then Limλ∈Λ Fλ is Weil exponentiable.

Proof. Since functors TW : K → K (∀W ∈ Weilk) and the exponentiation
by Y are left exact functors, we have

((Limλ∈Λ Fλ)⊗ (W1 ⊗kW2))
Y

= (Limλ∈Λ (Fλ ⊗ (W1 ⊗k W2)))
Y

= Limλ∈Λ (Fλ ⊗ (W1 ⊗k W2))
Y

= Limλ∈Λ

(
(Fλ ⊗W1)

Y ⊗W2

)

=
(
Limλ∈Λ (Fλ ⊗W1)

Y
)
⊗W2

= (Limλ∈Λ (Fλ ⊗W1))
Y
⊗W2

= ((Limλ∈ΛFλ)⊗W1)
Y ⊗W2

so that we have the desired result.
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Proposition 11 If X is a Weil exponentiable object in the category K, then so
is XY for any object Y in the category K.

Proof. For any object Z in category K and any Weil k-algebras W1 and
W2, we have

(XY ⊗ (W1 ⊗k W2))
Z

= (X ⊗ (W1 ⊗kW2))
Y×Z

= (X ⊗W1)
Y×Z ⊗W2

= ((X ⊗W1)
Y )Z ⊗W2

= (XY ⊗W1)
Z ⊗W2

so that we have the desired result.

Theorem 12 The full subcategory KWE of all Weil exponentiable objects in the
category K is a left exact and cartesian closed category.

Proof. This follows simply from Propositions 10 and 11.

Definition 13 An object X in the category K is called microlinear providing
that any finite limit diagram D in the category Weilk yields a limit diagram
X⊗D in K, where X⊗D is obtained from D by putting X⊗ to the left of every
object and every morphism in D.

Proposition 14 If an object X in the category K is Weil exponentiable and
microlinear, then so is X ⊗W for any Weil k-algebra W .

Proof. Given a finite limit diagram D in the category Weilk, we have

(X ⊗W )⊗D = X ⊗ (W ⊗k D)

by (3). Since the functor W ⊗k · : Weilk→ Weilk preserves finite limits, we
have the desired result.

Proposition 15 If F : Λ → K is a finite diagram in the category K such that
Fλ is microlinear object in K for any λ ∈ Λ, then its limit Limλ∈Λ Fλ is also a
microlinear object in K.

Proof. Given a finite diagram D : Γ → Weilk in the category Weilk, we
have

Limγ∈Γ ((Limλ∈Λ Fλ)⊗Dγ)

= Limγ∈Γ (Limλ∈Λ (Fλ ⊗Dγ))

= Limλ∈Λ (Limγ∈Γ (Fλ ⊗Dγ))

[since double limits commute]

= Limλ∈Λ (Fλ ⊗ (Limγ∈Γ Dγ))

[since Fλ is microlinear]

= (Limλ∈Λ Fλ)⊗ (Limγ∈Γ Dγ)

so that we have the desired result.
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Proposition 16 If X is a Weil exponentiable and microlinear object in K, then
so is XY for any object Y in K.

Proof. XY is Weil exponentiable by Proposition 11. Given a finite diagram
D : Γ → Weilk, we have

Limγ∈Γ

(
XY ⊗Dγ

)

= Limγ∈Γ (X ⊗Dγ)
Y

[by (4)]

= (Limγ∈Γ (X ⊗Dγ))
Y

[since the exponentiation by Y is a left exact functor]

= (X ⊗ (Limγ∈Γ Dγ))
Y

[since X is microlinear]

= XY ⊗ (Limγ∈Γ Dγ)

[by (4)]

so that XY is microlinear.
Now we recapitulate as follows.

Theorem 17 The full subcategory KWE,ML of all Weil exponentiable and mi-
crolinear objects in the category K is a left exact and cartesian closed category.

4 Fibered Microlinear Objects

Now we are going to talk about fibered manifolds in our context. First of all,
we note that

Proposition 18 The quadruple
(−→
K ,

−→
R ,

−→
T ,−→α

)
is a DG-category, where

1.
−→
K is the arrow category of K.

