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Abstract

We present a rating method that, given information on the pairwise comparisons of n items,
minimizes the number of inconsistencies in the ranking of those items. Our Minimum Violations
Ranking (MVR) Method uses a binary linear integer program (BILP) to do this. We prove conditions
when the relaxed LP will give an optimal solution to the original BILP. In addition, the LP solution
gives information about ties and sensitivities in the ranking. Lastly, our MVR method makes use
of bounding and constraint relaxation techniques to produce a fast algorithm for the linear ordering
problem, solving an instance with about one thousand items in less than 10 minutes.
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1 Introduction

In this paper, we present a rating method that, given information on the pairwise comparisons of n
items, minimizes the number of inconsistencies in the ranking of those items. Though Minimum Viola-
tions Ranking (MVR) methods have many applications including economic input-output matrices and
sequencing of items from archaeological digs [12], we use examples from sports to explain our new MVR
method. The matrix D below, which we call a point differential matrix, contains pairwise comparison
data and is commonly and easily produced for many sports.’

LA point differential matrix could also be created so that it includes both positive and negative values for the positive
and negative point differentials.



1 2 3 45

1/0 0 0 0 O
219 0 4 0 2
D=3 5 0 0 0 0
4115 3 8 0 5
5\6 0 3 0 O

The (2,3)-entry means that team 2 beat team 3 by 4 points in their matchup. We will analyze this
point differential matrix in order to produce a ranking of these five teams. At this point we introduce a
definition.

Definition A matrix D is in hillside form if

dij < di, Vi and Vj <k  (ascending order across rows)

dij > di; Vj and Vi <k. (descending order down columns)

The name is suggestive as a cityplot of a matrix in hillside form looks like a sloping hillside. The matrix
A below is in hillside form, while B is not.

0 3 5 8 15 0 3 5 8 15
00 2 4 9 00 2 4 9
A=|0 0 0 3 6 and B=|7 0 0 3 4
00 0 O0 5 0 0 00 5
00 0O0 O 0000 O
For n x n matrices in hillside form, the ranking r of the items is clear: r = (1 2 --- n). For non-

hillside matrices, we can count the number of violations of the hillside conditions. In the above example,
B has 7 violations. Often a matrix that appears to be non-hillside can be symmetrically reordered so that
it is in hillside or near hillside form. In fact, the non-hillside matrix D is the perfect hillside matrix A
when D is reordered according to the vector (5 2 4 1 3). Finding such a hidden hillside structure
is exactly the aim of our MVR method.

Our MVR method finds a reordering of the items that when applied to the item-item matrix of
differential data forms a matrix that is as close to hillside form as possible. Figure 1 summarizes the
concept pictorially. On the left is a cityplot of an 11 x 11 matrix in its original ordering of items, while

Figure 1: Cityplot of 11 x 11 data matrix with original ordering and MVR reordering

the right is a cityplot of the same data displayed with the new optimal ordering. In Section 3, we explain
how we produce such an optimal ordering.

Hillside form gives a great deal of information about the difference in the strengths of teams. For
example, matrix A says that not only is team 1 ranked above teams 2, 3, 4, and 5, but we expect



team 1 to beat team 2 by some margin of victory, then team 3 by an even greater margin, and so on.
Sometimes a data matrix has been reordered to be as close to hillside form as possible, yet violations
remain. These violations are of two types: upsets and weak wins. Nonzero entries in the lower triangular
part of the reordered matrix correspond to upsets, i.e., when a lower ranked team beat a higher ranked
team. Weak wins mainfest as violations of the hillside conditions that occur in the upper triangular part
of the matrix. This is when a high ranked team beats a low ranked team but by a smaller margin of
victory than expected. It is possible to weight these two types of violations non-uniformly if the modeler
has a greater aversion to one over another. In fact, our MVR method does this inherently. The example
matrix B above demonstrates this well. Notice that the presence of the 7 in the lower triangular part of
the matrix accounted for 6 of the 7 violations.

2 Related Work

Several MVR methods have been proposed [1, 2, 3, 5, 6, 9]. However, because these MVR methods
only consider the upset type of violation, our MVR method is more comprehensive. In fact, since our
method considers both upset and weak win violations, it produces a stricter ranking of the items. Very
few methods consider tied events as part of the input data and even fewer allow for the possibility of
ties in the output ranking [3]. On the other hand, our MVR method allows for both input and output
ties. The output ties are a consequence of the beautiful theory of linear programming. (See Section 3.1.3
for more on ties and their relationship to multiple optimal solutions.) In summary, our MVR method
contributes three new features: (1) it produces an optimal ranking that minimizes the number of both
upset violations and weak win violations, (2) it produces an optimal ranking that may include ties, (3)
it identifies alternate optimal rankings, if they exist, (4) it provides sensitivity measures for the optimal
ranking, and (5) it is fast, producing an MVR or linear ordering for one thousand items in about 10
minutes.

3 Solving the MVR problem using distance to hillside form

Our MVR problem, i.e., finding a reordering of the items that brings the data matrix D, «,, as close
to hillside form as possible can be stated mathematically as follows. Find the permutation matrix Qy,x»
so that the symmetrically reordered matrix Q”DQ has minimal hillside violations. The optimization
problem below

mqin # hillside violations of QTDQ
st. Qle=e
eTQ _ eT
qij € {O, 1}
has linear constraints, binary variables, and a quadratic objective function, all of which put it into a

challenging class of optimization problems. Fortunately, the alternate formulation of the next section
makes the problem much more tractable.



3.1 BILP

In this section we formulate our MVR problem as a binary integer linear program (BILP), which is a
much more tractable formulation than the quadratic integer program (QIP) above. In order to reach the
BILP formulation, we need to define some constants and some decision variables. First, we define the
constants ¢;;.

Definition of C matrix: Let C = [¢;;] V4,5 =1,2,...,n be defined as
Cij :#{k|d1k<djk}+#{k‘dkl>dkj}, (1)

where # denotes the cardinality of the corresponding set. Thus, #{k | dix < d;i } is the number of
teams receiving a lower point differential against team ¢ than team j. Similarly, #{k | dg; > di; } is the
number of teams receiving a greater point differential against team s than team j.2

Theorem 3.1 The cost matriz C' defined above can be used to compute the number of violations to
hillside form.

