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Support by Warning or by Action: Which is Appropriate under
Mismatches between Driver Intent and Traffic Conditions?

Toshiyuki INAGAKI'®, Member, Makoto ITOH', and Yoshitomo NAGAI', Nonmembers

SUMMARY  This paper tries to answer the following question: What
type of support should be given to an automobile driver when it is deter-
mined, via some method to monitor the driver’s behavior and the traffic
environment, that the driver’s intent may not be appropriate to a traffic
condition? With a medium fidelity, moving-base driving simulator, three
conditions were compared: (a) Warning type support in which an auditory
warning is given to the driver to enhance his/her situation recognition, (b)
action type support in which an autonomous safety control action is exe-
cuted to avoid an accident, and (c) the baseline condition in which no driver
support is given. Results were as follows: (1) Either type of driver sup-
port was effective in accident prevention. (2) Acceptance of driver support
functions varied context dependently. (3) Participants accepted a system-
initiated automation invocation as long as no automation surprises were
possible to occur.

key words: proactive safety, intelligent driver support, adaptive automa-
tion, levels of automation

1. Introduction

In the classic study of the causes of traffic accidents, Treat et
al. [1] ascribe 92.6% of car accidents to human error, such
as, improper lookout, inattention, and internal or external
distraction. The situation is still basically the same [2].
Driving a car requires a continuous process of perception,
decision, and action. Understanding of the current situa-
tion determines what action needs to be done [3]. In reality,
however, a driver’s situation understanding may not always
be perfect. Decisions and actions following poor or imper-
fect situation understanding can never match a given traffic
condition.

The driver’s situation recognition is not directly ob-
servable. However, monitoring the driver’s behavior and
traffic condition may make it possible to detect mismatches
between his/her intent and the traffic condition. Various ef-
forts have thus been made to develop driver behavior moni-
toring methods [4]-[12].

Now a research question arises. Suppose that some
monitoring method has determined that a driver may not be
aware of a threat. What type of support should be given to
the driver? Setting off a warning to the driver? Or, letting the
support system execute an autonomous action for avoiding
the threat? Let us call the former a warning type support,
and call the latter an action type support.
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The warning type support adopts an approach to en-
hance the driver’s situation awareness, expecting that, once
the driver succeeds in understanding the ongoing situation,
he/she will be able to determine what action needs to be
done and implement it appropriately. The warning type sup-
port is compatible with the human-centered automation con-
cept in which it is assumed that the human is maintained as
the final authority [13]-[15]. However, an accident may oc-
cur if the driver (the final authority) failed or was unable to
respond to the warning at the right time. '

The action type support applies a system-initiated au-
tomation invocation (or, shifting of authority from the driver
to automation) to prevent an accident from occurring. The
system-initiated automation invocation is a basic function of
adaptive automation [16], [17] that trades authority between
humans and machines dynamically in time depending on the
situation. Such a system-initiated trading of authority may
sometimes bring negative consequences, such as automation
surprises, over-trust in automation, distrust of automation
(see, e.g., [18]-[21]).

Asking which type of support is better between the
above two is basically the same as asking whether the hu-
man must be maintained as the final authority at all times
and on every occasions (as is claimed in the human centered-
automation). An important aspect that has been sometimes
overlooked is domain-dependence of human-centered au-
tomation [22]. In other words, although aviation tries to
stick to the human-centered automation rather strictly [14],
[23], automobile may not be a domain to which the same
principle as aviation may be applicable, because quality of
human operators and time-criticality are quite different be-
tween the two domains [22].

This paper reports results of an experiment with a
medium fidelity, moving-base driving simulator, for inves-
tigating efficacy and driver acceptance of the warning type
support and the action type support. It is argued that driver
support needs to be situation-adaptive in which its level of
automation is adjustable in a context-dependent manner.

2. Method
2.1 Apparatus

The experiment was conducted with a Honda research-and-
development-type driving simulator with six-axis motion
functionalities (Fig. 1 left). A 6 km-long beltway course on
an expressway was used in the experiment. On the center of
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Fig.1 Research vehicle.

the dashboard, a 7-inch display was installed to give mes-
sages and road indicators to the driver (Fig. 1 right).

