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Abstract 

A genetic algorithm, called MDGA, is proposed for practical scheduling, where bills of 

materials of parts, routings of production operations, and work-in-process inventories on hand 

and in near future, are taken into consideration. The scheduling problem is called a dynamic 

flexible scheduling (DFS) problem. The MDGA algorithm uses the concept of basket of 

requirements in representation of chromosome. MDGA reproduces a population of 

chromosomes with the principle of minimum generation gap (Yamamura et al., 1996) instead 

of simple tournament selection in usual genetic algorithm. 

In order to demonstrate the correctness of MDGA, a comparison with exhaustive search is 

provided, which also shows the difficulty in solving the DFS problem. By applying MDGA to 

a usual job shop scheduling problem, which is a simplified DFS problem, the effectiveness of 

MDGA is shown to be satisfactory. Finally, since MDGA has many parameters, it is 

examined how they effect on solution-search process.  
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1. Introduction 

Nobody knows what will happen in the future. However, something must be predicted 

before it becomes clear due to the leadtime. In the competitive market, for example, it is 

almost impossible to begin a production after the actual demand is known. Based on 

information of the present, decision makers always forecast the future. 

Hopp and Spearman (2000) pointed out three laws of forecasting: (1) forecasts are always 

wrong, (2) detailed forecasts are worse than aggregate forecasts, and (3) the further into the 

future, the less reliable the forecast will be. The second law explains the reason why 

production planning begins with master production schedule (MPS), which plans the 

long-term requirements of the product family. Subsequently, material requirements planning 

(MRP) is used to plans the short-term requirements of an individual product. The third law 

reveals that the less reliable forecast should be revised by some new information.  

In the field of production management, researches try to build a model to predict the 

future demand. The first law does not disparage the activity of forecasting, but call attention 

to the importance of forecast revision. Sato and Tsai (2004) proposed agile production 

planning and control system (APPCS) to incorporate a change into production system and 

provided a methodology to respond to the change agilely and simultaneously. Once there is a 

notification of change, APPCS generates another feasible schedule based on work-in-process 

(WIP). Tsai and Sato (2004) gave a UML model of APPCS to show the realizability of 

APPCS. The schedule developed by APPCS is both practical and feasible, because it is 

compatible with the product data that has the same structure detail with a commercially 

available enterprise resource planning (ERP) package and an advanced planning and 

scheduling (APS) system. 

APPCS provides a feasible schedule, but the schedule is not necessarily good. For a plant, 

a good schedule is the schedule that achieves its own goal and reflects requirements of the 
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market. The goal varies among problems and researches. For most of the scheduling problems, 

it is difficult to meet all the goals. There may be conflict among different goals. Kacem et al. 

(2002) proposed an approach to minimize makespan and total processing time (workload) for 

a flexible job shop schedule problem. The problem is different from the general job shop 

scheduling problem because it assumes the performance of the machines in a work center is 

different. Assigning a fast machine to an operation minimizes both makespan and workload at 

first. However as the capacity of the fast machines approaches to full, the optimization faces a 

dilemma of continuously choosing a fast machine to increase makespan, or choosing a slow 

machine to increase workload.  

Two approaches are possible among the studies that try to achieve multiple goals. The 

lexicographic approach searches for the schedule that meets the goals in a lexicographic order. 

The weighted-sum approach seeks for the schedule that achieves the highest scores of a linear 

combination of the goals.  

A measure of the schedule varies from plant to plant, from single goal to multiple goals 

and from lexicographic approach to weighted-sum approach. This research aims to solve an 

optimization problem that achieves various goals subject to a set of feasible schedules that are 

generated for a set of demands on the basis of product data with resource flexibility and some 

WIP. The problem is called dynamic flexible scheduling (DFS) problem. It is flexible because 

it assigns resources in a work center to an operation, and because it responds to various goals. 

It is dynamic because it is requested to respond to any change in real time. The DFS problem 

is practical because it adopts the product data that is actually used in commercially available 

manufacturing planning software (such as SAP R/3 and SyteAPS).  

NP-hard problems are problems for which there is no known polynomial algorithm, so 

that the time to find a solution grows exponentially in problem size (Hopp and Spearman, 

2000). Job shop scheduling problem is a simplified version of DFS problem, which will be 

shown in Section 4, and it has been shown to be NP-hard by Croce et al. (1995) and 
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Al-Hakim (2001), hence DFS is also an NP-hard problem. 

GA exhibits parallelism, contains certain redundancy and historical information of the 

past solutions. It is suitable for implementation on massively parallel architecture (Wang and 

Zheng, 2001), and it has been applied to a large number of complex search problems 

(Nearchou, 2004). GA does not rely on analytical properties of the function to be optimized, 

which makes them well suited to a wide class of optimization problems (Al-Hakim, 2001). 

However, in view of the randomness property of GA, there is no guarantee of reaching 

optimum solutions for most scheduling problems. 

In this paper, genetic algorithm with MGG and demand crossover (MDGA) is proposed to 

solve DFS problem. MGG is an abbreviation of minimal generation gap that is a generation 

alternation model proposed by Yamamura et al. (1996), which keeps variety of chromosomes 

in a population while preventing the search process from local optima. Unlike one-point or 

two-point crossover, demand crossover is a new way proposed in this paper to exchange the 

genes that are related to some demands without violating the precedence constraints. Aytug et 

al. (2003) provided a review of the use of genetic algorithms to solve the production and 

operations management (POM) problems. The scheduling problem is one of them, but the 

optimization of DFS problem is not in those reviewed researches. In this sense, DFS problem 

is new; in addition practical and suitable for responding to changes agilely as compared to the 

job shop scheduling problem. 

Section 2 introduces APPCS and how it responds to a change by an example. Section 3 

provides a definition of DFS problem, and a formulation of the problem. Section 4 presents 

MDGA, and gives exhaustive search and a comparison with other GAs to demonstrate its 

correctness and effectiveness. Section 5 provides an insight into the performance of MDGA 

through an experiment and gives some advice on applying MDGA to solve DFS problem. 
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2. Agile production planning and control system (APPCS) 

A product data is the data related to product design and manufacturing. The product data 

for APPCS contains part, bill-of-materials (BOM), routing, work center, and resource. Those 

terms are illustrated with a product part shown in Fig. 1a. A gray square in the product data 

shows a part. Finished product, assembly, and raw material are the types of part. This figure 

shows that it needs two pieces of assembly 'A' and two pieces of assembly 'B' to make one 

finished product 'F'. BOM is a term used to define such a request-supply relation.  
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Fig. 1. (a) Product data of part 'F' and (b) a schedule for a demand 'd1' 

A routing is a sequence of operations to make a part. A work center that enrolls some 

resources is assigned to an operation, and the operation will be processed by one of the 

resources. It takes some time to set up a resource before starting an operation. Setup time and 

processing time for processing a piece of part are estimated for an operation. However, the 

operation for procurement is processed without specifying a work center. As shown in Fig. 1a, 

finished part 'F' has two operations – 'F-1' and 'F-2'. Operation 'F-2' is processed at work 

center 'w2' in which resources 'r2' and 'r3' are stationed. It takes 6 time units to set up either 

resource, and 6 time units to process a part.  