Proof To count the number of hillside violations associated with a particular ranking, we use that
ranking to symmetrically reorder D, then count the number of violations, denoted #wviol(D)
according to the rule

#viol(D) = #{ k | dix < dj, Vi < j} +#{k | dpi > dij, Vi < j}.

Assume the ranking is 1,2,...,n. Then in the binary integer program, the solution matrix X
associated with that ranking is an upper triangular matrix of 1s. (Both the integer program and
the matrix X are described on the next page.) As a result, the objective function

chijl‘ij =(ciiteizt-tem) (et Feam)+ o+ (Cno1n),
i=1 j=1

which is all the elements in the strict upper triangular part of C. Applying the definition for
element c;; and summing this for each element in the strict upper triangular part of C, we find
that

SN cijmig = #{k | dix < dji, Vi < j}+ #{k | dr; > dij, Vi < j} = #viol(D).

i=1 j=1

Without loss of generality we can assume that the ranking is {1,2,...,n} because otherwise, we
simply reorder D, C, and X in which case the ranking associated with the reordered matrices is
{1,2,...,n}. O

Consider a data matrix D of point differentials, where d;; is the number of points winning team ¢
beat losing team j by in their matchup, 0 otherwise. The trick to relating this to MVR is to think of

2The matrix C above counts hillside violations in a binary fashion, however, something more sophisticated can be done.
For instance, we can consider weighted violations by summing the difference each time a hillside violation occurs. In this

case, C is defined as ¢;; := Zk:d-k<djk(djk —dir) + Zkidki>dkj (dis — dij)-
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each row and column of D as a team’s ranking of its opponents. For instance, for our 5-team example
with
Duke Miami UNC UVA VT

Duke 0 0 0 0 0
Miami 45 0 18 8 20

D = UNC 3 0 0 2 0o 1,
UVA 31 0 0 0 0
VT 45 0 27 38 0

the second row of D tells us that Miami would rank its opponents’ defensive ability from strongest to
weakest as UVA, UNC, VT, Duke. On the other hand, the first column of D, for example, tells us
that Duke would rank its opponents’ offensive ability as Miami/VT, UVA, UNC. Consequently, these
rankings, both offensive and defensive, for the n teams can be aggregated to create an overall ranking for
the season. In fact, our MVR method can be described as a rank aggregation method with a very special
definition of the conformity matrix C. (See Section 8.)

Armed with a matrix C of constants that helps count the number of violations to hillside form, our
goal is to create a ranking of the n items that minimizes this number. In order to accomplish this goal,
we define decision variables ;; that determine if item 4 should be ranked above item j. In particular,

- 1, if item ¢ is ranked above item j
t 0, otherwise.

To understand the use of the matrix X, consider a small example with n = 4 items labeled 1 through 4
and ranked in that order. Then the matrix X associated with this ranking is

=W N =

S oo O
O OO - N
OO KRk W
O~~~

which indicates that item 1 is ranked above items 2, 3, and 4, while item 2 is ranked above items 3 and 4,
and finally, item 3 is ranked above only item 4. In this example, the nice stairstep structure of X clearly
reveals the ranking. At first glance, for other examples, it may not be as clear. Consider the matrices X
and Y below.

1 2 3 4 4 2 1 3
1/0 010 4/0 1 1 1
21 0 1 0 2(0 0 1 1

X=3lo0o0o| ® Y=1100 01
4\1 1 1 0 3\0 0 0 0

Y is simply X reordered according to the rank ordering of [4, 2, 1, 3]. Fortunately, there is no need
to actually reorder the matrix X resulting from the optimization because it is very easy to identify the
ranking from the unordered X. Simply take the column sums of X and sort them in ascending order to
obtain the ranking.?

With X well understood, we now return to the optimization problem. We want to minimize the
number of violations to hillside form, which, in terms of our constants c;; and variables x;; becomes

minz Z Cij Tij with Tij € {O, 1}

i=1 j=1

30r the row sums sorted in descending order could be used.



However, we must add some constraints that force the matrix X to have the properties that we observed
and exploited in the small 4 x 4 example above. This can be accomplished by adding constraints of two

types:
x;; +x;; = 1 for all distinct pairs (¢, j) (Type 1—antisymmetry)
zij + i +ak < 2 for all distinct triples (¢,7,k)  (Type 2—transitivity)

The first constraint is an anti-symmetry constraint, which says that exactly one of x;; and zj; can be
turned “on” (i.e., set equal to 1). This captures the fact that there are only two choices describing the
relationship of 7 and j: either ¢ is ranked above j or j is ranked above i. The second constraint is a very
clever and compact way to enforce transitivity. That is, if ;; = 1 (¢ is ranked above j) and zj; =1 (j is
ranked above k), then x;; = 1 (i is ranked above k). Transitivity is enforced by the combination of the
Type 1 and Type 2 constraints. Because the decision variables are binary, the Type 2 constraint forbids
cycles of length 3 from item ¢ back to item i. The Type 1 constraint forbids cycles of length 2. In fact,
these two constraints combine to forbid cycles of any length. A dominance graph helps explain this.

The matrix X from our 4 x 4 example,

1 2 3 4

1 /0 1 1 1
210 0 1 1
X730001’
4\0 0 0 O

can be alternatively described with the dominance graph of Figure 2. Every ranking vector produces a

Figure 2: Dominance graph

graph of this sort, which shows the dominance of an item over all items below it. The dominance graph for
every ranking vector will contain no upward arcs as an upward arc corresponds to a cycle, i.e., a violation
of Type 2 transitivity constraints. To see how the Type 1 and 2 constraints combine to forbid any cycles,
consider the cycle from 1 — 3 — 4 — 1, which corresponds to the Type 2 constraint z13 + x34 + 41 < 2.
Because item 1 is ranked above item 3, 213 is turned on (i.e., x13 = 1). Similarly, 34 = 1. Then according
to the Type 2 constraint, z4; must equal 0. Combining this with the Type 1 constraint, then x4 must
equal 1, and thus, transitivity is enforced. In summary, all three types of constraints (Type 1 and Type
2 plus the binary constraint on x;;) combine to produce an X matrix solution that is a simple reordering
away from the stairstep form. Finally, because X is always a reordering of the stairstep matrix, it has
unique row and column sums, and thus, produces a unique ranking of the n items. The complete binary
integer linear program (BILP) is

n o n
min E E Cij Tij

i=1 j=1



xij +xj; = 1 for all distinct pairs (4, j) (Type l-antisymmetry)
Tij + i+ ok < 2 for all distinet triples (¢,7,k)  (Type 2-transitivity)
€

Tij {0,1} (Type 3-binary)

Our MVR BILP contains n(n — 1) binary decision variables, n(n — 1) Type 1 equality constraints, and
n(n —1)(n — 2) Type 2 inequality constraints. The O(n?) Type 2 constraints dramatically limit the size
of ranking problems that can be solved with this optimal MVR method. Fortunately, there are some
strategies (see Section 3.1.2) for sidestepping this issue of scale.

