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Abstract

In this article, we propose a new estimation methodology to deal with PCA for high-

dimension, low-sample-size (HDLSS) data. We first show that HDLSS datasets have dif-

ferent geometric representations depending on whether a ρ-mixing-type dependency appears

in variables or not. When the ρ-mixing-type dependency appears in variables, the HDLSS

data converge to an n-dimensional surface of unit sphere with increasing dimension. We

pay special attention to this phenomenon. We propose a method called the noise-reduction

methodology to estimate eigenvalues of a HDLSS dataset. We show that the eigenvalue esti-

mator holds consistency properties along with its limiting distribution in HDLSS context. We

consider consistency properties of PC directions. We apply the noise-reduction methodology

to estimating PC scores. We also give an application in the discriminant analysis for HDLSS

datasets by using the inverse covariance matrix estimator induced by the noise-reduction

methodology.

Key words: Consistency; Discriminant analysis; Eigenvalue distribution; Geometric

representation; HDLSS; Inverse matrix; Noise reduction; Principal component analysis.

1. Introduction

The high-dimension, low-sample-size (HDLSS) data situation occurs in many areas of

modern science such as genetic microarrays, medical imaging, text recognition, finance,
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chemometrics, and so on. The asymptotic studies of this type of data are becoming in-

creasingly relevant. The asymptotic behavior of eigenvalues of the sample covariance matrix

in the limit as d→ ∞ was studied by Johnstone [6], Baik et al. [2] and Paul [10] under Gaus-

sian assumptions, and Baik and Silverstein [3] under non-Gaussian but i.i.d. assumptions

when the dimension d and the sample size n increase at the same rate, i.e. n/d → c > 0.

In recent years, substantial work has been done on the HDLSS asymptotic theory, where

only d → ∞ while n is fixed, by Hall et al. [5], Ahn et al. [1], Jung and Marron [7], and

Yata and Aoshima [14], [15] and [16]. Hall et al. [5] and Ahn et al. [1] explored condi-

tions to give a geometric representation of HDLSS data. Jung and Marron [7] investigated

consistency properties of both eigenvalues and eigenvectors of the sample covariance matrix

in the HDLSS data situations. The HDLSS asymptotic theory had been created under the

assumption that either the population distribution is normal or the random variables in the

sphered data matrix have the ρ-mixing dependency (see Bradley [4]). However, Yata and

Aoshima [14], [15] and [16] developed the HDLSS asymptotic theory without assuming either

the normality or the ρ-mixing condition. Yata and Aoshima [14] gave consistency proper-

ties of both eigenvalues and eigenvectors of the sample covariance matrix together with PC

scores. Yata and Aoshima [15] proposed a method for dimensionality estimation of HDLSS

data, and Yata and Aoshima [16] generalized the method to create a new PCA called the

cross-data-matrix methodology.

In this paper, suppose we have a d × n data matrix X(d) = [x1(d), ...,xn(d)] with d > n,

where xj(d) = (x1j(d), ..., xdj(d))
T , j = 1, ..., n, are independent and identically distributed

(i.i.d.) as a d-dimensional distribution with mean zero and nonnegative definite covariance

matrix Σd. The eigen-decomposition of Σd is Σd = HdΛdH
T
d , where Λd is a diagonal

matrix of eigenvalues λ1(d) ≥ · · · ≥ λd(d)(> 0) and Hd = [h1(d), ...,hd(d)] is a matrix of

corresponding eigenvectors. Then, Z(d) = Λ
−1/2
d HT

d X(d) is a d×n sphered data matrix from

a distribution with the identity covariance matrix. Here, we write Z(d) = [z1(d), ..., zd(d)]
T

and zj(d) = (zj1(d), ..., zjn(d))
T , j = 1, ..., d. Hereafter, the subscript d will be omitted for the

sake of simplicity when it does not cause any confusion. We assume that the fourth moments
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of each variable in Z are uniformly bounded. We assume that ||zj|| ̸= 0 for j = 1, ..., d,

where || · || denotes the Euclidean norm. We consider a general setting as follows:

λi = aid
αi (i = 1, ...,m) and λj = cj (j = m+ 1, ..., d). (1)

Here, ai(> 0), cj(> 0) and αi(α1 ≥ · · · ≥ αm > 0) are unknown constants preserving the

order that λ1 ≥ · · · ≥ λd, and m is an unknown non-negative integer. We assume n > m.

In Section 2, we show that HDLSS datasets have different geometric representations

depending on whether a ρ-mixing-type dependency appears in variables or not. When the ρ-

mixing-type dependency appears in variables, the HDLSS data converge to an n-dimensional

surface of unit sphere with increasing dimension. We pay special attention to this phe-

nomenon. After Section 3, we assume that zjk, j = 1, ..., d (k = 1, ..., n) are independent.

Note that the assumption includes the case that X is Gaussian. In Section 3, we propose a

method called the noise-reduction methodology to estimate eigenvalues of a HDLSS dataset.

We show that the eigenvalue estimator holds consistency properties along with its limiting

distribution in HDLSS context. In Section 4, we consider consistency properties of PC di-

rections. In Section 5, we apply the noise-reduction methodology to estimating PC scores.

In Section 6, we show performances of the noise-reduction methodology by conducting simu-

lation experiments. In Section 7, we provide an inverse covariance matrix estimator induced

by the noise-reduction methodology. Finally, in Section 8, we give an application in the

discriminant analysis for HDLSS datasets by using the inverse covariance matrix estimator.

2. Geometric representations

In this section, we consider several geometric representations. The sample covariance

matrix is S = n−1XXT . We consider the n × n dual sample covariance matrix defined

by SD = n−1XT X. Let λ̂1 ≥ · · · ≥ λ̂n ≥ 0 be the eigenvalues of SD. Let us write the

eigen-decomposition of SD as SD =
∑n

j=1 λ̂jûjû
T
j . Note that SD and S share non-zero

eigenvalues and E{(n/
∑d

i=1 λi)SD} = In. Ahn et al. [1] and Jung and Marron [7] claimed
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that when the eigenvalues of Σ are sufficiently diffused in the sense that∑d
i=1 λ

2
i

(
∑d

i=1 λi)2
→ 0 as d→ ∞, (2)

the sample eigenvalues behave as if they are from a scaled identity covariance matrix. When

X is Gaussian or the components of Z are ρ-mixing, it follows that

n∑d
i=1 λi

SD → In (3)

in probability as d→ ∞ for a fixed n under (2).

Remark 1. The concept of ρ-mixing was first developed by Kolmogorov and Rozanov

[8]. See Bradley [4] for a clear and insightful discussion. See also Jung and Marron [7].

For −∞ ≤ J ≤ K ≤ ∞, let FK
J denote that the σ-field of events generated by the random

variables (Yi, J ≤ i ≤ K). For any σ-filed A, let L2(A) denote the space of square-integrable,

A measurable (real-valued) random variables. For each r ≥ 1, define the maximal correlation

coefficient

ρ(r) = sup|corr(f, g)|, f ∈ L2(F j
−∞), g ∈ L2(F∞

j+r),

where sup is over all f , g and j is a positive integer. The sequence {Yi} is said to be ρ-

mixing if ρ(r) → 0 as r → ∞. Note that when (z1k, z2k, ...) is ρ-mixing, it holds that for

j, j′ = 1, 2, ... with |j − j′| = r,

|E
(
(z2

jk − 1)(z2
j′k − 1)

)
| ≤ ρ(r) → 0 as r → ∞.

Remark 2. Let Rn = {en ∈ Rn : ||en|| = 1}. Let wj = (n/
∑d

i=1 λi)SDûj =

(n/
∑d

i=1 λi)λ̂jûj. When X is Gaussian or the components of Z are ρ-mixing, it holds

from (3) that

wj ∈ Rn, j = 1, ..., n (4)

in probability as d→ ∞ for a fixed n under (2).

When X is non-Gaussian without ρ-mixing, Yata and Aoshima [15] claimed that

n∑d
i=1 λi

SD → Dn (5)
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in probability as d → ∞ for a fixed n under (2), where Dn is a diagonal matrix with any

diagonal element having Op(1).

Now, let us further consider the geometric representations given by (3) and (5). Let

zk∗ = (z2
1k −1, ..., z2

dk −1)T , k = 1, ..., n. We denote the covariance matrix of zk∗ by Φ. Note

that when X is Gaussian (or zjk, j = 1, ..., d (k = 1, ..., n) are independent), Φ is a diagonal

matrix. Let Φ = (ϕij) and r = |i− j|. Note that when the components of Z are ρ-mixing,

it holds that ϕij → 0 as r → ∞. When X is non-Gaussian without ρ-mixing, we may

claim that ϕij ̸= 0 for i ̸= j. However, it should be noted that the geometric representation

given by (3) is still claimed even in a case when X is non-Gaussian without ρ-mixing. Let

us write Dk = (
∑d

j=1 λj)
−1
∑d

j=1 λjz
2
jk as a diagonal element of (n/

∑d
j=1 λj)SD. Note that

Dk = ||xk||2/tr(Σ) and E(Dk) = 1. Let V (x) denote the variance of a random variable x.

We have for the variance of each Dk that

V (Dk) =
E
(
(
∑d

j=1 λj(z
2
jk − 1))2

)
(
∑d

j=1 λj)2
=

∑
i,j λiλjϕij

(
∑d

j=1 λj)2
.

Hence, we consider a regular condition of ρ-mixing-type dependency given by∑
i,j λiλjϕij

(
∑d

j=1 λj)2
→ 0 as d→ ∞. (6)

Note that it holds (6) under (2) when X is Gaussian or the components of Z are ρ-mixing.

Then, we obtain the following theorem.

Theorem 1. When the components of Z satisfy the condition given by (6), we have (3) as

d→ ∞ for a fixed n. Otherwise, we have (5) as d→ ∞ for a fixed n under (2).

Remark 3. We consider the case that zjk, j = 1, ..., d (k = 1, ..., n) are distributed as

continuous distributions. Let f(Dk) be the p.d.f. of Dk. Assume that Z does not satisfy (6).

Assume further that f(Dk) < ∞ w.p.1 as d → ∞. Let Rn∗ = {e(1) = (1, 0, ..., 0)T , e(2) =

(0, 1, ..., 0)T , ..., e(n) = (0, 0, ..., 1)T}. Then, we have that

ûj ∈ Rn∗, j = 1, ..., n. (7)
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in probability as d→ ∞ for a fixed n under (2).

