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Abstract. Ongoing climate change is likely to enhance the deterioration of rice quality 23 

that has been observed in western Japan, especially Kyushu, since the 1990s. Therefore, 24 

it is important to examine the response of rice quality to environmental variation over 25 

wide geographical domain. To that end, the aims of this study were (i) to propose a 26 

statistical model to predict rice quality based on temperature, total radiation during the 27 

ripening period, and their multiple effects; and (ii) to evaluate the model validity and 28 

uncertainty in prediction. A Bayesian calibration was adopted to account for uncertainty 29 

in the parameter values associated with non-climatic factors. The validation results 30 

showed that the model performed well in capturing the temporal trend and interannual 31 

variation in observed rice quality in all prefectures, Kyushu. We then performed the 32 

prediction experiment for rice quality in the extremely hot summer of the year 2010, 33 

which was omitted from the model calibration data. The results showed that the 34 

predictive capability of the statistical model is somewhat dependent on the calibration 35 

data, but this dependency does not necessarily mean that useful predictions for climates 36 

not in the calibration data are impossible. 37 
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1. Introduction 51 

Declines in rice quality have been observed in western Japan, especially Kyushu, since the 52 

1990s (Morita 2008; Okada et al. 2009). Such declines are likely to lower the eating quality of 53 

rice (Terao et al. 2005; Wakamatsu et al. 2007) and reduce farm income and consumer utility in 54 

Japan and other countries where the demand for high-quality rice has been increasing. 55 

 The major reason for the decline in rice quality is the occurrence of chalky grains, 56 

especially milky white grains (Morita 2008). Chalky grains sharply increase when the mean 57 

daily minimum temperature for the 20 days after heading exceeds 22 °C (Tsukimori 2003). The 58 

underlying mechanisms for the occurrence of chalky grains in rice plants are: reduced 59 

allocatable carbohydrates in the plant associated with an increased nighttime respiration rate 60 

(Vong & Murata 1977; Hirai et al. 2003); reduced capacity of stems and leaves for assimilation 61 

(Kobata et al. 2004; Morita et al. 2005); insufficient solar radiation during the ripening period 62 

(Matsushima & Manaka 1957); and hits of typhoons during the ripening period (Wakamatsu et 63 

al. 2007). 64 

 Ongoing climate change may reduce rice quality in the near future. No studies have 65 

assessed the possible impact of climate change on rice quality, although some studies have 66 

proposed process-based models to predict rice quality based on field experimental results 67 

(Nagahata et al. 2006; Nakagawa et al. 2008). However, these models are designed for 68 

prediction at the field scale, and a large gap exists between the spatial scale at which these 69 

models operate and the scale at which climate projections are developed. Furthermore, it is 70 

difficult to obtain detailed information on cultivars and management practices over large areas, 71 

which is essential for a process-based model to simulate the complicated biochemical processes 72 

that govern rice quality. 73 

 Another important issue for impact assessment is uncertainty of the model’s applicability to 74 

accommodate unprecedented climates, because all impact models are developed and calibrated 75 

on the basis of historical data. This corresponds to the uncertainty of future impacts associated 76 

with the extrapolation of current knowledge to future unprecedented climates. Therefore, the 77 
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central objective of impact assessment model validation should be evaluation of the predictive 78 

capability of impact models under unprecedented climates. 79 

 In this study, we propose a statistical model that has a medium level of complexity to 80 

predict rice quality at broad spatial scales, that is, the model is less complex than field-scale 81 

process-based models but more complex than simple regression models. A Bayesian calibration 82 

method (Iizumi et al. 2009) was adopted to account for the uncertainty of non-climatic factors 83 

(e.g., cultivar and management) in model parameter values. To evaluate the model’s capability 84 

and applicability for impact assessment, we conducted two types of uncertainty analyses using 85 

this model: (i) the sensitivity of the modeled rice quality to temperature increases; and (ii) 86 

prediction experiments for the extremely hot summer of 2010, the data from which was not 87 

incorporated in the calibration data. The summer of 2010 was the hottest summer in Japan since 88 

1898, and the mean temperature anomaly for June, July, and August in that year was 1.64 °C 89 

(Japan Meteorological Agency 2011). This resulted in the lowest recorded rice quality in 90 

western Japan since collection of comparable statistics was commenced in 1999 (MAFF 2010a). 91 

All analyses were carried out for the Kyushu in western Japan (Fig. 1). 92 

93 
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2. Materials and methods 94 