3.1.1 SoCon example

This 12-team example comes from the 2008-2009 Southern Conference (SoCon) basketball season.
The MVR definition for the C matrix produces

1 2 3 4 5 6 7 8 9 10 11 12

1 0 15 15 14 17 7 4 4 9 2 10 11
2 § 0 10 12 18 6 3 3 11 3 7 8
3 5 11 0 9 14 6 2 4 9 2 5 9
4 5 9 9 0 15 5 0 2 6 3 6 5
) 2 2 5 3 0 2 1 2 0 1 1 2
C— 6 10 14 16 17 18 0 7 7 12 4 13 15
7 15 18 18 20 20 13 0 8 16 10 15 15
8 15 20 18 18 20 13 10 0 15 11 14 18
9 0 9 11 14 19 v 4 7 0 2 10 9
1017 17 18 18 20 16 7 9 15 0 13 14
11{10 14 14 10 18 8 4 4 12 7 0 12
12 \10 12 11 12 17 7 4 4 10 6 8 O

Solving the BILP produces an optimal objective value of 351. The solution matrix X and optimal ranking
obtained by sorting the column sums of X in ascending order are below.

11 12

Davidson
CofC
Citadel
Samford
UT Chatt
Wofford
App State
W. Carolina
Elon
UNC-G
Furman

GA Southern
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3.1.2 Solving Large MVR BILPs

Because the O(n3) Type 2 constraints drastically limit the size of the ranking problems that we can
handle, we use a relaxation trick, called constraint relaxation, to increase the size of tractable problems.



Of the n(n —1)(n — 2) Type 2 constraints, z;; + i + 2 < 2, only a very small proportion of these are
necessary. The great majority of these will be trivially satisfied—the problem is that we don’t know which
are necessary and which are unnecessary. In order to find out, we start by assuming all are unnecessary,
then slowly add back in the necessary ones as they are identified. The Type 1 and relaxed continuous
version of the Type 3 constraints cause no problems, so we leave these unchanged. Below are the steps
involved in the constraint relaxation technique.

CONSTRAINT RELAXATION ALGORITHM FOR LARGE MVR BILPS

1. Relax all Type 2 constraints so that the initial set of necessary Type 2 constraints is empty.

2. Solve the BILP with the current set of necessary Type 2 constraints. Form the optimal ranking
associated with this solution. This ranking is actually an approximation to the true ranking we
desire for the original problem with the full Type 2 constraint set.

3. Determine which Type 2 constraints are violated by the solution from Step 2—these are necessary
Type 2 constraints. Add these Type 2 constraints to the set of necessary Type 2 constraints and
go to Step 2. Repeat until no Type 2 constraints are violated. The BILP solution at this point is
an optimal ranking for the original problem with the full constraint set.

In Step 3, the determination of which Type 2 constraints are violated by the current BILP solution
is easy and does not require that each constraint be checked one by one. Recall from Figure 2 that
violations to the Type 2 transitivity constraints are upward arcs in the dominance graph. In yet another
view, these violations manifest as ones on the lower triangular part of the rank reordered matrix X. For
each identified upward arc (j, %), next find all k such that z;;, = xx; = 1 and generate the corresponding
Type 2 constraint ;; + x;1 + x; < 2. The matrix X can be used to quickly find these elements k: form
the Hadamard (element-wise) product of the i** row and j** column of X. All nonzero elements in this
product satisfy x;; = x1; = 1. Because of the upper triangular structure of the reordered matrix X, it
takes much less than O(n) work to compute the Hadamard product and form the transitivity constraints
associated with each upward arc.

In addition, we can take advantage of any approximate rankings that may exist. For example, suppose
a fast heuristic method (MVR or otherwise) is run and a ranking produced. This ranking has a one-to-one
correspondence to a matrix, let’s call it X, in hillside form. Computing the objective value f(X) = C.*X
for this approximate solution matrix X gives a useful upperbound on the objective. As the branch and
bound BILP procedure explores solutions and encounters a branch with nodes exceeding f(X), nodes in
that branch no longer need to be explored.

In summary, the constraint relaxation technique is an iterative procedure that solves a series of BILPs
whose constraint set gradually grows until all the necessary transitivity constraints are identified. At
each iteration the optimal BILP solution is an approximation to the true optimal ranking of the original
problem with the full constraint set. The approximations improve until the optimal ranking is reached.
Table 2 of Section 9 demonstates this well.

3.1.3 Multiple Optimal Solutions for the BILP

The branch and bound procedure terminates with an optimal solution X. As we saw with our small
examples, sorting the column sums in ascending order gives the optimal ranking of the items. In this
section, we consider two questions: (1) is the optimal solution unique? and (2) if it is not, can we find
alternate optimal solutions?