2.
−→
R stands for

R

↓

1

3. Given a Weil k-algebra W ,
−→
TW




E

π ↓

M



 is

TW (E)
TW (π) ↓

TW (M)
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while
−→
TW




E1 f
−−−→

E2

π1 ↓ ↓ π2
M1 f

−−−→
M2


 is

TW (E1) TW (f)
−−−−−−−−→

TW (E2)

TW (π1) ↓ ↓ TW (π2)

TW (M1) TW
(
f
)

−−−−−−−−→
TW (M2)

4. Given a morphism ϕ : W1 →W2 in the category Weilk,
−→α ϕ




E

π ↓

M





is
TW1 (E) αϕ (E)

−−−−→
TW2 (E)

TW1 (π) ↓ ↓ TW2 (π)

TW1 (M)
−−−−−→
αϕ (M) TW2 (M)

Proof. That the category
−→
K is left exact and that the functor

−→
TW :

−→
K →

−→
K

is left exact follow at the same time from Theorem 7.5.2 in [28]. That the

category
−→
K is cartesian closed follows from Exercise 1.3.7 in [8]. The other

conditions for
(−→
K ,

−→
R ,

−→
T ,−→α

)
to be a DG-category are easy to verify.

Corollary 19

E

π ↓

M

∈
−→
K is microlinear with respect to the DG-category

(−→
K ,

−→
R ,

−→
T ,−→α

)
iff both E andM are microlinear with respect to the DG-category

(K,R,T, α).

Remark 20 Given two objects π : E → M and θ : F → N in the category
−→
K ,

their exponential πθ :
(
EF

)
P
→MN is determined by the pullback diagram
(
EF

)
P

→ EF

↓ ↓

MN → MF

where P stands for ”Projectable (into MN )”.

Proposition 21 Given a morphism π : E → M in the category K, if both E
and M are Weil exponentiable as objects in the category K, then π : E → M is

Weil exponentiable as an object in the category
−→
K .

Proof. As we have noted,
(
(E ⊗W1)

F
)

P

is obtained as the pullback of the

diagram (
(E ⊗W1)

F
)

P

→ (E ⊗W1)
F

↓ ↓

(M ⊗W1)
N

→ (M ⊗W1)
F

(5)
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Since the functor · ⊗W2 : K → K is left exact, the diagram obtained from (5)
by the application of the functor

(
(E ⊗W1)

F
)

P

⊗W2 →
(E ⊗W1)

F
⊗W2

= (E ⊗ (W1 ⊗k W2))
F

↓ ↓

(M ⊗W1)
N
⊗W2

= (M ⊗ (W1 ⊗k W2))
N →

(M ⊗W1)
F
⊗W2

= (M ⊗ (W1 ⊗k W2))
F

(6)

is a pullback diagram. However the diagram
(
(E ⊗ (W1 ⊗k W2))

F
)

P

→ (E ⊗ (W1 ⊗k W2))
F

↓ ↓

(M ⊗ (W1 ⊗k W2))
N

→ (M ⊗ (W1 ⊗kW2))
F

(7)

is a pullback diagram. Therefore we have
(
(E ⊗ (W1 ⊗k W2))

F
)

P

=
(
(E ⊗W1)

F
)

P

⊗W2

which is the desired result.

Definition 22 By a fibered microlinear object in K we mean simply an object

π : E →M in the category
−→
K which is Weil exponentiable and microlinear with

respet to the DG-structure
(−→
K ,

−→
R ,

−→
T ,−→α

)
.

Notation 23 The full subcategory of
−→
K consisting of all fiber bundles in K is

denoted by KFib.

Theorem 24 The category KFib is left exact and cartesian closed.

Proof. This follows directly from Theorem 17.

5 Vertical Constructions

Now we are going to discuss vertical bundles in our context.

