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Abstract 

 

Polymer electrolyte-based unitized reversible fuel cells (URFCs) can be 

operated either as an electrolyzer to split water into hydrogen and oxygen using electric 

power or as a fuel cell to supply electric power when fed hydrogen and oxygen or air. In a 
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URFC, titanium (Ti)-felt is used as a gas diffusion layer (GDL) in the oxygen electrode 

and typical carbon paper is used as a GDL in the hydrogen electrode. Here, first, 

Ti-powder was loaded into the Ti-felt GDL in URFCs to produce an effective pore 

distribution for water management in the membrane. Then, the effect of this Ti-powder 

loading on the cell performance was examined for both fuel cell and electrolysis 

operations. Experimental results revealed that the Ti-powder loading significantly 

improved the fuel cell performance under fully humidified conditions (relative humidity 

(RH) =100%), but not under relatively dry conditions (RH=66%). In contrast, the 

Ti-powder loading had no effect on the electrolysis performance.  

 

Key words: proton exchange membrane; reversible fuel cell; gas diffusion layer; water 

management 
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Introduction 

 

Polymer electrolyte-based unitized reversible fuel cells (URFCs) are 

electrochemical cells that can operate either as a fuel cell or electrolyzer in a single 

unitized device. A system containing a URFC and a hydrogen storage unit is therefore a 

promising method for long-term energy storage, and due to low self-discharge, for 

back-up power instead of a secondary battery [1, 2]. Studies have evaluated URFCs 

with electro-catalysts [3-9], gas diffusion layers (GDLs) [10-11] and bipolar plates [12] 

for the oxygen-side. 

A conventional oxygen-electrode GDL plays a crucial role in a proton exchange 

membrane fuel cell (PEMFC) by providing the primary water removal route from the 

cathode catalyst layer to the flow channel and by allowing reactant gas transport to the 

catalyst layer. Thus, in the development of PEMFCs, many studies have focused on 

improving the transport of produced water and supplied oxygen through the 

oxygen-electrode GDL [13-20]. To facilitate the removal of produced water from the 

active area of catalyst site, a hydrophobic microporous layer (MPL) is generally coated 

onto a gas diffusion backing (GDB), which is typically bare carbon paper. The MPL is 

usually a mixture of fine carbon particles and a hydrophobic agent and is then coated 
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onto the GDB. In this case, the GDL is composed of GDB and MPL. The influence of the 

MPL components and properties, especially pore size distribution, on PEMFC 

performance have been investigated by using numerical simulation [21-24] and 

experimental analysis [25-39]. It is generally accepted that the MPL improves both 

water management and mass transport, by preventing rapid drying of the PEM at lower 

current density and by preventing electrode flooding at higher current densities. 

Several hypotheses about the role of an MPL have been suggested. For example, Weber 

and Newman [40] developed an analytical model to examine the effect of wettability of 

the diffusion media on water management, and confirmed an increase in fuel cell 

performance due to an MPL. They hypothesized that a capillary barrier acts as a valve 

to repel water from the oxygen-electrode GDL and to accelerate back diffusion of water 

from the cathode to the anode through the membrane. Wang et al. [41] developed a 

novel GDL with a MPL composed of a composite carbon black consisting of 20 wt.% 

Black Pearls 2000 and 80 wt.% Acetylene Black carbon. They classified the pores of 

GDL (including the MPL) into three categories: macro-pores with pore diameter over 

7μm, meso-pores from 0.05 to 7μm, and micro-pores below 0.05μm. They also pointed 

out that in hydrophobic meso-pores, liquid water does not easily penetrate into the pore 

because it needs to overcome the surface energy. Consequently, hydrophobic meso-pores 
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are dry (i.e., “open”), and thus can act as a gas transport path. Gostick et al. [42] 

measured the water saturation and associated capillary pressure at the point of water 

breakthrough in GDL samples with and without an MPL. Their findings suggest that 

the MPL contributes to lower water saturation in GDL when the water breaks 

through the GDL.   

