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Abstract 

 
When examining whether TV advertising has a short-term effect on sales, we have to be 
careful about the manner in which we deal with the biases caused by confounded 
covariates on ad exposures and purchases. Otherwise, we may be misled to a spurious 
correlation of ad exposures and purchases. The recent development of the propensity 
score method allows us to conduct a rigorous statistical testing on the causal effect of ad 
exposure on purchase behavior by avoiding these biases. An empirical study suggests 
that this approach could drastically change the results of simple statistical testing of 
advertising effects. 
 
Keywords: advertising effectiveness, single-source data, causal effect, confounded 
covariates, propensity score 
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Since Jones (1995) questioned whether TV advertising has a short-time effect on sales, 

this issue has attracted a great deal of attention from marketers, because if such an effect 

exists, the focus of advertising strategies should shift from the long-term (e.g., brand 

building) to the short-term or to the “recency” effect (e.g., stimulating purchases 

immediately). By measuring both TV ad exposures and purchases using single-source 

data from the same individual households, Jones (1995) proposed computing the ratio of 

the purchase frequency of households exposed to a TV ad over the purchase frequency 

of households never exposed to that ad within a week before each purchase. This is 

termed as Short-Term Advertising Strength (STAS). If this ratio exceeds one, it can be 

proved that there is a short-term effect of advertising on sales.  

Despite its simplicity, which has been maintained to enable practitioners to 

understand it intuitively, the STAS approach has been criticized by academic 

researchers (e.g., Lodish 1997) because it lacks not only a statistical testing procedure 

on difference but also a consideration about the confounding effects of covariates 

affecting ad exposures and purchases of consumers. Although no agreement has been 

reached with respect to this controversy (Jones 1998, Lodish 1998), recent textbooks on 

advertising effectiveness address the impacts and drawbacks of the STAS approach 

(East 2003, Tellis 2004). East and Tellis both point out that the media plan of an 
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advertiser who effectively targets the consumers who make heavy purchases would 

generate a positive association between ad exposures and purchases without there being 

any causal relationship between them. In such cases, the STAS would reflect a spurious 

correlation between ad exposures and purchases. 

In order to validate the STAS approach by avoiding the biases caused by covariates, 

Schroeder, Richardson, and Sankaralingam (1997) applied it to the data obtained via a 

split-cable system through which different TV ads can be conveyed to each household 

within the area covered by a cable TV service. Since it allows a random assignment of 

ad exposures to panel households, the effects of the covariates can be cancelled out. The 

split-cable system has indeed contributed to the accumulation of empirical findings 

regarding TV advertising effectiveness on sales (e.g., Lodish et al. 1995). However, it 

has a drawback as well—its limited availability in terms of both region and product 

category. Therefore, most recent researches on advertising effectiveness have applied 

choice modeling to single-source data collected in a natural setting (e.g., Tellis 1988, 

Pedrick and Zufryden 1991, Deighton, Henderson, and Neslin 1994). Although these 

researches consider the covariates affecting purchases, such as the elements of utility, 

they rarely consider the covariates affecting ad exposures. Furthermore, the introduction 

of a selection of covariates into the utility function is often problematic since their 
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mutual dependence can lead the estimated parameters to have unexpected signs. 

Moreover, the regression function of purchases on covariates may be a nonlinear 

function, but the researchers assume linearity; this usually leads to severe biases of 

estimates. Such difficulties in correct model specification become graver as the number 

of covariates increases. 

Generally, all existing approaches assessing advertising effectiveness have their own 

limitations and drawbacks. Another approach used, particularly in case wherein the 

split-cable system is unavailable, is the propensity score method. This method is a 

powerful solution to avoid biases caused by covariates and applied widely from medical 

researches to social sciences (e.g., Bingenheimer, Brennan, and Earls 2005). In a 

marketing-related field, Boehm (2005) and Yanovitzky, Zanutto, and Hornik (2005) 

applied this method for customer relationship management (CRM) and public health 

education campaigns, respectively. This method enables the examination of the 

causality by using naturally observed data as if they were well-controlled experimental 

data where the assignment of treatment is randomized. However, the results of these 

previous studies may be less convincing since the conventional propensity score 

methods adopted by them lack a rigorous procedure for statistical testing. In order to 

overcome this limitation, Hoshino, Kurata, and Shigemasu (in press) proposed the 
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Propensity Score Weighted Maximum Likelihood Estimator (PSWME). In this study, 

we adopt this novel method to obtain a more accurate answer to whether the short-term 

effect of advertising exists. 