Let us observe geometric representations induced by (3) with (4) and (5) with (7). Now,

we consider an easy example such as λ1 = · · · = λd = 1 and n = 2. Note that it is

satisfying (2). Figs. 1(a), 1(b), 1(c) and 1(d) give scatter plots of 20 independent pairs

of ±wj (j = 1, 2) generated from the normal distribution, Nd(0, Id), with mean zero and

covariance matrix Id in d (= 2, 20, 200, and 2000)-dimensional Euclidian space, respectively.

(a) d = 2 (b) d = 20

(c) d = 200 (d) d = 2000

Fig. 1. Gaussian toy example for n = 2, illustrating the geometric representation of w1 (plotted

as ⃝) and w2 (plotted as △), and the convergence to an n-dimensional surface of unit sphere with

increasing dimension: (a) d = 2, (b) d = 20, (c) d = 200, and (d) d = 2000.
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Fig. 1 shows the geometric representation induced by (3) with (4). When d = 2, the plots

of w1 appeared quite random and the plots of w2 appeared around 0. However, when

d = 200, the approximation in (3) with (4) became quite good. It reflected that the plots

of wi (i = 1, 2) appeared around the surface of an n-dimensional unit sphere. As expected,

when d = 2000, it showed an even more rigid geometric representation.

Figs. 2(a), 2(b), 2(c) and 2(d) give scatter plots of 20 independent pairs of ±wj (j = 1, 2)

generated from the d-variate t-distribution, td(0, Id, ν) with mean zero, covariance matrix

Id and degree of freedom (d.f.) ν = 5 in d (= 2, 20, 200, and 2000)-dimensional Euclidian

space.

(a) d = 2 (b) d = 20

(c) d = 200 (d) d = 2000

Fig. 2. Non-Gaussian toy example for n = 2, illustrating the geometric representation of w1
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(plotted as ⃝) and w2 (plotted as △), and the concentration on axes with increasing dimension:

(a) d = 2, (b) d = 20, (c) d = 200, and (d) d = 2000.

Fig. 2 shows the geometric representation induced by (5) with (7). When d = 2, the plots

of wi (i = 1, 2) appeared quite random. When d = 200, the approximation in (5) with (7)

became moderate. When d = 2000, the approximation became quite good. It reflected that

the plots of wi (i = 1, 2) appeared in close to axes.

Here, we consider the case that d → ∞ and n → ∞. Let en be an arbitrary element of

Rn that is defined in Remark 2. Then, we have the following theorem.

Theorem 2. We assume that

n

∑
i,j λiλjϕij

(
∑d

j=1 λj)2
→ 0 and n2

∑p
i=1 λ

2
i

(
∑d

j=1 λj)2
→ 0 (8)

when d→ ∞ and n→ ∞. Then, it holds that

n∑d
i=1 λi

eT
nSDen = 1 + op(1). (9)

From Theorem 2, λ̂j’s are mutually equivalent under (8) in the sense that n(
∑d

i=1 λi)
−1λ̂j =

1+op(1) for all j = 1, ..., n. Note that n/d→ 0 under (8). Theorem 2 claims that a geometric

representation appeared in Fig. 1 still remains even when n→ ∞ in the HDLSS context.

In this article, we pay special attention to the geometric representation given by (3) or (9),

that is appeared in Fig. 1. After Section 3, we assume that zjk, j = 1, ..., d (k = 1, ..., n) are

independent. This assumption is milder than that the population distribution is Gaussian.

We propose a new estimation method called the noise-reduction methodology to deal with

PCA in HDLSS data situations. When X may have the geometric representation given

by (5), Yata and Aoshima [16] proposed a different method called the cross-data-matrix

methodology. We compare those two methodologies by simulations in Section 6.

3. Noise-reduction methodology

Hereafter we assume that zjk, j = 1, ..., d (k = 1, ..., n) are independent. We denote n

8



by n(d) only when n = dγ, where γ is a positive constant. Yata and Aoshima [14] gave

consistency properties of the sample eigenvalues. Their result is summarized as follows: It

holds for j (= 1, ...,m) that

λ̂j

λj

= 1 + op(1) (10)

under the conditions:

(YA-i) d→ ∞ and n→ ∞ for j such that αj > 1;

(YA-ii) d→ ∞ and d1−αj/n(d) → 0 for j such that αj ∈ (0, 1].

The condition described by both d → ∞ and n → ∞ is a mild condition for n in the sense

that one can choose n free from d. The above result given by Yata and Aoshima [14] draws

our attention to the limitations of the capabilities of naive PCA in HDLSS data situations.

Let us see a case, say, that d = 10000, λ1 = d1/2 and λ2 = · · · = λd = 1. Then, we observe

from (YA-ii) that one requires the sample of size n >> d1−α1 = d1/2 = 100. It is somewhat

inconvenient for the experimenter to handle HDLSS data situations.

We have that SD = n−1
∑d

j=1 λjzjz
T
j . Let us write that U 1 = n−1

∑m
j=1 λjzjz

T
j and

U 2 = n−1
∑d

j=m+1 λjzjz
T
j so that SD = U 1 + U 2. Here, we consider U 1 as intrinsic part

and U 2 as noise part. Since it holds that∑d
j=m+1 λ

2
j

(
∑d

j=m+1 λj)2
→ 0 as d→ ∞, (11)

the noise part holds the geometric representation similar to (3) or (9). Let en = (e1, ..., en)T

be an arbitrary element of Rn that is defined in Remark 2. Then, from (3) and Theorem 2,

we have that

n∑d
j=m+1 λj

eT
nU 2en = 1 + op(1) (12)

as d → ∞ either when n is fixed or n = n(d) satisfying n(d)
∑d

j=m+1 λ
2
j/(
∑d

j=m+1 λj)
2 → 0.

This geometric representation for the noise part influences the estimation scheme proposed

in this article.
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We consider an easy example such as m = 2 and λ1 = dα1 , λ2 = dα2 , λj = cj, j = 3, ..., d,

where α1 > α2 > 1/2 and cj’s are positive constants. Note that it is satisfying (11). Then,

we write that λ−1
1 SD = n−1z1z

T
1 + (nλ1)

−1λ2z2z
T
2 + (nλ1)

−1
∑d

j=3 λjzjz
T
j . Let us consider

the behavior of eT
n (U 2 − (

∑d
j=m+1 λj/n)In)en in (12). By using Chebyshev’s inequality for

any τ > 0 and the uniform bound M (> 0) for the fourth moments condition, one has for

all diagonal elements of λ−1
1 (U 2 − (

∑d
j=m+1 λj/n)In) that

n∑
i=1

P
(∣∣∣(nλ1)

−1

d∑
j=m+1

λj(z
2
ji − 1)

∣∣∣ > τ
)
≤Mτ−2n−1λ2

m+1d
1−2α1 = o(1) (13)

as d→ ∞ either when n→ ∞ or n is fixed. Since we have that (nλ1)
−1
∑d

j=m+1 λj(z
2
ji−1) =

op(1) for all i = 1, ..., n, it holds that all diagonal elements of λ−1
1 (U 2 − (

∑d
j=m+1 λj/n)In)

converge to 0 in probability. By using Markov’s inequality for any τ > 0, one has for all

off-diagonal elements of λ−1
1 (U 2 − (

∑d
j=m+1 λj/n)In) that

P
(∑

i̸=i′

(
(nλ1)

−1

d∑
j=m+1

λjzjizji′

)2

> τ
)
≤ τ−1λ2

m+1d
1−2α1 = o(1).

Thus we have that
∑

i̸=i′((nλ1)
−1
∑d

j=m+1 λjzjizji′)
2 = op(1) so that

∣∣∣∑
i̸=i′

eiei′

d∑
j=m+1

(nλ1)
−1λjzjizji′

∣∣∣ ≤ (∑
i ̸=i′

(
(nλ1)

−1

d∑
j=m+1

λjzjizji′

)2)1/2

= op(1). (14)

Then, we obtain that λ−1
1 eT

n (U 2 − (
∑d

j=m+1 λj/n)In)en = op(1) as d → ∞ either when

n→ ∞ or n is fixed. Note that λ−1
1 λ2 → 0 as d→ ∞ and ||n−1/2z1|| = 1 + op(1) as n→ ∞.

Hence, by noting that max
en

(eT
nSDen) = ûT

1 SDû1, it holds that

λ−1
1 ûT

1

(
SD − n−1

d∑
j=m+1

λjIn

)
û1 =

ûT
1 U 1û1

λ1

+ op(1) = (ûT
1 z1/n

1/2)2 + op(1) = 1 + op(1).

Hence, we claim as d→ ∞ and n→ ∞ that

λ−1
1

(
ûT

1 SDû1 − n−1

d∑
j=m+1

λj

)
=
λ̂1 − n−1

∑d
j=m+1 λj

λ1

= 1 + op(1).
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From the proof of Corollary 4 and Theorem 6 in Appendix, we can obtain that n−1/2zT
1 û2 =

op(d
α2−α1) as d → ∞ and n → ∞. By noting that ||n−1/2z2|| = 1 + op(1) as n → ∞, we

have that

λ−1
2

(
ûT

2 SDû2 − n−1

d∑
j=m+1

λj

)
= ûT

2

λ1z1z
T
1

λ2n
û2 + ûT

2

z2z
T
2

n
û2 + op(1) = 1 + op(1).

Now, we consider estimating the noise part from the fact that as d→ ∞ and n→ ∞

λ−1
j

(
tr(SD) −

∑j
i=1 λ̂i

n− j
− n−1

d∑
i=m+1

λi

)
= op(1)

for j = 1, 2. (See Lemma 7 in Appendix for the details.) Then, we have as d → ∞ and

n→ ∞ that

λ−1
j

(
λ̂j −

tr(SD) −
∑j

i=1 λ̂i

n− j

)
= 1 + op(1)

for j = 1, 2. Hence, we have a consistent estimator for λj = dαj with αj > 1/2 that is a

milder condition than (YA-ii).

