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Abstract

In optical networks, wavelength converters are required to improve
the efficiency of wavelength-division multiplexing. In this paper, we
propose a genetic algorithm to determine the optimal locations of the
nodes where a given number of converters are placed. Optimality is
achieved by the minimum wavelength blocking probability. Our algo-
rithm is applied to realistic networks constructed from the locations of
NTT offices in Ibaraki and Kanto areas, and is shown to reach the op-
timal solution in a limited number of generations. The computational
time is compared with the exhaustive search algorithm.



1 Introduction

In communication networks, the use of the optical technology has been popular
for the need of wide bandwidth, high-speed transmission and a large number
nodes. For optical transmission, wavelength division multiplexing (WDM) is
proposed which has the ability to spend many independent optical wavelengths
on a single fiber link. One wavelength is dedicated to each channel between
two adjacent nodes of the network. Interconnection between nodes is given a
set of available wavelengths.

Because of the limitation on the number of the wavelengths in each direct
link, there may not be a through wavelength between a pair of source and des-
tination nodes of the path. The packets going to a destination node may reach
their destination by hopping through a sequence of intermediate nodes. With
wavelength conversion capabilities inside the network, the nodes are capable
of routing different wavelengths, which can be reused throughout the network
to establish all the required connections [1,2,3]. A wavelength converter is a
device that can be placed on the node where the wavelength conversion mech-
anism is assigned. It converts data from one incoming wavelength to another
outgoing wavelength. It can improve the utilization of wavelengths and mini-
mize the network cost [3].

We consider the converter placement problem as a kind of combinatorial
optimization problem with constraints. Converters are placed in distinct nodes
because the number of converters is limited. Each placement yields a blocking
probability value of the network. The optimal solution will be found if a
combined placement of converters has the minimum blocking probability value.
The method of searching the optimal solution in a combinatorial problem is
problematic due to the regional search of feasible solutions. Exploring the
search space of feasible solutions to get an optimal solution has brought several
algorithms to develop.

Approaches for the converter placement problem have been developed in
exact as well as heuristic algorithms. Exact algorithms use exhaustive search
that delivers an optimal solution; an implementation is based on the construc-
tion of auxiliary graphs [4,5]. Heuristic algorithms are based on probabilistic
performances with computational results such as random placement [1]. In
[6], the authors explore the impact of placement of converters on the blocking
probability performance for different numbers of converters whose nodes are
obtained by genetic algorithm and for different conversion degrees.

We focus our study on using genetic algorithm that is of a heuristic type to
determine the set of nodes with converters which gives the minimal blocking
probability. We present our experimental results for small and large networks.

Genetic Algorithms (GAs) have been applied to various optimization prob-
lems [7,8,9]. The GA process uses a mechanism of natural selection from



biology concept. This is an evolution of individuals from one generation to
the next, based on the elimination of weak individuals and the reproduction of
strong individuals. The individuals are analogous to the possible solutions of
the problem. The stronger individuals are related to the nearly-optimal sclu-
tions that we search in optimization problems. These individuals will survive
over a number of generations until the strongest one remains, that is, an op-
timal solution of the problem is obtained. For reproducing individuals in the
population, genetic operators like selection, crossover, and mutation are used.
These operators will explore more combinations of individuals which may lead
to an optimal solution of the problem.

In this paper, we propose a GA mechanism for optimizing the converter
placement. Section 2 contains a detailed formulation of the converter place-
ment problem and evaluation of the blocking probability. Genetic algorithms
in general are described briefly in section 3. The implementation of GA for
the converter placement problem is given in section 4. Results of experiments
with GA and comparison of the GA solutions to the solutions found by the
exhaustive search algorithm are presented in section 5. In section 6 we make
some concluding remarks.

2 The Converter Placement Problem

2.1 Network Model

Following [4], we introduce a network model of the converter placement prob-
lem using graph terminology. Consider a directed graph G = (V, L), where
V is the set of nodes and L is the set of directed links in the network. Let
the nodes be numbered 1,2,..., N and let l;; represent the directed link from
node 7 to node j. There are F wavelength on each link, and each call requires
a full wavelength on each link it traverses. Call requests arrive randomly at
each source node and select any of the remaining nodes as their destination
with equal probability. Each call uses a prespecified shortest path. All the
shortest paths in the network are assumed to satisfy the optimality principle.
This principle states that if a node z is on the optimal shortest path from
node y to node z, the optimal shortest path from node = to node z follows the
same route on that part of the path from y to z. If the prespecified shortest
path is available, a lightpath is established between the source and destination
nodes. Otherwise, the call may not be routed through an alternate path and
is assumed to be blocked. .

