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Abstract

In this paper, we propose a homogeneous model for solving monotone mixed comple-
mentarity problems over symmetric cones, by extending the results in [11] for standard form
of the problems. We show that the extended model inherits the following desirable features:
(a) A path exists, is bounded and has a trivial starting point without any regularity assump-
tion concerning the existence of feasible or strictly feasible solutions. (b) Any accumulation
point of the path is a solution of the homogeneous model. (c) If the original problem is
solvable, then every accumulation point of the path gives us a finite solution. (d) If the
original problem is strongly infeasible, then every accumulation point of the path gives us a
finite certificate proving infeasibility. We also show that the homogeneous model is directly
applicable to the primal-dual convex quadratic problems over symmetric cones.

Key words. Complementarity problem, nonlinear optimization, optimality condition, sym-
metric cone, homogeneous algorithm, interior point method, detecting infeasibility.

1 Introduction

Let (V,o) be a Euclidian Jordan algebra with an identity element e. We denote by K the
symmetric cone of V', which is a self-dual closed convex cone such that for any two elements
x € intK and y € intK, there exists an invertible map I' : V' — V satisfying I'(K) = K and
I'(xz) = y. It is known that a cone in V' is symmetric if and only if it is the cone of squares of
V given by K = {x oz : z € V}. The (nonlinear) complementarity problem (CP) over the
symmetric cone K is given by

(CP) Find (r,y,2) € K x K x R™ )
Subject to F(z,y,2) =0, zoy =0
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where F' : K x K x R™ — V x R™ is continuous. The class of CPs covers a wide range of
optimization problems such as primal-dual linear, quadratic, semidefinite, and second-order
cone programs. Recently, an interior point map and associated trajectories have been studied
in the paper [11] based on the results in [1, 4, 5, 7]. The paper has also provided a homogeneous
model for a special class of CPs of the form

(SCP) Find (r,y) e K x K @)
Subject to y — ¢ (z) =0, zoy =0

where ¢ : K — V is continuous. Choose an appropriate inner product (-,-) on V' x V', and
suppose that the function ¢ is monotone on K, i.e., ¢ satisfies

(Y(z) —p(2'),xz —2') >0 forall 2,2’ € K.

Then the homogenous model has the following remarkable features (cf. Theorems 5.4 and 5.5
in [11]):

(a) A path exists, is bounded and has a trivial starting point without any regularity assumption
concerning the existence of feasible or strictly feasible solutions.

(b) Any accumulation point of the path is a solution of the homogeneous model.

(c) If the original problem is solvable, then every accumulation point of the path gives us a
finite certificate proving infeasibility.

d) If the original problem is strongly infeasible, then every accumulation point of the path
g g
gives us a finite certificate proving infeasibility.

In this paper, we extend the above results for a wider class of CPs, which are so called mized
(cf. [3]) and given by

(MiCP) Find (z,y,2) € K x K x ™
- x,z (3)
Subject to  F(x,y,z) := y=vil@2) , zoy =0
1&2(1',2)

where ¢ 1= (¢1,19) : K x R™ — V x R™.

The paper is organized as follows.

In Section 2, we summarize some basic properties of the MiCP, most of which have appeared
in [11].

In Section 3, we propose a homogeneous model for the MiCP and show that the proposed
model maintain the properties (a)-(d) described above under certain assumptions on F'.

The assumptions used in Section 3 are slightly theoretical. In order to make them more
tangible, we consider the following assumption in Section 4:

Assumption 1.1 (i) 1 is affine. i.e., there exist linear operators A and B, and d € V x R™,
such that ¥ (x,z) = Ax + Bz +d.



(ii) 9 is monotone on K x R™, i.e., for all (z,z),(2',2') € K x R™,
<¢1(1),Z) - ¢1(xlazl)7$ - 1‘,> + [¢2($,Z) - ¢2(xlazl)]T(z - ZI) > 0.

(iii) The rank of the linear operator B is m.

We show that if the function ¢ satisfies the above assumption then the properties (a)-(d) hold.
It should be noted that our results are new even for the (classical) mixed CPs where K is the
n-dimensional nonnegative orthant.

Section 5 is devoted to discussions on some applications of our results. We conclude that our
homogeneous model is directly applicable to the optimal condition of the following quadratic
conic optimization problem:

(QO) Minimize £z7Qz+ Tz
Subject to Az —b€ —K

(4)

where A : ™ — V is a linear operator of rank m, Q@ € R™*™ is a symmetric positive
semidefinite matrix, b € V, and ¢ € ™. We also refer to the results obtained when we apply
our homogeneous model to the linear conic programming.

Note that the functions appearing in the paper are not necessarily defined on the boundary
of the set K x K x R™. By this reason, we introduce the following asymptotic definitions:

Definition 1.2 The CP is asymptotically feasible if and only if there exists a bounded se-

quence
{2F) y*) ()} CintK x intK x R™ such that limy_,, F (2, y*), 2(k)) =0,

The CP is asymptotically solvable if and only if there exists a bounded sequence {x(k),y(k), z(k)} C
int K x intK x R™ such that limy,_ F(m(k),y(k), z(k)) =0 and limg_,o0 %) 0 y*¥) = 0.