The GDL of an URFC also plays the role of current collector in a PEM 

electrolyzer. To achieve stable electrical conductance and produced gas transport, this 

GDL is typically made of sintered porous metal, expanded metal mesh, or metal felt. 

Carbon paper or carbon cloth cannot be used in the GDL for an oxygen electrode 

because carbon materials tend to corrode at high potential during electrolysis. Grigoriev 

et al. [43] used a plate of sintered titanium powder as the GDL of electrolyzer and 

reported that the optimal pore size of a GDL in a PEM electrolyzer for current and mass 

transport is 12-13 μm. A titanium-felt has been used as the GDL of PEM electrolyzer 

and URFC by our group [44-45]. Ito et al. [44] investigated the effect of the flow 

characteristics on electrolysis performance and pressure drop, and reported that when 

the two-phase flow of the circulating water at the anode is either slug of annular, mass 

transport of water for the anode reaction is degraded at high current density. Our 

previous study of URFCs [45] revealed that electrolysis performance is not noticeably 
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affected by a change in either the PTFE content in the GDL or porosity of the GDL, 

when the pore diameter of the oxygen-electrode GDL is less than about 50 μm.  

The oxygen-electrode GDLs of a URFC play an important role in the water 

management, similar to the role in PEMFC and PEM electrolyzers. Despite this 

important role, the relation between this GDL in URFCs and water management has 

only recently been actively studied. In our previous work [45], titanium (Ti)-felt 

(nonwoven fabric) GDB without MPL was used as the GDL at the oxygen electrode to 

evaluate the effect of the properties of Ti-felt GDLs on URFC performance. Our results 

revealed that the pore size distribution (ratio of mean pore size and maximum pore size) 

of GDL is highly related with improving fuel cell performance, and mean pore size of 

GDL is important for electrolysis performance. However, all of the tested URFC cells 

with different characteristic Ti-felt GDLs showed a rapid decrease in fuel cell 

performance at fully wet conditions (relative humidity (RH) =100%) due to severer 

water flooding.  

From the viewpoint of membrane durability, the cell operation under full 

humidification conditions (i.e., RH=100%) is the best choice for commercial systems of 

URFC, because low RH operation (i.e., inadequate humidification) accelerates cell 

failure through membrane degradation [46]. However, as mentioned above, water 
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management under full humidification conditions is difficult. Based on reports that the 

presence of an MPL could prevent flooding and thus improve PEMFC performance 

[20-39], modification of pore size distribution by MPL coating might improve URFC 

performance under fully wet condition. 

In this study, fine Ti-powders were loaded onto Ti-felt GDB to modify the pore 

size distribution. The purpose of our present work was to verify the effect of the 

modified pore structure of Ti-felt GDL on the water management in the oxygen 

electrode of a URFC during fuel cell and electrolyzer operations.  Ti-felt GDB with 

different amounts of Ti-powder loading were prepared as the oxygen electrode GDL, and 

the effect of the amount of Ti-powder loading on both the fuel cell and electrolyzer 

performance of a URFC was investigated.  

 

2. Experiments  

The single cell with 27 cm2 active area used here is identical with that described 

in our previous work [45]. The bipolar plate for the oxygen side (cathode for fuel cell 

mode) was made of titanium, and that for the hydrogen side (anode for fuel cell mode) 

was carbon. A membrane electrode assembly (MEA, developed through collaboration 

between Takasago Thermal Engineering Co. and Daiki Ataka Engineering Co.) was 
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placed between the flow fields of both bipolar plates. In the MEA, iridium oxide (IrO2) 

and platinum (Pt) mixed-electrocatalyst was used for the oxygen electrode, and Pt 

catalyst for the hydrogen electrode. These catalytic electrodes were hot pressed to both 

surfaces of the PEM (Nafion 115). In all experiments in this work, carbon-paper gas 

diffusion backing (GDB) (Toray 090, porosity 78%) treated with 10 wt.% PTFE emulsion 

was used for the hydrogen-electrode side GDL and had a PTFE loading of about 14 wt.% 

(69 mg/cm3), and Ti-felt GDB (Bekinit) was used for the oxygen-electrode side GDL. 