In general, we propose the new estimation methodology as follows:

[Noise-reduction methodology]

λ̃j = λ̂j −
tr(SD) −

∑j
i=1 λ̂i

n− j
(j = 1, ..., n− 1). (15)

Note that λ̃j ≥ 0 (j = 1, ..., n− 1) w.p.1 for n ≤ d. Then, we claim the following theorem.

Theorem 3. For j = 1, ...,m, we have that

λ̃j

λj

= 1 + op(1)

under the conditions:

(i) d→ ∞ and n→ ∞ for j such that αj > 1/2;

(ii) d→ ∞ and d1−2αj/n(d) → 0 for j such that αj ∈ (0, 1/2].

Theorem 4. Let V (z2
jk) = Mj (<∞) for j = 1, ...,m (k = 1, ..., n). Assume that λj (j ≤ m)

has multiplicity one. Under the conditions:

11



(i) d→ ∞ and n→ ∞ for j such that αj > 1/2;

(ii) d→ ∞ and d2−4αj/n(d) → 0 for j such that αj ∈ (0, 1/2],

we have that √
n

Mj

(
λ̃j

λj

− 1

)
⇒ N(0, 1),

where “⇒” denotes the convergence in distribution and N(0, 1) denotes a random variable

distributed as the standard normal distribution.

Remark 4. Yata and Aoshima [14] gave the asymptotic normality of λ̂j’s. Under the

assumption that λm+1 = · · · = λd = 1, Lee et al. [9] considered an estimate of λj such as

λ̇j =
λ̂j + 1 − η +

√
(λ̂j + 1 − η)2 − 4λ̂j

2
,

where d/n → η ≥ 0 and n → ∞. If 1/λ̂j = op(1), we claim that λ̇j = (λ̂j − η)(1 + op(1)).

By noting that n−1
∑d

j=m+1 λj → η when λm+1 = · · · = λd = 1, it holds that λ̇j = (λ̂j −

n−1
∑d

j=m+1 λj)(1 + op(1)). Hence, we may consider λ̇j as a noise reduction. However, we

emphasize that the noise-reduction methodology allows users to have a consistent estimator,

λ̃j, when λm+1 ≥ · · · ≥ λd (> 0) and λj = cj (j = m+ 1, ..., d) are unknown constants.

Remark 5. When X is Gaussian, α1 > 1/2 and either when α1 > α2 or m = 1, we have

as d→ ∞ that
λ̃1

λ1

⇒ χ2
n

n

for fixed n, where χ2
n denotes a random variable distributed as the χ2 distribution with d.f.

n. Jung and Marron [7] claimed a similar result for λ̂j with αj > 1.

Remark 6. When zjk, j = 1, ..., d (k = 1, ..., n) are not independent but the components of

Z are ρ-mixing, we can claim the assertions similar to Theorems 3-4 under the conditions:

(i) d→ ∞ and n→ ∞ for j such that αj > 1;

(ii) d→ ∞, n→ ∞ and d2−2αj/n(d) <∞ for j such that αj ∈ (0, 1].
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The conditions (i)-(ii) are milder than the ones given by Theorem 3.1 in Yata and Aoshima

[14] for a non-ρ-mixing case.

Corollary 1. When the population mean may not be zero, let us write that SoD =

(n − 1)−1(X − X)T (X − X), where X = [x̄n, ..., x̄n] is having d-vector x̄n =
∑n

s=1 xs/n.

We redefine λ̃j (j = 1, ...,m) in (15) by replacing SD and n with SoD and n− 1. Then, the

assertions in Theorems 3-4 are still justified under the convergence conditions.

4. Consistency properties of PC directions.

In this section, we consider PC direction vectors. Jung and Marron [7], and Yata and

Aoshima [14] studied consistency properties of PC direction vectors in the context of naive

PCA. Let Ĥ = [ĥ1, · · · , ĥd] such that Ĥ
T
SĤ = Λ̂ and Λ̂ = diag(λ̂1, · · · , λ̂d). Note that ĥj

can be calculated by ĥj = (nλ̂j)
−1/2Xûj, where ûj is an eigenvector of SD. Then, Yata and

Aoshima [14] gave consistency properties of the sample eigenvectors with their population

counterparts: Assume that λj (j ≤ m) has multiplicity one as λj ̸= λj′ for all j′(̸= j). Then,

the first m sample eigenvectors are consistent in the sense that

Angle(ĥj,hj)
p−→ 0 (j = 1, ...,m)

under (YA-i)-(YA-ii). The following result can be obtained as a corollary of Theorem 4.1 in

Yata and Aoshima [14].

Corollary 2. The first m sample eigenvectors are inconsistent in the sense that

Angle(ĥj,hj)
p−→ π/2 (j = 1, ...,m) (16)

under the condition that d→ ∞ and d/(n(d)λj) → ∞.

Remark 7. Under the condition described above, we have that ĥ
T

j hj = op(1) (j = 1, ...,m).

Jung and Marron [7] gave (16) as d→ ∞ for a fixed n.

Remark 8. When the population mean may not be zero, we still have Corollary 2 by using

SoD defined in Corollary 1.
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5. PC scores with noise-reduction methodology

In this section, we apply the noise-reduction methodology to principal component scores

(Pcss). The j-th Pcs of xk is given by hT
j xk = zjk

√
λj (= sjk, say). However, since hj

is unknown, one may use ĥj = (nλ̂j)
−1/2Xûj as a sample eigenvector. The j-th Pcs of

xk is estimated by ĥ
T

j xk = ûjk

√
nλ̂j (= ŝjk, say), where ûT

j = (ûj1, ..., ûjn). Let us define

a sample mean square error of the j-th Pcs by MSE(ŝj) = n−1
∑n

k=1(ŝjk − sjk)
2. Then,

Yata and Aoshima [14] evaluated the sample Pcs as follows: Assume that λj (j ≤ m) has

multiplicity one. Then, it holds that

MSE(ŝj)

λj

= op(1) (17)

under (YA-i)-(YA-ii).

Now, we modify ŝjk by using λ̃j defined by (15). Let us write that ûjk

√
nλ̃j (= s̃jk, say).

Then, we obtain the following result.

Theorem 5. Assume that λj (j ≤ m) has multiplicity one. Then, we have that

MSE(s̃j)

λj

= op(1) (18)

under the conditions (i)-(ii) of Theorem 3.

For ûj, we can claim the consistency for a Pcs vector n−1/2zj.

Corollary 3. Assume that λj (j ≤ m) has multiplicity one. Then, the j-th sample eigen-

vector is consistent in the sense that

Angle(ûj, n
−1/2zj)

p−→ 0 (19)

under the conditions (i)-(ii) of Theorem 3.

Remark 9. Lee et al. [9] gave a result similar to (19). Under the assumption that

λm+1 = · · · = λd = 1 and the multiplicity one assumption, they claimed as d/n→ η ≥ 0 and
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n→ ∞ that

|ûT
j zj/n

1/2| =


√

1 − η
(λj−1)2

+ op(1) when λj > 1 + η,

op(1) when 1 < λj ≤ 1 + η.

Here, it holds that |ûT
j zj/n

1/2| = 1 + op(1) under η/(λj − 1)2 = O(d1−2αj/n) → 0. Then, by

noting that ||zj/n
1/2|| = 1 + op(1) as n → ∞, we have (19) under the conditions (i)-(ii) of

Theorem 3. Thus their result corresponds to Corollary 3 when λm+1 = · · · = λd = 1.

Let xnew be a new sample from the distribution and independent of X. The j-th Pcs

of xnew is given by hT
j xnew (= sj(new), say). Note that V (sj(new)/

√
λj) = 1. We consider a

consistent estimator of sj(new). Then, we have the following result.

Corollary 4. Assume that λj (j ≤ m) has multiplicity one. For ĥj, it holds that

ĥ
T

j xnew√
λj

=
sj(new)√

λj

+ op(1)

under the conditions that (i) d → ∞ and n → ∞ for j such that αj > 1, (ii) d → ∞ and

d1−αj/n(d) → 0 for j such that αj ∈ (1/3, 1], and (iii) d → ∞ and d2−4αj/n(d) → 0 for j

such that αj ∈ (0, 1/3],

Remark 10. Lee et al. [9] also considered a predict Pcs for sj(new) when λm+1 = · · · =

λd = 1.

Now, we consider applying the noise-reduction methodology to the PC direction vectors.

Let us define h̃j = (nλ̃j)
−1/2Xûj. Then, we consider h̃j as an estimate of the PC direction

vector, hj. By using h̃j, j = 1, ...,m, we have the following the theorem.

Theorem 6. Assume that λj (j ≤ m) has multiplicity one. For h̃j, it holds that

h̃
T

j xnew√
λj

=
sj(new)√

λj

+ op(1)

under the conditions (i)-(ii) of Theorem 4.
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Remark 11. Assume that λj (j ≤ m) has multiplicity one. Then, the j-th sample

eigenvector is consistent in the sense that

h̃
T

j hj = 1 +Op(n
−1) +Op(d

1−2αjn−1)

under the conditions (i)-(ii) of Theorem 3. For the norm, it holds that ||h̃j|| = 1 + op(1)

under (YA-i)-(YA-ii).

Remark 12. When the population mean may not be zero, we still have the above results

by using SoD defined in Corollary 1.

6. Performances of noise-reduction methodology

When we observe naive PCA, the sample size n should be determined depending on d

for αi ∈ (0, 1] in (YA-ii). On the other hand, the noise-reduction methodology allows the

experimenter to choose n free from d for the case that αi > 1/2 as seen in the theorems

given in Sections 3 and 5. The noise-reduction methodology is promising to give feasible

estimation for HDLSS data with extremely small order of n compared to d. In this section,

we examine its performance with the help of Monte Carlo simulations.

Independent pseudo-random normal observations were generated from Nd(0,Σ) with

d = 1600. We considered λ1 = d4/5, λ2 = d3/5, λ3 = d2/5 and λ4 = · · · = λd = 1 in (1). We

used the sample of size n ∈ [20, 120] to define the data matrix X : d×n for the calculation of

SD. The findings were obtained by averaging the outcomes from 2000 (= R, say) replications.