2 Preliminaries

Let (V,0) be a Euclidean Jordan algebra with the identity element e, where (z,y) +— z oy :
V x V — V is a bilinear map satisfying

(i) zoy=you,
(ii) z o (yox?) = (zoy) o 22 where 22> =z o x,
(iii) zoe=eozx =z,

for all z,y,z € V. Since (z,y) — x oy is a bilinear map, for each 2 € V, there exists a matrix
L(z) such that L(x)y = x oy holds for all y € V. For = € V, the degree of x is the smallest
integer d such that the set {e,x,22,... ,xd} is linearly independent. The rank r of V is the
maximum of the degree of x over all z € V. For any element x in V of rank r, we can define
the characteristic polynomial of x of the form

Pa(A) == A" —ar (@)X 4 4 (1) ap(2)



(cf. Section 2 of [9]). We call the roots A, ---, A, of pz(X) the eigenvalues of x and define

r

tr(x) == Z Ai = ay(z), det(z) :=1III_; )\ = a,(x). (5)
i=1

It is known that tr(x o y) gives an inner product on V. Throughout the paper, we define the
scalar product of z,y € V' and the norm of x € V as follows:

(z,y) :==tr(zoy), |z|:=/tr(xox). (6)

Note that ||e|| = /7.

The set of squares K := {z?: x € V'} is the symmetric cone of V, which is self-dual (i.e.,
K=K":={y: (x,y) >0 for allz € K}). In the next proposition, we give some properties of
the symmetric cone K for further discussion. For the proofs of the results, see Theorem III.1.2
and Corollary I.1.6 of [4], Lemma 2.6 and Proposition 2.7 of [11], etc.

Proposition 2.1 Let K be the symmetric cone of V.
(1) Ify € intK and n > 0, then the set {x € K : (z,y) < n} is compact.

(ii) If x € V, then there exist real numbers \y,..., A\, and a Jordan frame ci,...,c, such that
x =3y Ajcj. Here the numbers \; (with their multiplicities) are uniquely determined
by x and X\;’s are the eigenvalues (multiplicities included) of x.

(iii) If x € K and y € K, then (x,y) =0 if and only if xoy = 0.

(iv) intK x {ae: aeRi1}CU, {ae: ae Ry} xintK CU,
K x{ae: a€e Ry} Ccld), {ae: aeRL} x K Ccl(Ud),
where Ry :={a € R: >0} and 14 :={a€eR: a>0}.

(v) There exists w1 > 0 and wy > 0 for which 0 < wy < ||¢|| < wy holds for any nonzero
idempotent ¢ of V.

Here we introduce the so-called interior point map H : intK X intK x ™ — V x V x ™
of the form

H = rev (7)
F(z,y,2)

Consider the following assumption on F":
Assumption 2.2 (i) F is (z,y)-everywhere-monotone on its domain, i.e., there exist continu-
ous functions ¢ from the domain of F to the set VX R™ and c: (V xR™) x (VxR™) = R
such that for any r € V. x R™ and for any (z,y,2) and (2',y',2") in the domain of F, we

have
e(r,r) =0

and
[F(z,y,2z) =7 and F(z',y,2") =1']
= (@—a,y—y) > -1 oy 2) — oy, 2))viwrm +c(r,r').



Here we define
<(aa b)a (a,a bl)>V><§Em = (aa al> + bTbl

for any (a,b), (a', V) € V x R™.

(ii) F is z-bounded on its domain, i.e., for any sequence {(z®),y®) 2(F))} in the domain of
F,if {(z®, g} and {F(=®),y®) )2 are bounded then the sequence {z*)} is also
bounded.

(iii) F(z,y,z) is z-injective on its domain, i.e., for any (x,y, z) and (z,y,2') lie in the domain
of F, if F(z,y,2) = F(x,y,2") then z = 2’ holds.

The following theorem has been proposed in [11] as Theorems 3.10 and 3.12. The theorem
shows that the map H is a homeomorphism under Assumption 2.2:

Theorem 2.3 Suppose that a continuous map F : intK x intK x R — V x R™ satisfies
Assumption 2.2. Define the set

U :={(z,y) € intK X intK : zoy € intK}.

(1) H maps U x R™ homeomorphically onto int K x F'(U x R™), i.e., H is bijective from U x R™
onto intK x F(U x R™), and H and H™' are continuous.

(ii) The set F(U x R™) is an open convez set.

3 A homogeneous model for the MiCP

We define the homogeneous model (HMiCP) for the MiCP, which is a natural extension of the
model in [2] for the CP with K = R, and of the one in [11] for the SCP (2):

(HMiCP) Find (x,7,y,K,2) € (K X Ryy) X (K xRy) x R™ ®)
Subject to  Fu(z,7,y,K,2) =0, (z,7) ox (y,k) =0

where Fy and (z,7) og (y, k) are given by

y—11(z/1,2/7T)
Fu(z,7,y,5,2) 7= | 5+ (1(x/7,2/7),2) + Po(a/7,2/7)" 2 %)
To(x /T, 2/T)

and

(x,7)o (y,K) = rey . (10)

TR

We also introduce the scalar product ((x,7), (y, x))u associated to the product above by

<(xa7-)v (ya ’%)>H = (xay> + 7K. (11)



For ease of notation, we use the following symbols
Vii=V xR, Ky:=K xRy, zy:=(2,7) € Vi, yu:= (y,5) € Vi (12)
and define the mapping ¥y := (¥u,, ¥u,) by

Y1 (z /T, 2/T)
—(1(z/7,2/7), ) = Pa(a/7,2/T)T 2 (13)
(N (mHa Z) = Y, (1‘, T, Z) = T¢2(m/7v Z/T)

for every (zy,2) = (z,7,2) € (K x R;:4) x R™. We can easily see that intKy = intK x R,
and