Both substrates for the carbon paper and Ti-felt were approximately 300 μm thick. 

Table 1 lists the specifications of GDL at the oxygen electrode used for URFC 

performance tests.  

Three different sets of cells with Ti-felt GDL were prepared; U1, which had no 

PTFE or Ti-powder loading, U2 and U3, which had PTFE loading, and M1, M2, and M3, 

which had both PTFE and Ti-powder loading. The U1 cells were prepared in which 

“standard” Ti-felt GDL were not loaded with PTFE, and the porosity (ε) and fiber 

diameter (φ) of the substrates were 75% and 20µm, respectively. The U2 and U3 cells 

were prepared loading PTFE onto bare Ti-felt GDB at 69 and 148 mg/cm3, respectively. 

The M1, M2, and M3 cells samples were prepared as follows. First, Ti powder (Toho 

Titanium; average diameter of about 20µm) was mixed with a dispersion agent (0.1g) 
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and deionized water (80 wt.% of total slurry) by mechanical stirring. Then, PTFE was 

added as a binder material, at a 99:1wt.% ratio of Ti powder to polymer binder in the 

slurry. Next, the slurry was applied to bare Ti-felt GDB (the same substrates used in U1, 

namely, φ=20μm, ε=0.75 and without PTFE loading) using a screen printing technique. 

For comparison purposes, different loading amount of Ti powder on the GDB were 

evaluated, namely, 110, 200 and 300mg/cm3 based on outer geometry of GDB. Finally, 

the Ti-felt GDBs loaded with Ti powder were dried at 180°C for 30minutes and then 

sintered at 360°C in vacuum condition for 1 hour. Note that Ti-powder loading includes 

a small amount of PTFE loading (as shown in Table 1), because the slurry contained 

PTFE. 

The gas and liquid supply lines for the fuel cell mode and electrolysis mode of the 

URFC were separate, but also were connected at the inlet and outlet of the cell at both 

sides of the electrodes via switching valves. Fuel cell performance tests were performed 

by using a station specifically equipped for the fuel cell mode (PEMTEST8900, Toyo), 

namely, with a temperature controller for the cell and with a gas supply unit that 

included mass flow meters and humidifiers. The cell temperature (Tcell) was kept 

constant at 80 °C by electric heaters on both cover-plates and was controlled by the 

station during both the fuel cell and electrolysis modes. Air was used as an oxidant 
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during the fuel cell mode. The stoichiometric ratio of the supplied pure hydrogen and 

oxygen in the air was kept at 1.43 and 2.50, respectively, and the humidification 

temperature (Tfuel) of both reactant gases were changed arbitrarily but were always the 

same for a given test. The electric load (890CL, Scribner) was controlled by the station 

and used in measuring the current-voltage (i-V) characteristics of the fuel cell. The cell 

resistance (Rcell) was measured using a frequency response analyzer (FRA) (1255B, 

Solartron) and the load. During the electrolysis mode, water in the cell was circulated 

by using an accumulator, pump, preheating tank, flow meter, and flow control valve. 

De-ionized liquid water supplied to the cell was heated to the same temperature as the 

cell by a preheating tank. Theoretically, water must be supplied only to the oxygen 

electrode side, because water molecules move to the hydrogen electrode with protons 

during electrolysis. In our experiments, however, water was circulated at a flow rate of 

25ml/min at both sides of the electrodes to prevent membrane dry-out caused by lack of 

water. Two-phase flow of gas and liquid was released from the exit of the cell at both 

electrodes, and the produced gas (H2 and O2) was separated from liquid water at the 

respective accumulators. DC power for the electrolysis was supplied and controlled by a 

power supply (PAN16, Kikusui). Cell voltage was measured at each i. Pore size 

distribution of each substrate was measured using a mercury intrusion porosimeter 
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(MIP, Sysmex and Micromeritics).  