A demand is either a customer order or the result of forecasting. In Fig. 1b, a schedule 

generated for a demand 'd1' is illustrated with a Gantt chart. The demand requests 2 pieces of 
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finished product 'F' before due time 150. A rectangular bar in the chart shows a task. In a 

sense, a schedule is a set of tasks that are deployed in a Gantt chart. The dot line with a white 

arrow in the chart shows the precedence constraints that regulate the manufacturing sequence 

of tasks. According to the schedule, a task is released to the shop floor or it is passed on to the 

purchasing department for subsequent processing. According to Gantt chart shown in Fig. 1b, 

the first task (M-0, 8) should be lunched to a vender at time 0.  

Assume a new demand 'd2', which requests 2 pieces of 'F' by time 180, arrives at time 30. 

According to APPCS, once an event causes any changes in a schedule to happen, all the 

planned tasks except for the in-processing ones are canceled and a new feasible schedule is 

plotted out again based on the in-processing tasks according to the updated conditions. When 

the in-processing task is finished, its output becomes a work-in-process (WIP). 
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Fig. 2. A schedule achieves (a) minimum makespan, (b) minimum processing time, (c) 

maximum service level, and (d) a weighted-sum 

Fig. 2a gives a new schedule for demands 'd1' and 'd2' based on the WIP ( M-0, 8 ) whose 

planned finish time is 50. A dot line with a solid arrow shows that 8 pieces of the WIP are 

input to a downstream task ( A-1, 8 ), which starts from time 50. Consequently, it is not 

necessary to generate a task for operation 'M-0'. This schedule achieves minimal makespan. 

Some plants may not satisfy with this schedule, because it indirectly causes a long processing 
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time (318) and tardiness (38).  

Fig. 2b shows another schedule that achieves minimum total processing time (268), and 

the schedule in Fig. 2c attains maximum service level (100%), minimum earliness (0), and 

minimum tardiness (0). It is reasonable to process a group of identical operations together, to 

cut down on setup time of processing or on ordering costs of purchasing. The minimum total 

processing time of the schedule in Fig. 2b is achieved at the cost of service level (0%), 

tardiness (86) and makespan (178). Fig. 2d shows a schedule that compromise a goal with 

makespan of 140 and total processing time of 288 by applying the weighted-sum approach, 

where the minimum makespan and total processing time are 128 and 268, respectively.  

In this manner, any change to a schedule will trigger APPCS to generate an improved, 

goal-oriented schedule recursively. 

3. Dynamic flexible scheduling problem 

3.1. Definitions and notations 

Product data 

The following notations are used in defining product data. An instance of the notation is 

provided following the description. The instance is drawn from the product data shown in Fig. 

1a. 

pi A part 

P={ pi } The set of parts concerned; P = { F, A, B, M, N } 

bmij = ( pi, pj ) An ordered pair indicates that part pj is an immediate component of part pi 

Bm={ bmij } The set of the ordered pairs bmij among parts in P; Bm = { ( F, A ), ( F, B ), 

( A, M ), ( B, N ) } 

Qty ( bmij ) Quantity of pj per unit of pi; Qty ( F, A) = 2 

opij = ( pi, j ) An ordered pair, called an operation, represents the jth processing step to make 

part pi 
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Nop (p i ) The number of operations of part pi; Nop (F) = 2 

Spt ( opij ) Setup time of operation opij; Spt ( F, 1 ) = 4 

Pct ( opij ) Unit processing time of operation opij; Pct ( A, 2 ) = 2 

Pcw ( opij ) Processing work center of operation opij; Pcw ( B, 1 ) = w2 

wi A work center 

W={ wi } The set of work centers; W = { w1, w2, w3 } 

ri A resource 

R={ ri } The set of resources; R = { r1, r2, r3 } 

En ( wi ) The set of resources enrolled in a work center wi; En ( w2 ) = { r2, r3 } 

Recursively applying the request-supply relations defined in Bm, a hierarchy of parts is 

constructed. If each part in the hierarchy is replaced with its operations, then we get a 

hierarchy of operations. 

Rat(opim, opjn) Number of parts necessary to be processed by an operation opjn for a part by 

the successor operation opim defined in the hierarchy of operations; it is 

defined as  

Rat(opim, opjn) = 
!
"
#

),(

1

ji ppQty
 

)(,1,),(if

1,if

iji

ji

pNopnmBmpp

nmpp

==!

+==
 (1) 

Demands 

The following notations are used to denote the demands. The instance provided after the 

explanation is from Fig. 3, which shows a schedule in terms of the terminologies of the 

problem. 

di A demand 

D={ di } A set of demands; D = { d1, d2 } 

Rqq ( di ) Request quantity of demand di; Rqq ( d1 ) = 4 

Rqp ( di ) Request part of demand di; Rqp ( d2 ) = F 

Dut ( di ) Due time of demand di; Dut ( d1 ) = 150 
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Fig. 3. A schedule in terms of terminologies of DFS problem 

Operation requirements 

An operation requirement is a request for an operation. The request is exploded either 

independently or dependently from a demand. 'Requirement' is used instead of 'operation 

requirement' for simplification. The following notations are used in defining requirements and 

their relations. 

rqi A requirement 

Rq={ rqi } A set of requirements exploded from demands D; Rq = { rqi }i=1..14 

Opr ( rqi ) Operation of requirement rqi; Opr ( rq6 ) = (B, 1) 

Net ( rqi ) Quantity (net requirement) of requirement rqi; Net ( rq10 ) = 4 

eij = ( rqi, rqj ) An ordered pair showing precedence relation that rqj must be processed 

before rqi 

Erq = { eij } A set of directed edges representing precedence among requirements Rq; Erq = 

{ (rq1, rq2), (rq2, rq3), (rq3, rq4), (rq4, rq5), (rq2, rq6), (rq6, rq7),…, 

(rq13, rq14) } 

Grq=( Rq, Erq  ) A directed acyclic graph of the requirements Rq 

Pd( rqi ) The set of immediate predecessors of rqi; Pd ( rq9 ) = { rq10, rq13 } 

Sc( rqi ) The immediate successor of rqi; Pd ( rq4 ) = rq3 
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Met( di ) The requirement planned to meet demand di; Met ( d2 ) = rq8 

The requirements in Rq must be generated according to the hierarchy of operations. Let 

(rqi, rqj)∈Erq be arbitrary, and assume that operation Opr ( rqi) = ( pi, m ) and Opr (rqj ) = (pj, n ). 