There is a simple test to determine if the optimal solution to the BILP is unique. Consider each
successive pair of items in the optimal ranked list and ask if the two items ¢ and j can be swapped
without changing the objective value. Only swaps of rank neighboring items need be considered as these
are the only swaps that do not violate the constraints, particularly the transitivity constraints. The
objective value will not change if ¢;; = c¢j;. If this is so, then an alternate optimal solution is one that
has these two items swapped. There may indeed be more than a two-way tie at this rank position. For
instance, a three-way tie occurs if ¢;; = ¢j; = cip = cxi = cjr = cx; for rank neighboring items 4, j, and
k. Continue down the optimal ranked list in this fashion detecting any two-way or higher ties at each
position. We apply this Tie Detection algorithm to the 2009 SoCon example. From Section 3.1.1, the
BILP produced the optimal ranking of

Davidson 5
CofC 4
Citadel 3
Samford 9
UT Chatt 2
Woflord 12
App State 1
W. Carolina 11
Elon 6
UNC-G 10
Furman 7

GA Southern \ 8

We begin the Tie Detection algorithm by comparing the two teams at the top of the list. Because
C(5,4) # C(4,5), these two cannot be swapped. Thus, we move onto the next pair of teams in the ranked
list, teams 4 and 3. Because C(4,3) = C(3,4), these two can be swapped. This means that teams 3
and 4 can appear in either order in the optimal ranked list, with 4 above 3 as the BILP algorithm found
or with 3 above 4, which is an alternate optimal solution since the objective function is unchanged yet
feasibility is still maintained. At this point, we have discovered a two-way tie between teams 3 and 4,
but a three-way or higher tie may exist. So we check to see if the next team in the list, team 9, satisfies
C(3,4) =C(4,3) = C(4,9) = C(9,4) = C(3,9) = C(9, 3), which it does not. Thus, the tie at the second
rank position is indeed only a two-way tie between teams 3 and 4. We continue down the list, considering
9 and 2, then 2 and 12, and so on, and we find one more two-way tie—this time between teams 1 and
11. As a result, this SoCon example has a total of four binary integer optimal solutions, which are shown

below.

5 5 5 5
4 3 4 3
3 4 3 4
9 9 9 9
2 2 2 2
12 12 12 12
1| R 1 [oad gy
11 11 1 1
6 6 6 6
10 10 10 10
7 7 7 7
8 8 8 8

In summary, we know that we can (1) apply a branch and bound procedure to find an optimal solution
to the MVR BILP, (2) check the uniqueness of the obtained optimal solution, and (3) if applicable, find



several alternate optimal solutions with the simple O(n) test described above. As a result, this optimiza-
tion technique produces an output ranking that may actually contain ties and is a very mathematically
appealing and provably optimal ranking method. However, the BILP is much slower than many existing
rating and ranking methods. In fact, because of the O(n?) constraints, in practice, a commercial BILP
solver such as the DASH Optimization software or the NEOS server is limited to a problem with n on
the order of a few thousand. Thus, ranking all NCAA Division 1 football or basketball teams is certainly
within reach while ranking billions of webpages in cyberspace is not. Yet ranking the top 50 results
produced by several popular search engines is not only possible, but fast—as it can be done in real-time.
Fortunately, the next section explains how we can further increase the practical limit on n, making the
MVR ranking of thousands of items possible.

3.2 LP

In this section, we relax the Type 3 constraints that force the variables x;; to be discrete, specifically,
binary since x;; € {0, 1}, and allow them to be continuous so that 0 < z;; < 1. Actually, the upperbound
of the bound constraint 0 < x;; < 1 is redundant as this restriction is covered by the Type 1 constraint
x;5 + xj; = 1. Thus, the simplified relaxed LP for the MVR problem is

n n
min Z Z Cij Tij
i=1 j=1
xij +xj; = 1 for all distinct pairs (4, j) (Type l-antisymmetry)
Tij + Tjp + Thi 2 for all distinct triples (¢,7,k)  (Type 2-transitivity)

<
zij > 0 (Type 3—continuous)

When some BILPs are solved as LPs the optimal solution to the relaxed problem, the LP, gives a solution
with binary values, which is clearly also optimal for the BILP. This is the best-case scenario. The next
best scenario is when the optimal solution for the LP contains just a small proportion of fractional values.
Often, in this case, these few fractional values can be rounded to the nearest integer giving a slightly
suboptimal solution that may adequately approximate the exact optimal integer solution. In this section,
we show that the LP gives very interesting results. Many times the LP solution is optimal and, in fact,
readily tells us all alternate optimal solutions as well.

Our 12-team SoCon example makes this point well. From Section 3.1.3, we discovered that this
example has four binary optimal solutions. One with the teams in the rank order given by

(5 4 39 212 1 11 6 10 7 8)",

another ranking that is identical yet team 3 is above team 4, still another ranking that is identical to the
first yet teams 11 is above team 1, and a final ranking with both 3 above 4 and 11 above 1. Notice how
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these ties are manifested in the LP solution matrix X below.

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 01 11 0 1 0491 O

1 0 0 0 01110 1 1 1

1 1 0 0586 0 1 1 1 1 1 1 1

1 1 0.4104 0 01 111 1 1 1

1 1 1 1 01 1 11 1 1 1
X — 0 0 0 0 001 10 1 0 0
0 0 0 0 00010 0 0 0

0 0 0 0 0 0000 O 0 0

1 1 0 0 01110 1 1 1

0 0 0 0 0 01 10 O 0 0
0.5049 0 0 0 01110 1 0 0
1 0 0 0 01110 1 1 0

The locations of the fractional values in X correspond precisely to the 2 two-way ties. Because the LP
solver terminated with an optimal objective value of 351, which is identical to the objective value of the
BILP, the LP’s fractional optimal solution lies on the boundary created by the integer optimal solutions
of the BILP. In this case, an extreme point LP solver such as the simplex method will terminate at one
of the four integer optimal solutions, while an interior point LP solver is likely to terminate at one of the
infinitely many fractional optimal solutions, from which optimal integer solutions can be built.

Due to the Type 1 constraints, fractional values must always occur in pairs. Each fractional pair
occupies mirrored positions about the diagonal of the X matrix. A set of fractional pairs is classified
as either isolated or non-isolated. If the set of fractional pairs contains no overlapping indices, then it
is said to be isolated. The 2 two-way tie SoCon example above contained two fractional pairs ({3,4}
and {1,11}), which produced an isolated set and hence, 22 = 4 optimal solutions. The next example
demonstrates the effect of a non-isolated set of fractional pairs. The same set of 12 SoCon teams with
slightly different point data created the following C matrix.