The remainder of this paper is organized as follows. In the subsequent section, we 

describe the fundamental idea of a propensity score and the PSWME approach as its 

extension. In section 2, we explain the data used. In section 3, we discuss the accuracy 

of the propensity score estimated and compare the results obtained by the conventional 

approach and the PSWME approach for the causal effect of short-term ad exposure on 

purchases. Finally, in section 4, we summarize this paper and discuss its managerial 

implications as well as its limitations and the directions for future research. 

1. METHOD 

1.1 The Basic Concept of the Propensity Score 

The propensity score method was invented by Rosenbaum and Rubin (1983) to assess 

the causality of medical treatment when a random assignment of treatments to patients 

is not permitted due to practical or ethical reasons. This method has been applied in a 

variety of fields, including marketing-related fields, as discussed in the previous section. 

In all these applications, the effects of treatments or interventions were assessed using 

naturally observed data, where the assignment of the treatment could be associated, 
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more or less, with some covariates. 

There is no guarantee that the panel households in the single-source data collected in 

a natural setting are exposed to advertising purely at random. Hence, a simple 

comparison such as the STAS that compares advertising effects (e.g., purchase) between 

the households exposed to ad (ad-exposed) and those not exposed to it 

(non-ad-exposed) would suffer if ad exposure is dependent on covariates that affect 

purchases. In order to avoid these biases, the ideal but infeasible way would be to assign 

a household simultaneously to both complementary conditions of ad-exposed and 

non-ad-exposed. How can we determine the manner in which non-ad-exposed 

households will behave when exposed to the ad? This “counterfactual” situation can be 

inferred by using the propensity score method. In this study, the propensity score refers 

to the probability that an individual household would be exposed to an ad under a 

certain circumstance expressed by a set of covariates. Hence, provided the propensity 

scores are correctly estimated in order to identify whether a household is ad-exposed or 

not, we can efficiently control for the effects of the covariates by comparing the 

responses of the ad-exposed and non-ad-exposed groups of households with almost the 

same propensity score level to the ad. 

The underlying concept is illustrated in Table 1; the columns list households by 
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whether they are actually exposed to a brand’s ad (z = 1) or not (z = 0), and the rows list 

households by whether they purchase the brand after being exposed to the ad (y1) or 

without being exposed to it (y2). We observe combinations of {z = 1, y1} and {z = 0, y2}, 

while we do not observe combinations of {z = 0, y1} and {z = 1, y2} and therefore, the 

latter combinations are missing (see also Table 1). The propensity score method can be 

used to infer what would occur in these missing situations: would a household with a 

high likelihood of being exposed to the ad buy the product even if it were not exposed 

to the ad or would a household with a low likelihood of being exposed to the ad buy the 

product even if it were exposed to the ad. The causal effect (Rubin 1978, Rosenbaum 

and Rubin 1983) of the ad on purchase is defined here as E(y1) – E(y2), where E(y1) is 

the average household purchase when the household is exposed to the ad and E(y2) is 

the average household purchase when the household is not exposed to the ad. Note that 

the sample average of y1 is a good estimate of the average household purchase for the 

households exposed to the ad, E(y1|z = 1); this is different from E(y1). 

============ Insert Table 1 here ============ 

1.2 Conventional Methodology of the Propensity Score  

Given covariates, the propensity scores are estimated via binomial response models, 

such as logistic regression, predicting the probabilities of the occurrence of treatment 
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(advertising exposure in this study). Matching and stratification are the conventional 

approaches used to test the causal effect of treatment using the propensity scores 

(Rosenbaum and Rubin 1983). Matching is a process in which a purchase incidence is 

selected from the treated and untreated groups, respectively, such that the propensity 

scores for the members of this pair are as close as possible, and compares the effects 

observed for the members. Although this method is intuitively understandable, the 

results could differ with repeated calculations since (1) the pairs are stochastically 

selected from the two groups and the selection varies within a finite number of steps and 

(2) the sizes of the two groups are usually imbalanced with some unmatched members 

left over in the larger group. 

