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ABSTRACT
Bhattacharyya type integral inequalities for the integrated risk for estimators are given
extending the work of Borovkov and Sakhanienko (1980). As an application, an asymptotic

approximation of the lower bound for locally minimax risk is given.

1. INTRODUCTION

As an application of Cramér-Rao inequality, Borovkov and Sakhanienko (1980) and
Brown and Gajek (1990) showed some lower bounds for the Bayes risk under quadratic
loss. They also discussed lower bounds for the minimax risk (see also Prakasa Rao (1992),
Ghosh (1994), Sato and Akahira (1996) and Koike (1999)).

Unfortunately, these bounds are not always sharp. On the other hand, it is well known
that Bhattacharyya type lower bound for the variance of unbiased estimators improves the
Cramér-Rao type bound and it converges to the variance of the minimum variance unbiased
estimate under some regularity conditions.

The purpose of the paper is to show an extension of Borovkov-Sakhanienko bound for
the Bayes risk. As an application, an asymptotic approximation of the lower bound for the

local minimax risk is given.

2. A LOWER BOUND FOR THE BAYES RISK



Let X1,...,X, be a sequence of independent, identically distributed (i.i.d.) random
variable according to the density function f;(z,t) (t € ©) with respect to a o-finite measure
i, where © is an (possibly infinite) interval with the end points a and b (—o00 < a <
b < o0). Then the joint probability density function of X := (Xi,...,X,) is f(z,t) :=
[T, fi(z;,t),where x = (x1,...,x,). Let ¢(t) be a prior density of ¢ with respect to Lebesgue
measure. Let supp(g) be the support of a function g on ©, i.e., supp(g) = {g # 0}. Consider
the problem of Bayes estimation for a thrice differentiable function g(t) of ¢t under quadratic
loss L(t,a) = (a — g(t))>.

We make the following conditions.

(A0) For almost all x, fi(z,t) is twice differentiable with respect to ¢.

(A1) The 1st and 2nd derivatives with respect to t of the left-hand side of

/X f@, ) =1

can be obtained by differentiating once and twice under the integral sign, respectively, where

X is the sample space of X. And the Fisher information number

2 D (P2
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exists and 0 < I(t) < oo for arbitrary t € ©.

(A2) The prior density ¢ is twice continuously differentiable and supp(q) C ©.

(A3) I(t) is continuously differentiable and the derivative with respect to t of the left-
hand side of the equality of (A1) can be obtained by the differentiating under the integral

sign.

Hereafter, we will often omit the variables of the functions. Then we have the following
theorem concerning the Bayes risk.
Theorem 1. Let g(X) be an estimator of g(t). Let h be a differentiable function satisfying
supp(h) C supp(q). Suppose that, for almost all x, h(t)fi(z,t) = Z{h(t)fi(z,t)} = 0 at
t = a and b. Then, under the conditions (A0)—(A2), it holds
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where V = { E(S5;S;)}i j—1 is a 2 X 2 matrix with
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Proof. Let S; = {f(z,t)q(t)} " (87 /0t){f(x,t)h(t)} (i = 1,2). Considering the covariance

matrix U of the random vector (g — g, S1,Ss), we can show that U is a symmetric matrix
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given by
E{(g—9)t E(gh/a) —E(g"h/a)
U=| E(gh/qe)  E(S})  E(SiS) |- (2.2)
—E(g"h/q) E(S1S)  E(S3)
Indeed, integrating by parts, we have

[ 5 U 0mw)dt = [Fa.0pe): =0,
(€]
[ a5 Camyae = [ o) oncoar
from h(a) = h(b) = 0. Then, we have
B985} = [ [ (6= 05 Ua0h) db
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// (t)dtdp
_ /@ g /X F(, t)dpdt

= /@g’(t)h(t)dt =E (%) . (2:3)
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Similarly, since (0/0t) {f(z,t)h(t)} = 0 for t = a and b, we have
E{(g — 9)S2}
- [6- g>§—; (o )B(0) vl
/ / oo (Fa, Oh(0)) dis — / / 9 L (1)} ded
:/ p {—{f(a:,t)h(t)}} du+/)(/®g’a{f(x,t)h(t)}dtdu
/ / (t)dudt
—/@ / f(z, t)dpdt
- — /@g"hdt =-F ( ;h) . (2.4)