 

3. Results and Discussion  

3.1  Ti-felt GDL with Ti powder loading   

 Figure 1 shows SEM images of Ti-felt GDL with and without Ti powder loading. In 

the Ti-felt GDL with Ti powder loading, the powder did not form a layer on top of the 

substrate but rather was deposited into the bulk of the GDB substrate (Fig. 1B). 

Furthermore, the powder was relatively uniformly distributed in not only the in-plane 

direction but also the through-plane direction of the GDB. Figure 2 shows the effect of 

Ti powder loading on the pore size distribution of four cells (U1, M1, M2, and M3 cells) 

by plotting pore diameter versus logarithm differential volume (based on the MIP 

results). For the bare Ti-felt GDL of U1, the main peak pore size was 50~60μm, whereas 

for the GDL with Ti powder loading, this peak shifted to less than 50μm. The structural 

changes in these different pore size ranges can be identified by grouping the pores in the 

GDL into the same categories used by Wang et al. [41]; namely, macro-pores (pore 

diameter more than 7μm), meso-pores (from 0.05 to 7μm) and micro-pores (less than 

0.05μm). Figure 2 shows that the volume of the meso-pores increased with increasing 

amount of Ti powder loading on GDL, whereas no micro-pores were generated by the Ti 



12 
 

powder loading.   

 

3.2  Electrolysis performance 

The GDL of U1 cell was not treated with Ti-powder and PTFE, whereas the 

GDLs of U2, U3 were treated with 69 and 148 mg/cm3 of PTFE, and those of M1, M2 

and M3 were loaded with 110, 200 and 300 mg/cm3 of Ti-powder, respectively, as well as 

treated with PTFE. Figure 3 shows the measured i-V characteristics during the 

electrolysis mode for these cells. In the electrolysis mode, liquid water is supplied at the 

oxygen electrode as reactant fuel and humidifies the membrane. As noted in Sec. 2, 

liquid water is also supplied at the hydrogen electrode concerning about the safety, 

however, from our previous experimental study [44], it was revealed that liquid water 

supply at the hydrogen electrode does not cause any noticeable effect on the cell 

performance. Thus, for optimal electrolysis performance, both an efficient water supply 

and gas discharge via the oxygen-side GDL is critical. Our previous experimental study 

[45] reported that electrolysis performance was not noticeably affected by a change in 

PTFE content in the GDL, when the mean pore diameter of the oxygen-electrode GDL 

was less than about 50μm. In contrast, that study also revealed that large oxygen 

bubbles from the large pores hindered the water supply due to blocking of the water 
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channel. In our current study, although the porous characteristics (permeability, 

wettability) changed depending on the amount of Ti-powder loading on the oxygen 

electrode GDL, the i-V characteristics were the same for the U1, M1, M2 and M3 cells 

(Fig. 2B). Similarly, the differences in electrolysis performance were negligible among 

the U1, U2 and U3 cells. The pore distribution (Fig. 2) of M1, M2 and M3 showed a 

decrease in the main peak in pore size from 60 to 40 μm and showed a small peak in the 

meso-pore range (0.05-7 μm). This suggests that the yield of meso-pores volume does not 

affect either the bubble size or flow regime, and that the maximum pore diameter of 

GDL, which is nearly equal to the main peak in the macro-pore region, is the 

determining parameter for the bubble size generated from the GDL. We discussed this 

speculation in another article in detail [47]. Because the change of pore size in main 

peak was small, the bubble size and flow regime in the flow channel must be nearly the 

same in all the cells studied here, and thus no noticeable difference in electrolysis 

performance was observed.  

    

3.3  Fuel cell performance 

The effect of the amount of Ti powder loading in the GDL of the oxygen 

electrode on fuel cell performance was evaluated here by analyzing the i-V 
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characteristics and overpotential. The humidification temperatures of reactant gases 

(Tfuel) were set as 70°C and 80°C for relatively dry conditions (RH=66%) and fully wet 

condition (RH =100%), respectively. 