VYuy (T, 2) = tu, (2,7, 2) =

FH(xHayHa Z) = o ~ Y (va z) . (14)

¢H2 (1‘ Hy % )
In addition,
Ky = {22 = (2%,7%) : xy € Viy}
holds, hence the closed convex cone Ky is the symmetric cone of V.
Note that the function Fy is defined on the set int Ky x int Ky x R™ (but not necessarily on

its boundary). In what follows, we set the domain of F}; to be intKy X intKy x R™.
Let us consider the map
T O
Hy= | 000 (15)
Fy (2w, yn, 2)

and choose an initial point (xg)),yl({o), 2(9)) such that
(xg)),yg)), z(o)) € intKy x intKy x R™ and 2y oy yu € intKy.
For simplicity, we set

(xg)),yl({o),z(o)) = (1}(0),Tg,y(0),ﬁg,z(0)) = (e,1,e,1,0) € intKy X int Ky x R™. (16)

Define
€u
(0) (0)  (0)
0 | Pu L ($H »Yu ) _ 0) 0)
= PON R P RORNORNONS B — Y (2”2 (17)
H H\+*H »YH >

g (1), 2)
where ey = (e, 1) is the identity element in Vj satisfying
Tr(ey) = rank(Vy) = r + 1. (18)

The next two theorems follow from the results described in Section 2. We give the proofs
in the appendix. The proofs are analogous to those of Theorems 5.4 and 5.5 in [11]. Theorem
3.1 below shows that we can find whether the MiCP is solvable, infeasible or in other cases,
by observing any accumulation point of a bounded path, whose existence is guaranteed by
Theorem 3.2.



Theorem 3.1 Suppose that F: K x K x R™ — R™ satisfies Assumption 2.2.

(i) For every (zu,z) € intKy x R™,
(Tu, Yu, (Tw, 2))u + ZT?ﬁHz (zu,2) = 0.

(ii) Ewvery asymptotically feasible solution (&yw,¥u,z) of (HCP) is an asymptotically comple-
mentary solution.

(iii) The HCP is asymptotically feasible.

(iv) The CP has a solution if and only if the HCP has an asymptotical solution (x},y5,2*) =
(x*, 7", y*, k", 2%) with 7* > 0. In this case, (x* /7%, y*[7*,2*/T*) is a solution of (CP).

(v) The CP is strongly infeasible if and only if the HCP has an asymptotical solution (z*, 7", y*, k*, z¥)
with k* > 0.

Here, the asymptotic feasibility and solvability of the problem are given in Definition 1.2.

Theorem 3.2 Suppose that Frr : int Ky xXint Ky x R™ — Vi defined by (14) satisfies Assumption
2.2.

(1) For any t € (0,1], there exists a point (xy(t),yu(t), 2(t)) € intKy X intKy X R™ such that
Hy (1), ya (), 2(0)) = thiy
(ii) The set

P = {(xx(t), yu(t), 2(t)) : Hy (zu(t), ya(t), 2(t)) = th 1 € (0,1]} (19)

forms a bounded path € intKy X intKy x R™. Any accumulation point (xy(t), yu(t), z(t))
is an asymptotically complementary solution to the HCP.

(iii) If the HCP has an asymptotically complementarity solution (3, yk, 2*) = (z*, 7%, y*, k*, 2¥)
with 7 > 0 (k* > 0, respectively), then any accumulation point

(#1(0), y1(0), 2(0)) = (2(0),7(0),(0),%(0), 2(0))
of the bounded path P satisfies 7(0) > 0 (k(0) > 0, respectively).

Note that we assume that Assumption 2.2 holds for ' in Theorem 3.1 and for Fy in Theorem
3.2, respectively. In the next section, we will show that Assumption 1.1 is sufficient.

4 A sufficient condition on the function

Monteiro and Pang [7] showed several sufficient conditions to ensure that the function F satisfies
Assumption 2.2, when K is the cone of positive semidefinite matrices. The issue is more
complicated in our analysis: Not only the function F' but also the homogeneous function Fy
should satisfy Assumption 2.2 (see Theorems 3.1 and 3.2). In this section, we show that these
requirements are satisfied under Assumption 2.2.



Proposition 4.1 Suppose that the function ¥ = (11,19) : K x R™ — V X R™ satisfies As-
sumption 1.1. Then the function F': K x K x ™ — V X R™ satisfies Assumption 2.2, i.e., F
is (z,y)-everywhere-monotone, z-injective and z-bounded on K x K x R™.

Proof:  Suppose that 1 satisfies Assumption 1.1.
Define ¢ : K x K x R™ — V x R and c¢: (V x ™) x (V x R™) — R by

¢(.’Z},y,Z) = (IZJ', —Z), c:=0.
Let r := (a,b) = F(x,y,2) and ' := (a’, V') = F(2',y,2") where (z,2), (2',2') € K x R™. Then
¢1(x7 Z) - wl(mla ZI) = (y - yl) - (a’ - a’l)a ¢2(Q}, Z) - ’(/12($,, z,) =b- bla

and the monontonicity of ¢ implies that

(y—y)—(a—d)z—2)+b-V)(z-2)
y—y,x—a')y—(a—ad,x -2V +(b-0)(2-2)
Yy — ylaw - xl> - <7" - Tlv¢(xaya Z) - ¢(m,vy,azl)> +C(Ta TI)'

Thus, the function F' is (z,y)-everywhere-monotone.
By (i) and (iii) of Assumption 1.1, we can easily see that 1 is z-bounded and z-injective,
and hence, from the definition (3), F' is z-bounded and z-injective. I

Proposition 4.2 Suppose that the function ¥ = (1,19) : K x R™ — V x R™ satisfies As-
sumption 1.1.