2.2 Participants and Driving Tasks

Ten university students (8 males and 2 females between the
ages of 21-24) driving daily participated in the experiment.
The participants were instructed to drive safely in the
cruising lane at around 80 km/h (ca. 50 mph) on a 2-lane ex-
pressway. The “Lane Closed” indicator appeared occasion-
ally (see Fig. 1). The participants were allowed to enter the
passing lane when the indicator was for the cruising lane.
However, they were instructed to come back to the cruising
lane when it became available again. When the indicator
was for the passing lane, the participants had to watch for
cars in the passing lane, because they might cut in to the
cruising lane. ; ‘

As the secondary task, every participant was requested
to perform mental computations consecutively in time while
driving. More concretely, a question (e.g., “Three minus
five equals what?”’) was given every three seconds. The sec-
ondary tasks were introduced to simulate situations in which
drivers may have to perform non-driving cognitive tasks that
might degrade the driver’s ability to understand traflic con-
ditions, such as approaches of curves, behaviors of other ve-
hicles. No auditory cue (such as engine sound) was given
to the participants regarding other vehicles, which means
that participants can not sense acoustically an approach of
a faster vehicle from behind in the passing lane. They had
to allocate their visual attentions intentionally to grasp posi-
tions and behaviors of other vehicles.

2.3 Independent Variable

Level of automation (LOA) was the within subject variable.
Table 1 gives scales of LOAs, in which an LOA is added
between levels 6 and 7 in the original list by Sheridan [24].
The added level, called 6.5, was first introduced in [25] to
avoid automation surprises that may be induced by an auto-
matic safety control in emergency.

Two types of support conditions as well as the no-aid
baseline condition were tested.

(a) Warning type support condition, in which the sys-
tem sets off an auditory proximity warning when it detects
that the host vehicle is coming close to some other vehicle.
The LOA of the warning type support is set at 4.
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Table 1  Scales of levels of automation [24], [25].

1. The computer offers no assistance; human must do it all.

2. The computer offers a complete set of action alternatives, and

narrows the selection down to a few, or

suggests one, and

executes that suggestion if the human approves, or

allows the human a restricted time to veto before automatic

execution,

6.5 executes automatically after telling the human what it is going to do,

7. executes automatically, then necessarily informs humans, or

8. informs him after execution only if he asks, or

9. informs him after execution if it, the computer, decides to.

10. The computer decides everything and acts autonomously, ignoring
the human.

AW

(b) Action type support condition, in which the system
executes an appropriate safety control action automatically
when it detects a hazardous event. Two kinds of safety con-
trol actions were possible in the experiment: (b-1) The sys-
tem prohibits the driver from steering to change the lane
when it determines that the lane change may cause a colli-
sion into a vehicle coming from behind in the passing lane,
and (b-2) the system applies an automatic panic brake when
it detects a rapid deceleration of the lead vehicle in the cruis-
ing lane. The LOA of such an action type support is set at
7.

(c) Baseline condition, in which no support function is
available. The LOA is set at 1 in this case.

2.4 Dependent Variables

The following data were collected during the experiment:
steering wheel angle, pressure of gas and brake pedals, op-
erations of the turning signal, distances to other surrounding
vehicles, time elapsed before the driver applied the brake
him/herself, collisions into some other vehicles, velocity
and position of each vehicle in the environment, subjective
ratings of efficacy of the support system in accident preven-
tion and acceptance of the support system.

2.5 Procedure

After receiving instructions on driving tasks, participants
were given practice drives so that they could acquire famil-
iarity with the simulator and its operation, driving environ-
ment (viz., the 6 km-long beltway course used in the exper-
iment), driving tasks, “Lane Closed” indicators, and sup-
port functions (viz., the warning type support and the action
type). The practice drive was followed by the experimen-
tal drive in which dependent variables were measured under
scenarios 1 (in which “Lane Closed” indicator is given for
the cruising lane) and 2 (in which “Lane Closed” indicator
is for the passing lane).
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3. Results
3.1 Results under Scenario 1

Scenario 1. The “Lane Closed” indicator appears four
times for the cruising lane. Two of those four occasions are
peaceful, in which there is no possibility for the host vehicle
to come close to any other vehicles in the passing lane even
when the host vehicle makes a lane change. In the other two
occasions, however, a faster vehicle (let us call it Vehicle F)
approaches from behind in the passing lane. Vehicle F is in
the blind spot of the host vehicle, and may not be seen easily
unless the host vehicle’s driver searches for such a possible
threat with care. If the driver steers the wheel carelessly, the
host vehicle may come too close to Vehicle F or may ac-
tually collide with it. A most sensible strategy for the host
vehicle’s driver in this case may be to slow down slightly,
let Vehicle F pass the host vehicle, and then initiate steering
for making a lane change.