If pi  = pj, then m = n + 1; otherwise ( pi, pj)∈Bm, m = 1, and n = Nop (pj). Requirements are 

generated to meet the request of all demands. For a demand di, there must be one and only 

one requirement, rqi∈Rq , such that Sc( rqi) = ∅ , Opr ( rqi )  = (Rqp ( di ) , Nop (Rqp(di)) ) and 

Rqq (di) = Net (rqi) hold. 

Tasks 

A task is an operation processed within a period of time by a resource, which is generated 

to meet one or more requirements. The following notations are used for defining tasks and the 

relation with requirements. Notice that for a set A, | A | represents the number of elements in 

A.  

tki A task 

Tk={ tki } A set of tasks scheduled to meet requirements Rq, | Tk | ≤ | Rq |; Tk = { tki }i=1..8 

Rsc ( tki ) The resource assigned to process task tki; Rsc ( tk3) = r3 

Sta ( tki ) The start time of task tki; Sta ( tk3) = 68 

Fin ( tki ) The finish time of task tki; Fin ( tk3) = 86 

Tq ( tki ) A set of requirements scheduled to form a task tki; Tq ( tk4 ) = { rq6, rq13} 

Qt ( rqi ) The task of requirement rqi; Qt ( rq6) = tk4  

Sst Scheduling start time; Sst = 30 

Est ( rqi ) The earliest time at which rqi can be started; Est ( rq3) = 98, Est ( rq10) = 86 

Lft ( rqi ) The latest time which rqi must be completed; Lft ( rq3) = 128, Lft ( rq10) = 128 

The earliest and latest times for a requirement are defined as  

Est ( rqi ) =
!"

!
#
$ %=

&
otherwise))((max

)(if

)(
j

rqPdrq

i

rqQtFin

rqPdSst

ij

 (2) 

and 
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Lft ( rqi ) =
!
"
#$

)))((( irqScQtSta
 
otherwise

)(if !=irqSc . (3) 

WIP 

A rigorous definition of 'work-in-process' that a requirement whose successor is canceled 

by some changes is used in this paper, instead of the general one that a requirement whose 

task is in-processing. This is because that scheduling start time Sst might be far later than 

notification time of a change, and some in-processing tasks might have been completed.  

Wp The set of work-in-processes; Wp = { rqw } 

Qw ( rqi ) A set of WIP that was allocated to a requirement rqi; Qw ( rq4) = { rqw} 

Wq ( rqw ) A set of requirements to which a WIP rqw is allocated; Wq ( rqw ) = { rq4, rq11} 

Alq ( rqi, rqw ) The quantity of WIP rqw allocated to requirement rqi; Alq ( rq4, rqw) = 5 

Constraints on scheduling 

[C1] Operation consistency for a task: The requirements with identical operation can be 

combined to form a task. That is, the following constraint should hold. 

(∀tki∈Tk) (∀rqi, rqj∈Tq ( tki )) Opr ( rqi ) = Opr ( rqj ) (4) 

[C2] Total processing time: The total processing time of a task, i.e. the difference between 

finish time and start time, equals to the sum of setup time and the product of unit processing 

time and the sum of quantities of the contained requirements. It is  

(∀tki∈Tk) (∃rqi∈Tq(tki)) Fin( tki )  − Sta ( tki ) = Spt ( Opr ( rqi ))  + Pct(Opr(rqi ))  ×
)( itkTqjrq !

" Net(rqj).

 (5) 

[C3] Resource flexibility: If there is a resource assigned to a task, then it must be enrolled in 

the work center that is assigned to the operation of requirements satisfied by the task. That is, 

(∀tki∈Tk) (∃rqi∈Tq ( tki )) Rsc ( tki )∈En ( Pcw ( Opr ( rqi ))). (6) 

[C4] Precedence of tasks: The constraint that a task cannot be scheduled to start earlier than 

the latest earliest start time and to finish later than the earliest latest finish time among its 

requirements is denoted by 
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(∀tki∈Tk) Sta ( tki ) ≥ 
)(

max
itkTqirq !

Est ( rqi ) and Fin ( tki) ≤ 
)(

min
itkTqirq !

Lft ( rqi ). (7) 

[C5] Finite loading on resource: The finite loading constraint of a resource is denoted by 

(∀ tki , tkj∈Tk) if Rsc ( tki )  = Rsc ( tkj ) , then [ Sta ( tki ), Fin ( tki) )  ∩ [ Sta ( tkj ), Fin ( tkj) )  = ∅, 

where [ t1, t2 ) means an interval of time from t1 to t2. (8) 

[C6] WIP allocation: A WIP (planned requirement) can be used by a requirement if it has the 

same operation with the WIP, and if the WIP is completed before the successor of the 

requirement starts. That is, 

(∀rqi∈Rq) (∀rqw∈Qw ( rqi )) Opr ( rqi ) = Opr ( rqw ) and Fin ( Qt ( rqw )) ≤ Sta ( Qt ( Sc (rqi ))). (9) 

[C7] Total quantity of WIP: The total allocated quantity of a WIP among requirements cannot 

exceed quantity of the WIP. That is, 

(∀rqw∈Wp) Net ( rqw ) ≥ 
)( wrqWqirq !

" Alq ( rqi, rqw ). (10) 

[C8] Net requirement: For any (rqi, rqj)∈Erq, quantity of rqj is calculated by subtracting WIP 

allocations from the gross requirement requested by rqi. That is, 

(∀(rqi, rqj)∈Erq) Net ( rqj ) = Net ( rqi ) × Rat ( Opr ( rqi ), Opr ( rqj )) − 
)( irqQwwrq !

" Alq ( rqj, rqw ). (11) 

Dynamic flexible scheduling problem 

Denote evaluation functions of makespan by EVmks, service level by EVsvc, and tardiness 

by EVtds for a schedule. Dynamic flexible scheduling (DFS) problem is defined as: 

Minimize EVmks = ))((min))((max
i

Tktk
i

Tktk

tkStatkFin
ii
!!

" , (12) 

Maximize EVsvc = DdDutdMetQtFinI ii
Ddi

/)))()))((((( !"
#

, where I: { T, F } → { 1, 0 }, or (13) 

Minimize EVtds = }0),()))(((max{ ii
Dd

dDutdMetQtFin
i

!"
#

, (14) 

Subject to the following eight constraints. 