(1) *u is monotone on intKy x R™.

(ii) Fy : int Ky xint Ky xR™ satisfies Assumption 2.2, i.e., Fy is (xu, yu)-everywhere-monotone,
z-bounded and z-injective on intKy X intKy x R™,

Proof: (i): For every (zu,2), (2},2') € intKy x R™, it follows from the definition (13) that

<¢H1 (xHa Z) - ¢H1 (%’;{, Z,)a Tu — m;1>H + W}Hz (va Z) - ¢H2 (1‘;{, Z,)]T(Z - Z,)
= (r1(x/7,z/7) = T (@ /7', 2 [7"), 2 — &) + [ra ()7, 2/7) — 7o (2 [7', 4[] (2 = &)
—(r = ) {1 (/7 2/7),2) = (77, 2 7,3 = (= 7) (bl / 2/ )2 — (a7, )}

By rearranging the right-hand side, we have

<¢H1 (mHa Z) - ¢H1 (m,H’ Zl)v Ty — xIH>H + [¢H2 (mHa Z) - ¢H2 (lea ZI)]T(Z - ZI)
= 7' {(1(z/7,2/7) — o (' /7', 2 [ 77), (/7)) = (/7))
+ [olw/m,2/7) = ala’ /7', 2 [T [(2/7) = (/7)]}

>0



where the last inequality follows from the monotonicity of ¢ = (11,12). Thus the map ¢y =
(¢u,, ¥u,) is monotone on the set int Ky x R™.

(ii): The monotonicity of Fy follows from (i) above and an analogous discussion to the proof
of Proposition 4.1.

We are going to show that Fy is z-bounded and z-injective. Note that we have already seen
that ¢ is z-bounded and z-injective in Proposition 4.1.

Suppose that

{@® N} C intKy x intKy,

and
{Fu(@® g, 2001 = () — 4 (2 20 C v x o

are bounded. Then {¢H(m£{k),z(’“))} is also bounded. Since we assume that ¢ = (¢1,12) is
affine, 11 and vy are given by

Ui(x,2) = Ayx + Bz +dy, oz, 2) = Agx + Boz + do,

for some linear operators A;, B; (i = 1,2), dy € V and dy € R™. Therefore, for any 7, > 0, we
have

Tellr (@®) [, 2 )| = | 412 ® + B12®) 4 7.ds |
= | 412" + B12®) + dy — (1 — 7)da ||
> [|[A412®) + By2®) 4 dy|| — ||(1 = 7,)da |,
and by the definition (13) of ¢y, ,

lr (@®), 20N = (| A12®) + B12W + dy |
< melln (@) /7, 2B ) | 4+ (L = ) |
= o, &, 2O+ (1 = 7).
By the boundedness of {(mgﬁ),z(k)) = (2, 7, 2))} and of {1/;H(x£{“),z(k>)}, we know that
{1 (z®), 2N} is bounded. The boundedness of {15(z*), 2(¥))} can be obtained similarly.
Since we have seen that 1 is z-bounded, the above facts guarantee that {z(*)} is bounded,
which implies the z-boundedness of Fj.

Next, we show that Fy is z-injective. Suppose that (zy, yu, 2), (Zu, yu, 2’) € int Ky X int Ky x
R™ satisfy Fy(xyu,yu, 2) = Fu(Zu,yu, 2’). Then, by the definition (9) of F}, we have

y—11(x/7,2/7) =y — 1 (x)T, 2 [T), To(x/T,2/T) = TAbo(x/ T, 2/T).

Since 1) is z-injective, the equivalence z = 2’ follows. I



5 Convex quadratic optimization problems over K

In this section, we discuss applications of Theorem 3.1 to the function ). Consider the quadratic
convex optimization problem QO given by (4). The QO is a special case of the convex opti-
mization problem CO:

(CO) Minimize f(z)
Subject to ¢(z) € —K

(20)

where f : R™ — R is continuously differentiable and convex, g : ™ — V is continuously
differentiable and K -convex, i.e., for any z,2' € R™ and 7 € (0, 1),

79(2) + (1 = 7)g(2") —g(rz+ (1 —7)2) e K

holds. Rockafellar [8] discussed the optimality condition of the CO, and showed that under a
suitable constraint qualification, there must exist z € R™ and z € K such that

g(Z) € —-K, VZL(QI,Z) =0, (x,g(z)) =0 (21)
where L : K x ™ — R is the Lagrangian function given by

L(z,2) = f(2) + (x,9(2))

(see also Shapiro [10] for semidefinite programming cases). Define

b, z) = Y1 (z, 2) _ —9(2) . (22)
Va2 (z, 2) V.L(z,z)

Then, by (iii) of Proposition 2.1, the optimal condition (21) is equivalent to the MiCP with
(22). The following proposition shows that the function ¢ is monotone whenever the CO is
convex.

Proposition 5.1 Suppose that f is continuously differentiable and convez, and g is continu-
ously differentiable and K-convexr on R™. Then the function 1 given by (22) is monotone on
K x R™ in the sense of Assumption 1.1.