Suppose that the driver of the host vehicle initiates to
steer, without noticing the approach of a faster vehicle F
from behind in the passing lane.

The warning type support system sets off an auditory
proximity warning when it detects that the host vehicle may
come close to Vehicle F.

The action type support system, on the other hand, pro-
hibits and cancels out the steering input by the host vehicle’s
driver when it determines that his/her steering might cause
a collision with Vehicle F. Such a system-initiated trading
of authority from the driver to automation is an example of
envelope protection [14] for automobile.

Under Scenario 1, each of the 10 participants firstly

experienced the baseline condition in which no driver sup-
port functions were available. Five participants then made a
drive under the warning type support condition, followed by
a drive under the action type support condition. For the other
five participants, the order of experiencing the two driver
support conditions was reversed.
Results. (a) Either type of support system was effective in
reducing the number of collisions with Vehicle F. Among
20 possibly hazardous occasions (viz., two occasions for
each of 10 participants), 13 collisions occurred under the
no-aid baseline condition, one collision under the warning
type support condition, and three collisions under the action
type support condition; see Table 2. The McNemar tests
with STATISTICA showed highly significant differences in
the number of collisions between the baseline condition and
the warning type support condition (Z = 3.18, p = 0.002), as
well as between the baseline condition and the action type
support condition (Z = 2.85, p = 0.004). No significant dif-
ference was found between the warning type and the action
type support conditions.

(b) Participants gave their subjective ratings on a 10-
point scale regarding the perceived efficacy of the support
system in accident avoidance (1 = not effective at all, 10
= completely effective); see Fig.2. A Wilcoxon’s signed-

Institute of Electronics, Infornmation, and Conmunication Engi neers

IEICE TRANS. FUNDAMENTALS, VOL.E90-A, NO.11 NOVEMBER 2007

Table2  Number of collisions with Vehicle F under Scenario 1.

baseline warning action

(no-aid)  type type

Collision 13 1 3
No Collision 7 19 17
5
M warmning type
4k D action type

number of participants who gave score

1 2 3 4 5 6 7 8 9 10
subjective ratings

Fig.2  Subjective ratings on perceived efficacy of the support system
under Scenario 1.

M warning type
4 | [Daction type

number of participants who gave score

1 2 3 4 5 6 7 8 9 10
subjective ratings

Fig.3  Subjective ratings on acceptance of the support system under
Scenario 1.

rank test with STATISTICA shows no significant difference
between the warning type and the action type support con-
ditions.

(c) Participants were also requested to state their sys-
tem acceptance on a 10-point scale (1 = not acceptable at
all, 10 = completely acceptable); see Fig.3. A Wilcoxon’s
signed-rank test shows that participants accept the warning
type more than the action type (Z = 2.37, p = 0.018).

3.2 Results under Scenario 2
Scenario 2. For each participant, the “Lane Closed” indi-

cator appears four times for the passing lane. In two of the
four occasions, a faster vehicle (Vehicle F) in the passing

NI | -El ectronic Library Service



INAGAKIT et al.: SUPPORT BY WARNING OR BY ACTION

Table 3  Number of collisions with Vehicle F under Scenario 2.

baseline warning  action
(no-aid)  type type
Collision 7 2 0

No Collision 13 18 20

M warning b;/pe
S5 r .
[ action type

number of participant who gave score
‘W
T
]

lI
.’_1. L
6 7 8 9

subjective rating

10

Fig.4  Subjective ratings on perceived efficacy of the support system
under Scenario 2.

lane makes a lane change in response to the indicator and
cuts in between the host vehicle and its lead vehicle (Vehi-
cle L) in the cruising lane. Vehicle F makes a rapid decel-
eration to avoid a collision with the slower Vehicle L. The
host vehicle’s driver in this case has to decelerate to avoid a
collision with Vehicle F.

The warning type support system sets off an auditory
proximity warning when Vehicle F made a rapid decelera-
tion.

The action type support system, on the other hand, ap-
plies an automatic panic brake when it detected a rapid de-
celeration of Vehicle F.