Under a fixed scenario, suppose that the r-th replication ends with estimates of λj, λ̂jr and

λ̃jr (r = 1, ..., R), given by using (10) and (15). Let us simply write λ̂j = R−1
∑R

r=1 λ̂jr and

λ̃j = R−1
∑R

r=1 λ̃jr. We considered two quantities, A: λ̂j/λj and B: λ̃j/λj. Fig. 3 shows the

behaviors of both A and B for the first three eigenvalues. By observing the behavior of A,

(10) seems not to give a feasible estimation within the range of n. The sample size n was

not large enough to use the eigenvalues of SD for such a high-dimensional space. On the

other hand, in view of the behavior of B, (15) gives a reasonable estimation surprisingly well

for such HDLSS datasets. The noise-reduction methodology seems to perform excellently as
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expected theoretically.

(a) For the first eigenvalue (b) For the second eigenvalue

(c) For the third eigenvalue

Fig. 3. The behaviors of A: λ̂j/λj and B: λ̃j/λj for (a) the first eigenvalue, (b) the second

eigenvalue and (c) the third eigenvalue when the samples, of size n = 20(20)120, were taken from

Nd(0,Σ) with d = 1600.

We also considered the Monte Carlo variability. Let Var(λ̂j/λj) = (R− 1)−1
∑R

r=1(λ̂jr −

λ̂j)
2/λ2

j and Var(λ̃j/λj) = (R − 1)−1
∑R

r=1(λ̃jr − λ̃j)
2/λ2

j . We considered two quantities, A:

Var(λ̂j/λj) and B: Var(λ̃j/λj), in Fig. 4 to show the behaviors of sample variances of both

A and B for the first three eigenvalues.
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(a) For the first eigenvalue (b) For the second eigenvalue

(c) For the third eigenvalue

Fig. 4. The behaviors of A: Var(λ̂j/λj) and B: Var(λ̃j/λj) for (a) the first eigenvalue, (b) the

second eigenvalue and (c) the third eigenvalue when the samples, of size n = 20(20)120, were taken

from Nd(0,Σ) with d = 1600.

By observing the behaviors of the sample variances, both the behaviors seem not to make

much difference between A and B. Note that it holds Mj = 2 (j = 1, ...,m) for Gaus-

sian X. From Theorem 3.2 given in Yata and Aoshima [14], the limiting distribution

of (n/2)1/2(λ̂j/λj − 1) is N(0, 1), so that the variance of A is approximately given by

Var(λ̂j/λj) = 2/n. On the other hand, in view of Theorem 4, the limiting distribution

of (n/2)1/2(λ̃j/λj − 1) is N(0, 1). Hence, the variance of B is approximately given by

Var(λ̃j/λj) = 2/n; that is approximately equal to the variance of A.

Next, we considered the Pcs. Independent pseudo-random normal observations were

generated from Nd(0,Σ). We considered the case that λ1 = d4/5, λ2 = d3/5 λ3 = d2/5 and

λ4 = · · · = λd = 1 in (1) as before. We fixed the sample size as n = 60. We set the dimension

as d = 800(200)1800. Under a fixed scenario, suppose that the r-th replication ends with
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MSE(ŝj)r and MSE(s̃j)r (r = 1, ..., R), given by using (17) and (18). Let us simply write

MSE(ŝj) = R−1
∑R

r=1 MSE(ŝj)r and MSE(s̃j) = R−1
∑R

r=1 MSE(s̃j)r. We considered two

quantities, A: MSE(ŝj)/λj and B: MSE(s̃j)/λj, in Fig. 5 to show the behaviors of both A

and B for the first three Pcss.

(a) For the first Pcs (b) For the second Pcs

(c) For the third Pcs

Fig. 5. The behaviors of A: MSE(ŝj)/λj and B: MSE(s̃j)/λj for (a) the first Pcs, (b) the second

Pcs and (c) the third Pcs when the samples, of size n = 60, were taken from Nd(0,Σ) with

d = 800(200)1800.

Again, the noise-reduction methodology seems to perform much better than naive PCA. We

conducted simulation studies for other settings as well and verified the superiority of the

noise-reduction methodology to naive PCA in HDLSS data situations.

Finally, we compare the noise-reduction methodology with the cross-data-matrix method-

ology. Yata and Aoshima [16] gave a Pcs estimator by using the cross-data-matrix method-

ology. Let śjk be the j-th Pcs estimator of xk given in Section 5 in Yata and Aoshima [16].

Independent pseudo-random observations were generated from the d-variate t-distribution,
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td(0,Σ, ν) with mean zero, covariance matrix Σ and d.f. ν ∈ [20, 80]. We considered

λ1 = d4/5, λ2 = d3/5, λ3 = d2/5 and λ4 = · · · = λd = 1 in (1). We set d = 1600 and n = 60.

We considered three quantities, A: MSE(ŝj)/λj, B: MSE(s̃j)/λj and C: MSE(śj)/λj, in Fig.

6 to show the behaviors of A, B and C for the first three Pcss.

(a) For the first Pcs (b) For the second Pcs

(c) For the third Pcs

Fig. 6. The behaviors of A: MSE(ŝj)/λj , B: MSE(s̃j)/λj and C: MSE(śj)/λj for (a) the first

Pcs, (b) the second Pcs and (c) the third Pcs when the samples, of size n = 60, were taken from

td(0,Σ, ν) with ν = 20(10)80.

Note that td(0,Σ, ν) ⇒ Nd(0,Σ) as ν → ∞. When ν is small, X has the geometric rep-

resentation given by (5). In the case, the cross-data-matrix methodology seems to perform

better than the noise-reduction methodology. On the other hand, when ν is large, X has the

geometric representation given by (3). In the case, the noise-reduction methodology seems

to perform best among the three estimators.
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7. Inverse covariance matrix estimator

In this section, we apply the noise-reduction methodology to estimating the inverse covari-

ance matrix of Σ. The inverse covariance matrix, Σ−1, is the key to constructing inference

procedures in many statistical problems. However, it should be noted that S−1 does not

exist in the HDLSS context. Srivastava [11] and [12] used the Moore-Penrose inverse of S

for several inference problems. Srivastava and Kubokawa [13] proposed an empirical Bayes

inverse matrix estimator of Σ for the discriminant analysis and compared the performance

with that of the Moore-Penrose inverse or the inverse matrix defined by only diagonal el-

ements of S. Then, they concluded that the discriminant rule using the empirical Bayes

inverse matrix estimator was better than the others. The empirical Bayes inverse matrix

estimator was defined by S−1
δ = (S + δId)

−1 with δ = tr(S)/n. Then, let us consider the

eigen-decomposition of S−1
δ as

S−1
δ =

n∑
j=1

(λ̂j + δ)−1ĥjĥ
T

j + δ−1

(
Id −

n∑
j=1

ĥjĥ
T

j

)
.

Let V δ = (vij(δ)) = Λ1/2HT S−1
δ HΛ1/2, where Λ1/2 = diag(λ

1/2
1 , ..., λ

1/2
d ). Note that

Λ1/2HTΣ−1HΛ1/2 = Id. Let us write κ = n−1
∑d

i=m+1 λi. Then, we obtain the follow-

ing result.

Theorem 7. Assume that n = n(d), α1 < 1 − γ/2, γ < 1 and the first m population

eigenvalues are distinct as λ1 > · · · > λm. Under the condition that (i) d → ∞ and

κ/λj = O(d1−γ−αj) <∞ for j = 1, ...,m, we have that

vjj(δ) =
2λj

λj + 2κ
+ op(1),

vjj′(δ) = op(1), j′ = j + 1, ..., d.

For j such that λj/κ→ 0 as d→ ∞, we have as d→ ∞ that

vjj(δ) = λjκ
−1 + op(λjκ

−1),

vjj′(δ) = op(λjκ
−1), j′ = j + 1, ..., d.
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Let jδ be the maximum integer j(≤ m) such that αj − 1 + γ > 0. We assume that

αj − 1+ γ ̸= 0 (j = 1, ...,m). We observe that (v11(δ), ..., vjδjδ(δ), vjδ+1 jδ+1(δ), ..., vdd(δ)) is close

to (2, ..., 2, λjδ+1κ
−1, ..., λdκ

−1). One should note that V δ is far from Id, so that HT S−1
δ H

is far from Λ−1. Let us consider a different inverse matrix estimator of Σ by using the noise-

reduction methodology. Let ω = min(tr(S)/(d1/2n1/4), δ) and λ́j = max(λ̃j, ω). Then, we

define a new inverse matrix estimator as

S−1
ω =

n−1∑
j=1

λ́−1
j h̃jh̃

T

j + ω−1

(
Id −

n−1∑
j=1

h̃jh̃
T

j

)
, (20)

where h̃j is the same one as in Theorem 6. Let V ω = (vij(ω)) = Λ1/2HT S−1
ω HΛ1/2. Then,

we obtain the following theorem.

Theorem 8. Assume that n = n(d), γ < 1, α1 < min(1/2 + γ/4, 1 − γ/2) and the first m

population eigenvalues are distinct as λ1 > · · · > λm. Let ψ = min(n3/4κ/d1/2, κ). Under

the conditions that (i) d → ∞ and ψ/λj = O(d1/2−γ/4−αj) < ∞ for γ < 2/3, (ii) d → ∞

and ψ/λj = O(d1−γ−αj) <∞ for γ ∈ [2/3, 1), we have that

vjj(ω) =
1

max(1, ψ/λj)
+ op(1),

vjj′(ω) = op(1), j′ = j + 1, ..., d.

For j such that λj/ψ → 0 as d→ ∞, we have as d→ ∞ that

vjj(ω) =
λj

ψ
+ op(λj/ψ),

vjj′(ω) = op(λj/ψ), j′ = j + 1, ..., d.

Let jω be the maximum integer j(≤ m) such that αj − 1/2 + γ/4 > 0. We assume that

αj − 1/2 + γ/4 ̸= 0 (j = 1, ...,m). We observe that (v11(ω), ..., vjωjω(ω), vjω+1 jω+1(ω), ..., vdd(ω))

is close to (1, ..., 1, λjω+1ψ
−1, ..., λdψ

−1). Note that ψ < κ w.p.1 when γ < 2/3. We can claim

that V ω is surely closer to Id than V δ under (i)-(ii) of Theorem 8.
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Remark 13. It should be noted that ĥ
T

j S−1
ω ĥj ≤ 0 w.p.1 as λ̃j/λ̂j = op(1). Let ed be a

d-dimensional unit vector. Assume further in Theorem 8 that ed is a constant vector or ed

and S−1
ω are independent. Then, we claim as d→ ∞ that eT

d S−1
ω ed ≥ 0 w.p.1.