Let A = [A;] be the traffic matrix, where A;;, i # j, denotes the node
load from node i to node j, and A; = 0. Let the link load per wavelength be
pi; for link [;;. Specifically, p;; is the probability that a given wavelength is
occupied by a lightpath on link {;;. The link loads per wavelength per link can



be obtained from the node loads by

(1) Pii = EF/\" V nodes s,d

such that the path from s to d includes link [; provided A,q is so small that
pij < 1 for all i and j. Once p;’s are obtained, we assume for the simplic-
ity of computation that the load for any wavelength on a link is statistically
independent of the link loads for all other wavelengths and on all other links.

2.2 Evaluation of Blocking Probability

Suppose that K is the number of converter nodes to be placed in the network.
Let C = (c(1),¢(2),...,¢(K)) be the converter placement vector such that
1< (i) <e(t+1) < N,1<i< K. The entries of C denote the placement of
converters among the nodes 1,2,..., N. Now consider the path p of an end-
to-end call from a source node s to a destination node d in the network. We
define a segment to be the set of links on the path between two consecutive
converter nodes or between the source (or destination) and a converter node.
If the path contains no converter nodes, it consists of a single segment between
the source and destination.
Let us assume that

(2) G, =1~ (1~ {ParPusia - - Peni )T

is the success probability for the segment from node i to node j on the path,
where pz, = 1 — pgy for link L, and 1y, 13, . . ., i, are the nodes in the segment
between nodes i and j. Let k be the number of converters placed on the
nodes (excluding the source and destination nodes) of path p, where 0 <
k < K. Given the converter placement vector C for the network, we have
d,a = (d(1),d(2),...d(k)) C C as the converter placement vector for path p
such that the entries of d,; correspond only to those nodes of path p which
have converters on them. This divides path p into k£ + 1 segments. Hence the
success probability for the end-to-end call from source s to destination d with
converter placement vector C' is given by

3 5(C) = I1 f(s)

where f(s;) = f(d(i),d(i + 1)),1 < i < k — 1, is the success probability for
the segment s; between the converter nodes d(i) and d(f + 1). f(se) is the
success probability for the segment between the source node s and converter



node d(1), and f(sg) is the success probability for the segment between the
converter node d(k) and the destination node d. The blocking probability for
this call is

(4) Poy(C) = 1— S,4(C)

Thus we can calculate the blocking probabilities for all end-to-end calls in the
network. We can then obtain the blocking performance I'(C) of the network
with converter placement vector C by

Yovsd AsdPed(C)
ZVs,d Asd

The above formula will be used to calculate the blocking performance and
to select the best converter placement that gives the minimum blocking prob-

ability in the network.

(5) rC) =

2.3 Exhaustive Search Algorithm

A simple way to solving the optimal converter placement problem is to use
the method of exhaustive search and blocking performance computation. In
this method, given the directed graph G with N nodes and the number K of
converters to be placed, we initially obtain the set of all converter placement
combinations CJ¥,1 < j < (ﬁ) Here (ﬁ) is the number of combinations to
choose K converter nodes out of N nodes. C;‘ is the jth converter placement
vector and can be further expanded as Cf* = (cf(1), f(2),. .., ¢} (K)) where
¢5(é),1 < i < K, is the node of the ith converter in the jth combination. For
each converter placement combination, we calculate the blocking performance
according to Equation (5). Then we select the converter placement combina-
tion which gives the minimum blocking probability as the optimal placement.
Obviously, this method is not an efficient way to solve the problem unless N
and K are small.

3 Genetic Algorithm

Genetic algorithm (GA) is based on the genetic processes from natural se-
lection; it uses the terminology from natural genetics. In natural behavior,
populations of the individuals evolve according to the principle of selection
and survival of the fitness. Individuals that are more successful in adapting to
their environment will have a better chance of surviving and reproducing. This



means that the genes from the highly fit individuals will spread to an increas-
ing number of individuals in successive generations. The combination of good
characteristics from highly fit individuals will produce more fit offsprings as
new individuals. In this way, species evolve to become more and more suited
to their environment. :

GA works with a population of individuals, which is represented by an
array structure [10]. Each individual has a chromosome or a string of genes.
Every gene has the values, called alleles, which are, in binary representation,
0 and 1. The initial population is created as a random number of strings.