 95 

2.1. Data 96 

According to Japan’s Agricultural Products Inspection Act, harvested rice grains are categorized 97 

into four grades: first grade, second grade, third grade, and irregular. The major criterion for 98 

assigning rice to lower grades is the percentage of chalky grains. Chalky grains are immature 99 

and the entire endosperm has a chalky texture, whereas refined whole grains are translucent in 100 

appearance (Tashiro & Wardlaw 1991). For rice quality data, we used the proportion of 101 

first-grade rice for seven prefectures in Kyushu for the period 1979–2007 from government 102 

statistics (MAFF 2010a). The data for 2010 were obtained from a rapid assessment released by 103 

the government (MAFF 2010a). Data on heading and harvest dates were obtained from MAFF 104 

(2010b). 105 

 Daily minimum temperature and accumulated solar radiation for the same period were 106 

obtained from a grid dataset developed at the National Institute for Agro-Environmental Science 107 

(called Mesh-AMeDAS; Seino 1993). The grid interval of the dataset is 30" × 45" in latitude 108 

and longitude (about 1 km × 1 km). Land-use data on the same grid interval were obtained from 109 

the same dataset. To combine the weather and rice quality data, daily values of the climate 110 

variables for grid cells that contained paddy fields (≥20% of a grid cell) were spatially averaged. 111 

 For model calibration, the data on typhoon track and damage in paddy rice production 112 

(MAFF 2010b) were used to exclude rice quality data from years in which severe damages 113 

occur in the study areas during the ripening period. The data from 1991, 1993, 2004, and 2006, 114 

just four of the 29 years (1979–2007), were removed from the calibration data for Fukuoka. This 115 

treatment avoided overfitting the model, considering that typhoon damage to rice quality was 116 

not considered in the model. 117 

 118 

2.2. Rice quality model 119 
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We preliminary examined the relationship between rice quality, temperature and total radiation 120 

during the ripening period using the rice quality data from the governmental crop statistics in all 121 

prefectures of Kyushu. The relationships between total radiation for the ripening period and rice 122 

quality at three temperature levels (represented by the mean daily minimum temperature for the 123 

20 days after heading) are shown in Fig. 2. The data show that as temperature increases rice 124 

quality tends to decline. At temperatures <21 °C, most rice quality data have a high percentage 125 

of first-grade rice across the range of radiation. At each higher temperature level (i.e., 21–22.9 126 

and ≥23 °C), the decline in rice quality at lower radiation levels becomes increasingly 127 

pronounced, showing that the sensitivity of rice quality to insufficient radiation increases as 128 

temperature increases. 129 

 We formulated the statistical relationships between rice quality, temperature, and radiation 130 

from the logistic function: 131 

 
( ) ( )
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where Q is the proportion of first-grade rice (%), Qmax and Qmin(T) are the upper and lower limit 133 

of Q (%), respectively, T is the mean daily minimum temperature for n days after heading (°C), 134 

S is the total radiation during the ripening period (MJ m–2), fa(T) is the sensitivity coefficient of 135 

Q to S, and fb(T) is the value of S at which rice quality becomes halfway between the upper and 136 

lower limits (i.e., (Qmax+Qmin(T))/2). 137 

 The variables Qmin(T), fa(T), and fb(T) were assumed to be linear functions of T to account 138 

for the multiple effects of temperature and radiation on rice quality: 139 

 ( ) 21min pTpTQ +⋅= ,  (2) 140 

 ( ) 43a pTpTf +⋅= , (3) 141 

 ( ) 65b pTpTf +⋅= , (4) 142 

where pi (i = 1,…, 6) are parameters. 143 

 The mean daily minimum temperature for n days after heading, T, and total radiation during 144 
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the ripening period, S, were represented by: 145 
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where Tmin i is the daily minimum temperature on the ith day after heading, n is the period after 149 

heading in which the temperature has a negative impact on rice quality (days), Si is the daily 150 

total radiation on the ith day after heading (MJ m–2 day–1), and m is the period from heading to 151 

maturity (days). The variable n depends upon non-climatic factors such as the ripening ability of 152 

the cultivar, fertilization and irrigation during the ripening period, water temperature, and other 153 

factors. These sources of variation were accounted for by Bayesian calibration. 154 

 155 

2.3. Bayesian calibration 156 

Rice quality non-linearly responds to climate conditions during the ripening period, and a large 157 

amount of variation exists that is not explained by climatic factors (Fig. 2). To deal with such 158 

variation, we adopted Bayesian calibration for the estimation of the parameter values, pi (i=1,…, 159 