On the other hand, from Borovkov and Sakhanienko (1980),

E(S}) =nE (h; )+E{(Z/>2} (2.5)

Define L' = {f(z,t)} 1 (0/0t) f(x,t) and L" = {f(x,t)}~1(8%/0%) f(x,t). By the condition
(A3), it holds E} (L") = Ei(L") = 0 (see also Borovkov (1998)) so that
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We have from the definition of L' and L”

n

2
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so that

E(L?) = {Z—logf1 X, 1) } = nl(t), (2.8)

{Z logf1 Xz,t}{za—logfl Xz,t} {Z—logfl Xz,t}]
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where f] = 0f(X;,t)/0t and f] = 0 f(X;,t) /0%

In a similar way to the above, we have for E(L"?)
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Then, from (2.8), (2.9) and (2.10), the right-hand sides of (2.6) and (2.7) are equal to

B(8,5,) = nF {E (ff) (g) ¥ 212_’;’} ¥ E{hqh} , (2.11)
E(S3) =2n’E { (%)2} +nE (g)QEt { (f—{l/)Q}
2 (%)m (%)+4E (1F) hq_h] +E{<%)} (212)

On the other hand, since U is nonnegative definite, it follows that

UL =IVI[E{(3 - 9)°} = (E(g'h/a), —E(g"h/a))V " (E(g'h/a), —E(g"h/q))'| >0,
where V' = {E(S5;S5;)}ij=12. And then, we have

B(g.q9) = E{(9 — 9)*} = (E(g'D/q), = E(g"h/0) V" (E(h/q), = E(g"h/q))  (2.13)
Therefore, from (2.3), (2.4), (2.5), (2.11), (2.12) and (2.13), we have the desired inequality.

Choosing h = ¢'q/I, we have the following corollary.
Corollary. If h = ¢'q/1 is differentiable and supp(h) C supp(q), then we have, under the
conditions (A0)—(A2),

9"%q g9"q )\ - 9"%q g9"q .\
B(g,q) = / dt,—/ dt | v / dt,—/ dt ), (2.14)

where ‘7 = {E(Sisj)}i,jzl,Q is a 2 X 2 matrix with
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and the asymptotic approximation of (2.14) is
2 " 2
9"q - 9"q , <q>’ di
dt — = = —
(/@ 1 ) "o { /e ( T\ q

1 9% [ fift d9"a .\
o Ld dt—/ dt) n?+40(n7? 2.15
2 [, g %qdt ( /@ T2 M o I (™) (2.15)

as n — o0.

Proof. By substituting h = ¢’q/I in (2.1), we have the first inequality. For the second
inequality, the asymptotic approximation of the right-hand side of (2.14) is given by

72 12 12 1 en AN
h 1 h
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by using the integration by parts, we have the desired results.
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Remark. (1) In particular, substituting g = ¢, the bound (2.15) equals

(/@%dt) n1+{—/®$<%>/2dt+%</e% X%dudt)Q}nHO(n?’)

as n — oo.
(2) Applying a similar approximation to (2.15) for the Borovkov-Sakhanienko inequality
(1980), we have

(fo Graat)

n f@ %qut + f@ hf;zdt
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as n — oo, where h = ¢'q/I. So, the coefficient of n=! for (2.15) coincides with the one of

2.16) and the difference between the bounds (2.15) and (2.16) up to the order of n=2 is
(2.16) (2.15) (2.16) up

1 12 1N 1 2
: </ ng flfldudt_/gg th) n? >0,
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3. EXAMPLES

In this section, we will show some examples.
Example 3.1. Let Xi,..., X, be iid. as N(¢,1), the normal distribution with mean ¢
and variance 1. Consider the Bayes estimation of g(f) = ¢* under quadratic loss when
the prior distribution of ¢ is N(u,02). The posterior density of ¢ given X,..., X, is

N <Z?:n1+)§;’;§§‘)/02), n+(11/g2)>. Thus the Bayes estimator of g(t) = #* is

S TLa)y

g:E(t2|X1,.,.,Xn)=n_l_(l/aQ) n+ (1/02)