On the other hand, stratification appears easier to implement. The members of the 

two groups are assigned one of several strata based on their propensity scores and a 

comparison is drawn by strata. Unlike matching, stratification is not stochastic and can 

utilize all data for analyses. However, the number of tiers into which the propensity 

scores are to be divided is arbitrary. 

Another problem of a conventional propensity score method such as matching or 

stratification is the lack of a statistically valid procedure for hypothesis testing on the 

difference in the effect between two groups. All the abovementioned problems can be 
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overcome by the PSWME method proposed by Hoshino, Kurata, and Shigemasu (in 

press). They derived an asymptotic distribution of the weighted estimator of an effect 

using (the estimated) the propensity scores in order to conduct statistical testing of the 

causality of treatment by minimizing arbitrary operations adopted in matching or 

stratification.  

1.3 The PSWME Approach 

The PSWME approach is applied to a statistical test on the difference between 

ad-exposed and non-ad-exposed groups in the purchase rates of a certain brand. The 

PSWME of these purchase rates can be expressed as follows: 
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Here, zi is a dummy variable of actual ad exposure, taking the value 1 if the 

household is exposed to the ad at purchase incidence i, and 0 otherwise; yi1 is a dummy 

variable of brand purchase in an ad-exposed incidence i, taking the value 1 if the 

household purchases a specific brand when the ad is exposed at incidence i, and 0 

otherwise; yi2 is a dummy variable of brand purchase in an non-ad-exposed incidence, 

taking the value 1 if the household purchases the product when the ad is not exposed at 

incidence i, and 0 otherwise; and wi is a propensity score for incidence i. 
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On the other hand, if we overlook the propensity scores, the observed purchase rates 

for the ad-exposed and the non-ad-exposed groups are calculated as follows: 
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These purchase rates are used in the ordinary statistical test on difference between two 

groups, which is discussed in any textbook on statistics. 

The PSWME of purchase rates can be statistically tested based on an application of 

Hoshino, Kurata, and Shigemasu (in press). On the basis of the derived asymptotic joint 

distribution of  and , given the null hypothesis that there is no difference in 

these rates between the two groups in the population, it is proved that the difference 
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By using the well-known procedure of z test, we can test whether the purchase rate in 
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the ad-exposed group differs significantly from the one in the non-ad-exposed group. It 

should be noted that the PSWME method can be applied to more general parametric 

models, such as logit/probit choice modeling, structural equation modeling, or latent 

class analysis, which are popular in marketing research. 

2. DATA  

We used single-source data provided by Video Research Ltd., a marketing research 

company in Japan. This data involves approximately 1,000 households living in a 

relatively narrow urban area, records of the purchase histories of brands, the brand’s TV 

ad exposure on each household’s TV set, and the covariates describing each household’s 

demographics, and consumption/TV viewing behaviors. From this dataset, we selected 

421 households that had purchased instant coffee at least once in 3 years. 

The data was aligned with an individual household’s purchase incidence of the 

product category (instant coffee). The effect of our interest is whether a brand of our 

interest or another brand is purchased, and the treatment is whether the ad for that brand 

is viewed by the household at least once within a week before the date of the purchase 

(Figure 1). The assumption that the short-term effect of TV advertising can last for a 

week is based on Jones (1995).  

============ Insert Figure 1 here ============ 
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The strength of advertising effectiveness might vary in terms of time due to the 

changes in the strategies of the advertisers and the conditions of the audience. Therefore, 

we split the 3-year data into 12 quarters and gradually moved the “window” (the time 

horizon for an analysis) of a year from the second quarter to the last quarter. The reason 

we skip the first quarter is that covariates used for estimating propensity scores in a 

certain quarter must involve the variables observed in the previous quarter. Thus, we 

have 8 windows for a brand (a total of 24 cases). This procedure is illustrated in Figure 

2. 

============ Insert Figure 2 here ============ 

3. RESULTS 

3.1 Ordinary Statistical Test 

As a benchmark, we first conducted the ordinary z test on the difference between 

ad-exposed and non-ad-exposed groups in terms of purchase rates defined in equation 

(2). As shown in columns 4 to 8 in Table 2, significant differences were observed in 6 of 

24 cases. This implies that the short-term effect of advertising as explained by Jones 

may be statistically supported in one-third of the cases investigated in this study. 

Particularly for brand 2, the short-term effect is observed in more than half of the cases. 