6) and n for each of the seven prefectures of Kyushu. The general procedure for Bayesian 160 

calibration begins by quantifying the known uncertainty of a parameter value in the form of a 161 

prior distribution. Observed data corresponding to model output are then used to update the 162 

posterior distribution of the parameters by means of Bayes’ Theorem: 163 

 

( ) ( ) ( )
( ) ( )∫

=
 dθθ pD|θπ

θ pD|θπθ|Dp , (7) 164 

where p(θ|D) is the posterior distribution of the parameter θ for given data D, π(D|θ) is the 165 

likelihood function, p(θ) is the prior distribution of parameter θ, and the denominator of the 166 

right-hand side of the eq. 7 is the normalizing constant. 167 

 The non-informative uniform distributions were here used for the prior distributions of all 168 
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parameters. The likelihood function was developed on the assumption that errors were 169 

distributed normally: 170 
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where σ2 is the variance of the error, N is the sample size, and Y and Ŷ  are vectors of the 172 

observed and modeled rice quality, respectively. 173 

 We used the Metropolis–Hastings algorithm to estimate a high-dimensional posterior 174 

distribution of parameters via a sampling procedure using the Markov chain Monte Carlo 175 

technique (MCMC; Metropolis et al. 1953; Hastings 1970). We applied the 176 

Metropolis–Hastings algorithm following the procedure described in Iizumi et al. (2009) 177 

178 
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3. Results and discussion 179 

 180 

3.1. Posterior distributions of parameters 181 

The convergence of the Markov chains to a stationary distribution was examined by checking 182 

the Gelman–Rubin statistic (Gelman & Rubin 1992) on the basis of three parallel chains and 183 

visually checking the chains. The total number of MCMC iterations was 100,000. Once the 184 

chains had reached convergence with reference to the Gelman–Rubin statistic (<1.2), the last 185 

10,000 samples per chain (i.e., 30,000 samples in total) were used to obtain the posterior 186 

distribution. 187 

 The posterior distributions of parameters for Fukuoka estimated from the full dataset and 188 

from two subsets of the calibration data are shown in Fig. 3. In particular, these subsets 189 

excluded the data from year with the hottest (1999, +1.8σ, where σ represents the standard 190 

deviation) or coldest (1980, -2.6σ) summers (represented by the mean daily minimum 191 

temperature for n days after heading, T) for the 25-year period to examine the sensitivity of 192 

posterior parameter distributions to a particular data from years with an extremely hot or cold 193 

temperature condition. For the parameters p3, p4, and n, little difference was found between the 194 

locations of the posterior distributions from the subsets and that from the full set of calibration 195 

data, indicating a comparatively low sensitivity of these parameter values to data for a particular 196 

year. 197 

 For the other parameters, the locations of the posterior distribution varied between the 198 

subsets and the full dataset, indicating a comparatively high dependency of these parameter 199 

values on the particular set of calibration data. The parameters p1 and p2 correspond to the slope 200 

and intercept term, respectively, to express the linear effect of temperature on the lower limit of 201 

rice quality (Eq. 2). For these parameters, the posterior distributions from the subset that 202 

excluded data from years with cold summers are very close to that from the full dataset, whereas 203 

the posterior distributions from the subset that excluded the data from years with hot summers 204 

shifted remarkably away from the distribution for the full set of calibration data. This shows that 205 
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the presence of the data from years with hot summers in the calibration data is essential to 206 

precisely determine the lower limit of rice quality in this model. 207 

 The parameters p5 and p6 are the slope and intercept terms, respectively, of fb(T). fb(T) 208 

denotes the temperature dependence on the threshold value of total radiation for the ripening 209 

period, S, that results in the value of rice quality halfway between the upper and lower limits. 210 

For these parameters, the posterior distributions from all data were different from those from 211 

both subsets. These differences show that the values of these parameters are sensitive to the 212 

particular set of calibration data. Both data from years with hot summers and those with cold 213 

summer are essential to precisely determine the fb(T) because both upper and lower values of 214 

rice quality are definitely important to determine their half value. Therefore, the lack of either 215 

type of data in the calibration data could lead to bias in the parameter values of p5 and p6. 216 

 Of the seven parameters, the one that can be directly compared with the results of previous 217 

studies is the length of the period after heading in which temperature conditions negatively 218 

impact rice quality, n. The posterior mean value of n was 30 days, and this is close to other 219 

reported values (Nagato & Ebata 1960; Terashima et al. 2001; Kondo et al. 2006). 220 