An easy computation yields

oy 20%(2n0* + 2uP0’n + 2u* + 0?)
E{e-1)} = (no? +1)2

—2(2p% 4+ 307%) _,
D) n

=4(p® + o*)n~' + +0(n™*) (n— o).

o
On the other hand, since ¢'(t) = 2¢, I(t) = E;{(&log f1)*} = 1 and f%dm = 0, the
right-hand sides of (2.15) and (2.16) are
2 2y, —1 s 27 2 3
(2.15)2 4([L +O’)TL +{—4(2+§)+m}n ‘f‘O(TL ),
2
(2.16) 1 4(p* +o*)n~ ' —4 (2 + %) n?+0(n?

as n — 0o, respectively. Then the difference between the Bayes risk of § and (2.15) is

2p° -2 -3
2_u2+a2 n?+0(n?) >0 (n— oo).

The coefficient of n=2 tends to 0 as |u| — oo or 0> — 0. But the difference between the
Bayes risk of g and (2.16) is 2n72 + O (n™3) (n — o) and the infimum of the coefficient of

n~2 is still 2.



Example 3.2. Let Xq,..., X, beii.d. according to the density function

Ae ™ (2> 0),
filw; A) =
0 (otherwise),

where A > 0 is an unknown parameter from a given parameter set © = (0,00). Let ¢ be the

prior density of A\ given by

LNl (A > 0),

0 (A <0)

q(\;p,a) =

where a,p > 0. It is well known that 7, = n~' Y7 | X; is sufficient for A and its density

function is given by

)" n—1_—nlz
%x le=mdz (2 > 0),

Jr. (23 A) =
0 (otherwise).

We consider the estimation of reliability function of the form
R(c)=P(X;>c)=e (c>0).

C

The Bayes estimator of R(c), which is obtained as the expectation of e=** with respect to

. T, n+p
R:( nT, +a )
nT, +a+c

(see Antoch et al. (1997)). The direct calculation of the Bayes risk of R is difficult and

the posterior distribution, is

Antoch et al. (1997) derived the asymptotic approximation of it. Here we will show some

comparison between the Bayes risk and the lower bound from the asymptotic point of view.

Put g(A\) = e=®*. By a simple calculation, we have ¢’(\) = —ce™,
I= —Ex{ga—leogfl(Xl,A)} =1/3%,
/°° 9%, _ @pp+1) /°° 9%q [ B gy = —o TP
o I (a+2c)pt2”  Jo I? J, N (a + 2c)ptt’

o) 2 2
J"q L Q' \ AN aPctp(p+1) o 2, 22 2 2
/0 (T+g (f)) 7—m(3a +4GC+20 +pC —l—pa +pC),

/°° Fadr— /°° 99'q,, _ _a"pp+1)
0 (a+2c)”  Jy I (a + 2c)pt2




So, the asymptotic approximations of the lower bounds (2.15) and (2.16) are given by

a’p(p+1) _,  a’Pp(p+1)

) 292 92 2
(215) . (a T 2C)p+2 n W cp p(a +c )
2 2 -2 abc’p? 2, -2 -3
— 3a” — 2¢ — dac}n +W(—2a—3c+cp)n +0 (n7?)
a’p(p+1) aPc?p
:W'ﬁ, ! W{ — C2p3 - 2p2(a2 + 502 + 2CLC)
+ p(—4a® + 3¢® + 4ac) — 6a*> — 8ac — 4* }n? + O (%), (3.1)
alcp(p + 1 aPc?p(p +1
(2.16) : L ~1 plp+1) — 2 — p(a? + 2)

(a + 2c)pt+2 2(a + 2c)pt4
—3a* —2¢% — 4ac}n72 +0 (n’S) ,

respectively. On the other hand, the asymptotic approximation of the Bayes risk is given by

a’*p(p+1) |  alPp(p+1)

I ST S 2 2_ 2 2 _ 2 9 _9 3
(a+20)p+2” 2(a+20)P+4{ c“p® —p(2a° + 5¢” + dac) — 2a° + 2¢°fn"* + O(n™7)

(3.2)
as n — oo (see Antoch et al. (1997)). The difference between the coefficients of n=2 for (3.1)
and (3.2) is

alc®p

W{4(CL —cp+ 0)2 + 202p + 202} >0

for all a,c,p > 0. Therefore the bound (3.1) improves (2.18), but is not attained by the
Bayes risk (3.2) of R.