Proof:  Since the cone K is self-dual (i.e., K = K* := {y: (z,y) >0 forall z € K}), it
is easy to see that the K-convexity of g implies that (z,g(z)) is convex on R™ for any fixed
x € K. Thus, for any z € K, the function L(z,-) is continuously differentiable and convex on
R™. Let x,z' € K. Then, we can see that

L(z,?) — L(z,2) — (¢ — 2)TV,L(z,2) >0, L(z',2) — L(z',2') — (z — 2\TV,L(z',2) > 0

hold for any 2,2’ € R™. By adding these two inequalities and by the definition (22) of ¢, we
have

0< L(z,2") — L(z, 2) + L(z', 2) — L(z', 2") + (2 — 2 [V, L(z, 2) — V. L(z', 2]
z—a',—g(x) + 9(z") + (z = ) [V.L(z,2) = V,L(a', )]
¢1 (1‘, Z) - 1[}1 (xla Zl)a Tr— 1‘,> + [¢2($, Z) - ¢2(xla ZI)]T(Z - ZI)'

10



Thus, v is monotone in the sense of Assumption 1.1. I

The Lagrangian function L : K x R™ — R for the QO is given by
1
L(x,z) = §ZTQZ +cl2+ (x, Az — b)

and we see that

b z) = P1(x, 2) _ —Az+b (23)
Po(x, 2) Qz+c+ A*x

where A* : V' — R™ is the adjoint of A. Here, we assume that rank(A) = m and @ is positive
semidefinite. Thus, it is easy to see that the function ¢ satisfies (i) and (iii) of Assumption 1.1.
In addition, we can see that g(z) = Az — b is K-convex, and f(z) = $27Qz is convex. Thus,
the function ¢ defined above is monotone by Proposition 5.1. Since the above properties are
invalid if we restrict the domain of ¥ to K x R, we obtain the following corollary.

Corollary 5.2 Suppose that the function 1 is given by (23). If the rank of the linear operator
A is m and the symmetric matriz Q) is positive semidefinite, then b whose domain is restricted
to K x R™ satisfies Assumption 1.1.

It should be noted that the QO is equivalent to
Minimize «
Subject to %zTQz +cT2<a Az—be—-K.

We can represent the above problem as

(QO1) Minimize «
Subject to h(z,a) € =Ky Az—be —-K

where b : R+l — R+ with r = rank(Q) is an affine function and K is a second-order cone.
Since the QO1 is a linear optimization problem over a symmetric cone, the QO can be solved by
using a primal-dual framework for linear conic optimization problems. However, we should add
r = rank(Q)) new variables to the dual form, and the size of primal-dual problems may become
considerably larger than the size of the original problem QO. A merit of our homogeneous
model is that we can deal with the QO directly without adding a large number of variables.

Finally, we consider a more special case of the QO, i.e., the linear optimization problem
(LO) over the symmetric cone K, which can be obtained by setting @ = O in the QO:

(LO) Minimize ¢!z

Subject to Az —be —K

It is well known that the (primal) LO has the following mutually exclusive cases:

- The problem is strictly feasible, i.e., there exists Z such that Az — b € —intK.

11



Primal

feasible infeasible
strictly asympt.
fesible | Oters | feasiple | Others
>0
52 =0 =0
R k=0 k>0
é S
9]
)]
:GE ° =0 =0
b= k=0 k>0
= o
8 = Q
235
o ;5 =0 =0 =0 =0
= g‘;‘_} k=0 k=0 | k=0 k>0
«
2
£ g =0 =0 =0 =0
% k>0 k>0 k>0 k>0

Table 1: Theorem 3.1 for the linear conic optimization.

- The problem is feasible, i.e., there exists Z such that Az — b € —K, but not strictly feasible.

- The problem is infeasible, but asymptotically feasible, i.e. there exists an (unbounded) se-
quence {z(’“)} such that limj_, . A2 — b e —K.

- The problem is infeasible and not asymptotically feasible.

Note that the terminology asymptotically above is used differently from the way in Definition
1.2, where the asymptotically converging sequence {¢*)} should be bounded. It is also known
that the dual problem has the corresponding four cases similarly, and all of the possible 16
cases of primal and dual pair of LOs have concrete examples.

Table 1 shows the results obtained by applying our homogeneous model to primal-dual pair
of LOs (see Theorem 3.1). Each case shows the possible signs of the variables 7(0) and (0)
at any accumulation point of the path (19). The results shown in Table 1 are weaker than
those obtained for the self-dual embedding model for the LOs proposed in [6], in terms of the
discriminant ability to detect the primal infeasibility or the dual infeasibility. A merit of our
homogeneous model is that, as we have seen in Theorems 3.1 and 3.2, it has applicability to
optimality conditions of nonlinear optimization problems over symmetric cones, whenever the
corresponding functions F' and Fy satisfy Assumption 2.2.
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A Proof of Theorem 3.1

(i):

The equation follows from the definition of (13).

(ii): Suppose that (Zy,Ju, 2) is an asymptotically feasible solution (see Definition 1.2). Then
there exists a bounded sequence (2, y% (%)) € int Ky x intKy; x R™ such that

lim (yf — ¢y, (28, 2))) = and lim gy, (2k, 2)) = 0.
k—0 k—o0

The assertion (i) implies that

ok, yb b = (oh, b — { (o (28, 20), o) + ey (2, 20200}

— (Y — gy (k, 20D), 2y — g, (2, 20T (R)

holds for every k > 0. Thus, by the boundedness of z(¥), we see that klim (wﬁ,yﬁ)H = 0 and
—00

(Zu, Ju, 2) is an asymptotically complementary solution.