 221 

3.2. Model validation 222 

We validated the capability of the model to simulate observed rice quality for each prefecture 223 

from years that were not included in the calibration data. The leave-one-out cross-validation 224 

method (Stone 1974; Geisser 1975) was used. Specifically, we first removed the sample data 225 

from one year of the calibration data and estimated the posterior distributions. Then the model 226 

was used to simulate the removed data. We repeated these steps for all years. 227 

 A comparison of the observed and simulated rice quality in Fukuoka for years in which data 228 

was removed is shown in Fig. 4. Most observed rice quality was distributed within the range of 229 

the ensemble mean ± 1 standard deviation (σ) calculated by perturbing the parameter values 230 

within the posterior distributions. The Pearson’s correlation coefficient between the simulated 231 

and observed rice quality data for the 29-year period was 0.86 (P < 0.001). The corresponding 232 
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root-mean square error was 12.33%. For other prefectures, the calculated goodness-of-fit 233 

statistics were somewhat worse than those for Fukuoka, but showed good correspondence 234 

between model simulations and corresponding observations (Table1). These results indicate a 235 

high capability for the model to capture temporal trends and interannual variation in observed 236 

rice quality from climatic factors. 237 

 Relatively large discrepancies between simulated rice quality and sample data were found in 238 

some years, for example, 2005 and 2007 in Fukuoka. These discrepancies can be attributed to 239 

factors such as pests, which are not accounted for in the model. Larger than normal outbreaks of 240 

brown planthoppers occurred in 2005 and 2007 in Kyushu (Matsumura et al. 2007; Watanabe et 241 

al. 2007; Kajisa et al. 2008). This suggests that the model will not perform well in years in 242 

which non-climatic factors (e.g., pests) are the dominant cause of rice quality decline. 243 

 244 

3.3. Relative impacts of climatic factors on rice quality 245 

To quantify the relative impacts of climatic factors on rice quality, we performed sensitivity 246 

analysis using artificial increases in temperature for Fukuoka. More specifically, we calculated 247 

the change in rice quality per unit change in climatic factor as follows (referred to as the 248 

elasticity of rice quality to temperature or radiation): 249 

 Q
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We used the posterior mean parameter values for the calculations. A positive sign for elasticity 252 

means a positive correlation between rice quality and the climatic factor and vice versa. 253 

 In this study, we focus only on elasticity of rice quality to temperature and radiation with 254 

change in temperature level because little information on the likely effect of climate change on 255 

radiation is available. We calculated the elasticities numerically with an artificial temperature 256 

data. The artificial temperature data were obtained by adding anomalies to the baseline 257 
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calculated from the calibration data (= 20.3 °C). The anomalies ranged from –2 to +3 °C in 258 

intervals of 0.1 °C. The total radiation during the ripening period was kept constant (= 688.9 MJ 259 

m–2). This corresponds to the baseline radiation. 260 

 The calculated elasticity of rice quality to temperature or radiation at various temperature 261 

levels is shown in Fig. 5. The sign of elasticity is always negative for temperature and positive 262 

for radiation, suggesting that a reduction in rice quality is caused by temperature increase, 263 

radiation decrease, or a combination of both. This finding agrees with the results of previous 264 

studies (Matsushima & Manaka 1957; Kawatsu et al. 2007). Under current temperature 265 

conditions, the negative impact of temperature and positive impact of radiation have roughly the 266 

same level of elasticity (–5.45 for temperature and 4.78 for radiation), but the negative impact 267 

from temperature is slightly stronger with increasing temperature than the positive impact from 268 

increasing radiation. For current radiation and management conditions, the tipping point at 269 

which the negative impact from increasing temperature becomes 1.5 times larger than the 270 

positive impact from radiation is 21.8 °C (corresponds to a temperature increase by +1.5 °C). 271 

 272 

3.4. Prediction of rice quality under unprecedented climates 273 

The capability of the model to predict rice quality under unprecedented climates was evaluated, 274 

taking the year 2010 with an extremely hot summer as an example. For each of the seven 275 

prefectures of Kyushu, we estimated the posterior distributions of parameter from the 276 

calibration data without the data from 2010 and then simulated the rice quality from the weather 277 

data for that year. 278 

 The correspondence between the observed and simulated data in 2010 is good in most areas 279 