8. Application

In this section, we apply the inverse covariance matrix estimator given by (20) to the dis-

criminant analysis. Suppose that we have two d×Ni data matrices, X i = [xi1, ...,xiNi
], i =

1, 2. We assume that x11, ...,x1N1 and x21, ...,x2N2 are independent and identically dis-

tributed as π1 : Nd(µ1,Σ) and π2 : Nd(µ2,Σ), respectively. Let us write the eigen-

decomposition of Σ as Σ =
∑d

j=1 λjhjh
T
j . We assume (1) about Σ. Let x0 be an observation

vector on an individual belonging to π1 or to π2. We estimate µ1, µ2 and Σ by

x̄i = N−1
i

Ni∑
j=1

xij i = 1, 2, and S = n−1

2∑
i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)
T ,

where n = N1 +N2 − 2. We assume d > n. We consider the discriminant rule based on the

maximum likelihood ratio under which we classify x0 into π1 if

(1 +N−1
1 )−1(x0 − x̄1)

T S−1(x0 − x̄1) < (1 +N−1
2 )−1(x0 − x̄2)

T S−1(x0 − x̄2), (21)

and into π2 otherwise.

In the HDLSS context (d > n), there does not exist the inverse matrix of S. We observe

from Theorems 7-8 that the inverse matrix estimator S−1
ω given by (20) is better than the

empirical Bayes inverse matrix estimator S−1
δ . Let us compare the performances of S−1

ω and

S−1
δ by conducting simulation studies.

Let S = (sij). Define S−1
diag by S−1

diag = diag(s−1
11 , ..., s

−1
dd ). We considered the discriminant

rule given by applying S−1
ω , S−1

δ and S−1
diag to S−1 in (21). We examined its performance with

the help of Monte Carlo simulations. We set d = 1600. We set µ1 = (1, ..., 1, 0, ..., 0)T whose

first 80 elements are 1, and µ2 = (0, ..., 0)T . We generated the datasets (xi1, ...,xiNi
), i =

1, 2, by setting a common covariance matrix as Σ = (ρ|i−j|1/7
), where ρ ∈ (0, 1). Note

that tr(Σ) = d. We considered three levels of correlation as ρ = 0.2, 0.4, 0.6. Then, the
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eigenvalues, (λ1, λ2, λ3, ...), of Σ were calculated as (44.88, 19.07, 13.55,...) when ρ = 0.2,

(198.05, 47.32, 29.77,...) when ρ = 0.4, and (491.78, 64.75, 37.80,...) when ρ = 0.6. We

used a testing sample, x0 in (21), by generating 50 times randomly from π1 or π2. The

experiment was iterated 100 times. The correct classification was estimated by the average

rate of correct classification over the 5000 iterations. Note that the standard deviation of this

simulation study is less than 0.0071. We denoted the error of misclassifying an individual

from π1 (into π2) and from π2 (into π1) by e1 and e2, respectively. We also considered the

correct discriminant rule (CDR) given by replacing (21) with

(x0 − µ1)
TΣ−1(x0 − µ1) < (x0 − µ2)

TΣ−1(x0 − µ2).

In Table 1, we reported the correct classification rate, 1 − e1, when (N1, N2) = (10, 10)

and (20, 20). In Table 2, we reported the correct classification rates, (1 − e1, 1 − e2), when

(N1, N2) = (10, 20) and (20, 40). When the correlation was low such as ρ = 0.2, we observed

that the rule given by S−1
diag is as good as the others except CDR. This result is quite natural

because Σ becomes close to a diagonal matrix as ρ → 0. As the variables were highly

correlated, the rule given by S−1
diag became worse. It should be noted that the variables in

actual HDLSS situations are highly correlated each other. When the correlation was high

such as ρ = 0.4, 0.6, we observed that the rule given by S−1
ω was best among them. It

should be noted that as the correlation between variables gets high, the first few eigenvalues

of Σ tend to become extremely large. We may observe that the noise-reduction methodology

effectively works for estimating eigenvalues in S−1
ω .

Table 1. The correct classification rate, 1 − e1, when (N1, N2) = (10, 10) and (20, 20).

(N1, N2) = (10, 10)

ρ S−1
ω S−1

δ S−1
diag CDR

0.2 0.864 0.849 0.841 0.977

0.4 0.806 0.770 0.716 0.953

0.6 0.787 0.717 0.623 0.952

(N1, N2) = (20, 20)

ρ S−1
ω S−1

δ S−1
diag CDR

0.2 0.905 0.897 0.882 0.975

0.4 0.849 0.817 0.740 0.949

0.6 0.839 0.811 0.666 0.949

Table 2. The correct classification rates, (1 − e1, 1 − e2),
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when (N1, N2) = (10, 20) and (20, 40).

(N1, N2) = (10, 20)

ρ S−1
ω S−1

δ S−1
diag CDR

0.2 (0.893, 0.872) (0.881, 0.860) (0.865, 0.848) (0.977, 0.973)

0.4 (0.815, 0.830) (0.783, 0.781) (0.722, 0.707) (0.950, 0.948)

0.6 (0.817, 0.814) (0.769, 0.759) (0.642, 0.636) (0.945, 0.957)

(N1, N2) = (20, 40)

ρ S−1
ω S−1

δ S−1
diag CDR

0.2 (0.924, 0.920) (0.922, 0.913) (0.904, 0.901) (0.973, 0.974)

0.4 (0.861, 0.865) (0.837, 0.841) (0.761, 0.752) (0.949, 0.950)

0.6 (0.855, 0.856) (0.831, 0.835) (0.655, 0.663) (0.954, 0.951)

A. Appendix

Throughout this section, let e1n and e2n be arbitrary elements of Rn. Let uij =

n−1
∑d

s=m+1 λszsizsj, U 21 = U 2 − diag(u11, ..., unn) and U 22 = U 2 − κIn, where κ =

n−1
∑d

i=m+1 λi. Suppose that α1 = · · · = αs1 > αs1+1 = · · · = αs2 > · · · > αsl−1+1 =

· · · = αsl
(= αm), where l ≤ m. For every i (= 1, ..., l), let U 1i = n−1

∑si

j=1 λjzjz
T
j . Let

λ̃i1 ≥ · · · ≥ λ̃isi
be eigenvalues of U 1i. Let ũij(∈ Rn) be an eigenvector corresponding to

λ̃ij (j = 1, ..., si). Then, we have the eigen-decomposition as U 1i =
∑si

j=1 λ̃ijũijũ
T
ij. Let

z̃j = (||n−1/2zj||)−1n−1/2zj (j = 1, ..., d).

Proof of Theorem 1. By Chebyshev’s inequality, for any τ > 0, one has for each off-

diagonal element (i′ ̸= j′) of (n/
∑d

i=1 λi)SD that P ((
∑d

i=1 λi)
−1|
∑d

i=1 λizii′zij′| > τ) ≤

τ−2(
∑d

i=1 λi)
−2
∑d

i=1 λ
2
i → 0 as d → ∞ under (2). Thus each off-diagonal element of

(n/
∑d

i=1 λi)SD converges to 0 in probability as d→ ∞ under (2). Thus we have that

n∑d
i=1 λi

SD → diag (D1, ..., Dn)

in probability. Here, we have that P (|Dk − 1| ≤ τ) = 1 − P (|Dk − 1| > τ) ≥ 1 − τ−2V (Dk).

When the components of Z satisfy (6), it holds that V (Dk) → 0. Thus we have that

25



Dk, k = 1, ..., n, converge to 1 in probability. When the components of Z do not satisfy (6),

it holds that Dk has Op(1) for k = 1, ..., n. It concludes the result. 2

Proof of Theorem 2. By Chebyshev’s inequality and Markov’s inequality, for any τ > 0, we

have that P (
∑

i′,j′(
∑d

i=1 λi)
−2(
∑d

i=1 λizii′zij′)
2 > τ) ≤ n2τ−1(

∑d
i=1 λi)

−2
∑d

i=1 λ
2
i → 0 and∑n

k=1 P (|Dk − 1| > τ) ≤ nτ−2V (Dk) → 0 under (8). Thus, in a way to similar to (13)-(14),

it concludes the result. 2

The following lemma was obtained by Yata and Aoshima [14].

Lemma 1. It holds for j = 1, ...,m, that ||d−αjeT
1nU 21||2 = op(1) under the conditions:

(i) d→ ∞ either when n→ ∞ or n is fixed for j such that αj > 1/2;

(ii) d→ ∞ and there exists a positive constant εj satisfying d1−2αj/n < d−εj .

Lemma 2. It holds that d−αjeT
1nU 22e2n = op(1) (j = 1, ...,m) under (i)-(ii) of Theorem 3.

Proof. By using Chebyshev’s inequality, for any τ > 0 and the uniform bound M(> 0) for

the fourth moments condition, one has under (i)-(ii) of Theorem 3 that

n∑
k=1

P
(
d−αj |ukk − κ| > τ

)
=

n∑
k=1

P
(
(ndαj)−1

∣∣∣ d∑
s=m+1

λs(z
2
sk − 1)

∣∣∣ > τ
)

≤ (τn1/2dαj)−2M
( d∑

s=m+1

λ2
s

)
≤ (τn1/2dαj)−2Mdλ2

m+1 = O(d1−2αj/n) = o(1).

Thus it holds that d−αj(ukk − κ) = op(1) for every k (= 1, ..., n). Note that d1−2αi/n(d) =

d1−2α−γ. From (ii) of Theorem 3, there exists a positive constant εj satisfying 1 − 2α− γ <

−εj. Thus we have d1−2αj/n(d) < d−εj . We claim Lemma 1 under (i)-(ii) of Theorem 3.

Then, we obtain for j = 1, ...,m, that

d−αj
(
eT

1nU 22e2n

)
= d−αj

(
eT

1nU 21e2n + eT
1ndiag(u11 − κ, ..., unn − κ)e2n

)
= op(1).

It concludes the result. 2
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Lemma 3. It holds as d→ ∞ and n→ ∞ that

zT
i U 22zi′ = Op(d

1/2) (i = 1, ...,m; i′ = 1, ...,m).

Proof. One can write that

zT
i U 22zi′ =

n∑
k1 ̸=k2

zik1zi′k2uk1k2 +
n∑

k=1

zikzi′k(ukk − κ).