GA process takes an initial population and applies genetic operators such as
crossover and mutation in each reproduction, and a new generation is evoived.
Each individual encoded into a string represents a possible solution of the
problem. It is assigned a fitness value that is evaluated according to a given
objective function. The fitness of each individual determines whether it will
survive or not. After a number of iterations, or a stopping criterion is met, it
is hoped that a nearly-optimal solution is found.

At each iteration, individuals in the population are selected for breeding
by the selection procedure. It randomly selects individuals as parents in favor
of the more fit individuals. The highly fit individuals have opportunities to
produce new individuals as children who share some characteristic with their
parent. There are several methods of selection. Tournament selection, roulette-
wheel selection, and ranking selection are the main selection methods used
in GA. In the tournament selection, the individual with the highest fitness
wins the tournament, and the GA selects this individual to contribute to the
reproduction. In the roulette-wheel selection, the ratio of an individual’s fitness
to the sum of all fitness values in the population determines its chance of
being selected. In the ranking selection, the population of individuals is sorted
according to an objective function.

Crossover combines two parents to form two new individuals as children
with some features inherited from the parents. There are several types of
crossover operators such as one-point crossover, two-point crossover, and uni-
form crossover. In the one-point crossover, a point called the crossover point
is selected at random to separate each parent into two segements. The two
segments, one from each parent, are then swapped to create two children.
In the two-point crossover, two points selected at random break each parent
into three segments, and a segment of one parent is exchanged with that of
the other parent to produce two children. In the uniform crossover [11}, two
parents generate a single child by copying genes from the parents. Copying
corresponding genes from one or the other parent creates a child. One of the
parents is chosen according to a binary random number 0 or 1. If the random
number is 0, the gene is copied from the first parent. Otherwise it is copied
from the second parent.



After crossovers generate a child, the mutation is applied; it alters each
gene with a small probability. By selecting one or more genes randomly, the
bit values of the genes will change from 0 to 1 or 1 to 0. The genes of an
individual are independently mutated. That is, the mutation of a gene does
not affect the mutation of other genes. Mutation plays a role to restore lost
genetic values when the population converges too fast.

By the genetic operators the new individuals are created to make a new
population. The new population of individuals can be formed by the steady
state approach or by the generational approach. The steady state approach
chooses the best individuals out of the new as well as old individuals. The
generational approach replaces the old population with the whole new set of
individuals.

The population will evolve over successive generations so that the fitness
of the best and average of individuals in each generation increases towards the
expected solution of the problem. The GA process repeats until an expected
solution is found.

A problem of using GAs for combinatorial problems occurs when the genetic
operators breed individuals that produce an infeasible solution which does not
satisfy the constraint of the problem. In such a case, a method of handling
constraints must be added for satisfying the constraint and producing the
feasible solution.

GAs are search algorithms often used to solve optimization problems. As
a good search technique, GA has two abilities; exploring and exploiting. By
crossover operators, GA explores the space of possible solutions, and creates
more diverse members of the population. Exploitation makes use of the pre-
vious possible solutions for finding an optimal solution. Mutation may create
individuals with the new fitness value which is better than the previous one.

A typical GA process consists of the following procedures:

e Initialize the population of individuals
e Evaluate the fitness value of each individual
do
e selection, to select parents from the population for reproduction
e crossover, to produce children from selected parents
e mutation, to alter some genes of selected children
e evaluate the fitness value for the children
e replace some or all individuals of the population by children



repeat do until a stopping criteria condition is satisfied.

More description of GA in general can be found in [10,11,12].

4 Genetic Algorithm for Converter Placement
Problem

In this section, we present a GA for the converter placement problem. Each
individual represents a possible solution to the problem as a string of bits. By
a random procedure, we create the initial population. Genetic operators such
as crossover and mutation will generate possible solutions. With constraint
handling, we arrange the GA to satisfy the constraint and only feasible solu-
tions are produced. When the stopping criteria condition is satisfied, we find
a nearly-optimal solution to the problem.

4.1 Representation of Converter Placement

We use binary representation in encoding the possible solution. The converter
placement is represented by an array of values 0 and 1. We can use this bit
array for two alternative meanings.