[C1] Operation consistency for a task 

[C2] Total processing time 

[C3] Resource flexibility 
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[C4] Precedence of tasks 

[C5] Finite loading on resource 

[C6] WIP allocation 

[C7] Total quantity of WIP 

[C8] Net requirement 

3.2. Problem formulation  

Requirement arrangement, requirement aggregation, resource assignment, WIP allocation, 

and scheduling alternatives are the steps to formulate DFS problem in a systematic way.  
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Fig. 4. (a) Legal sequences of requirements, (b) sequences of baskets, (c) possible resource 

assignments for a sequence of baskets, (d) possible WIP allocations for a set of requirements 

(1) Requirement arrangement: Production planning and scheduling assigns available capacity 

(a time interval) of a resource to requirements in Rq. To solve the conflict caused when 

more than one requirement requests for the same period of time from a resource, these 

requirements are arranged to a sequence 〈rqi〉i=1..|Rq| (rqi∈Rq) and the capacity of resource 

is assigned to the requirements in order of the sequence. Let SQ = { sq1, sq2, …, sqk } be a 

set of all legal sequences on the requirements in Rq, where a sequence of the requirements 

is said to be legal if the order of the requirements doesn’t violate the precedence 
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constraints Erq. Fig. 4a shows the set SQ. 

(2) Requirement aggregation: The requirements with the same operation that are located 

adjacent to each other in a sequence can be grouped together into a basket. A basket is a 

basic unit of scheduling and the requirements in a basket will be scheduled together to 

form a task. A basket is for a requirement if either side of the requirement does not have 

any requirement with identical operation. The aggregation of adjacent requirements 

without shifting their position in a sequence complies with the precedence constraints Erq. 

Denote a set of sequences of baskets by QAi = { qai1, qai2, …, qaim } on a sequence of 

requirements sqi  SQ. Fig. 4b shows the possible cases of QAi  for a sqi  SQ in Fig. 

4a. 

(3) Resource assignment: A work center is assigned to an operation except operations that 

need to be planned lead time for procurement. To keep it simple, we assume that such an 

operation is assigned to a dummy work center. A basket, including at least one 

requirement, inherits work center from the requirements, and one of the resources in the 

work center is assigned to the basket for scheduling. For a sequence of requirements 

sqi  SQ, and for a sequence of baskets qaij QAi, let RAij = { raij1, raij2, …, raijk } be a set 

of sequences of resource-assigned baskets. Fig. 4c shows some instances of resource 

assignment for a sequence of baskets in Fig. 4b. Dummy resource is assigned to baskets 

k1 and k3, because they are the aggregation of procurement requirements. 

(4) WIP allocation: Quantity of WIP can be allocated to the requirements of the same 

operation, as shown in [C7], in the new scheduling run. Fig. 4d shows the alternative ways 

to allocate 8 units of WIP rqw to rq5 and rq12. Let WA be a set of the possible WIP 

assignments from WIP in Wp to requirements in Rq.  

(5) Scheduling alternatives: SA = { fs, bs } is a function set of two scheduling alternatives - 

forward scheduling and backward scheduling. Backward scheduling generates a schedule 

backwardly from due time of a demand, while forward scheduling does it forwardly from 
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the scheduling start time Sst. 

/* Terms denote baskets together with their relations with requirements 
Bk={ bki }  A set of the resource-assigned baskets 
〈bki〉i=1..|Bk| A sequence of baskets on Bk 
Bq ( bki )  A set of requirements in a basket 
 
/* Production planning and scheduling 
Production_ Planning_and_Scheduling ( Sequence of baskets: 〈bki〉 ) 
(01) IF scheduling alternatives = 'forward scheduling' 
(02) THEN DO Forward_Scheduling (Sequence of baskets: 〈bki〉); 
(03) ELSE DO Backward_Scheduling (Sequence of baskets: 〈bki〉); 
 
/* Backward scheduling of a sequence of baskets 
Backward_Scheduling ( Sequence of baskets: 〈bki〉 ) 
(04) FOR each basket bki∈Bk in a reverse order of 〈bki〉 
(05)  Calculate quantity of each requirement in bki by [C8]  
   in the confines of [C6];  
(06)  Generate a task tkn for all requirements in bki due to [C1]; 
(07)  Get resource rs assigned to basket bki due to [C3]; 
(08)  Calculate total processing time tpt of tkn by [C2]; 
(09)  Get a set of intervals Itv of resource rs whose length ≥ tpt  
   and finish time ≤ min{ Lft( rq ) | rq∈Bq(bki) } due to [C4];  
(10)   Pick an interval of the latest finish time fin from Itv, and  
   reserve capacity [ fin − tpt, fin ) of rs for tkn due to [C2]. 
(11) ENDFOR 
(12) IF any task in the Gantt chart starts before Sst 
  THEN DO Forward_Scheduling ( Sequence of baskets: 〈bki〉);  
 
/* forward scheduling of a sequence of baskets 
Forward_Scheduling (Sequence of baskets: 〈bki〉 ) 
(13) FOR each basket bki∈Bk in a reverse order of 〈bki〉 
(14)  Calculate quantity of each requirement in bki by [C8]; 
(15) ENDFOR 
(16) FOR each basket bki∈Bk in the order of 〈bki〉 
(17)  Generate a task tkn for all requirements in bki due to [C1]; 
(18)  Get resource rs assigned to basket bki due to [C3]; 
(19)  Calculate total processing time tpt of tkn by [C2]; 
(20)  Get a set of intervals Itv of resource rs whose length ≥ tpt, 
   start time ≥ max{ Est( rq ) | rq∈Bq(bki) } due to [C4], and 
   start time ≥ max{ Fin (Qt (rqw)) | rqw∈Qw(Bq(bki)) } due to 
[C6]; 
(21)   Pick an interval of the earliest start time sta from Itv, and  
   reserve capacity [ sta , sta + tpt ) of rs for tkn due to [C2]; 
(22) ENDFOR 

Fig. 5. Procedures of production planning and scheduling 

The ways to calculate the total number of cases in requirement arrangement, requirement 

aggregation, and WIP allocation are shown in Appendix A, B, and C, respectively. Domain of 
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DFS problem formulated in a systematic way can be denoted by U U
SQ

i

QA

j ij

i

RAWASA
1 1= =

!! . 

Production planning and scheduling is to transform a sequence of resource-assigned baskets 

with respective WIP allocation and the specification of a scheduling alternative into a set of 

tasks, which can be deployed on a Gantt chart. One basket, including a set of requirements, is 

converted to a task.  

The procedure of production planning and scheduling is shown in Fig. 5. Lines from (01) 

to (03) show that a chromosome running forward scheduling or backward scheduling is 

determined by the scheduling alternative. Lines from (04) to (11) show backward scheduling 

runs net requirement planning together with scheduling in a sequence one by one from the 

rear basket back to the front one. In line (05), quantity (net requirement) of each requirement 

in a basket is planned by deducting effective quantity of WIP allocation (due to [C6]) from 

gross requirement of the successor according to [C8]. Lines (06) and (07) show that a task is 

generated for a basket and the resource for the task is brought from the basket. Referring to 

[C2], total processing time of a task is calculated in line (08). In line (09), available intervals 

of the resource enough and in time for the processing time are gathered. Finish time of the 

intervals cannot be later than the start time of the successor requirements. The interval with 

the latest finish time among the intervals is selected and occupied with the processing time of 

the task as denoted in line (10). Finally, as shown by line (12), if the schedule by backward 

scheduling starts before scheduling start time Sst, then forward scheduling is triggered to 

generate a feasible schedule from Sst. 