(iii): For every k > 0, define

) = (1/2)Fe € intK, 73, := (1/2)* € R4,
y®) = (1/2)Fe € intK, Ky, == (1/2)F € R, () .= 0 € R™.
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It is easy to see that the bounded sequence (2, 4%, z0)) = {(2®) 7, y®) gy, 20} C intKy x
R™ satisfies
lim (yf — b, (2§, 2#)) =0, lim g, (217", 2®) = 0.

—00

k—o00
(iv): If (z*, 7%, y*, k", 2%) € (K X R44) x (K x ;) x R™ is a solution of the HMiCP with
7* > 0 then
Yy Tt = (¥ )T 2 ) =0, T e (a T 2Y 7)) =0, 2oyt =0

and (z*/7%,y* /1", 2% /7*) € K x K x R™ is a solution of the MiCP. Conversely, if (Z,7,2) €
K x K x R™ is a solution of the MiCP, then (Z,1,7,0,2) € (K x Ryy) x (K x Ry) x R™ is a
solution of the MiHCP.

(v): By (ii) of Theorem 2.3, the set F (U x R™) is open and convex.

If the MiCP is strongly infeasible, then we must have 0 ¢ cl(F (U x R™)). Since the
set cl(F'(U x R™)) is a closed convex set, by the separating hyperplane theorem, there exists
a=(ar,az2) € V x R™ with ||a]| =1 and & € R that

(a,b) > € >0 forall b= (by,bs) € cl(F(U x R™)). (24)

Since F' is continuous on the set cl(/ x ™) C K x K x R™, we can see that F'(cl(d x R™)) C
cl(F(U x R™)). Therefore (24) implies that

(aaF(xaya Z)> = <alay - ¢1($,Z)> + agwg(x,z)
= <a1vy> - <a1,¢1(m,z)> + ag¢2(xaz)
>¢>0 (25)

for all (z,y, z) € cl(U x R™). Note that (iv) of Proposition 2.1 ensures that the above relation
(25) holds at (z,y,z) = (0,ay,0) for any y € K and « > 0. Thus, it must be true that
(a1,7) > 0 for all § € K. which implies that a; € K. Similarly, since (z,0, z) € cl(Ud x R™) for
every (z,z) € K x R™, it follows from (25) that

—(a1, %1 (2, 2)) +ag9a(x,2) > £ >0 (26)
for all (z,2) € K x R™. Combining with the fact that (a1, —az) € K x R™, we see that
— (a1, ¥1(Bar, —Baz)) + a3 a2(Bar, —Baz) > & > 0 for all B > 0. (27)
From the monotonicity of the map 1 on the set K x R™, we see that
0< <61) - xa¢1(6ma 62) - Zbl(ﬂ), Z)> + [1/)2(/31'7/3Z) - 1/)2(1" Z)]T(ﬁz - Z)

(8 = 1), 1 (B, B2) = v (7, 2)) + (8 = Dlka(Ba, B2) — a(w, )]z
= (8= 1) {{2,41(Ba, 82) — v1(x, 2)) + [ (B, B2) — ol )]}

for all (x,2) € K x ®™ and 8 > 0. Thus, for all 3 > 1, we should have

(z, 91 (B, Bz) — 1 (2, 2)) + [1h2(B, B2) — 1ha(w,2)]T2 > 0 (28)
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and hence,
Jim {(, 1 (B, 62)) + a(B, 82)T 2 /B > 0. (29)
For each (z,2) € K x R™, define the set

U (2, 2) = {2, 2) = (V§°(x, 2), 95 (¢, 2)) = (B, B72) /8% — > (x, 2) for some f* — oo}

where 1> (z, z) € U*°(x, z) may have elements of co or —oo.
We claim that ¥$°(a1,—a2) C K. Let {8} be a subsequence such that 8, — +oo and

Y(BFay, B¥(—as))/B* — 1™ (a1, —az), and let

wl(ﬁkalv 502) - (k) (F) —
E e k= ..
ﬁk =1 ? Cz ) ( 1’ 2’ ) (30)

be a decomposition given by (ii) of Proposition 2.1. We also define
A= min{ AP (0 = 1,2,..,1)}, ji € argminAM (6 = 1,2,.,7)), B = P, (31)

Note that {c¢*)} is a sequence of primitive (i.e., nozero) idempostents of a Euclidean Jordan
algebra (Vo). Thus, by (v) of Proposition 2.1, there exists w; > 0 and we > 0 such that

0<w < ||C(k)|| < wy for every k. (32)

Suppose that {°(a1,—a2) ¢ K. Then there exists a 6 > 0 for which A\ < —§ < 0 for
sufficiently large k’s. Define 2(%) := a; + ec(®) for ¢ > 0. We can see that

{(x(k)a U1 (Bra™), —Braz)) — v (Bra®, —5ka2)Ta2} / B

= {<a1 +ec® oy (Ba®), = Braz)) — w2 (Bra®), —ﬁka2)Ta2} Bk

= {<a1, U1 (Bee™, —Braz)) — o (Bra™, _/Bka2)Ta2} /Bi + e(c®) 4y (Bea™, —Braz)) / B
e(c®, 4y (Bra™, —Bras))/Br  (by (26))

=e {<C(k),¢1 (Bex™, —Braz) — b1 (Brar, —Braz)) + (¢, 41 (Bran, —ﬁka2)>} /B (33)