(Fig. 6). Although the model overestimated rice quality in 2010 in most prefectures, a similar 280 

tendency was also observed in other years. A comparatively large discrepancy between the 281 

observed and simulated data for 2010 appeared in Saga. This is likely due to the rapid 282 

introduction of a high-temperature tolerant cultivar ‘Sagabiyori’ in this area since 2009. Indeed, 283 

the proportion of first-grade rice in 2010 was 14.6% for the conventional cultivar ‘Hinohikari’, 284 



 13 

but 79.1% for ‘Sagabiyori’ (MAFF 2010a). No persistence of relevant information on a rapid 285 

change in the predominant cultivar in the calibration data explains the inaccurate simulation in 286 

this area. 287 

 We further examined the sensitivity of the predictive capability of the model to the 288 

calibration data. The Saga data were omitted from this analysis because of the inaccuracy 289 

introduced by the change in cultivar. We first obtained the frequency distribution for mean daily 290 

minimum temperature for n days after heading from the calibration data and calculated the 291 

standard deviation (σ) on the assumption that the frequency distribution could be approximated 292 

by a normal distribution. The model was then calibrated for each of four subsets of the 293 

calibration data, referred to as CTL, +1.5σ, +1.0σ, and +0.5σ. These subsets except CTL were 294 

excluded from years in which the mean daily minimum temperature for n days after heading 295 

was greater than the calibration data mean +1.5σ, mean +1.0σ, and mean +0.5σ, respectively, 296 

although the CTL subset was not excluded. This meant that in the +1.5σ subset, no data from 297 

years with very hot summers were included in the calibration data. Therefore, there is no 298 

information on the effect of very high temperature conditions on rice quality in the model 299 

calibration. As the sample size effects calibration results, for fair treated comparison the sample 300 

size was set to be the same among the subsets by removing samples less than +0.5σ. Finally, we 301 

compared the simulation results from the different calibration data with the observed data. 302 

 The prediction error for 2010 from each subset of calibration data is shown in Fig. 7. In 303 

Kagoshima, the model accurately simulated the rice quality in 2010 even when data from years 304 

with very hot summers (> mean +1.5σ) were removed from the calibration data. The 305 

correspondence between observed and simulated data deteriorated if we removed data from 306 

years with hot summers (> mean +1.0σ) or slightly hot summers (> mean +0.5σ). Therefore, the 307 

predictive capability of the model is somewhat dependent on the calibration data, but this 308 

dependency does not necessarily mean that rice quality cannot be predicted for years with 309 

extremely hot summers that are not in the calibration data. 310 

311 
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4. Conclusion 312 

We propose a statistical model to predict rice quality from climatic factors at large spatial scales. 313 

The model accounts for the multiple effects of temperature and radiation during the ripening 314 

period. Bayesian calibration was adopted to account for uncertainty due to non-climatic factors 315 

in the model prediction. The model accurately reproduced the temporal trend and interannual 316 

variation in observed rice quality. However, the model was inaccurate in the occasional years in 317 

which non-climatic factors dominated the quality results. 318 

 The sensitivity analysis showed that an increase in temperature has a negative effect on rice 319 

quality, whereas an increase in radiation has a positive effect. Under present climate conditions, 320 

these two climatic factors affect rice quality to a similar extent. However, the negative effect 321 

from temperature becomes larger compared to the positive effect from radiation as average 322 

temperature during the ripening period increases. This suggests that climate change will cause a 323 

decline in rice quality, all other things being equal. 324 

 The predictive capability of the model is somewhat dependent on the calibration data. 325 

However, the model is still reliable even when data from years with very hot summers were not 326 

included in the calibration data, indicating that at least a modest level of extrapolation for future 327 

climate is possible. Some projection results for regional climate change impacts based on 328 

climate model projection were reported as a separate paper. 329 

 Future research should examine the impacts of atmospheric CO2 concentration on rice 330 

quality. Such information is currently scarce, and datasets of the spatial distribution of 331 

atmospheric CO2 concentration do not exist in the same way as they do for temperature and 332 

radiation. Additional systematic exploration of the sensitivity of the predictive capability of the 333 

model to the calibration data would also assist in determining the applicability of the model to 334 

wider temporal domain. 335 

 336 

337 



 15 

Acknowledgments 338 

We are grateful to anonymous reviewers for valuable comments. The computations were carried 339 

out on a cluster system at the Agriculture, Forestry and Fisheries Research Information 340 

Technology Center for Agriculture, Forestry and Fisheries Research, MAFF, Japan. This study 341 

was partially supported by the Global Environmental Research Fund (S-4 and S-8) of Ministry 342 

of the Environment, Japan. 343 

 344 

345 



 16 

References 346 

Geisser S (1975) The predictive sample reuse method with applications. Journal of the 347 