Forward scheduling plans net requirement from line (13) to (15), then runs scheduling 

from the front basket to the rear one as listed from line (16) to (21). The net requirement 

planning is similar to backward scheduling with the exception that all allocated WIP is forced 

to be used in offsetting the gross requirement as shown in line (17). However, finish times of 

the WIP must be taken into consideration in determining the earliest start time of the task. As 
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shown in line (20), the earliest start time forces a new task to start after not only the finish 

times of the predecessor requirements but also the allocated WIP.  

The result of production planning and scheduling of a sequence of baskets appeared in Fig. 

4 is shown in Fig. 6, in which 'qty', 'tpt', 'lft', and 'est' are total net requirements, total 

processing time, latest finish time, and earliest start time of a basket, respectively, for 

deploying a task in the Gantt chart. As shown by Fig. 6a, backward scheduling plans from 

basket k8 to k1. A WIP rqw that ends in time 50 is allocated to requirements rq5 and rq12, 

but the WIP is not in time for tasks tk3  and tk5 , hence the allocation is unusable. 

Consequently, the schedule by backward scheduling is not feasible because it starts before the 

scheduling start time Sst. Forward scheduling is done, accordingly. Fig. 6b shows the resultant 

feasible schedule run by forward scheduling starting from Sst = 30, while the allocated WIP is 

used, hence less material needs to be purchased. 
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Fig. 6. Results of (a) backward scheduling, and (b) forward scheduling 

4. Genetic algorithm with MGG and demand crossover (MDGA) 

This paper proposes a specific genetic algorithm, called MDGA, to solve DFS problems. 

A chromosome acts as information carrier through the processes of MDGA. It joins the 

reproduction process to propagate its offspring by demand crossover and mutation. Then, the 

offspring’s fitness values are measured to compete with those of other chromosomes by 
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minimal generation gap (MGG) generation alternation process to decide whether they can be 

promoted to the next generation. If lost, it is abandoned to have more room for a new 

chromosome. The processes of reproduction and selection are repeated until all termination 

conditions are satisfied. The correctness and effectiveness of MDGA will be examined by 

exhaustive search and a comparison with other GAs. 

4.1. Encoding  

To encode a chromosome is to represent an instance of domain of DFS problem. A 

chromosome is a combination of components, called genes. We encode a gene with a 

requirement, and a chromosome with a sequence of requirements.  
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Fig. 7. The mapping of DFS problem to the GA encoding 

A gene has four attributes: operation, aggregation flag, resource, and WIP allocation. 

Aggregation flag and operation advise whether the gene is capable of aggregating with other 

genes. A chromosome has an attribute for scheduling alternative, which suggests whether the 

chromosome should run forward scheduling or backward scheduling. Fig. 7 shows the 

encoding corresponding to the DFS problem, where 'opr' indicates the operation, 'res' the 

assigned resource, 'agf' the aggregation flag, 'wip' the WIP allocations of gene, and 'schAlt' the 

scheduling alternative.  
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If several genes have the same operation, 'True' aggregation flags, and are adjacent each 

other in a chromosome, then they are grouped together in a basket. Subsequently, the 

responsible resource for a group of genes is randomly selected among resources of the genes. 

As a result, a chromosome can be decoded back to a sequence of baskets. 

4.2. Initialization 

At first a set of chromosomes is randomly generated to form a population. An 

initialization procedure is proposed in Fig. 8a to generate a legal chromosome for the initial 

population, where the lines from (02) to (09) are a loop for sampling a sequence of genes 

without violating the precedence constraints. The key to that is appending the predecessor 

requirements to the sampling pool Q in line (04) immediately after a requirement is removed 

from Q as shown in line (03). For a gene, a resource is randomly skimmed off among the 

resources selected by applying [C3] in line (06), and the aggregation flag is set in line (07). At 

the end, the quantity of WIP, if any, is distributed to suitable genes randomly according to 

rules [C6], [C7], and [C9] in line (10). From line (11) to (12), a chromosome is generated to 

contain the sequence of genes, and the scheduling alternative of the chromosome is set to be 

either forward scheduling or backward scheduling. 

/* Generate an initial population of chromosomes 
(a) Initialization ( ) 
(01)  Put the last requirement in Rq into a queue Q; 
(02)  WHILE Q is not empty 
(03)   Remove any requirement rqi from Q; 
(04)   Add predecessor requirements Pd(rqi) to Q; 
(05)   Create a gene gn for rqi; 
(06)   Choose a resource in En(Pcw(Opr(rqi))) 
   for gn due to [C3]; 
(07)   Set aggregation flag of gn to be 'True' or 'False'; 
(08)   Append gn to a queue of genes G; 
(09)  END WHILE 
(10)  Allocate quantity of WIP to genes in G randomly 
  according to [C6], [C7], [C9];  
(11)  Designate a chromosome C contains G; 
(12)  Assign a scheduling function in { ' fs', 'bs' } to C; 

/* Generation alternation with rMGG 
(b) rMGG ( m, n, k ) 
(01)  Generate m chromosomes as initial population P; 
(02)  FOR each generation UNTIL nth generation 
(03)   Remove 2 chromosomes {x, y} from P; 
(04)   Apply N-demand crossover on {x, y},  
    and get { x', y'}; 
(05)   Evaluate x' and y'; 
(06)   Choose the best fit from { x, y, x', y'} as b; 
(07)   Choose any one from { x, y, x', y'}−{ b } as 
a; 
(08)   Put a and b back to P; 
(09)   IF random number < k 
(10)    Select a chromosome ch from P; 
(11)    Apply shift mutation to ch, and evaluate it; 
(12)   END IF  
(13)  END FOR  

Fig. 8. Procedures of (a) initialization, and (b) generation alternation with rMGG 
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4.3. Reproduction 

Two methods, crossover and mutation, are used in MDGA to reproduce new 

chromosomes. In general, crossover operator randomly selects two chromosomes from a 

population, exchanges some genes of them, and reproduces two new chromosomes. Mutation 

operator randomly selects a chromosome from the population, reverses some data, and then 

puts it back to the population. For DFS problem, both operators must comply with the 

precedence constraint when reproducing a new sequence of genes. The crossover and 

mutation of MDGA are explained as follows. 

(1) N-demand crossover 

The genes in a chromosome with common attributes form a sub-chromosome. The genes 

sharing the same resource are competitors, while the genes belonging to the same demand are 

partners. Besides, the genes reside in a sub-chromosome with their positions in the 

chromosome might provides some valuable information on solving DFS problem. 