These findings could encourage the manager of this brand to consider advertising as an 
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instrument that stimulates sales instantaneously rather than one that builds up the brand 

equity from a long-term viewpoint.  

============ Insert Table 2 here ============ 

3.2 Estimation of the Propensity Score 

The propensity scores were estimated via binomial logit analysis discriminating the 

occurrence of ad exposures with covariates separately in each of the 24 cases. From the 

single-source data, approximately 30 covariates were collected (Table 3). Some 

covariates described each household’s dynamic behavior with respect to TV viewing or 

purchasing, while others described their static profiles such as demographics. We should 

note that dealing with so many covariates renders normal choice modeling more 

difficult in the specification. 

============ Insert Table 3 here ============ 

Here, it is interesting to note the discriminatory performance of each logistic 

regression rather than the estimated parameters. Table 4 lists several measures in this 

regard. Accuracy—the proportion of correct predictions for all incidences used for 

estimation—appears modestly good, ranging from 0.6 to 0.8 for all brands, while 

Recall—the proportion of correct predictions within the ad-exposed group—appears to 

be relatively poor for brand 3; this suggests the relative difficulty of discriminating ad 
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exposures for a rarely advertised brand. More flexible measures are proposed based on 

rank correlations in the estimated probability of ad exposures (propensity scores) 

between ad-exposed and non-ad-exposed groups. The most frequently used measure—c 

statistics—is mainly distributed between 0.7 and 0.8, implying that these 

discriminations are sufficiently satisfactory. 

============ Insert Table 4 here ============ 

3.3 Hypothesis Testing Using the PSWME 

With these estimated propensity scores, we performed the statistical test based on the 

PSWME, following the procedure described in 1.3. As shown in columns 9 to 12 in 

Table 2, the results are striking. In all cases, even in those in which the effects are 

assessed as being highly significant via the ordinary statistical test, there is no 

significant short-term effect of advertising. 

By controlling for the effects of covariates rigorously, the short-term effect of TV 

advertising on purchase disappeared. This suggests the existence of factors affecting 

both ad exposures and purchases, which may yield a spurious association between ad 

exposures and purchases. As many researchers have warned (Lodish 1997, 1998, East 

2003, Tellis 2004), if marketers ignore the effects of covariates, they may be misled in 

their advertising decision-making process.  
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It should be noted that these results are limited for a certain product class and a 

certain period; moreover, these results reveal nothing about the effects on purchases 

other than the short-term effect discussed by Jones (1995) and others. With regard to the 

data used, it might be possible to detect the mid- or long-term effect of advertising; 

however, this is beyond the scope of this paper. 

4. DISCUSSION 

A controversy on the short-term effect of advertising on sales suggested how difficult it 

is to balance both practical simplicity and statistical appropriateness (e.g., Jones 1995, 

1998, Lodish 1997, 1998). If the emphasis is on practical simplicity, the STAS-like 

measures proposed by Jones (1995) would be favorable. On the other hand, if the 

emphasis is on statistical appropriateness, criticism against the STAS shows that careful 

consideration of covariates is necessary. A random-assignment experiment via the 

split-cable system is ideal in these two respects but is often limited in its availability in 

terms of region or product category. Choice modeling that is often adopted in marketing 

science can efficiently control for covariates only when a few critical covariates are 

identified; its misspecification would yield serious biases in estimated parameters. In 

addition, it might appear too sophisticated for managers to understand the results 

without a familiarity with such advanced methods. In contrast to these existing 
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approaches, the propensity score method has the following advantages: (1) it can be 

efficiently applied to naturally observed data where ad exposures are not randomly 

assigned to households; (2) it does not require prior knowledge about structural 

causality between covariates and outcome/dependent variables; and (3) it provides a 

simple criterion, such as the STAS, whereby managers can intuitively and easily 

understand advertising effectiveness. Moreover, the extension using the PSWME 

enables rigorous statistical testing of the effect.  

Application of this method for instant coffee brands reveals striking results—the 

significant effects of advertising proved by the ordinary statistical test disappear when 

the PSWME method is applied. This suggests the possibility that in this case, 

advertising was concentrated on heavy users of each brand, resulting in a correlation 

between ad exposures and purchases. The ordinary statistical testing would overlook 

this bias and mislead marketers to rely excessively on advertising even when it is 

ineffective; this might be due to over advertising, poor creative work, etc.  