American Statistical Association, 70, 320–328. 348 

Gelman A and Rubin D B (1992) Inference from iterative simulation using multiple sequences. 349 

Statistical Science, 7, 457–511. 350 

Hastings W K (1970) Monte Carlo sampling methods using Markov chains and their 351 

applications. Biometrika, 57, 97–109. 352 

Hirai Y, Yamada T and Tsuda M (2003) Effect of temperature at the ripening period on dark 353 

respiration and dry matter production in rice: Comparison of the effects in the plants sown 354 

in pots at different times. Japanese Journal of Crop Science, 72, 436–442. (in Japanese with 355 

English abstract) 356 

Iizumi T, Yokozawa M and Nishimori M (2009) Parameter estimation and uncertainty analysis 357 

of a large-scale crop model for paddy rice: Application of a Bayesian approach. Agricultural 358 

and Forest Meteorology, 149, 333–348. 359 

Japan Meteorological Agency (2011) Characteristics of mean summer temperature in Japan in 360 

2010, Japan Meteorological Agency, Tokyo, Japan, 2 pp (in Japanese) Available at: 361 

http://www.jma.go.jp/jma/press/1009/01a/temp10jsum.pdf (accessed 8 February 2011) 362 

Kajisa M, Kushima Y and Mizobe M (2008) Occurrences of brown planthopper and the 363 

chemical control in Miyazaki prefecture in 2007. Kyushu Plant Protection Research, 54, 364 

157–158. (in Japanese) 365 

Kawatsu S, Homma K, Horie T and Shiraiwa T (2007) Change of weather condition and its 366 

effect on rice production during the past 40 years in Japan. Japanese Journal of Crop 367 

Science, 76, 423–432. (in Japanese with English abstract) 368 

Kobata T, Uemuki N, Inamura T and Kagata H (2004) Shortage of assimilate supply to grain 369 

increase the proportion of milky white rice kernels under high temperatures. Japanese 370 

Journal of Crop Science, 73, 315–322. (in Japanese with English abstract) 371 

Kondo M et al. (2006) Effects of air temperature during ripening and grain protein contents on 372 



 17 

grain chalkiness in rice. Japanese Journal of Crop Science, 75 (Extra issue 2), 14–15. (in 373 

Japanese) 374 

MAFF (2010a) Annual report on food control. Ministry of Agriculture, Forestry and Fisheries, 375 

Tokyo, Japan (in Japanese) Front page is available at: 376 

http://www.maff.go.jp/j/tokei/kouhyou/syokuryo_nenkan/index.html (accessed 1 September 377 

2010) 378 

MAFF (2010b) Crop Statistics. Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan (in 379 

Japanese) Front page available at: 380 

http://www.maff.go.jp/j/tokei/kouhyou/sakumotu/index.html (accessed 1 September 2010) 381 

Matsumura M, Takeuchi H and Sato M (2007) Recent status of insecticidal resistance in 382 

migratory rice planthoppers in Japan. Plant Protection, 61, 254–257. (in Japanese with 383 

English summary) 384 

Matsushima S and Manaka T (1957) Analysis of developmental factors determining yield and 385 

yield prediction in lowland rice. Japanese Journal of Crop Science, 25, 203–206. (in 386 

Japanese) 387 

Metropolis N, Rosenbluth A W, Rosenbluth M N and Teller A H (1953) Equation of state 388 

calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–92. 389 

Morita S (2008) Prospect for developing measures to prevent high-temperature damage to rice 390 

grain ripening. Japanese Journal of Crop Science, 77, 1–12. (in Japanese with English 391 

abstract) 392 

Morita S, Kusuda O, Yonemura J, Fukushima A and Nakano H (2005) Effects of topdressing on 393 

grain shape and grain damage under high temperature during ripening of rice. Rice is life: 394 

Scientific perspectives for the 21st century (Proc. of the World Rice Research Conf., Tsukuba, 395 

Japan), 560–562. 396 

Nagahata H, Shima K and Nakagawa H (2006) Modeling and prediction of occurrence of 397 

chalky grains in rice: 1. A simple model for predicting the occurrence of milky white rice. 398 

Japanese Journal of Crop Science, 75 (Extra issue 2), 18–19. (in Japanese) 399 



 18 

Nagato K and Ebata M (1960) Effects of temperature in the ripening periods upon the 400 

development and qualities of lowland rice kernels. Japanese Journal of Crop Science, 28, 401 