We first consider the case of i = i′. Note that E(z2
ik1
zik2zik3uk1k2uk1k3) = 0 (k1 ̸= k2 ̸= k3),

E(z2
ik1
z2

ik2
u2

k1k2
) = n−2

∑d
s=m+1 λ

2
s (k1 ̸= k2), E(z2

ik1
z2

ik2
(uk1k1 − κ)(uk2k2 − κ)) = 0 (k1 ̸= k2)

and E(z4
ik(ukk −κ)2) ≤M2n−2

∑d
s=m+1 λ

2
s for the uniform bound M for the fourth moments

condition. Then, for any τ > 0, one has as d→ ∞ and n→ ∞ that

P
(
|
∑

k1 ̸=k2

zik1zik2uk1k2 | > τd1/2
)
≤ τ−2d−1

∑
k1 ̸=k2

E(z2
ik1
z2

ik2
u2

k1k2
) = O(τ−2),

P
(
|

n∑
k=1

z2
ik(ukk − κ)| > τd1/2

)
≤ τ−2n−1d−1M2

d∑
s=m+1

λ2
s = O(n−1) = o(1).

Thus it holds that

zT
i U 22zi = Op(d

1/2) (i = 1, ...,m).

As for the case of i ̸= i′, note that

P
(
|
∑

k1 ̸=k2

zik1zi′k2uk1k2 | > τd1/2
)

= O(τ−2), P
(
|

n∑
k=1

zikzi′k(ukk − κ)| > τd1/2
)

= o(1).

Therefore, we conclude the result. 2

Lemma 4. It holds as d→ ∞ and n→ ∞ that

n−1/2zT
i U 22e1n = Op((d/n)1/2) (i = 1, ...,m).

Proof. We have that

||n−1/2zT
i diag(u11 − κ, ..., unn − κ)||2 =

n∑
k=1

n−1z2
ik(ukk − κ)2.
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By using Markov’s inequality, for any τ > 0 and the uniform bound M(> 0) for the fourth

moments condition, one has as d→ ∞ and n→ ∞ that

P
( n∑

k=1

n−1z2
ik(ukk − κ)2 > τd/n

)
≤ τ−1d−1

n∑
k=1

E(ukk − κ)2 = O(1/n) = o(1).

Thus it holds that ||n−1/2zT
i diag(u11 − κ, ..., unn − κ)|| = op((d/n)1/2). Next, we have that

||n−1/2zT
i U 21||2 =

∑
k1 ̸=k2

n−1z2
ik1
u2

k1k2
+
∑

k1 ̸=k2

n−1zik1zik2

n∑
k3(\k1,k2)

uk1k3uk2k3 , (22)

where (\i, j) excludes numbers i, j. We consider the first term in (22). We have as d → ∞

and n→ ∞ that

P (
∑

k1 ̸=k2

n−1z2
ik1
u2

k1k2
> τd/n) ≤ τ−1d−1

∑
k1 ̸=k2

E(u2
k1k2

) = O(τ−1). (23)

Now, we consider the second term in (22). Note that E(u2
k1k3

u2
k2k3

) = O(d2/n4) and

E(uk1k3uk2k3uk1k4uk2k4) = O(d/n4) for k1 ̸= k2 ̸= k3 ̸= k4. By using Chebyshev’s inequality,

we have that

P
(
|
∑

k1 ̸=k2

n−1zik1zik2

n∑
k3(\k1,k2)

uk1k3uk2k3 | > τd/n
)

≤ τ−2d−2(n3E(u2
k1k3

u2
k2k3

) + n4E(uk1k3uk2k3uk1k4uk2k4)) = O(n−1) +O(d−1) = o(1). (24)

By combining (23)-(24) with (22), it holds that ||n−1/2zT
i U 21|| = Op((d/n)1/2). Thus we

have that

n−1/2zT
i U 22e1n = n−1/2zT

i (diag(u11 − κ, ..., unn − κ) + U 21)e1n = Op((d/n)1/2).

It concludes the result. 2

Lemma 5. Assume that the first m population eigenvalues are distinct as λ1 > · · · > λm.

Then, it holds under (i)-(ii) of Theorem 3 that

λ̂j − κ

λj

= ||n−1/2zj||2 +Op(n
−1) +Op(d

1−2αjn−1), ûT
j z̃j = 1 +Op(n

−1) +Op(d
1−2αjn−1)

(j = 1, ...,m). (25)
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Proof. By using Chebyshev’s inequality, for any τ (> 0), one has as n→ ∞ that

P (|n−1zT
j zj′| > n−1/2τ) = P

(∣∣∣n−1

n∑
k=1

zjkzj′k

∣∣∣ > n−1/2τ
)

= O(τ−2) (j ̸= j′).

Thus we claim as n → ∞ that n−1zT
j zj′ = Op(n

−1/2) (j ̸= j′). Note that ||n−1/2zj||2 = 1 +

op(1) as n→ ∞. Let us consider that SD−κIn = U 1 +U 22. For λj (j = 1, ..., s1) that holds

power αs1 , we have from Lemma 2 that d−αjeT
1nU 22e2n = op(1) under (i)-(ii) of Theorem 3.

Then, it holds that λ1||n−1/2z1||2 > · · · > λm||n−1/2zm||2 and λ1||n−1/2z1||2 > eT
1nU 22e1n

w.p.1. Thus we have under (i)-(ii) of Theorem 3 that

λ̂1 − κ

λ1

= λ−1
1 ûT

1 (U 1 + U 22) û1 = ûT
1

m∑
s=1

(
λs||n−1/2zs||2z̃sz̃

T
s

λ1

)
û1 + op(1)

= ||n−1/2z1||2 + op(1) = 1 + op(1).

Then, it holds that ûT
1 z̃1 = 1 + op(1). There exists a random variable ε1 ∈ [0, 1] and

y1 ∈ Rn such that û1 = z̃1

√
1 − ε2

1 + ε1y1 and z̃T
1 y1 = 0. Here, we first consider the case

when αs1 ≥ 1/2. Then, from Lemmas 3-4, we have under (i)-(ii) of Theorem 3 that

λ−1
1 z̃T

1 U 22z̃1 = Op(n
−1), λ−1

1 z̃T
1 U 22y1 = Op(n

−1/2).

By noting that ε1 = op(1), it holds that
√

1 − ε2
1 = 1 + op(1). Then, we have that

λ̂1 − κ

λ1

=ûT
1

(
m∑

j=1

λj

λ1

||n−1/2z1||2z̃jz̃
T
j + λ−1

1 U 22

)
û1

=||n−1/2z1||2 + max
ε1

{
− ε2

1||n−1/2z1||2 +Op(ε1n
−1/2)

+ ε2
1y

T
1

(
m∑

j=2

λj

λ1

||n−1/2zj||2z̃jz̃
T
j

)
y1

}
+Op(n

−1).

From the fact that ||n−1/2z1||2 > λ−1
1 λ2||n−1/2z2||2 w.p.1, we have under (i)-(ii) of Theorem

3 that

max
ε1

{
− ε2

1||n−1/2z1||2 +Op(ε1n
−1/2) + ε2

1y
T
1

(
m∑

j=2

λj

λ1

||n−1/2zj||2z̃jz̃
T
j

)
y1

}

≤ max
ε1

{
− ε2

1||n−1/2z1||2 +Op(ε1n
−1/2) + ε2

1

λ2

λ1

||n−1/2z2||2
}

= Op(n
−1),
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so that ε1 = Op(n
−1/2). Thus it holds under (i)-(ii) of Theorem 3 that

λ̂1 − κ

λ1

= ||n−1/2z1||2 +Op(n
−1)

together with that ûT
1 z̃1 = 1+Op(n

−1), ûT
2 z̃1 = Op(n

−1/2) and ûT
1 z̃2 = Op(n

−1/2). Similarly,

we claim under (i)-(ii) of Theorem 3 that

λ̂j − κ

λj

= ||n−1/2zj||2 +Op(n
−1), ûT

j z̃j = 1 +Op(n
−1) (j = 1, ..., s1). (26)

Next, we consider the case when α1 ∈ (0, 1/2). Then, from Lemmas 3-4, we have under

(i)-(ii) of Theorem 3 that

λ−1
1 z̃T

1 U 22z̃1 = Op(d
1/2−α1n−1), λ−1

1 z̃T
1 U 22y1 = Op(d

1/2−α1n−1/2).

In a way similar to the case when α1 ≥ 1/2, we have that ε1 = Op(d
1/2−α1n−1/2). Thus it

holds under (i)-(ii) of Theorem 3 that

λ̂j − κ

λj

= ||n−1/2zj||2 +Op(d
1−2αjn−1), ûT

j z̃j = 1 +Op(d
1−2αjn−1) (j = 1, ..., s1). (27)

By combining (26)-(27), we can write that

λ̂j − κ

λj

= ||n−1/2zj||2 +Op(n
−1) +Op(d

1−2αjn−1), ûT
j z̃j = 1 +Op(n

−1) +Op(d
1−2αjn−1)

(j = 1, ..., s1) (28)

under (i)-(ii) of Theorem 3.

Finally, we consider the case that λj (j = s2, ...,m) that holds power ≤ αs2 . Then, in a

way similar to the proof of Theorems 3.1-3.2 in Yata and Aoshima [14], in view of Remark

14, it holds (28) under (i)-(ii) of Theorem 3. It concludes the results. 2

Remark 14. Assume that the first m population eigenvalues are distinct as λ1 > · · · > λm.

For λ̃ij (i = 1, ..., l; j = 1, ..., si) it holds as d→ ∞ and n→ ∞ that λ−1
j λ̃ij = 1 + op(1) and

ũT
ijz̃j = 1+Op(n

−1). For ũij′ and ûj (i = 1, ..., l − 1; j ∈ [si +1, si+1]; j
′ = 1, ..., si) it holds

that ũT
ij′ûj = Op(d

αj−αj′/n1/2) +Op(d
1/2−αj′/n1/2) under (i)-(ii) of Theorem 3.
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Remark 15. When the population eigenvalues are not distinct, we consider the case as

follows: Suppose that λ1 = · · · = λt1 > λt1+1 = · · · = λt2 > · · · > λtr−1+1 = · · · = λtr (= λm),

where r ≤ m. We can claim under (i)-(ii) of Theorem 3 that

λ̂j − κ

λj

=

ti∑
i′=ti−1+1

||n−1/2zi′||2(ûT
j z̃i′)

2 +Op(n
−1) +Op(d

1−2αjn−1) = 1 + op(1)

(i = 1, ..., r; j = ti−1 + 1, ..., ti),

where t0 = 0.