This result cannot be generalized to other product categories or markets. In addition, 

it reveals nothing about the mid- or long-term effect of advertising on purchases, the 

importance of which has been discussed in several literatures (e.g., Clarke 1976, 

Dekimpe and Hanssens 1995, Mela, Gupta, and Lehman 1997). Hence, our approach 
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should be applied not only to the wider range of product categories but also to the 

deeper aspect of advertising effectiveness in addition to the short-term effect. In doing 

so, our approach should be extended so as to deal with the repetition effect of 

advertising, that is, not the occurrence of ad exposure but the frequency of ad exposure. 

We believe that this can be realized as a natural extension of the theory proposed by 

Hoshino, Kurata, and Shigemasu (in press). 

Despite such limitations, we believe that based on the theoretically rigorous and 

practically tractable procedure, this study could offer new perspectives on the debate 

concerning the short-term effect of advertising on sales. By extending this approach to 

include the mid- or long-term effects of advertising, we will be able to deepen our 

understanding of advertising effectiveness. However, this is beyond the scope of this 

paper and will be the aim of our further researches. 

 

17 



ACKNOWLDGEMENT 

The authors thank Video Research Ltd. for the permission to use their data for this 
research and Mr. Shigeyoshi Takemura for his contribution in data cleaning and 
alignment. 

 

REFERENCE 

Boehm, Martin (2005). “Evaluating the Impact of the Online Sales Channel on 
Customer Profitability,” Proceedings of the 38th Hawaii International Conference 
on System Sciences, 1-9. 

Bingenheimer, Jeffrey B., Robert T. Brennan, and Felton J. Earls (2005). “Firearm 
Violence Exposure and Serious Violent Behavior,” Science, 308, 1323-1326. 

Clarke, Darral G. (1976). “Econometric Measurement of the Duration of Advertising 
Effect on Sales,” Journal of Marketing Research, 13(November). 345-357. 

Dekimpe, Martin G.. and Dominique M. Hanssens (1995). The Persistence of Marketing 
Effects on Sales, Marketing Science, 14(1), 1-21. 

Deighton, John, Caroline M. Henderson and Scott A. Neslin (1994). “The Effects of 
Advertising on Brand Switching and Repeat Purchasing,” Journal of Marketing 
Research, 31(1), 28-43. 

East, Robert (2003). The Effect of Advertising and Display, Assessing the Evidence. 
Dordrecht, The Netherlands: Kluwer Academic Press. 

Hoshino, Takahiro, Hiroshi Kurata and Kazuo Shigemasu (in press). “A Propensity 
Score Adjustment for Multiple Group Structural Equation Modeling,”        
Psychometrika. 

Jones, John Philip (1995). When Ads Work. New York: Lexington Books. 

Jones, John Philip (1998). “Point of View: STAS and BehaviorScan – Yet Another 
View,” Journal of Advertising Research, March/April, 51-53. 

Lodish, Leonard M., Magid Abraham, Stuart Kalmenson, Jeanne Livelsberger, Beth 
Lubetkin, Bruce Richardson, Mary Ellen Stevens (1995). “How T.V. Advertising 
Works: A Meta-Analysis of 389 Real World Split Cable T.V. Advertising 
Experiments,” Journal of Marketing Research, 32(2), 125-139. 

Lodish, Leonard M. (1997). “Point of View: J. P. Jones and M. H. Blair on Measuring 
Advertising Effects – Another Point of View,” Journal of Advertising Research, 
September/October, 75-79. 

Lodish, Leonard M. (1998). “STAS and BehaviorScan – It’s Just Not That Simple,” 
Journal of Advertising Research, March/April, 54-56. 

18 



Mela, Carl F., Sunil Gupta, and Donald R. Lehmann (1997). “The Long Term Impact of 
Promotion and Advertising on Consumer Brand Choice,” Journal of Marketing 
Research, 34 (May), 248-261. 

Pedrick, James H. and Fred S. Zufryden (1991). “Evaluating the Impact of Advertising 
Media Plans: A Model of Consumer Purchase Dynamics Using Single-Source 
Data,” Marketing Science, 10(2), 111-130. 

Rosenbaum, Paul R. and Donald B. Rubin (1983). “The Central Role of the Propensity 
Score in Observational Studies for Causal Effects,” Biometrika, 70(1), 41-55. 