N

The definitions (30) and (31) and the boundedness (32) of {c(*)} ensure that
(®), 1 (Brar, ~Braz))/ B = Aele™, ™) < —6wf <0 (34)

for sufficiently large k’s. In addition, since we set z(¥) = a; + ec(¥), by the continuity of 1, and
the boundedness of {c¢(*)}, we have

(®) 4y (Bpa®)| —Bras) — ¢1 (Brar, —Braz))/Br = Oe) (35)

for sufficiently small €’s. Thus, by (34) and (35),

(®) by (Bra ™), —Bras) — 1 (Brar, —Braz))/Br + (W), 41 (Brar, —Bras)) /By < —dwi/2 < 0
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and by (33),
{(@®), 61(Bea®), ~Braz)) — o (Bya®, —Bras)Taz} /By < —€dw/2 <0

holds for sufficiently large k’s and sufficiently small €’s. Since z(F) = a + ec¥) € K, by fixing a
suitably small € > 0, the above inequality contradicts to (29) and we must have ¥{°(a1, —a2) €
K.

Next we claim that 95°(a1, —a2) = 0. Suppose that 1¥5°(a1, —az) # 0, then there exists a
v € R™ with v # 0, for which v795° (a1, —as) < —w for some w > 0. Define z(¢) = —ay + ev for
€ > 0. Since the v is a constant vector, we see that

vTpa(Brar, —Braz) /B < —w/2 < 0 (36)

for sufficiently large k’s. In addition, by the continuity of 2, we have

oT o (Brar, —Brz(€)) — va(Brar, —Braz)/Br = Ole) (37)
for sufficiently small €’s. Thus, by (36) and (37),
o 2 (Brar, —Brz(€))] < 0 (38)

holds for sufficiently large k’s and sufficiently small €’s. Here we can calculate that

{(ar, ¥1(Brar, Bz(€)) + v (Brar, Brz()) 2(6) } /B
= {{a1, ¥1(Brar, Bi2())) = Ya(Brar, —Bez(€)) as } /By + b (Brar, —Br=(e)” /By
< edpa(Brar, —Brz()" /By

by (26) and hence, from (38),

{(ar, 41 (Brar, Brz()) + va(Brar, Be(e)) T 2(e) } /B < 0

for sufficiently large k’s and sufficiently small €’s,

By fixing a suitably small € > 0, the above inequality contradicts to (29). Thus, we must
have 95°(a1, —ag) = 0.

We are going to show that ¢°°(a;, —a2) is bounded. Since (fxai, —8kaz) and (e,0) are in
K x R™ by the monotonicity of ¢, we have

0 < ((Brai, —Braz) — (e,0),¥(Brar, —Braz) — (e, 0))/Bk
= (a1,%1(Brar, —Braz)) — a3 o(Brar, —Bra)
+ag Pa(e, 0) + (e, v1 (2, 2(€))) /B — (a1, %1(e,0)) — (e, ¥1 (Brar, —Braz))/Br
< a3 ¥a(e,0) + (e,91(x', 2(€))) / B, — (a1, 91 (e, 0)) — (e, ¢ (Brar, —Braz))/Br

where the last inequality follows from (26). Taking a limit as k¥ — oo from both sides, we have

(e,97° (a1, —a2)) < a3 ¥2(e,0) — (a1,71(e,0)),
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which implies that ¢°(a1, —az) € K is bounded (see (i) of Proposition 2.1). Note that from
(27) and (28), we have

—& > (a1, ¥1(Brar, —Braz)) — a3 o (Brar, —Brasz) > (a1, ¥1(ar, —a2)) — al ¥a(ar, —as).

Thus the sequence {{ay, 1 (Brar, —Braz)) —adhs(Brar, —Braz)} is also bounded. To summarize,
by setting

¥ :=a € K, 7 := lim — =0, 2" 1= —ay € R,

=Y°(a1, —az) € K, k¥ := klim{ (a1,v1(Brar, —Braz)) + a3 P2(Brar, —Braz)} > € > 0,

the MiHCP has an asymptotical solution (z*,7*,y*, k*,2*) € (K x R1) X (K x R;) x R™ with
K* > 0.

Conversely, suppose that exists a bounded sequence {(z®), 7, 4®) K, 2(F))} C (intK x
Ri4) x (intK x R44) x R™ such that

lim y*® = lim Tk1/11(m(k)/7'k,z(k)/7'k) €K,
k—o00 k—o00
Jm = lim {=(1(z® [, 29 /1), 2®)) — g (a®) f 7, 20 i) T2} > € > 0,
— 00 — 00
0= lim Tkwg(x(k)/Tk,z(k)/Tk).

k—o00
Let us show that there is no feasible point (z,y, 2) € K x K x R™ satisfying y — 11 (z, 2z) = 0 and
P9(x,z) = 0. Suppose that (z,y,z) € K x K x R satisfies y — ¢1(x,z) = 0 and ¢9(x, z) =0,
and define 27 = (z,1). Since 1y is monotone on (K xRy 1) x (K x R;) x R™, by the definition
(13) of ¥y and by the assumptions ¢, (x, z) = y and 9 (x, z) = 0, we have

<(xH, K) — (xH, wH(xH’“, ) Y (2, 2))
= (1 (2™ /74, 28 ), 20Dy 4o (2 ®) [, 2 ) T2 (F)
—(x® yy — (s (a® [, 28 f 1), @) — o () [, 2B f) T2 4 (). (39)