1 2 3 4 5 6 7 8 9 10 11 12

1 0 14 15 156 17 11 9 8 12 12 12 11
2 9 0 12 13 16 11 9 5 11 10 9 12
3 9 12 0 11 16 7 7 9 10 5 9 10
4 § 11 13 0 16 9 9 8 11 9 10 11
) 7T 8 8 8 0O 6 3 6 9 5 6 8
C— 6 12 13 17 15 18 0 13 12 13 8 12 15
7 15 15 17 15 21 11 0O 12 17 12 14 15
8 16 19 14 16 18 12 12 0 14 11 15 13
9 12 13 14 12 15 11 7 10 0O 9 11 13
10112 13 19 15 18 15 11 13 15 0 13 16
11112 14 15 14 18 12 10 9 12 11 O 14
12\13 12 14 13 16 8 9 10 11 8 10 O

11



The relaxed LP generates the solution matrix

1 2 3 4 5 6 7 8 9 10 11 12

1 /0 0 0 0 O 1 1 1 11 1 1
2 10 0 00 1 1 1 11 1 1
3 11010 1 1 1 1 1 1 1
411 1000 1 1 1 11 1 1
) 11 1 10 1 1 1 11 1 1
X — 6 |0 0 0 0 O 0 0 04291 0 1 0 O
710 0 0 0 O 1 0 05727 0 1 0 O
8 10 0 0 0 0 0.5709 0.4273 0 0 1 0 O
910 0 0 0 O 1 1 1 0 1 1 0
100 0 0 0 O 0 0 0 0 0 0 O
11{0 0 0 0 O 1 1 1 0 1 0 O
12\0 0 0 0 O 1 1 1 1 1 1 0

As in the previous example, there are two fractional pairs: {6,8} and {7,8}. However, this time the set
of pairs is non-isolated since item 8 is shared. This means that there will be fewer than 22 = 4 integer
optimal solutions as some violate the Type 2 feasibility constraint. Table 1 shows that we cannot slide
the values in every fractional pair to their extreme values of 0 and 1. In particular, because x7¢ is fixed

Table 1: Non-isolated set violates feasibility

Tes xge T8 Tsr feasible?
0 1 0 1 yes
1 0 0 1 no
0 1 1 0 yes
1 0 1 0 yes

at 1, the second row of the table violates the Type 2 constraint x7¢ + z¢s + xg7 < 2. Thus, there are only
three integer optimal solutions for this non-isolated SoCon example.

Though the above two SoCon examples end in fractional solutions from which optimal binary solutions
can be constructed, this is not guaranteed. In fact, we constructed a 9-item example with a unique
fractional optimal solution. Thus, when binary solutions are constructed, the objective value is not as
good as that produced by the unique fractional solution. However, this example with a unique fractional
solution was hard to construct. In fact, to locate such an instance, we randomly generated a hundred C
matrices with entries uniformly distributed between —1 and 1 before we encountered the unique fractional
9-item example. Thus, though unique fractional solutions are possible, it is more likely in practice that
the relaxed LP formulation of our MVR, problem will result in non-unique fractional solutions from which
multiple optimal binary solutions can be constructed. Empirical studies by Reinelt et al. [10, 11] add
further evidence that the LP results for ranking problems are exceptionally good and often optimal and
binary in practice.

4 Theorem for the Relationship between the BILP and LP

In which cases can we be certain that the optimal LP solution is also optimal for the BILP? Remember,
after all, that the BILP is truly the problem of interest for us. Of course, if the LP solution is binary, then
that solution is optimal for the BILP. But even when the LP solution is fractional, there are instances
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in which it is optimal for the BILP. Recall the two fractional optimal SoCon examples from Section 3.2.
The theorem of this section identifies conditions on the LP solution that guarantee that this solution
is also optimal for the BILP. In addition, the theorem below connects the presence of multiple optimal
solutions for the BILP, which indicate the presence of ties in the ranking, to fractional values in the LP
solution.

Theorem 4.1 Suppose X, the fractional optimal solution to the relaxed LP, satisfies the following two
conditions:

1. The g fractional pairs in X form an isolated set. Due to the Type 1 antisymmetry constraint,
each fractional pair can be expressed as T;; = o, xj; =1 —a, for 0 < x5 < 1.

2. For each fractional pair (i,7), the corresponding elements in the cost matric satisfy c;; = c;;.

Then 29 binary solutions that are optimal for the BILP can be built from X by setting the fractional
parameter o of each fractional pair to its two possible extreme values of 0 and 1.

Proof The matrix X is the optimal solution of the relaxed LP, which occurs when the integer
constraint z;; € {0, 1} of the BILP is relaxed to z;; € [0,1]. We will show that the solution X can
be written as a convex combination of binary matrices that are feasible and optimal for both LP
and the BILP. As a result, X is not an optimal extreme point of the feasible region but rather an
optimal boundary point. Note that we use “boundary point” to mean a non-extreme boundary
point.

CASE of g = 1: We begin with the simplest case, with just g = 1 fractional pair. Without loss of
generality, assume that the fractional values occur at z;; and x;;. For g = 1, we will show that X
can be written as a convex combination of two binary matrices Y and Z. Let Y and Z be defined
so that they share all the elements in X except ;; = 1 and y;; = 0 and 2;; = 0 and z;; = 1. In
other words, Y and Z can be thought of as the two only possible binary (“rounded”) versions of
X that still satisfy the Type 1 antisymmetry constraint. As a result,

X=wi{j Y+ta;;Z=125Y+ (1- .’L‘ij> Z, which clearly shows that X is a convex combination of
the binary matrices Y and Z.

Next we show that Y and Z are both feasible and optimal for the BILP. First, feasibility. Clearly,
Y and Z satisfy the Type 3 binary constraint for the BILP. It is also trivial to check that Y and Z
satisfy the Type 1 antisymmetry constraint. It takes a bit more work to show that the remaining
constraint, the Type 2 transitivity constraint, is satisfied. The LP solution X satisfies transitivity
so that x;; + ;i + xr; < 2. Because Y only differs from X in the (¢, j) and (j,¢) elements, we only
need to check that y;; + 1 + T < 2 and yj; + 2 + 21 < 2. Since 0 < z3; < 1 and x5, and xy;
are binary, this implies that x5 + 2x; < 1. Thus, y;; + 2 + g = 1 + x5 + 2 < 2, establishing
transitivity. Similarly, y;; + xix + 2x; = 0 + 23 + x; < 2. The same argument is used to show
that Z is also feasible for the BILP.