Figure 4 shows the i-V characteristics of U1, U2, U3 cells during fuel cell mode 

at Tfuel = 80°C of fully wet condition. Although all three cells had the same ε (0.75), their 

Ti-felt GDLs were coated with different amounts of PTFE (0, 69, and 148 mg/cm3, 

respectively).  U2 and U3 exhibited slightly improved fuel cell performance compared 

with U1. Figure 5 shows the i-V characteristics of U1, M1, M2 and M3 cells during fuel 

cell mode at fully wet condition. The U1 cell, using bare Ti-felt as the oxygen-side GDL, 

showed a severe flooding problem at low i (~100mA/cm2). In contrast, the M2 and M3 

cells showed drastically improved i-V characteristics, whereas the M1, U2 and U3 cells 

showed only slightly improved characteristics (Figs.4 and 5). These results suggest that 

changes in GDL properties caused by a threshold amount of Ti-powder loading (200 and 

300mg/cm3) significantly affect the cell performance. However, a small amount of 

Ti-powder loading in the M1 cell (110mg/cm3) slightly improved the performance, 

similar to the observed improvement with PTFE content (U2, U3). To further analyze 

the effect of Ti-powder loading on the cell performance, we categorized the 

overpotentials into the three groups previously described [45]: ohmic overpotential (ηohm), 
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concentration overpotential (ηconc), and activation overpotential (ηact). Figure 6 compares 

ηconc, ηact and ηohm calculated from the i-V curves shown in Fig. 5. The difference in ηohm 

was small and the cell resistance (Rcell) measured by the AC impedance was relatively 

constant throughout the entire i range. The U1 cell showed a rapidly increased ηconc at 

low i (~100mA/cm2). M1 also showed a rapidly increasing ηconc at low i (~150mA/cm2) 

because the Ti-powder loading (110mg/cm3) was not enough to prevent water flooding. 

In contrast, M2 and M3 showed relatively stable ηconc until significantly high i (500 ~ 

600mA/cm2). Comparison of the differences in ηconc (Fig. 5) and differences in i-V 

characteristics (Fig. 6) reveals that the modification of the pore structure caused by 

Ti-powder loading significantly affects the mass transport of liquid and gas through the 

GDL.  

Figure 7 shows the i-V characteristics of the U1, M1, M2 and M3 cells during  

fuel cell mode under the relatively dry condition (RH=66%; Tfuel =70°C). For all these 

cells, the overall performance during fuel cell operation under this dry condition was 

superior to that at under the wet condition (Fig. 5). However, the Ti-powder loading had 

no positive effect on performance, but rather degrades slightly the performance of M1, 

M2 and M3 compared to that of U1.  

The effect of Ti-powder loading on fuel cell performance can be discussed based on 
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our experimental results and analysis data as follows. An increase in the amount of 

Ti-powder loading caused a shift in the main peak in the pore size distribution from 

about 60 to 40 μm and generated a small peak in the meso-pore region (0.05-7 μm) (Fig. 

2). The amount of Ti-powder loading significantly affected the performance under fully 

wet condition (RH =100%) (Fig. 5). Based on these results, the main effects of Ti-powder 

loading are hydrophobicity and changes in pore size distribution (i.e., increased volume 

of meso-pore size). The improvement caused by the Ti-powder loading at RH =100% can 

be explained as follows. The hydrophobic meso-pores produced by the Ti-powder loading 

play an important role in gas transport, because they must be kept free from water and 

thus kept suitable for gas transport. The M1 cell (110mg/cm3 Ti-powder loading) was not 

enough to affect both the hydrophobicity and pore size distribution. The main peak pore 

volume of M1 cell is higher than U1 cell in the pore size distribution results (Fig. 2). 