Lemma 6. Assume that λj (j ≤ m) has multiplicity one. Then, for the subscript j, we

have (25) under (i)-(ii) of Theorem 3.

Proof. From Remark 15, we have ûT
j z̃j′ = Op(n

−1/2) + Op(d
1/2−αjn−1/2) for j′ < j and

j′, j ∈ [si−1 + 1, ..., si] (i = 1, ..., r), where s0 = 0. Then, in a way similar to the proof of

Lemma 5, we obtain the result. 2

Lemma 7. Let

δj =
tr(SD) −

∑j
i=1 λ̂i

(n− j)λj

− κ

λj

(j = 1, ...,m).

Then, we have under (i)-(ii) of Theorem 3 that δj = Op(n
−1) (j = 1, ...,m).

Proof. Note that tr(SD) =
∑d

j=1 λj||n−1/2zj||2. By using Chebyshev’s inequality, for any

τ > 0 and the uniform bound M for the fourth moments condition, one has under (i)-(ii) of

Theorem 3 that

P

(
d−αj

∣∣∣∣∣n−1

d∑
s=m+1

λs||n−1/2zs||2 − κ

∣∣∣∣∣ > τn−1

)

= P

(
d−αj

∣∣∣∣∣n−1

d∑
s=m+1

λs

n∑
k=1

(z2
sk − 1)

∣∣∣∣∣ > τ

)
= O(d1−2αj/n) = o(1).

Note that λ−1
j n−1

∑m
i=j+1 λi||n−1/2zi||2 = Op(n

−1) for j = 1, ...,m− 1. Thus it holds that

λ−1
j

(
n−1tr(SD) −

j∑
i=1

n−1λi||n−1/2zi||2 − κ

)
= Op(n

−1) (j = 1, ...,m). (29)
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Let s0 = 0. Here, for i = 1, ..., l and j = si−1 +1, ..., si, from Lemma 2, we have under (i)-(ii)

of Theorem 3 that λ−1
j eT

1n(SD − κIn)e1n = λ−1
j eT

1nU 1ie1n + op(1). Note that rank(U 1i) =

rank(
∑si

j=1 λj||n−1/2zj||2z̃jz̃
T
j ) = si w.p.1. Thus it holds that

d−αsi

(
tr(U 1i) −

si∑
i=1

(λ̂i − κ)

)
= op(1).

Then, from Lemma 5 and Remark 15, for i = 1, ..., l and j = si−1 + 1, ..., si − 1, we have

under (i)-(ii) of Theorem 3 that

d−αj

(
j∑

j′=1

(λj′||n−1/2zj′||2 − (λ̂j′ − κ))

)

= d−αj

(
tr(U 1i) −

si∑
j′=1

(λ̂j′ − κ)

)
− d−αj

(
si∑

j′=j+1

(λj′ ||n−1/2zj′||2 − (λ̂j′ − κ))

)

= op(1). (30)

When j = si, we can claim (30). By combining (29) with (30), it holds under (i)-(ii) of

Theorem 3 that

tr(SD) −
∑j

i=1 λ̂i

(n− j)λj

− κ

λj

=
tr(SD) −

∑j
i=1 λi||n−1/2zi||2 +

∑j
i=1(λi||n−1/2zi||2 − (λ̂i − κ))

(n− j)λj

− nκ

(n− j)λj

=
( n

n− j

)n−1tr(SD) −
∑j

i=1 n
−1λi||n−1/2zi||2 − κ

λj

+ op(n
−1)

= Op(n
−1) (j = 1, ...,m).

It concludes the result. 2

Proof of Theorems 3 and 4. We first consider the case when λj (j ≤ m) has multiplicity

one. We write that
λ̃j

λj

=
λ̂j − κ

λj

− δj.

By combining Lemma 6 with Lemma 7, we have under (i)-(ii) of Theorem 3 that

λ̃j

λj

= ||n−1/2zj||2 +Op(n
−1) +Op(d

1−2αjn−1). (31)
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Here, as for Theorem 4, recall that V (z2
jk) = Mj. By using the central limiting theorem, one

has as n→ ∞ that (nMj)
−1/2(||zj||2 − n) = (nMj)

−1/2(
∑n

k=1 z
2
jk − n) ⇒ N(0, 1). Note that

d1−2αjn−1 = op(n
−1/2) under (i)-(ii) of Theorem 4. Hence, under (i)-(ii) of Theorem 4, we

have from (31) that √
n

Mj

(
λ̃j

λj

− 1

)
⇒ N(0, 1).

It concludes the result of Theorem 4. On the other hand, we can claim under (i)-(ii) of

Theorem 3 that

λ̃j

λj

= 1 + op(1). (32)

Next, we consider the case when λj = λj′ (j ≤ m) for some j′. One may refer to Remark

15. Since we can claim that λ̃j/λj = 1 + op(1), under (i)-(ii) of Theorem 3, in a way similar

to (32), it concludes the result of Theorem 3. 2

Proof of Corollary 1. Let us write that Λ−1/2HT (X − X) = [ź1, ..., źd]
T and źj =

(źj1, ..., źjn)T for j = 1, ..., d. Then, we have that źjk = zjk − z̄j for k = 1, ..., n, where

z̄j =
∑n

k=1 zjk/n. Let E(zjk) = µj for j = 1, ..., d. We write that źjk = z̈jk + zoj, where

z̈jk = zjk − µj and zoj = µj − z̄j (j = 1, ..., d; k = 1, ..., n). Now, let us write that n-vectors

z̈j = (z̈j1, ..., z̈jn)T and zoj = (zoj, ..., zoj)
T for j = 1, ..., d. Then, we have that

SoD = (n− 1)−1
( m∑

s=1

λsźsź
T
s +

d∑
s=m+1

λs(z̈s + zos)(z̈s + zos)
T
)
.

Let 1n = n−1/2(1, ..., 1)T . Then, it holds that 1T
nSoD1n = 0. Thus we may write that ûn =

1n. By noting that ûT
n ûj = 0 for j = 1, ..., n− 1, it holds that ûT

j zos = 0 for j = 1, ..., n− 1

(s = 1, ..., d). We have that ûT
j

∑d
s=m+1 λs(z̈s + zos)(z̈s + zos)

T ûj = ûT
j (
∑d

s=m+1 λsz̈sz̈
T
s )ûj,

j = 1, ..., n−1. Let us write that Ü 22 = (n−1)−1
∑d

s=m+1 λsz̈sz̈
T
s −(n−1)−1nκIn. Similarly

to Lemma 2, we have that eT
1nÜ 22e1n = op(1). By noting that n−1źT

j źj′ = Op(n
−1/2) (j ̸= j′)

and ||n−1/2źj||2 = ||n−1/2z̈j||2+Op(n
−1) = 1+op(1), we can claim Lemmas 3-7 as well. Then,

by replacing SD with SoD, we claim the assertions of Theorems 3-4. 2

Proof of Corollary 2. With the help of Lemma 5 and Remark 15, we have that λ̂j/κ =
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1 + op(1) under the condition that d→ ∞ and d/(nλj) → ∞. Then, we have that

hT
j ĥj = (nλ̂j)

−1/2λ
1/2
j zT

j ûj =

(
λj

κ

)1/2 zT
j√
n

ûj + op(1) = op(1).

It concludes the result. 2

Proof of Corollary 3. From Lemma 6, the result is obtained straightforwardly. 2

Proof of Theorem 5. For each j (= 1, ...,m), let us write that

MSE(s̃j) = λjn
−1

n∑
k=1

zjk −

√
n
λ̃j

λj

ûjk

2

= λj

n−1

n∑
k=1

z2
jk +

λ̃j

λj

n∑
k=1

û2
jk − 2

√
λ̃j

λj

zT
j√
n

ûj

 .

With the help of Theorem 3 and Lemma 6, we have that λ−1
j MSE(s̃j) = op(1) under (i)-(ii)

of Theorem 3. It concludes the result. 2

Proof of Corollary 4 and Theorem 6. Let us write that Λ−1/2HT xnew = (z1(new), ..., zd(new))
T .

We first consider the case that λ1 > · · · > λm. In view of Remark 14, we have under (i)-(ii)

of Theorem 3 that

ûT
j U 1iU 1iûj

λ2
j

=

si∑
s=1

(λ−1
j λsn

−1/2zT
s ûj)

2 + op(1)
∑
s,s′

(λ−1
j λsn

−1/2zT
s ûj)(λ

−1
j λs′n

−1/2zT
s′ûj)

= op(1) for i (= 1, ..., l − 1) and j (= si + 1, ..., si+1).

In a way similar to the proof of Theorem 3 in Yata and Aoshima [16], it holds under (i)-(ii)

of Theorem 3 that

λ−1
j λsn

−1/2zT
s ûj = op(1) (s = 1, ..., si; j = si + 1, ..., si+1; i = 1, ..., l − 1).

For the case when λj (j ≤ m) has multiplicity one, we can claim the above result.

First, we consider Theorem 6. From Lemma 6, we have that

h̃
T

j xnew

λ
1/2
j

=
d∑

s=1

λszs(new)z
T
s ûj

(nλ̃jλj)1/2
= zj(new) +

d∑
s=m+1

λszs(new)z
T
s ûj

(nλ̃jλj)1/2
+ op(1).
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From the proof of Lemma 5, we have under (i)-(ii) of Theorem 4 that

ûj = (1 + op(n
−1/2))z̃j + op(n

−1/4) × yj, (33)

where yj ∈ Rn such that yT
j z̃j = 0. Note that

∑d
s=m+1 λszs(new)n

−1/2zT
s z̃j/λj = op(1) and

||n−1/4
∑d

s=m+1 λszs(new)n
−1/2zT

s /λj||2 = op(1) under (i)-(ii) of Theorem 4. Then, it holds

from (33) that
∑d

s=m+1 λszs(new)z
T
s ûj/(nλ̃jλj)

1/2 = op(1). Thus we have under (i)-(ii) of

Theorem 4 that
h̃

T

j xnew

λ
1/2
j

= zj(new) + op(1).