275–278. (in Japanese with English summary) 402 

Nakagawa H, Nagahata H and Tsukaguchi T (2008) Modeling and prediction of occurrence of 403 

chalky grains in rice: 2. A model to predict the rate of milky white grain using temperature 404 

and assimilate supply. Japanese Journal of Crop Science, 77 (Extra issue 1), 148–149. (in 405 

Japanese) 406 

Okada M, Iizumi T, Hayashi Y and Yokozawa M (2009) A climatological analysis on the recent 407 

declining trend of rice quality in Japan. Journal of Agricultural Meteorology, 65, 327–337. 408 

Seino H (1993) An estimation of distribution of meteorological elements using GIS and 409 

AMeDAS data. Journal of Agricultural Meteorology, 48, 379–383. (in Japanese) 410 

Stone M (1974) Cross-validatory choice and assessment of statistical predictions. Journal of the 411 

Royal Statistical Society. Series B (Methodological), 36, 111–147. 412 

Tashiro T and Wardlaw I F (1991) The effect of high temperature on kernel dimensions and the 413 

type and occurrence of kernel damage in rice. Australian Journal of Agricultural Research, 414 

42, 485–496. 415 

Terao T et al. (2005) Influence of free-air CO2 enrichment (FACE) on the eating quality of rice. 416 

Journal of the Science of Food and Agriculture, 85, 1861–68. 417 

Terashima K, Saito Y, Sakai N, Watanabe T, Ogata T and Akita S (2001) Effects of high air 418 

temperature in summer of 1999 on ripening and grain quality of rice. Japanese Journal of 419 

Crop Science, 70, 449–458. (in Japanese with English abstract) 420 

Tsukimori H (2003) Effects of high temperature on the rice production and the technical 421 

countermeasures in Shimane prefecture. Japanese Journal of Crop Science, 72 (Extra issue 422 

2), 434–439. (in Japanese) 423 

Vong Q N and Murata Y (1977) Studies on the physiological characteristics of C3 and C4 crop 424 

species: 1. The effects of air temperature on the apparent photosynthesis, dark respiration, 425 

and nutrient absorption of some crops. Japanese Journal of Crop Science, 46, 45–52. 426 



 19 

Wakamatsu K, Sasaki O, Uezono I and Tanaka A (2007) Effects of high air temperature during 427 

the ripening period on the grain quality of rice in warm regions of Japan. Japanese Journal 428 

of Crop Science, 76, 71–78. (in Japanese with English abstract) 429 

Watanabe T, Matsumura M and Otsuka A (2007) Recent occurrences of brown planthopper and 430 

factors causing the outbreaks. Plant Protection, 61, 245–248. (in Japanese) 431 

432 



 20 

Table captions 433 

Table 1. The Pearson’s correlation coefficient (R) with statistical significance (***, P < 0.001; 434 

**, P < 0.01) and the root-mean-square error (RMSE) between the observed and simulated 435 

ensemble mean rice quality for seven prefectures in Kyushu. 436 

 437 
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Figure captions 438 

Fig. 1. Location of Japan (left) and the Kyushu (right), with the seven prefectures labeled. Blue 439 

shaded areas indicate grid cells that contained paddy fields over 20% of a grid cell. 440 

 441 

Fig. 2. Relationships for observed rice quality (represented by the proportion of first-grade rice) 442 

versus total radiation during the ripening period at three temperature levels (represented by the 443 

mean daily minimum temperature during the 20 days after heading, T20). Curves indicate the 444 

logistic regressions fitted to the data at each temperature level annotated with their correlation 445 

coefficients (R) and statistical significance (***, P < 0.001; **, P < 0.01; and *, P < 0.05). 446 

 447 

Fig. 3. Posterior distributions of seven model parameters for a model of rice quality as a 448 

function of temperature and radiation developed for Fukuoka from 25 years of calibration data 449 

(shaded area) or from subsets of the same data, excluding data from years with particularly hot 450 

(dashed line) or cold (solid line) summers. 451 

 452 

Fig. 4. Time series of observed (Obs.) and simulated ensemble mean (Est.) rice quality in 453 

Fukuoka. The shaded region indicates the range of the ensemble mean ± 1 standard deviation 454 

produced by perturbing parameter values. Open diamonds indicate the observed data in typhoon 455 

years that were removed from the calibration data. The values for Pearson’s correlation 456 

coefficient (R; P <0.001) and the root-mean-square error (RMSE) between the observed and 457 

simulated ensemble mean data are shown. 458 

 459 

Fig. 5. Elasticity of rice quality to temperature or radiation at various temperature levels 460 