After selecting 2 chromosomes from the population, N-demand crossover begins with 

choosing N demands from D randomly, and then identifies the genes belonging to those 

demands in both chromosomes. Finally, it exchanges the genes from N demands in a 

chromosome with the genes in another chromosome.  
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Fig. 9. The reproduction operators 
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Fig. 9a shows how one-demand crossover swaps genes {g4, g5, g6}, which belong to 

demand d2 as shown in Fig. 7, between parent chromosomes {x, y} to make a child 

chromosome c. Similarly, two-demand crossover swaps genes from demands { d1, d3 } in a 

chromosome with the genes from the same demands in another chromosome, as shown in Fig. 

9b. 

The crossover operator exchanges not only the sequence of genes in a chromosome but 

also the embedded information including aggregation flag, resource, and WIP allocations. If 

the sum of the WIP allocations violates the constraint [C7] after crossover, deduct the surplus 

or replenish the shortage from the WIP allocations. 

In order to consider the general cases, assume that the selected N demands contain a set of 

genes G = { g1, g2, …, gn } in a chromosome. The chromosome is a sequence of genes denoted 

by x=G1 <{g1}<G2 <…<{gn}<Gn+1 , where '<' means the precedence relation in a chromosome, 

and G1 , G2 ,…, Gn+1  are sets of sub-chromosomes; on the same assumption, the same 

genes in chromosome y can be denoted by y=H1 <{g1}<H2 <…<{gn}<Hn+1 . 

Define the crossover of x and y as )())(( 1
1 GyGxyx i

n
i !"!=#
+
=U , where 'Q↓S' means 

taking genes in set S away from sequence Q but remaining the position of other genes 

unchanged, and 'Q↑P' means filling up the empty position in sequence Q with genes in a 

sequence P. However, the crossover of x and y, x⊗y , is not necessarily equal to y⊗x . The 

N-demand crossover operator abides by precedence constraints, because the genes in 

sequence n

ii
g

1=
 and ( H1 <H2 <…<Hn+1 ) belong to different demands.  

(2) Shift mutation 

A single gene is chosen randomly from a chromosome, and then inserted into a random 

position after its preceding genes and before its succeeding gene as shown in Fig. 9c. Besides, 

resource and aggregation flag of the gene, and scheduling alternative of the chromosome are 

randomly given a new value. The WIP allocation to the gene, if any, is set to 0, and the 
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mismatch caused by shift mutation invokes a process to redistribute WIP quantity among 

those genes sharing the WIP.  

4.4. Generation alternation 

Generation alternation models are important to provide controls on searching process. 

Existing works have often used SGA (simple or standard GA) for a fixed generation 

alternation model. Yamamura et al. (1996) proposed a roulette minimal generation gap 

(rMGG) as an extension of MGG. The MDGA applies rMGG to generation alternation. 

Fig. 8b lists the steps of generation alternation of MDGA. Line (01) shows the generation 

of initial population; from line (03) to (08), the N-demand crossover operator; and from line 

(10) to (11), the shift mutation operator. The crossover operator selects two chromosomes 

from the population as shown in line (03), reproduces two descendants in line (04), evaluates 

them in line (05), chooses the best one among the four chromosomes in line (06) and any one 

from the remains in line (07), and puts the two chromosomes back to the population with 

replacement in line (08). In this figure, m denotes the population size, n the number of 

generations, and k the mutation rate. 

The main difference between SGA and MDGA is that SGA reproduces all the offspring at 

a generation then carries out the tournament selection from the whole population, while 

MDGA executes roulette selection from the 4 chromosomes immediately after reproduction. 

MDGA keeps variety of chromosomes in a population, prevents the search process from 

rushing into local optima. 

4.5. Correctness and effectiveness 

(1) Exhaustive search  

Exhaustive search (ES) is to examine all the possible elements in domain of DFS problem 

to find the best solution. As shown in Table 1, according to 4 sets of demands, four problems 

based on the product data shown in Fig. 1a, and 8 units of WIP M-0 are prepared. These 

problems and their results by ES and MDGA are shown in Table 1.  
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No Demand set 
(part, qty, due) 

DFS problem 
Domain size Time Result Emks Eprt Etds Esvc 

ES 120 170 0 100 1 d1=(F, 4, 150) 5,760 3 sec 
MDGA (sn1) 120 (1) 170 (3) 0 (1) 100 (1) 

ES 120 212 0 100 2 d1=(F, 4, 150) 
d2=(A, 4, 120) 25,021,440 3.1 hrs. 

MDGA (sn) 120 (44) 212 (42) 0 (579) 100 (35) 
ES 120 248 0 100 

3 
d1=(F, 4, 150) 
d2=(A, 4, 180) 
d3=(B, 4, 80) 

4,149,596,160 21.4 days 
MDGA (sn) 120 (34) 248 (475) 0 (338) 100 (562) 

ES2 126 268 0 100 4 d1=(F, 4, 150) 
d2=(F, 2, 180) 115,142,123,520 49.5 years 

MDGA (sn) 120 (633) 268 (1,162) 0 (25) 100 (39) 
1 'sn' means number of times of the scheduling run when the best value is found by MDGA. 
2 The result of running exhaustive search for about 2 months. 

Table 1. Result of the exhaustive search 

We accomplished the exhaustive search of problem 1, 2, and 3. Problem 4 had been tried 

for two months on a PC, while the best value found by ES during the search is even worse 

than that of MDGA. The correctness of MDGA is proved by that it achieves the optimum 

value identical to the result of ES. The computer executing ES and MDGA can process about 

2000 chromosomes per second. The fact that MDGA reaches the optimum value in less than a 

second gives an account of the efficiency. 

(2) Benchmark 

Job shop scheduling (JSS) problem is a subset of DFS problem. Moreover, JSS problem is 

a restricted DFS problem. If we do not use bill of materials, routing flexibility, WIP, or setup 

time, if we specify only forward scheduling as the scheduling alternative, and if we select 

makespan as the evaluation function, then we have a JSS. In other words, it is hardly to 

produce a practical schedule by solving JSS where the use of product data is inevitable. 

A benchmark of some famous JSS problems is used to compare with the work of Croce 

(1995), who proposed an encoding based on preference rules and an updating step which 

speeds up the evolutionary process. The problems whose identification starts with 'MT' are 

from Muth & Thompson, and with 'LA' are from Lawrence, according to Croce (1995).  

It is not appropriate to compare the performance of GA on the basis of time, since the 

experiments are carried out on different computers with different operating system and 

implemented by using different programming languages with different skill. As MGG has 
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different definition of a generation with SGA, generation is not adequate for comparison 

either. Croce measured the performance on the basis of the number of chromosomes 

generated during a run. In a similar way, we count the times of scheduling as the basis of 

comparison.  