Lastly, we show that Y and Z are optimal for the BILP. We use the notation f(X) = C.* X to
represent the Hadamard (element-wise) product of the coefficient matrix C with a solution matrix
X. Thus, f(X) is the objective function value of solution matrix X. To prove that Y and Z are
optimal for the BILP, we will show that f(X) = f(Y) = f(Z). Both Y and Z are feasible to LP,
hence f(X) < f(Y) and f(X) < f(Z). By the linearity of the objective function and the
construction of Y and Z, we see that f(X) = x;; f(Y) + (1 — zy;) f(Z). Note that x;; > 0 and

1 — ;5 > 0. Suppose one or both of f(Y) and f(Z) are greater than f(X), then we have
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fX) =45 f(Y) + (1 —wi5) f(Z) > zi5 f(X) + (1 —25) f(X) = f(X).

This is a contradiction. Therefore, we know that f(X) = f(Y) = f(Z).

As a result, the fractional LP solution is actually a non-extreme boundary optimal solution on the
boundary between the two alternate optimal binary solutions Y and Z. In this case, for g = 1 we
have constructed 29 = 2 binary optimal solutions for the BILP from the fractional LP solution.

CASE of g =2: Assume, without loss of generality, that x;;, x;, Tr; and x are the only
fractional values in X. Let Y and Z be defined as above and create two additional matrices S and
T that are identical to X except s = 1 and s; = 0 and t3; = 0 and t;; = 1. Then X can be
written as a convex combination of the binary matrices Y, Z, S, and T.

Tkl — Tkl

X:gC”YJr x”Z+—S+

2 2 2 T

Next we show that these four matrices are feasible for the BILP. It is trivial to show that they
each satisfy the Type 1 antisymmetry and Type 3 binary constraints. In order to show Type 2
transitivity is satisfied, we use precisely the same logic as the g = 1 case. It is the isolated nature
of the set of fractional pairs that enables us to prove transitivity.

Lastly, we show that Y, Z, S, and T are optimal for the BILP by showing that the objective
value at each of the four binary solution matrices match the objective value at X. From the g =1
case, we have already shown that f(X) = f(Y) = f(Z). It remains to show that

f(X) = f(S) = f(T). Both S and T are feasible to LP, hence f(X) < f(S) and f(X) < f(T). B
the linearity of the objective function and the construction of S and T, we see that

FX) =z f(S)+ (1 —zgy) f(T). Note that x5; > 0 and 1 — 25 > 0. Suppose one or both of
f(S) and f(T) are greater than f(X), then we have

JX) =i f(8) + (1 —aw) f(T) >z f(X) + (1 —2r) f(X) = f(X).

This is a contradiction. Therefore, we know that f(X) = f(S) = f(T).

For g = 2 we have constructed 29 = 4 binary optimal solutions for the BILP from the fractional
LP solution.

GENERAL CASE: This constructive logic can be applied for any number of fractional pairs g.
For each fractional pair, a pair of matrices are formed. Each matrix is identical to X except in the
two locations corresponding to that particular fractional pair. The coefficients in the convex
combination are simply the fractional value itself divided by g, e.g.,

x” , ! ;” a1 ;“ , :”;’“, L ;”“, . Thus, matrices can always be created so that the optimal LP
solutlon X can be written as a convex combination. And each matrix in the convex combination

can be shown to be both feasible and optimal for the BILP.

As a consequence, X is not an extreme point of the feasible region. Instead, it is a non-extreme
boundary point. In fact, it is on the boundary formed by the convex hull of the matrices in the
convex combination. Since X is optimal, so are all other points on this boundary including the
points defined by the matrices in the convex combination.

d

Theorem 4.1 carries computational consequences as well. The original LP solver, the famous simplex
method, is not the method of choice for solving our MVR problem. The simplex method is an extreme
point method, meaning that it moves from one extreme point to the next, in an ever-improving direction
until it reaches an optimal solution, which will, of course, also be an extreme point. In contrast, interior
point LP solvers move through the interior of the feasible region until they converge on an optimal solution
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that may be an extreme point or a boundary point depending on the path taken through the interior
of the feasible region. For us, it is the non-extreme boundary optimal points (which contain fractional
values) that give us so much more information than extreme optimal points (which are the integer-only
solutions). Thus, we always choose a non-extreme point, non-simplex LP solver when solving the relaxed
LP associated with our MVR problem. Finally, we note that the same constraint relaxation technique of
p. 8 that we advocated for solving large MVR BILPs can be used to solve large MVR LPs.

5 Sensitivity Analysis

Another advantage of the LP over the BILP relates to the natural sensitivity measures produced when
solving a linear program. In this case, we are interested in changes in the objective coefficients c;;. Slight
changes in the input data (specifically the differential matrix D that creates the objective coefficient
matrix C) could change the optimal solution, and hence, optimal ranking of the teams. The Xpress-MP
optimization software computes the following ranges on the objective coefficients for the 12-team SoCon
example.