Each of 10 participants made a drive under Scenario

2. They experienced firstly the baseline condition, and then
two types of support functions. The order of presenting the
warning type support condition and the action type support
condition was counterbalanced.
Results. (a) Among 20 possibly hazardous occasions,
seven collisions occurred under the baseline condition, two
collisions under the warning type support, and no collision
occurred under the action type support; see Table 3. McNe-
mar test found significant difference only between the base-
line condition and the action type support (Z = 2.27, p =
0.023).

(b) No significant difference was found on the subjec-
tive ratings of perceived efficacy in collision avoidance be-
tween the warning type and the action type support condi-
tions; see Fig. 4.

~ (c) No significant difference was found, either, on the
subjective ratings of system acceptance between the warn-

ing type and the action type; see Fig. 5.
(d) An ANOVA on the maximum brake pressure shows
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M warning type
[ action type

number of participant who gave score

1 2 3 4 5 6 7 8 9 10
subjective rating

Fig.5  Subjective ratings of acceptance of the support system under
Scenario 2.

Table4 Maximum brake pressure under Scenario 2.

Maximum brake pressure [(Pa)

baseline warning action
(no-aid) type type
M SD M SD M SD

64.69 2623 5440 2651 @ 6.89 9.52

M:mean  SD: standard deviation

a highly significant main effect of LOA (F(2,16) = 29.019,
p < 0.00001); see Table 4. No significant difference was
found between the baseline and the warning type conditions,
Tukey’s HSD test revealed that the brake stroke was sig-
nificantly smaller under the action type compared with any
other condition (p < 0.01).

4. Discussions & Conclusion

The action type support system was not well accepted by the
participants under Scenario 1, although it contributed appre-
ciably to avoid collisions. The most prominent reason for it
seemed to be conflict of intentions between the driver and
the driver support system. When the “Lane Closed” indi-
cation was given, the driver usually decided to make a lane
change. At that time, it was hard for the driver of the host
vehicle to notice the approach of Vehicle F from behind, be-
cause Vehicle F was in the blind spot of the host vehicle.
Changing a lane was thus a “natural and reasonable deci-
sion” for the host vehicle’s driver. On the other hand, upon
detecting the approach of Vehicle F, the driver support sys-
tem determined that the host vehicle must stay in the cruis-
ing lane to avoid a possible collision against Vehicle F. That
means that the driver and the driver support system formed
different intentions, just because what the driver saw was
quite different from what the support system saw. In the ex-
periment reported in this paper, the driver support system
cancelled out the driver’s steering input without giving the
driver any prior notice, which caused automation surprises.
Most drivers did not understand what happened, when they
saw their cars behaving “strangely.”
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There would be two ways to resolve the automation
surprise under Scenario 1. The first is to implement the en-
velope protection as a soft protection that makes the steering
slightly heavier, instead of a hard protection that makes the
steering extremely heavy or cancels out the driver’s steering
input completely. The envelope protection implemented in
this paper was a hard protection.

The second is to set the LOA of envelope protection
at 6.5; viz., the driver support system executes the action
type support automatically, upon telling the driver what it
is going to do. LOA 6.5 is more beneficial than any LOA
at level 6 or lower, in avoiding time-delay before a safety
critical protective action is executed, and is more promising
than any LOA at level 7 or higher, in reducing automation
surprises [26].

Participants appreciated and accepted the action type
support under Scenario 2, in which they were not given the
final authority over the automation. Moreover, result (d) un-
der Scenario 2 shows that the driver could avoid a collision
with less workload when the action type support was pro-
vided with, compared to the case when the driver support
was of the warning type.

Combining the results under Scenario 1 with those un-
der Scenario 2, it is argued that LOA must be situation and
context adaptive [22]. In other words, in the case of an au-
tomobile, it is not sensible to assume that the driver must
be maintained as the final authority at all times and on all
occasion. Today’s smart machine can sense, analyze situ-
ations, and decide what must be done. The results in this
paper imply that such a smart machine may be given right
to implement control actions so that it can help humans in
a positive and proactive manner. Human-centered automa-
tion is an approach to realize a work environment in which
humans and machines collaborate cooperatively, in which
“humans” can vary considerably depending on the human-
machine system under consideration. It is needed to seek
for a human-centered automation for automobile, instead of
just importing a human-centered automation in aviation.
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