The number of N-demand crossover (NDC) is set to the maximum degree (half of the 

number of demands). No mutation is set in the benchmark. Table 2 shows the performance of 

MDGA where the number of scheduling (SCH) is used as the termination parameter. SCHs 

are set to 10000, 30000, and 60000, respectively. Croce’s result is shown for comparison, 

which uses 30000 chromosomes. Two population sizes (POP) are set: POP=50 in 

SCH=10000 for faster termination, and POP=100 in SCH=30000 and SCH=60000 for slower 

termination. If MDGA achieves the best value so far (OPT) by applying POP=50 to some 

easy problem, then the test for POP=100 is omitted. The best makespan shown in the table is 

selected over five runs, and so is the average makespan. 
MDGA Croce 

POP=50 POP=100 POP=300 
SCH=10000 SCH=30000 SCH=60000 SCH=30000 Problem n m OPT1 NDC2 

Best Avg. Best Avg. Best Avg. Best Avg. 
MT06 6 6 55 3 55 55.0     55 55.0 
MT10 10 10 930 5 955 965.2 939 949.0 939 948.4 946 965.2 
MT20 20 5 1165 10 1176 1193.4 1174 1178.0 1165 1172.2 1178 1199.0 
LA01 10 5 666 5 666 666.0     666 666.0 
LA06 15 5 926 7 926 926.0     926 926.0 
LA11 20 5 1222 10 1222 1222.0     1222 1222.0 
LA16 10 10 945 5 967 979.0 959 973.6 946 963.0 979 989.0 
LA21 15 10 1048 7 1074 1098.8 1066 1077.4 1055 1071.2 1097 1113.6 
LA26 20 10 1218 10 1281 1294.8 1220 1230.8 1218 1226.6 1231 1248.0 
LA31 30 10 1784 15 1784 1784     1784 1784 
LA36 15 15 1268 7 1336 1339.4 1305 1312.0 1297 1306 1305 1330.4 

1. 'OPT' means the best value found so far by the heuristic researches.  
2. 'NDC' means number of demand crossover using in the benchmark. 

Table 2. Comparison of MDGA with Croce’s GA 

By observing Table 2, MDGA is not a bad method for solving JSS problem. Furthermore, 

its ability overcomes simple JSS solvers, in the sense that MDGA provides a way to handle 

practical product data and then is able to produce feasible schedule.  
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5. Experimental analysis 

An experiment is conducted to investigate the factors and mutual effects on applying 

genetic algorithms with MGG and demand crossover (MDGA) to dynamic flexible 

scheduling (DFS) problem. Population size 50 is set, and the number of N-demand crossover 

(NDC) is set to be 0.5| D |. The product data used in the experiment is shown in Fig. 10a. The 

factors in DFS problem that might have influence on performance of MDGA are the number 

of demand, routing flexibility, and evaluation functions.  
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Fig. 10. Experiment data of (a) product data, (b) No. of demands, and (c) resource flexibility 

[1] Number of demands (ND): The number of demands increases exponentially in domain 

size of DFS problem. Four levels of the factor are set in the experiment as shown in Fig. 

10b, which are ND=3 (nd03), ND=6 (nd06), ND=12 (nd12), and ND=60 (nd60). The 

demands in nd06, nd12, and nd60 are generated by splitting quantity of a demand in 

nd03 into 2, 4, and 20, respectively. The domain of nd03 is a subset of nd06, because 

requirements exploded from demands in nd03 can be composed by aggregating the 

requirements from demands in nd06. Similarly, nd06 and nd12 are sub-problems of 
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nd12 and nd60 respectively. 

[2] Resource flexibility (RF): A resource is called flexible, if it works for more than one 

work centers. Resource flexibility is defined as the average number of work centers that 

a resource joins. Three levels of the factor, rf01, rf03, and rf05, are well prepared, as 

shown in Fig. 10c, to make the work center - resource pairs in rf01 and rf03 be subset of 

the pairs in rf03 and rf05, respectively.  

[3] Evaluation function (EF): Three evaluation functions are performed in the experiment, 

which are makespan, service level, and tardiness.  

There are 27 cases composed by 3 NDs, 3 RFs, and 3 EFs in the experiment, and each 

case runs 10 times. The result of each run is evaluated when the number of scheduling (SCH) 

equals 30000.  

We run the cases on a laptop computer with Centrino Penitum® M 0.9 Ghz CPU, and the 

necessary times for running problem nd03, nd06, nd12, and nd60 are 50, 105, 250, and 2610 

seconds, respectively. If the numbers of demands are 100, 200, and 300, the necessary times 

become 200, 1600, and 7500 minutes, respectively. The time needs to run a case grows up 

exponentially with the length of a chromosome. 
  RF 
  rf01 rf03 rf05 
ND EF Best Avg. Diff. CV Best Avg. Diff. CV Best Avg. Diff. CV 

Makespan 14338 14338 0 0.000 11073 11254 181 0.013 11073 11352 279 0.023 
Service level 67 53 14 0.306 67 63 4 0.158 67 67 0 0.000 nd03 
Tardiness 9033 9164 131 0.036 4658 5712 54 0.097 4067 5381 1314 0.160 
Makespan 13322 13333 11 0.008 10442 10569 127 0.009 10390 10465 75 0.005 
Service level 83 76 7 0.000 83 67 17 0.000 83 67 17 0.000 nd06 
Tardiness 6673 6976 303 0.020 1212 3420 2208 0.344 313 3713 3400 0.393 
Makespan 13172 13194 22 0.002 10406 10601 195 0.003 10390 10628 238 0.004 
Service level 83 73 10 0.045 100 74 26 0.060 100 74 26 0.034 nd12 
Tardiness 6673 11667 4994 0.016 0 4246 4246 0.180 0 3379 3379 0.479 
Makespan 13112 13587 475 0.003 10406 13498 3092 0.031 10390 11752 1362 0.007 
Service level 83 63 20 0.026 100 66 34 0.043 100 68 32 0.033 nd60 
Tardiness 6673 76189 69516 0.046 0 52360 52360 0.140 0 49856 49856 0.139 

Table 3. The best and statistical results of the experiment 

Table 3 shows the best value, average value, performance, and variance of the cases. The 
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'best' values, found so far, of the evaluation functions are discovered by setting parameters to 

keep MDGA in a divergence status for a long time. The average value is measured over 10 

optimal values of a case. Performance of MDGA is defined as the difference between the 

average value and the best one. The variability of applying MDGA to runs of the cases in the 

experiment measured by coefficient of variance (CV), denoted by δ / µ, where δ is the 

standard deviation and µ the mean of the optimal values. 

Since there is an inclusive relationship between levels of ND and RF, the smaller the lot 

size and the more flexible the resource, the better the best value can be found. However, 

increasing ND and RF not only provide MDGA with a better chance of optimization, but also 

enlarge domain size of the problem. The DFS problem with large domain size challenges the 

limits of MDGA’s ability. As shown in the table, increasing ND and RF improves the optimal 

value at first, but it gets worse when ND and RF continue to increase.  