By noting that sj(new) = λ
1/2
j zj(new), it concludes the result in Theorem 6.

Next, we consider Corollary 4. From (10), it holds that

ĥ
T

j xnew

λ
1/2
j

= zj(new)

√
λj

λ̂j

+ op(1) = zj(new) + op(1)

under the conditions given by combining (YA-i)-(YA-ii) with (i)-(ii) of Theorem 4 (that is,

the conditions (i), (ii) and (iii) of the present corollary). It concludes the result in Corollary

4. 2

Proof of Theorem 7. We note that the conditions (i)-(ii) of Theorem 3 include the condition

(i) of Theorem 7. From Lemma 5, we have under (i) of Theorem 7 that

hT
j ĥj =

(
||n−1/2zj||2 + κ/λj +Op(n

−1) +Op(d
1−2αjn−1)

)−1/2 ||n−1/2zj||z̃T
j ûj

=
||n−1/2zj||

(||n−1/2zj||2 + κ/λj)1/2
+Op(n

−1) +Op(d
1−2αjn−1). (34)

Here, by noting that α1 < 1, for any τ > 0, we have as d→ ∞ that

P

(
κ−1

∣∣∣∣∣n−1

d∑
s=1

λs||n−1/2zs||2 − κ

∣∣∣∣∣ > τ

)

= P

(
(nκ)−1

∣∣∣∣∣
m∑

s=1

λs

n∑
k=1

z2
sk

n
+

d∑
s=m+1

λsn
−1

n∑
k=1

(z2
sk − 1)

∣∣∣∣∣ > τ

)
= O(d2α1−2) + o(1) = o(1).
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Thus it holds that δ/κ = 1 + op(1). Then, we have from Lemma 5 and (34) that

λj

λ̂j + δ
hT

j ĥjĥ
T

j hj +
λj

δ
(1 − hT

j ĥjĥ
T

j hj)

=
λ2

j

(λj + κ)(λj + 2κ)
+ op(1) +

1

||n−1/2zj||2 + κ/λj

+Op((d
αj/κ)/n−1) +Op((d

1−αj/κ)/n−1)

=
λ2

j

(λj + κ)(λj + 2κ)
+

λj

λj + κ
+ op(1) =

2λj

λj + 2κ
+ op(1). (35)

Now, from Lemma 2, we have under (i) of Theorem 7 that

κ−1
(
eT

1nU 2e1n

)
= κ−1

(
eT

1nU 22e1n + eT
1ndiag(κ, ..., κ)e1n

)
= 1 + op(1).

Thus it holds that κ−1λ̂j = κ−1ûT
j (U 1 + U 2)ûj > 0 w.p.1 for all j = 1, ..., n. We can write

that z̃j =
∑n

k=1 bjkûk (j = 1, ..., d), where
∑n

k=1 b
2
jk = 1. From Lemma 5, we have that

z̃T
j ûj = bjj = 1 + Op(n

−1) + Op(d
1−2αjn−1). Thus it holds that

∑n
k(\j) b

2
jk = Op(n

−1) +

Op(d
1−2αjn−1), where (\j) excludes number j. Here, we have for j, j′ that

hT
j ĥiĥ

T

i hj′ = λ̂−1
i (λjλj′)

1/2||n−1/2zj||||n−1/2zj′||(z̃T
j ûi)(z̃

T
j′ûi)

= (λjλj′)
1/2bjibj′i ×Op(κ

−1).

Note that

n∑
i(\j,j′)

|bji||bj′i| ≤
( n∑

i(\j,j′)

b2ji

)1/2( n∑
i(\j,j′)

b2j′i

)1/2

= Op(n
−1)+Op(d

1/2−αj′n−1)+Op(d
1−αj−αj′n−1)

for j′(> j) satisfying (i) of Theorem 7, where (\j, j′) excludes numbers j, j′. Then, by noting

that α1 + γ − 3/2 < 0 when α1 < 1 − γ/2 and γ < 1, we claim that

(λjλj′)
1/2

δ

n∑
i(\j,j′)

|hT
j ĥiĥ

T

i hj′| ≤
n∑

i(\j,j′)

λjλj′ |bji||bj′i| ×Op(κ
−2)

= Op(d
αj+αj′+γ−2) +Op(d

αj+γ−3/2) +Op(d
γ−1) = op(1). (36)

On the other hand, by noting that bjj′ = Op(n
−1/2)+Op(d

1/2−αjn−1/2) and bj′j = Op(n
−1/2)+
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Op(d
1/2−αj′n−1/2), we claim for j ̸= j′ that

(λjλj′)
1/2

δ
(hT

j ĥjĥ
T

j hj′ + hT
j ĥj′ĥ

T

j′hj′) =
λjλj′ ||zj/n

1/2||||zj′/n
1/2||

δ

(
bjjbj′j

λ̂j

+
bjj′bj′j′

λ̂j′

)
= Op(d

αj−1+γ/2) +Op(d
αj′−1+γ/2) + op(1) = op(1).

(37)

When λj′/κ → 0, it holds that
∑n

i(\j,j′) |bji||bj′i| = Op(n
−1/2) + Op(d

1/2−αjn−1/2) by noting

that (
∑n

i(\j, j′) b
2
j′i) ≤ 1. Then, we have that

(λjλj′)
1/2

δ

n∑
i(\j,j′)

|hT
j ĥiĥ

T

i hj′| =
n∑

i(\j,j′)

(λjλj′)|bji||bj′i| ×Op(κ
−2) = Op(d

α1−1+γ/2) + op(1)

= op(1). (38)

Similarly, we claim (37) when λj′/κ→ 0. Then, by combining (35)-(38), we obtain that

vjj(δ) =
2λj

λj + 2κ
+ op(1) +

n∑
i(\j)

(
λj

λ̂i + δ
− λj

δ

)
hT

j ĥiĥ
T

i hj =
2λj

λj + 2κ
+ op(1),

vjj′(δ) = op(1), j′ = j + 1, ..., d.

Next, we consider the case that λj/κ → 0 as d → ∞. Note that
∑n

i=1 |bji||bj′i| ≤ 1. Then,

it holds that

(λjλj′)
1/2

κ

n∑
i=1

|hT
j ĥiĥ

T

i hj′| ≤
λjλj′

κ

n∑
i=1

|bij||bij′| ×Op(κ
−1)

= Op(λjλj′κ
−2) = op(λjκ

−1), j′ = j, ..., d.

Thus we have that

vjj(δ) = λjh
T
j S−1

δ hj =
λj

δ
+

n∑
i=1

(
λj

λ̂i + δ
− λj

δ

)
hT

j ĥiĥ
T

i hj =
λj

κ
+ op(λjκ

−1),

vjj′(δ) = op(λjκ
−1), j′ = j + 1, ..., d.

It concludes the result. 2
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Proof of Theorem 8. Let Rω = {j ∈ [1, ..., n− 1]|λ́j > ω}. Then, we have that

S−1
ω =

∑
j∈Rω

λ̃−1
j h̃jh̃

T

j + ω−1

(
Id −

∑
j∈Rω

h̃jh̃
T

j

)
.

We note that the conditions (i)-(ii) of Theorem 3 include the conditions (i)-(ii) of Theorem

8. Note that λ́j > ω for j ∈ Rω and ω/ψ = 1 + op(1) under (i)-(ii) of Theorem 8. We first

consider the case when γ < 2/3. Then, similarly to the proof of Theorem 7, we have for

j ̸= j′ ∈ Rω that

(λjλj′)
1/2

ω

n∑
i(\j,j′)∈Rω

|hT
j h̃ih̃

T

i hj′| = Op(d
αj+αj′−1−γ/2) +Op(d

−γ/2) + op(1) = op(1). (39)

Similarly, we claim for j ̸= j′ ∈ Rω that

(λjλj′)
1/2

ω
(hT

j h̃jh̃
T

j hj′ + hT
j h̃j′h̃

T

j′hj′) = op(1). (40)

Here, from Lemma 5 and (31), we have under (i)-(ii) of Theorem 3 that

hT
j h̃j =

(
λj

λ̃j

)1/2
zT

j√
n

ûj = 1 +Op(n
−1) +Op(d

1−2αjn−1).

Then, it holds that

λj

ω
(1 − hT

j h̃jh̃
T

j hj) = Op(d
αj−1/2−(3/4)γ) +Op(d

1/2−αj−(3/4)γ) = op(1). (41)

Note that ψ/λj = O(d1/2−γ/4−αj). Thus it holds that λ́j/λj = max(λ̃j, ω)/λj = max(1, ψ/λj)+

op(1) under (i) of Theorem 8. We have that

λj

λ́j

hT
j h̃jh̃

T

j hj =
1

max(1 + ψ/λj)
+ op(1). (42)

Next, we consider case when γ ∈ [2/3, 1). Similarly to the proof of Theorem 7, we claim

(39)-(42). Then, by combining (39)-(42), we obtain under (i)-(ii) of Theorem 8 that

vjj(ω) =
λj

λ́j

hT
j h̃jh̃

T

j hj +
λj

ω
(1 − hT

j h̃jh̃
T

j hj) +
n∑

i(\j)∈Rω

(
λj

λ́j

− λj

ω

)
hT

j h̃jh̃
T

j hj

=
1

max(1, ψ/λj)
+ op(1),

vjj′(δ) = op(1), j′ = j + 1, ..., d.
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Finally, we consider the case that λj/ψ → 0 as d → ∞. Note that
∑n

i∈Rω
|bji||bj′i| ≤ 1.

Then, we have that

(λjλj′)
1/2

ω

n∑
i∈Rω

|hT
j h̃ih̃

T

i hj′| ≤
λjλj′

ω

n∑
i∈Rω

|bji||bj′i| ×Op(ψ
−1)

= Op(λjλj′ψ
−2) = op(λjψ

−1), j′ = j, ..., d.

Thus it holds that

vjj(δ) =
λj

ω
+

n∑
i∈Rω

(
λj

λ̃j

− λj

ω

)
hT

j h̃ih̃
T

i hj =
λj

ψ
+ op(λjψ

−1),

vjj′(δ) = op(λjψ
−1), j′ = j + 1, ..., d.

It concludes the result. 2
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