In the first meaning of bit values, it represents the combination number in
all converter placement combinations. For example, consider a network with 5
nodes and 2 converters to be placed. The number of combinations is (g) =10,
and 1 < j < 10 corresponds to number j of the combinations. We construct
the ordered set of 2-out-5 combinations as follows: number 1 is the converter
placement at nodes 1 and 2, number 2 at nodes 1 and 3, and so on until number
10 at nodes 4 and 5. Thus we form the bit array of length 4. Since we have
10 combinations the size of search must not exceed 10. An infeasible solution
occurs if the bit array has a value 0 or greater than 10.

The second meaning of bit values has a direct representation of the con-
verter placement. For example, in a network with 5 nodes and 2 converters
to be placed, vector solution = = (z;), 1 < j < 5, means that if z; = 1, node
7 is selected, and z; = 0 otherwise. The length of the array is 5, since there
are 5 nodes in the network. The bit array 01100 means that it selects nodes 2
and 3 for converter placement. An infeasible solution occurs when the number
of 1-bits exceeds the number of converters to be placed. The weakness of this
representation can be solved by a constraint handling method. Another prob-
lem is that it produces sparse vectors when the number of converters is small
in a network with a larger number of nodes. For example, vector 0000011000
means that it selects nodes 6 and 7 out of 10 nodes in a network. Then this
representation has high possibility to produce infeasible solutions.



In our implementation of GA to the converter placement problem, we may
employ either representation depending on the case. If the number of convert-
ers is small, it tends to produce many infeasible solutions; we then use the
first representation. If the number of converters is large or many 1-bit values
occur, the number of infeasible solutions may not be too large; we can then
use the second representation.

4.2 GA Process

Let us elaborate each procedure of the GA process for searching the optimal
combination of nodes with converters.
Initialization

Each individual of the population is a possible solution to the problem.
The GA starts with an initial population which is generated from the random
seeds.
Evaluation of Fitness Value

The objective function to be minimized is the value of blocking probability
given in Equation (5). To maintain uniformity over the problem domain, we
use a fitness value for the objective function normalized to a convenient range.
The normalized objective function indicates the fitness of an individual that
the selection uses to evaluate. Individuals with good fitness value will be
selected for the next generation. Our GA will search the vector solution that
minimizes the blocking probability.
Selection

We use the tournament selection method for selecting two parents to pro-
duce new individuals for the next generation. This selection leaves only those
individuals with highest fitness values in the population [10].
Crossover

We use the uniform crossover operator for exploration of diversity in the
individual’s bit [11]. The probability of crossover is given in the parameter
setting. Using the sequence of random numbers generated with this probabil-
ity, GA performs the uniform crossover on selected pairs of parents.
Mutation

The mutation procedure is applied after the crossover on each child inde-
pendently. Every child has an opportunity for changing the bit value according
to the probability of mutation. The probability of mutation is given in the pa-
rameter setting. This value determines the probability that each bit in the
child is changed.
Replacement

The new individual replaces the old individual or their parent in order to
maintain a fixed population size if the fitness value of the new individual is
higher than that of their parent. If the fitness value of the new individual is



lower than that of their parent, the new individual is discarded and the next
generation employs the old individual.

4.3 Handling Constraints

In our GA process, the initialization, crossover, and mutation procedures will
breed new individuals with new fitness values. If they do not satisfy the con-
straint conditions, the GA produces infeasible solutions. We avoid producing
infeasible solutions by changing the bits of binary representation in accordance
to the constraint.

Let us refer back to the representation examples in section 4.1. In the first
meaning of representation, the feasible solution of bit array must be between
the value of 0001 and 1010. If the new individuals does not fall in this region,
the constraint is violated. To satisfy the constraint some value must be added
if the individual has a bit array 0000; some value must be subtracted from
a bit array greater than 1010. In the second representation, the number of
1-bits is the number of converters. If it exceeds the number of converters, the
constraint is violated. To satisfy the constraint, some 1-bits must be changed
to 0-bits. If the number of 1-bits is less than that of converters, some 0-bits
must be changed into 1-bits. For changing the bit values, we choose random
bit positions until the constraint is satisfied.

The method of handling constraints modifies the GA process. It is in-
corporated in the initialization, crossover, and mutation procedures in order
to produce only feasible solutions. Then the space of feasible solutions may
include the optimal solution.