Rubin, Donald B. (1978). “Bayesian Inference for Causal Effects: The Role of 
Randomization,” Annals of Statistics, 7, 34-58. 

Schroeder, Gary, Bruce C. Richardson and Avu Sankaralingam (1997). “Validating 
STAS Using BehaviorScan®,” Journal of Advertising Research, July/August, 
33-43. 

Tellis, Gerard J. (1988). “Advertising Exposure, Loyalty, and Brand Purchase: A 
Two-Stage Model of Choice,” Journal of Marketing Research, 25 (2), 134-144 

Tellis, Gerard J. (2004). Effective Advertising: Understanding When, How, and Why 
Advertising Works. Thousand Oaks, CA: Sage Publications. 

Yanovitzky, Itzhak, Elaine Zanutto and Robert Hornik (2005). “Estimating Causal 
Effects of Public Health Education Campaigns using Propensity Score 
Methodology,” Evaluation and Program Planning, 28, 209-220. 

 

19 



 
 

observedmissing

missingobserved
Buy a brand in ad-
exposed incidence:

Buy a brand in ad-
unexposed incidence:

Exposed to
a brand’s ad:

Unexposed to
a brand’s ad:

Covariate: x

y1

y2

z=1 z=0

Table 1. Conceptual Framework of Scoring Score Method
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Purchase and Ad-Exposure Experience
Having purchased the brand in the previous purchase incidence
Having purchased the brand in the previous quarter
Exposed to the brand's ad in the previous quarter (Frequency) *

Family Characteristcs
Householder: executive manager
Householder: self-employed worker
Householder: office worker/engineer
Householder: specialist
Householder: aged 40 or younger
Householder: aged elder than 60
A full-time housemaker wife
At least one pensioner 
At least one pre-school-age child
At least one elementary/junior-high students
At least one highschool/college students
At least one member aged 13 to 25
At least one member aged elder than 50
Family size: 3 or less
Family size: 5 or more
The number of the female family members *

Housing
Living in the single house 
The number of bedrooms: 3 or less
The number of bedrooms: 7 or more

Household Expenditure and Shopping
Expenditure per month: 200,000 yen or less
Expenditure per month: 300,000 yen or more
Shopping everyday
The member of co-op

Time Period
In the second quarter in the window
In the third quarter in the window
In the forth quarter in the window

Table 3. List of Covariates as Predictors for Logistic Regression 
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Table 4. Predictive Performance of Logistic Regression

Brand Window N Log.
Likelihood Accuracy 1) Recall 2) Precision 3) C-statistics 4)

1 1 1,183 -476.1 .816 .969 .832 .784
2 1,195 -615.3 .740 .945 .760 .719
3 1,124 -633.6 .700 .899 .725 .711
4 1,140 -593.8 .733 .925 .760 .731
5 1,215 -628.7 .739 .929 .764 .731
6 1,185 -547.8 .779 .943 .804 .755
7 1,245 -574.1 .794 .952 .814 .751
8 1,237 -607.3 .769 .946 .789 .735

2 1 1,183 -600.8 .746 .914 .770 .760
2 1,195 -756.0 .649 .823 .666 .669
3 1,124 -725.2 .625 .684 .640 .672
4 1,140 -739.8 .631 .651 .646 .669
5 1,215 -731.3 .668 .709 .708 .723
6 1,185 -618.8 .746 .851 .784 .784
7 1,245 -665.6 .729 .876 .764 .748
8 1,237 -672.8 .711 .876 .749 .738

3 1 1,183 -399.5 .884 .000 .000 .672
2 1,195 -419.1 .872 .000 .000 .717
3 1,124 -475.3 .819 .060 .429 .719
4 1,140 -554.3 .780 .079 .513 .695
5 1,215 -611.7 .766 .096 .571 .703
6 1,185 -593.1 .753 .100 .483 .724
7 1,245 -634.8 .764 .061 .529 .683
8 1,237 -628.7 .771 .098 .644 .686

1) The proportion of correctly predicted incidences among all incidences
2) The proportion of correctly predicted incidences among all incidences observed to be ad-exposed.
3) The proportion of correctly predicted incidences among all incidences predicted to be ad-exposed.
4) The rank-correlation in estimated probabilities for all possible pairs of ad-exposed and not-ad-
exposed incidents
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