Definition 25 Given a morphism π : E → M in the category K and a Weil
k-algebra W , the vertical bundle τVW (π) : VW (π) → E of π with respect to W
is defined to be

τVW (π) = τW (E) ◦ τ̃VW (π)

where τ̃VW (π) : VW (π) → E ⊗W is obtained as the equalizer of

E ⊗W π ⊗ idW
−−−−−−−−−→

M ⊗W

and
E ⊗W τW,E

−−−−−−→
E π
−−−→

M ιW,M
−−−−−−→

M ⊗W

9



Notation 26 We will often write E ⊗⊥ W for VW (π).

Lemma 27 Given a diagram in a left exact category J

Z1 Z2

↓ ↓

X1 f
−−−→

X2

g1 � h1 g2 � h2
Y1 f

−−−→
Y2

if both of the two diagrams
Z1

↓

X1

g1 � h1
Y1

Z2

↓

X2

g2 � h2
Y2

are equalizers, and if both of the diagrams

X1 f
−−−→

X2

g1 ↓ ↓ g2
Y1 f

−−−→
Y2

X1 f
−−−→

X2

h1 ↓ ↓ h2
Y1 f

−−−→
Y2

commute, then there is a unique morphism Z1 99K Z2 making the diagram

Z1 99K Z2

↓ ↓

X1 f
−−−→

X2

commutative.

Proof. By the familiar token of what is dubbed arrow chasing.

Corollary 28 Given a Weil k-algebra W , our previous mapping VW assigning
the object VW (π) in the category K to each object

E

π ↓

M

10



in the category
−→
K can naturally be extended to a functor VW :

−→
K→ K in the

sense that the diagram

VW (π1) VW
((
f, f

))
−−−−−−−−→

VW (π2)

τVW (π1) ↓ ↓ τVW (π2)
E1 f

−−−→
E2

commutes for any morphism

E1 f
−−−→

E2

π1 ↓ ↓ π2
M1 f

−−−→
M2

in the category
−→
K .

Proof. It suffices to note that

E1 ⊗W f ⊗ idW
−−−−−−−−−→

E2 ⊗W

τW,E1
↓ ↓ τW,E2

E1 f
−−−→

E2

π1 ↓ ↓ π2
M1 f

−−−→
M2

ιW,M1
↓ ↓ ιW,M2

M1 ⊗W f ⊗ idW
−−−−−−−−−→

M2 ⊗W

In particular, the outer rectangle is commutative, so that the desired result
follows directly from the lemma.

Lemma 29 Given three finite diagrams F ,G,H : Λ → J in a left exact category
J with the same underlying category Λ, two natural transformations µ, ν : G

·
→

H and a natural transformation θ : F
·
→ G, if the diagrams G and H are limit

diagrams, and if the diagram

Fλ
θλ ↓

Gλ
µλ � νλ

Hλ

is an equalizer for each λ ∈ Λ, then the diagram F is a limit diagram.

Proof. By the familiar token of what is called arrow chasing.

Corollary 30 Given a Weil k-algebra W , the functor VW :
−→
K→ K is left

exact.
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Proof. Given a finite limit diagram in the category
−→
K , which decomposes

into two limit diagrams G′,H′ : Λ → K in the category K and a natural trans-
formation µ′ : G′ ·

→ H′, we have two limit diagrams

G = G′ ⊗W

H = H′ ⊗W

and two natural transformations

µ = µ′ ⊗W : G
·
→ H

ν : G
·

−→τWG′

·
−→
µ′H′

·
−→ιWH

Therefore the desired result follows from the lemma.

Corollary 31 (The Vertical Microlinearity Theorem) Let π : E → M be a
morphism in the category K with E and M being microlinear. If D is a fi-
nite limit diagram in the category Weilk , then E ⊗⊥ D is a limit diagram in
the category K.

Proof. It suffices to note that both E⊗D standing for G in the above lemma
and M ⊗ D standing for H in the above lemma are limit diagrams, because E
and M are assumed to be microlinear. Then the desired result follows directly
from the lemma.
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nant philosophy of manifolds-, International Journal of Pure and Applied
Mathematics, 60 (2010), 15-24.

[22] Nishimura, Hirokazu: Differential Geometry of Microlinear Frölicher spaces
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