The large ND aggravates the performance of MDGA. RF performs in a similar way with 

ND except that increasing RF won’t delay the response time or severely worsen the 

performance of MDGA. A plant with high resource flexibility using MDGA against 

uncertainty is regarded as capable of responding to a change well and efficiently. 

In general, the case setting makespan as evaluation function has low variability (CV < 0.1). 

Whether or not service level performs stable depends very much on the problem. For some 

difficult cases like the combination of nd06 and rf03, the performance of service level 

obtained by setting tardiness as evaluation function is even better than by setting service level 

itself. There are n+1 degrees of service level if ND equals to n. Having few degree of 

evaluation makes MDGA easy to converge to a degree and dull to make a step toward a better 

degree. The cases setting tardiness as evaluation function has high variability (CV > 0.1) when 

ND and RF are high. The solution to the high variability of tardiness is to run a case longer or 

set a larger population. 
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6. Conclusion 

A genetic algorithm with MGG and demand crossover (MDGA) is proposed to solve 

dynamic flexible scheduling (DFS) problem. The problem is formulated and its domain is 

associated with the searching space of GA to encode a chromosome of MDGA. The problem 

is practical, goal-oriented, resource flexible, and capable of doing rescheduling dynamically. 

Though MDGA approach to DFS problem has its own value, this research is also an 

augmentation of agile production planning and control system (APPCS) that only generates a 

feasible schedule. 

MDGA integrates minimal generation gap (MGG) and demand crossover. The 

effectiveness and correctness of MDGA have been shown by a benchmark and the exhaustive 

search. The formulation of DFS problem makes the exhaustive search possible.  

The response time of MDGA to DFS problem increases exponentially with the length of a 

chromosome, which is determined by the shape of BOM, routing, and number of demands. 

Therefore, when MDGA is applied to a plant, to estimate execution time, it is necessary to 

calculate the length of a chromosome made from the BOM, routing, and demands. The 

experiment suggests that if the lengths of a chromosome are 700, 900, 2000, 3000, and 4500, 

then the response times will be 05 hour, 1 hour, 0.5 day, 1 day, and 5 days, respectively. A 

more efficient algorithm for a huge DFS problem will be a topic of future research. 

A balance between the flexibilities and the ability of MDGA is a key point to get a better 

optimal value. The experiment for the example indicates that a double or triple flexibility 

improves about 10% - 25% of optimal value.  

Forecasting is always wrong. Reserving safety buffers for a forecasting error is not the 

only way against unknown uncertainty. Forecasting revision is shown to be possible by 

APPCS and improved by MDGA. 
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Appendixes 

Appendix A: The total number of legal permutations on requirements in Rq 

The size of the set SQ depends on the size of the set Rq, and the shape of graph Grq on Rq. 

An example of the graph is shown in Fig. 3. The graph is split into two branches b1=〈 rq1, 

rq2,…, rq7 〉, b2=〈 rq8, rq9,…, rq14 〉, and both branches have two sub-branches b11=〈 rq3, rq4, 

rq5 〉, b12=〈 rq6, rq7 〉, and b21=〈 rq10, rq11, rq12 〉, b22=〈 rq13, rq14 〉, respectively.  

The requirements in a branch is regulated by precedence constraints, but no such 

constraint exists among branches of the same level, e.g. b11 and b12. A permutation on 

elements of the lower-level branches determines a sequence of the higher-level branch. 

Let n

ii
rqN

1=
!"=  and m

ii
rqM

1=
!"=  be two legal sequences of requirements. A sequence 

mn

ii
rqV

+

=
!"=

1
 is a legal permutation on n

ii

m

ii
rqrq

11
}{}{

==
!  if NrqV

m

ii
=!

=1
}{  and MrqV

n

ii
=!

=1
}{ , 

where '−' is a function removing the elements in a set from a sequence without changing order 

of the sequence. The various requirements, whose precedence relation within M and N is 

unchanged, can be viewed as the same requirements in permutation. Hence, the total number 

of permutations is (m+n)!/m!n! or nm

m
C

+ .  

For example, 10
23

=
+

e
C  legal permutations of b1  is determined by permutations on 

requirements in b11 and b12. In a similar manner, b2 also has 10 permutations. There are 

432,3
77

7
=

+
C  legal permutations for a permutation of b1 and a permutation of b2. Size of the 

set of legal sequences |SQ| in Fig. 4a is thus 10×10×3432=343200. 

 

Appendix B: The number of requirement aggregations for a sequence of requirements 

Assume there are n requirements with the same operation that are linked together 
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somewhere in a sequence. The n requirements can be put into 1, 2,…, m (m  n) baskets with 

each basket having (c1, c2, …, cm) requirements. For example, 6 requirements can be put into 

3 baskets by ways of (4, 1, 1), (3, 2, 1), and (2, 2, 2). The number of alternatives to 

distribute n requirements into m baskets with each basket having (k1, k2, …, km) requirements 

is )!!...!()...(
21

21

3

1

21 v

mk

mk

kkn

k

kn

k

n

k
bbbCCCC

!!! , where bi, i=1..v, are numbers of baskets whose number of 

requirements is equal and ! =
=

v

i i
mb

1
. For example, there are 15)!1!2()( 1

1

2

1

6

4
=!CCC  ways to 

put 6 requirements into 3 baskets by way of (4, 1, 1). The numbers of ways for the other 

cases (3, 2, 1) and (2, 2, 2) are 10 and 15 respectively.  

There are 7 groups of 2 requirements with the same operation linked together in the 

sequence sqi shown in Fig. 4b. Each group has 2 ways of aggregation, i.e. either aggregate or 

not, hence 1282
7
==iQA . 

 

Appendix C: The number of WIP allocations  

Let’s first consider the problem of allocating q units of a WIP to n requirements with each 

requirement having ci (i=1..n) units such that ! =
=

n

i i
qc

1
 and ci is a natural number. This 

problem can be viewed as permutation of q units of WIP and n different requirements. Let 'o' 

represent a WIP, ri (i=1..n) a requirement, and the permutation 'r1 o o o r5 r3 o….' shows c1=0, 

c5=3, and c3=0, i.e. the number of WIP before a requirement represents the allocated quantity. 

Since 'r1 o o o r5 r3 o….' and 'r5 o o o r3 r1 o….' represent the same set of WIP allocation, the 

precedence relation of requirements in a sequence must be fixed to avoid such duplication. 

Total number of permutations is thus (q+n)!/q!n! or nq

n
C

+ . 

Assume | Wp | = u, and (q1, q2,…, qu) are the quantities of WIP allocated to number of 

requirements (n1 , n2 ,…, nu ) in Rq, then there are unuq

un

nq

n

nq

n
CCC

+++
!! ...22

2

11

1
 ways of such 

allocation. The number of possible allocations for the case shown in Fig. 4d is 45
28

2
=

+
C . 
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