Even though meso-pores volume is increased at M1, high volume of main peak pores 

would force to limit the performance improvement. If the Ti powder can be loaded as a 

micro-porous layer similar to a conventional MPL on a Ti-felt GDL substrate, we can 

expect further improvement under fully wet conditions. Lu et al. [48] explained that a 

GDL without an MPL has dynamic changing of breakthrough location from the 

interconnected water path. Contrary to this, a GDL with MPL has stationary 
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breakthrough point, and thus, the greater part of GDL is kept dry all the time. Similar 

to that for the GDL without an MPL, the water path in the Ti-powder loaded GDL in 

this study was probably dynamic, because the Ti powder did not form a microporous 

sub-layer on the substrate surface but rather was deposited into the bulk of the 

substrate.  

At the relatively dry condition (RH =66%), the opposite effect of the Ti-powder 

loading as that at the fully wet condition can be explained as follows. The produced 

water consists of liquid water and water vapor. Under the dry condition, the rate of 

vapor transport must be relatively greater than that of liquid transport. Even though 

the increased meso-pore (0.05-7μm) volume due to the Ti-powder loading on GDL must 

play an important role in the removal of liquid water at the fully wet condition, the 

Ti-powder loading under the relatively dry condition is not effective for the oxygen gas 

transport. The capillary barrier effect, which provides added resistance to oxygen gas 

diffusion, is stronger than the meso-pore (0.05-7 μm) volume effect. The vapor tends to 

condense at lower porosity and at pathways that are narrowed due to Ti-powder loading. 

And then, condensed water can act as resistance to oxygen gas diffusion to the catalyst 

layer. Consequently, Ti-powder loading on the oxygen-electrode GDL is effective for 

removal of liquid water and for prevention of flooding, but not effective for vapor water 
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transport and oxygen gas diffusion.  

  

4. Conclusions 

 

The effect of structural properties of Ti-felt as the oxygen-side GDL on both the 

fuel cell and electrolysis performance of a URFC was evaluated for Ti-felt GDLs loaded 

with different amounts of Ti powder. 

At the electrolysis mode, the bubble size from the macro-pores (over 7μm) is the 

dominant factor in electrolysis performance. Here, the measured i-V characteristics 

remained relatively unaffected by the Ti-powder loading of the oxygen-electrode GDL, 

because the Ti-powder loading had a negligible effect on the bubble size.  

At fuel cell mode, because a cell should be operated under high humidity 

conditions to maintain membrane durability, fuel cell performance of URFCs with 

Ti-powder loading was evaluated here based on measured i-V characteristics and the 

analysis of overpotential at fully saturated humidity conditions (Tfuel = 80°C).  In this 

study, the purpose of the Ti-powder loading on the oxygen-electrode GDLs was to 

improve the transport of liquid water and oxygen gas. Our results showed that the 

increased meso-pore (0.05-7 μm) size volume and hydrophobicity due to the Ti-powder 
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loading were significantly effective in preventing water flooding and in improving fuel 

cell performance under fully wet condition (RH=100%), but not under relatively dry 

conditions (RH=66%) due to different mass transport condition (ratio between vapor 

and liquid phase) of produced water.  
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Figure captions 

 

Figure 1.  SEM images of (A) as-is Ti-felt GDL (Bekinit) and (B) Ti-powder loaded 

(300mg/cm3) Ti-felt GDL. Ti-felt had a fiber diameter (φ) of 20µm and porosity (ε) of 0.75. 

Ti powder had an average diameter of 20µm. 

 

Figure 2. Effect of Ti-powder loading on the Ti-felt GDL (U1, M1, M2, and M3 cells) and 

pore distribution represented by pore diameter versus logarithm differential volume 

(based on MIP results).  

 

Figure 3. Effect of (A) PTFE loading and (B) Ti-powder loading on current density (i) - 

voltage (V) characteristics during electrolysis mode for URFCs. Cell temperature (Tcell) 

was 80°C. Cell specifications are listed in Table 1. 

 

Figure 4. Effect of PTFE loading on current density (i) - voltage (V) characteristics 

during fuel cell mode under fully wet condition (RH=100%) for URFCs. Cell 

temperature (Tcell) was 80°C. Cell specifications are listed in Table 1. 

 

Figure 5. Effect of Ti-powder loading on the current density (i) - voltage (V) 

characteristics during fuel cell mode under fully wet condition (RH=100%) for URFCs. 