(represented by the mean daily minimum temperature for 30 days after heading) 461 

 462 

Fig. 6. Comparison of 2010, which had an extremely hot summer, with other years with respect 463 

to observed (Obs.) versus simulated ensemble mean (Est.) rice quality for the seven Kyushu 464 
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prefectures. 465 

 466 

Fig. 7. Absolute prediction errors between the observed and simulated ensemble mean rice 467 

quality for three areas in Kyushu in 2010, a year with an extremely hot summer. For each area, 468 

the horizontal axis indicates subsets of the calibration data in which data from very hot (+1.5σ), 469 

hot (+1.0σ), or slightly hot (+0.5σ) summers were removed. For reference, the result from 470 

calibration data including data in very hot summer years is also shown (CTL). Error bars 471 

indicate the range of the ensemble mean ± 1 standard deviation produced by perturbing the 472 

parameter values. 473 

 474 
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Table 1. The Pearson’s correlation coefficient (R) with statistical significance (***, P < 0.001; 475 

**, P < 0.01) and the root-mean-square error (RMSE) between the observed and simulated 476 

ensemble mean rice quality for seven prefectures in Kyushu.. 477 

  Prefecture   R [-] RMSE [%]   

 
Fukuoka 

 
0.86 *** 12.33 

 

 
Saga 

 
0.62 *** 19.74 

 

 
Nagasaki 

 
0.68 *** 18.22 

 

 
Kumamoto 

 
0.54 ** 19.46 

 

 
Oita 

 
0.61 *** 16.51 

 

 
Miyazaki 

 
0.68 *** 13.94 

 
  Kagoshima   0.67 *** 14.65   

 478 

 479 

480 
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 481 

Fig. 1. Location of Japan (left) and the Kyushu (right), with the seven prefectures labeled. Blue 482 

shaded areas indicate grid cells that contained paddy fields over 20% of a grid cell. 483 

 484 

485 
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 486 

Fig. 2. Relationships for observed rice quality (represented by the proportion of first-grade rice) 487 

versus total radiation during the ripening period at three temperature levels (represented by the 488 

mean daily minimum temperature during the 20 days after heading, T20). Curves indicate the 489 

logistic regressions fitted to the data at each temperature level annotated with their correlation 490 

coefficients (R) and statistical significance (***, P < 0.001; **, P < 0.01; and *, P < 0.05). 491 

 492 

493 
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 494 

Fig. 3. Posterior distributions of seven model parameters for a model of rice quality as a 495 

function of temperature and radiation developed for Fukuoka from 25 years of calibration data 496 

(shaded area) or from subsets of the same data, excluding data from years with particularly hot 497 

(dashed line) or cold (solid line) summers. 498 

 499 

500 
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 501 

Fig. 4. Time series of observed (Obs.) and simulated ensemble mean (Est.) rice quality in 502 

Fukuoka. The shaded region indicates the range of the ensemble mean ± 1 standard deviation 503 

produced by perturbing parameter values. Open diamonds indicate the observed data in typhoon 504 

years that were removed from the calibration data. The values for Pearson’s correlation 505 

coefficient (R; P <0.001) and the root-mean-square error (RMSE) between the observed and 506 

simulated ensemble mean data are shown. 507 

 508 

509 
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 510 

Fig. 5. Elasticity of rice quality to temperature or radiation at various temperature levels 511 

(represented by the mean daily minimum temperature for 30 days after heading) 512 

 513 

514 
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 515 

Fig. 6. Comparison of 2010, which had an extremely hot summer, with other years with respect 516 

to observed (Obs.) versus simulated ensemble mean (Est.) rice quality for the seven Kyushu 517 

prefectures. 518 

 519 

520 
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 521 

Fig. 7. Absolute prediction errors between the observed and simulated ensemble mean rice 522 

quality for three areas in Kyushu in 2010, a year with an extremely hot summer. For each area, 523 

the horizontal axis indicates subsets of the calibration data in which data from very hot (+1.5σ), 524 

hot (+1.0σ), or slightly hot (+0.5σ) summers were removed. For reference, the result from 525 

calibration data including data in very hot summer years is also shown (CTL). Error bars 526 

indicate the range of the ensemble mean ± 1 standard deviation produced by perturbing the 527 

parameter values. 528 

 529 