Here, we see that (z(¥),y) > 0,

lim (2,5 ®) = (@, lim 7 (2®) /i, 29 /) > 0,

k— o0

and limg_,, 7, = 0 since limg_, o, £ > £ > 0. Thus the relation (39) ensures that
klim (1 (l‘(k)/Tk, z(k)/Tk),m(k)> + 1/12(x(k)/7k, z(k)/Tk)Tz(k) >0
— 00
which contradicts to

(1 (28 f7p, 28 1) 2By — iy (2B [ 7y, 28D f )T R) > € > 00,

In addition, any limit of z(¥) gives a separation hyperplane, i.e., a certificate proving infeasibility.
|
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B Proof of Theorem 3.2

(i) : Since the map Fy satisfies Assumption 2.2, by (ii) of Theorem 2.3, the set Hy(Uy x R™)
with
Uy = {(zx,yu) € Int Ky X intKy : oy oy yu € int Ky}

is an open convex subset of intK, x Vi x R™. Note that we have already seen that 0 €
el (Hy(Uy x ®™)) in (i) and (iii) of Theorem 3.1, and h'") € Hy(Uy x R™) by the definition
(17). Since the set Hy(Uy x R™) is convex, the fact above implies that th(o) € Hy(Uy x R™)
for every ¢ € (0,1]. Combining this with the homeomorphism of the map Hy in (i) of Theorem
2.3, we obtain the assertion (i).

(ii): It follows from (i) of Theorem 2.3 that the map Hy is a homeomorphism and the set P
forms a path in int K x int Ky x R™. Therefore, it suffices to show that the path P is bounded.
Let (zu,yu, 2) = (x,7,y, Kk, 2) € P. Then there exists a ¢t € (0,1] for which Hy (zg, yu,2) = thg))
ie.,

T 0 Y = tew, Y — V1 (2, 2) = £ () = P, (21, 20)) , sy (w1, 2) = tibu (2, 2)

hold (see (17)). By analogous discussions as in the proof of Theorem 5.5 in [11], we can see
that

@y ) + @D ydn < @,y + @Dy P)a
= (1+ ><mH )
=1+ +1)  (by (17)
< 2(r +1).

Thus, the boundedness of the set P follows from (i) of Proposition 2.1 and z-boundedness of
FH-
(iii): Let (z},yh,2*) = (=, 7", y*, k", z*) be an asymptotical solution to the HCP. Then
there exists a bounded sequence
{@F gy, 20} = {(@®), 7, y®), kg, 29)} C intKor x int Ky x R™

such that

lim (21, yie”, 2 %) = (e, 95, 27), lim gl — g, (2, 29) =0,

k—o0 k—o0

klim Y, (mgc), z(k)) = O,klim xﬁf) Ok yl({k) =0.
Let (xu(t),yu(t),z(t)) = (z(t),7(t),y(t), k(t), 2(t)) be any point on the path P. Then,
zu(t) on yu(t) = ten,
yu(8) = ey (2 (1), 2(1)) =y — s, (2, 2], (40)
g (1), 2(1)) = thy (17, 2(%).

By the boundedness of the set P as we have see in (ii) above, there exists an € € (0,1] such
that

lza(@l < 1/e, lya(®)ll < 1/e [l2(B)]] < 1/€ (41)
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holds for every ¢ € (0,1]. In addition, for each ¢ € (0, 1], there exists an index k(t) such that
for every k > k(t), we have

2 — ) < e, Iy -yl < e, [I2® — 2| <,
k
1y =ty (@), 20 || < e, |y (2, 200) | < te.

Since vy is monotone and (i) of Theorem 3.1 holds, by analogous calculations as in the proof
of Theorem 5.5 in [11], we can see that

(u(t), yg’“>> + (yu(t), 23))u

< (au ),y — v, (28, 20+ @8,y (8) — Gy (2 (8), 2(8)) )
wﬂz(xﬁ(w 2(1)72®) — g, (28, 2N T (1)

for every t € (0, 1] and every k > k(t). Therefore, it follows from (40), (41) and (42) that

(n (), yi) e + (1), 24))n
< (@u ),y — o, (@) 20+ @8,y (8) — Gy (20 (8), 2(8)))n
—z%(m() 2(0)72®) — gy (2F), 2N T (1)
= (on ),y — n, (@8, 2y + (@t = o, (2, 2O
[ty (), 2O Tk —wm(x&’“),z(’“))%(t)

< @)y = g (2 2 ’“)||+t||x£{“>||||y£?> iy (24, 2)|
by (2, 2O 2 ||+r|¢H2(mH, RINEOI

< (1/e)(te) + (|2l + Iyt — iy (2, 2@

|, (29, ZO) (125 + €) + (te)(1/e)
< td

(42)

where 6 := 2+ [|BQ|| (|2 || + [|2*]] + 2). Note that (40) implies
Tu(t) = tyg ()7L, yu(t) = toy(t)~h

Combining the relations above, it must hold that for every ¢ € (0,1] and k > k(t)

ty() Ly + (o) 2) g
(), 90) + 85 + (o), 2 ) + 3]

Since (y(¢t)~1,y®*)) > 0 and (z(t)"1,2") >0 ,we ﬁnally obtain that

t6 > (wa(t), y4 )i + (g (), )
—
=t

K

— <4, <9

k(1) T (t)
for every t € (0,1] and k > k(t). The assertion (iii) follows from the facts Ky — r*, 7, — 7*
and § > 0. 1
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