Cell specifications are listed in Table 1. Both humidification temperature (Tfuel) and cell 

temperature (Tcell) were 80°C. 

 

Figure 6. Effect of Ti-powder loading on current density (i) and (A) ohmic overpotential 
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(ηohm), (B) concentration overpotential (ηconc), and (C) activation overpotential (ηact) 

during fuel cell mode of URFCs. Cell specifications are listed in Table 1. Both 

humidification temperature (Tfuel) and cell temperature (Tcell) were 80°C. Overpotentials 

were calculated from i-V data shown in Fig. 5. 

 

Figure 7. Effect of Ti-powder loading on current density (i) - voltage (V) characteristics 

during fuel cell mode under relatively dry condition (RH=66%). Cell specifications are 

listed in Table 1. Humidification temperature (Tfuel) was 70°C, and the cell temperature 

(Tcell) was 80°C. 

 

Table 1.  Specifications of oxygen-electrode GDL for URFC performance test a). 
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Figure 1.  SEM images of (A) original Ti-felt GDL (Bekinit) and (B) Ti-powder loaded 
(300mg/cm3) Ti-felt GDL. Ti-felt had a fiber diameter of 20µm and porosity of 0.75. The 
average diameter of Ti powder is 20µm. 



Figure 2 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. Effect of Ti-powder loading on the Ti-felt GDL (U1, M1, M2, and M3 cells) and Pore 
distribution represented by pore diameter versus logarithm differential volume (based on 
MIP results). 
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Figure 3. Effect of (A) PTFE loading and (B) Ti-powder loading on current density (i) - 
voltage (V) characteristics during electrolysis mode for URFCs. Cell temperature (Tcell) was 
80°C. Cell specifications are listed in Table 1. 
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Figure 4. Effect of PTFE loading on current density (i) - voltage (V) characteristics during 
fuel cell mode under fully wet condition (RH=100%) for URFCs. Cell temperature (Tcell) was 
80°C. Cell specifications are listed in Table 1. 
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Figure 5. Effect of Ti-powder loading on the current density (i) - voltage (V) characteristics 
during fuel cell mode under fully wet condition (RH=100%) for URFCs. Cell specifications 
are listed in Table 1. Both humidification temperature (Tfuel) and cell temperature (Tcell) were 
80°C. 
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Figure 6. Effect of Ti-powder loading on current density (i) and (A) ohmic overpotential (ηohm), 
(B) concentration overpotential (ηconc), and (C) activation overpotential (ηact) during fuel cell 
mode of URFCs. Cell specifications are listed in Table 1. Both humidification temperature 
(Tfuel) and cell temperature (Tcell) were 80°C. Overpotentials were calculated from i-V data 
shown in Fig. 5. 
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Figure 7. Effect of Ti-powder loading on current density (i) - voltage (V) characteristics 
during fuel cell mode under relatively dry condition (RH=66%). Cell specifications are listed 
in Table 1. Humidification temperature (Tfuel) was 70°C, and the cell temperature (Tcell) was 
80°C. 

 
 
 



Table 1.  Specification of GDL at the oxygen electrode for URFC performance test a). 
 

Cell  GDL(O2 side)  Porosity (ε) 
PTFE 

loading 

Ti powder 

loading d) 

      [mg/cm3] [mg/cm3] 

  U1 b)  Ti-felt 0.75  - -    

U2  Ti-felt 0.75  69 - 

U3  Ti-felt 0.75  148 - 

M1  Ti-felt + Ti powder  0.73 c)  1.1 110 

M2  Ti-felt + Ti powder  0.71 c)  2.0 200 

M3  Ti-felt + Ti powder  0.68 c)  3.0 300 

 
a) Carbon paper GDL coated with PTFE (10wt% emulsion) commonly used for hydrogen-electrode GDL.  

b) Standard cell  (i.e., without PTFE or Ti powder loading).   

c) Calculated based on amount of Ti-powder loading.  

d) Calculated based on outer geometry of GDL. 
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