1 z 3 4

m

6 7 g 9 18 11 12

1:[ 8, @8][ 9,Inf][ 6, Inf][ 5, Inf][ 2, Inf][-Inf, 9][-Inf, 15][-Inf, 15] 81[-Inf, 17][ 9, Inf][ 1@, Inf]
2 : [-Inf, 14][ ©, 8][ 18, Inf][ 9, Inf][ 3, Inf][-Inf, 413][-Inf, 28][-Inf, 28] 2| [-Inf, 18][-Inf, 13][-Inf, 18]
3 : [-Inf, 14][-Inf, 117 @, ®8][-Inf, 9][ 5, Inf][-Inf, 17][-Inf, 19][-Inf, 19][-Inf, 14][-Inf, 18][-Inf, 15][-Inf, 14]
4 : [-Inf, 14][-Inf, 13][ 9, Inf][ @, B][ 4, Inf][-Inf, 417][-Inf, 20][-Inf, 19][-Inf, 16][-Inf, 18][-Inf, 411][-Inf, 14]
§ : [-Inf, 17][-Inf, 16][-Inf, 14][-Inf, 14][ @, @][-Inf, 17][-Inf, 21][-Inf, 22][-Inf, 18][-Inf, 28][-Inf, 19][-Inf, 17]
6:[ 8 Inf][ 7, Inf][ &, Inf][ &, Inf][ 3, Inf][ @, @][-Inf, 14])[-Inf, 11][ &, Inf][-Inf, 16][ &, Inf][ 7, Inf]
7:[ 4, Inf][ 2, Inf][ 1, Inf][ @, Inf][ @, Inf][ &, Inf][ B, @][ 7, 9][ 3, Inf][ 7, Inf][ 1, Inf][ 2, Inf]
8:[ 4, Inf][ 3, Inf][ 3, Inf][ 1, Inf][ @, Inf][ 9, Inf][ 9, 11][ @, 8][ 6, Inf][-Inf, 11][ 3, Inf][ 3, Inf]
9:[ 9, 18][ 8, [ 6, Inf][ 4, Inf][ 1, Inf][-Inf, 12][-Inf, 17][-Inf, 15][ @, @][-Inf, 14][ 18, Inf][

8 :[ 2, Inf][ 3, Inf][ 2, Inf][ 3, Inf][ 1, Inf][ 4, Inf][-Inf, ©][ 9, Inf][ 3, Inf][ @, @©][ 5, Inf]J[ &, Inf]
1 : [-Inf, 147[ 8, Inf][ 4, Inf][ 5, Inf][ @, Inf][-Inf, 13][-Inf, 18][-Inf, 46][-Inf, 117[-Inf, 15][ @, B][-Inf, 18]
12 : [-Inf, 11][ 18, Inf][ 6, Inf][ 5, Inf][ 2, Inf][-Inf, 15][-Inf, 17][-Inf, 49][ 9, 18][-Inf, 15][ 1@, Inf][ @, @]

Figure 3: Sensitivity ranges on the objective coefficients c;;

Most ¢;; coefficients have very loose bounds. The exceptions are the pairs of 1 and 9, 2 and 9, and 9
and 12, which have tight bounds. For this dataset, these ranges warn us that we are less certain of the
rank ordering of teams in the middle of the pack. Changes of the objective coefficients outside of the
given ranges, can change the ranking. On the other hand, we have more confidence in our ranking of
teams at the top and bottom of the list.

6 Bounding Techniques to Improve Convergence

Bounding techniques are extremely useful in optimization. In particular, solution techniques for
integer programs rely heavily on bounding. In this section, we apply such bounding to the Iterative
LP method to accelerate convergence and produce optimality guarantees. Recall that the Iterative LP
method relaxes the transitivity constraint set. In fact, at the first iteration, the LP is solved with no
transitivity constraints. The optimal solution matrix X at this iteration creates an objective function
value that we denote f since it is a lowerbound of the optimal objective value f*. The solution at
this iteration almost always violates some transitivity constraints and thus is not a feasible solution for
the original LP. However, it can be used to form a very useful approximate solution. This is done by
computing the row sums of X. The i*" row sum is a good indicator of how many opponents the i*"
team will beat. As the iterative LP method proceeds, we use the row sums of each iteration’s solution
matrix X to compute an approximate ranking. This approximation gets closer to the optimal ranking
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as the iterations proceed. Because every ranking, including these approximate ones, has a one-to-one
correspondence with an X matrix, we can compute the objective function value for each approximate
ranking, which we denote f since it an upperbound of f*. Thus, we know that

f<f<f

Next we bound the relative error ?;f " associated with the approximate ranking. Because f, f*, and f
all have the same sign, we can bound the relative error, which involves the unknown f* with the known

quantities f and f.

Further, when all elements of the objective coefficient matrix C are integral and f—f < 1, the approximate
ranking is the optimal solution of the original ranking problem. Even when we are no so lucky as to be
able to guarantee optimality, we can give a guarantee on the error associated with the near-optimal
solution. We can guarantee that the optimal objective value is between f and f and the relative error

is not greater than % This is another great advantage of the bounding version of our Iterative LP

method. Not only does it require fewer iterations but it also allows the user to stop the iterative procedure
as soon as an acceptable relative error is reached.

7 Linear Ordering Polytope

The convex hull of all of the binary integer points satisfying the constraints of our MVR BILP has
been well-studied and is called the linear ordering polytope [13]. It is helpful to study the relationship of
the LP’s polytope to the feasible region of the original BILP. Of course, the feasible region of the BILP
is contained within the feasible region of the LP. The best scenario is when the LP’s feasible region is
as tight as possible to the BILP’s feasible region. In other words, the LP’s feasible region is the convex
hull of the points in the BILP’s feasible region. For our MVR problem, the good news is that all of the
inequality constraints (Type 2 transitivity and Type 3 nonnegativity) are facet-defining inequalities for
the linear ordering polytope. This means that these inequalities are as tight as possible. However, the
set of constraints for the LP does not cover all facet-defining inequalites for the linear ordering polytope.
Sophisticated valid inequalities such as the so-called fence and Mobius ladder inequalities create stronger
LP relaxations, but unfortunately they are too costly to generate [8, 10, 12].

8 Connection to Rank Aggregation

Our MVR optimization formulation is a special case of a related ranking problem, the rank aggregation
problem. In rank aggregation, k£ rankings must be aggregated into one unified ranking. The only difference
between the BILP optimization formulations of our MVR method and the rank aggregation method is in
the definition of the C matrix of objective coefficients. In rank aggregation, we define ¢;; as a measure
of the conformity between items ¢ and j. One conformity definition uses ¢;; = (# lists having ¢ above j).
In order to parallel the MVR formulation which was a minimization problem, here for rank aggregation
we also use a minimization formulation. Thus, we minimize the negation of conformity. The advantage
is that all of our findings on the relationship of the BILP to the LP, the existence and discovery of
alternate optimal solutions, and the discovery of ties applies to the rank aggregation problem as well.
There is, however, one practical difference between the MVR problem and the rank aggregation problem.
Compared to the MVR problem, the rank aggregation problem typically requires many fewer iterations
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of the Iterative BILP (or LP) Method. In fact, our experiments show that when the lists to be aggregated
are largely in agreement from the start, then only a handful of iterations are required.