4. A LOWER BOUND FOR THE LOCAL MINIMAX RISK

In this section, we consider the efficiency for the minimax estimation of ¢{. Under the
conditions of Theorem 1, define j(t) := E; (—3% +2 <}{—%)3) . Then, we have the following
lower bound for the local minimax risk.

Theorem 2. Suppose that there exists an € > 0 and a > 0 satisfying

0<a<j(t) or jit)<—-a<0 (4.1)
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fort € (tg —e,tg+¢€). If (tg — e,to + &) C O, then we have for the local minimax risk at t,
under the conditions (A0)—(A3),

1 2 2

A . u
sup E{{l—t)?}>=nt' - 5=n 4+ —5+0(n?) (n— o 4.2
te(to—e,to+e) t{( ) } I* e2]? 273 ( ) ( ) (4.2)

for any estimator t of t, where I* = SUDye (10 —e t+e) L (1) and Lo = infiehy o10) I(1).

Proof. Putting g =t and h = ¢ into (2.1), we have

Bt > = Gpen ™+ sz (2 (5 (5F)) +2 ()} o

+0(n™3) (n— o0) (4.3)

for all £ and ¢ satisfying the conditions of Theorem 1. Under the condition (A3), since

0 f1? [0 2 A
10 =a [Lau= [ 2 ( ;1)@ UL / I,

integrating by parts gives

()= (= () -2 (= (1))

So, the right-hand side of (4.3) is equal to

Ln—l_E(q,/qyn—? 1 f1 f_{ ° 2n_2
BN By T 2B B {E <E< i ”(fl) ))}

+0(n™?)
1 ., E(d/9® 5, & L
ZFn — 1—371 + ek +0(n~") (n— o0) (4.4)

If we put ¢(t) = £ cos® % for |t — to| < e, the right-hand side of (4.4) is

2 a2

=2 ) _3
7 ——82[3 —|—2[ sn "+ 0(Mn°) (n— o0)
Note that

swp B {(E -7} 2B(i.0).

te(to—a,to +£)
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where the expectation of the right-hand side of the above is taken by a density ¢ satisfying
supp(q) C (to — &,to + €). Therefore we have the desired result.

Remark. (1) Note that ¢(t) = £ cos® %;“) attains the minimum of the functional [ %dt
(see Ghosh (1994) and Borovkov (1998)).

(2) The condition (4.1) is satisfied if j(¢) is continuous, j(tp) # 0 and £ > 0 is sufficiently
small.

(3) Borovkov (1998) gives a similar lower bound:

S 1
Et{(t_t> } ZnE(I) + 72 /e?

sup
te(tofs,to +€)

for any estimator £ of ¢, where the expectation F(-) of the right-hand side’s denominator is

taken by a density ¢ satisfying supp(q) C (to — €,to + £). This means

. 1 2
sup B, {({—1)*} Zﬁn_l - Zp n?+0((n? (n— o). (4.5)
te(to—e,to+e) Sl i

Thus the lower bound (4.2) improves (4.5) up to the order of n™2.
Let exp{a(t)T(z) — v(t)} be the density function of X given ¢ with respect to a o-finite
measure /i, where a(t) is a thrice differentiable monotone function of ¢ and a’'(t) # 0. Then

a'(t) v/

easy computation yields j(t) = O (t) —~"(t).

If the assumption (4.1) is not satisfied, (4.2) can be replaced by

sup B {(t—1)*} >in_1 T
te(to—e,to+e) - I 82]3

n?+0(n? (n— o),
from the left-hand side of (4.4). But this lower bound is equal to (4.4). For example, let X
be i.i.d. as N(t,1). Since a(t) =t and y(t) = t?/2, we have j(t) = 0.

5. SUMMARY
A lower bound for the Bayes risk was obtained. The obtained bound improves the
Borovkov-Sakhanienko bound and the asymptotic expression was proved. As an application

of the bound, a lower bound for the minimax risk was given.
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