9 Computational Examples

9.1 Disconnected Items

Here we consider an unusual case: ranking items from two disparate groups, from which we have
no overlapping data. For example, the data matrix D below contains point scores from teams in two
separate conferences. Conference A consists of teams 1, 2, and 3, while the Conference B contains teams
4 through 8.

1 2 3 45 6 7 8

1/0 1 2 0 0 0 0 O

210 01 0 0 0 0O

310 0 0 0 0 0 0O
D:4 00001 2 3 4
510 0 0 0 0 1 2 3

610 0 0 0 0 0 1 2

7{0 0 0 0 OO 01

8\0 0 0 0 0 0 OO

The MVR method can be applied to each conference separately, which produces the unique optimal
ranking of teams in Conference A as r4 = (1 2 3) and the unique optimal ranking of teams in
Conference Basrg=(4 5 6 7 8). However, we are interested in the behavior of the MVR method
when applied to the full problem of all eight teams.

For the full 8-team case, the MVR method produces objective values for the BILP and the relaxed
LP that are identical. Thus, we can conclude that the relaxed LP solution lives on the boundary between
several optimal BILP solutions. The solution matrix X below of the relaxed LP has several fractional
values, which are denoted by the * symbol. These fractional values indicate that there are several ties,
from which several optimal solutions can be constructed.

CO J O UL i W N+

O OO ¥ RHFOOO =
OO ¥ R P OO N
O ¥ P PP, OFF W
SO DO DO OO OO =
OO OO OO % Ot
D OO R PO ¥ = O
OO R R ¥ F P~
O R R R H == +-=

This solution creates an optimal ranking of (4 1 5 6 2 7 3 8). The location of the fractional
values indicates the presence of three isolated two-way ties. Nodes 1 and 5 may be swapped. Nodes 2
and 6 can be swapped and nodes 3 and 7 can be swapped. Thus, in total, there are 22 = 8 optimal
binary solutions for this problem. Perhaps most interesting in this example is that the optimal ordering
of each conference is maintained in all optimal solutions of the full problem. That is, 1 is always above
2 is always above 3, and these are interleaved with the optimal ordering from the other conference.

Just for comparison sake, the popular ranking method of Massey [7] cannot be executed on a discon-
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nected system.* Another popular ranking method, the Colley method [4], is computable for disconnected
systems, however, it does not produce an output ranking with ties, which, it could be argued in this
example, is less appropriate than the MVR ranking which has ties.

9.2 Largen

In order to demonstrate the size of the LPs to which the MVR ranking techniques of this paper can
be applied, we ranked the 347 teams in NCAA college basketball for the 2008-2009 season. To solve this
large MVR LP, we used the same iterative constraint relaxation trick that we presented in Section 3.1.2
to solve large MVR BILPs. We used the conditions of Theorem 4.1 and our computational and bounding
results to conclude that the Iterative LP method produced a non-unique fractional solution that, when
converted to a binary solution using the “rounding” rules of p. 13, is optimal for the original BILP. Just
.066% of the nonzero values in the optimal LP solution are fractional. In addition, the fractional values,
and hence, the ties, occured in positions of lower rank, particularly rank positions 252 through 272.

Table 2 shows the breakdown of how much time is spent at each iteration of the Iterative LP method
for the full 347-team example. For example, at iteration 1, solving the LP required 4.11 seconds and
produced an objective value of 1171616, while finding the necessary Type 2 constraints required .24
seconds and generated 11230 additional constraints to be added to the LP formulation to be solved at
Iteration 2. In total, executing all 5 iterations and generating all 18,926 constraints required just 20.90
seconds on a laptop machine. Another observation from Table 2 concerns the remarkable value of the
constraint relaxation technique described on p. 8. Just .046% of the total original Type 2 constraints
are necessary. This is a huge savings and makes even larger ranking problems within reach. One final
observation from Table 2 is in order. Notice that by iteration 3, the Iterative LP method has reached
a solution that is on the optimal face of the feasible region, yet is infeasible. At each subsequent iteration,
the solution is improved in terms of feasibility, not optimality. In other words, the solutions remain on
the optimal hyperplane yet move closer to the feasible region at each iteration.

Table 2: Computational Results for Iterative LP method with bounding on 347-team example

iteration | LP time | Obj. value | best rank | ConGen time | # con.added
1 4.11 1171616.00 | 1172359.00 0.24 11230
2 3.70 1172002.00 | 1172338.00 0.22 6887
3 4.17 1172023.00 | 1172069.00 0.11 560
4 4.12 1172023.00 | 1172039.00 0.11 249
5 4.13 1172023.00 | 1172023.00
total 20.23 .67 18926

Our experiments show that the bounding technique brings two very significant advantages. First, using
the bounding version of the algorithm significantly reduces the overall run time. Second, the bounding
version terminates with a solution that is optimal or within some reported percentage of optimal. For
example, for another 347-team dataset, the bounding algorithm terminated with a solution that was not
proven to be optimal, yet was guaranteed to be very near the optimal solution since the relative error is
no greater than .000422%. We were ultimately able to conclude that this solution is indeed optimal since
the Iterative BILP method returned the same objective function value as the Iterative LP method.

4In this case, the coefficient matrix for the Massey system is not full rank, and thus, is not invertible.
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10 Conclusion and Future Work

We have created a Minimum Violations Rating (MVR) method for ranking items. Our method
provides three new contributions to the MVR literature. First, it produces an optimal ranking of the items
that minimizes not only upset violations but also weak win violations. Second, unlike most other MVR
rankings, our MVR optimal ranking may include ties. Third, our MVR method can identify alternate
optimal rankings, if they exist. One drawback of our MVR method concerns scalability. Because the
model formulation requires O(n?®) constraints, there is a practical limit on n, the number of items being
ranked. We proposed a few solutions to this computational issue, including a constraint relaxation and a
bounding technique. Both performed very well on the 347-item examples from NCAA basketball that we
tested. Finally, we proved conditions on which the optimal solution of the relaxed LP is optimal for the
original BILP. As future work, we plan to explore sensitivity analysis beyond the basic results described
here.
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