The effect of using only feasible solutions to evaluate the fitness values
of individuals depends on the probabilities of crossover and mutation. The
crossover and mutation should maintain a certain degree of diversity in the
population so as not to converge immediately to one feasible solution.

4.4 Stopping Criteria

A disadvantage in the optimization with GA is the difficulty of deciding when
to stop {7]. Although statistical variables such as average and best fitness
values are available in each generation, their values change almost unexpectedly
as generations evolve. Stopping after a certain number of iterations with no
improvement or when the change in average fitness is small may cause the
algorithm to stop too early or too late. '

Another stopping criterion may be that if the average fitness attains the
value we expect then the iteration stops. In this case, the number of iterations
may become large and the long computation time may be needed.

In the present study, we have used a stopping criterion based on the number
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of generations. Our algorithm stops when the generation counter exceeds the
preset maximum number of generations.

5 Experimental Results

In this section we show some numerical results of using GA for the converter
placement problem. From the source data in the NTT database of their of-
fice locations (http://www.ntt-east.co.jp/tariff /ryoukin/) we construct Ibaraki
and Kanto Networks to test our GA.

First, by the Delaunay triangulation [13] for a given set of node locations,
we get the links of the network. Since the network uses the optical transmis-
sion, all the distance values between two adjacent nodes are assumed to be the
same. With Djikstra algorithm, the shortest paths between any two nodes are
obtained.

5.1 Ibaraki Network

We first construct the Ibaraki Network from N = 14 office locations in Ibaraki
Prefecture as shown in Figure 1.

In our experiment, we assume the optical network design and traffic require-
ment as follows:

e Number of wavelength F' = 3

e Number of converters K = 2

e All the node loads are the same, and given by A,¢4 = 0.1
The GA parameters for computation are as follows:

e Population size = 20

¢ Mutation probability = 0.00333

e Crossover probability = 0.6

e Maximum number of generations = 20

Our experiments run under Unix on a Digital Celebris GL workstation.
The results are presented in Figure 2 which shows performance of the worst,
best and average solutions. The z-axis represents the number of generations
and the y-axis is the value of the objective function. GA starts with the initial
generation which consists of 20 individuals according the parameter setting.
Each individual represents a combination of converter nodes out of 14 nodes
in the network. It has the fitness value related to the blocking probability. An
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individual with the best value in each generation is the one with the smallest
value of blocking probability among all individuals in the population. The
average in each generation is the average value over the 20 individuals in the
population. In Figure 2, the initial generation starts with the average value
0.051178, the worst value 0.054491, and the best value 0.045410. In generation
4, all individuals exhibit the same value, which is said that GA has come to
the premature convergence behavior without guaranteeing the optimal solution
[10]. However, after generation 4, GA improves the individuals’ values by
exploiting the search space in the previous generation with mutation procedure.
Then in generation 10 the optimal solution is reached. From the display in
this figure we can see the performance of GA to obtain the optimal solution.
Our GA has produced an optimal solution in a small number of generations.

5.2 Kanto Network

The Kanto Network with N = 82 nodes is constructed similarly. It is more
complex as shown in Figure 3.

At first, the optical network design and traffic requirement are assumed as
follows:

e Number of wavelength F = 3
e Number of converters K = 2

e All the node loads are the same, and given by A4 = 0.01

A plot of the blocking probability value versus the ordered number of node
combinations for the converter placement computed from the exhaustive search
algorithm is shown in Figure 4. In this figure, the minimum blocking probabil-
ity value is found to be 0.486743 at the combination number 2102 out of (%) =
3321 ways of converter placement. The combination number 2102 corresponds
to the converter placement at nodes 33 (Mitsukaido City, Ibaraki Prefecture)
and 39 (Kuki City, Saitama Prefecture).

The GA parameters which we use for the Kanto Network are as follows:

e Population size = 40
e Mutation probability = 0.00333
o Crossover probability = 0.6

e Maximum number of generations = 60

12



The performance of GA is shown in Figure 5, where the generation starts
with the average value 0.510037, the worst value 0.513699, and the best value
0.503240. In generations 6 to 8, GA comes to the premature convergence
behavior.

However, after generation 9, GA improves the individuals’ values by ex-
ploitation. In generation 17, the premature convergence behavior appears
again until generation 24. Then in generation 36, GA finds the optimal so-
lution at 0.486743 with convereters at Mitsukaido City and Kuki City. This
agree with the result of exhaustive search shown in Figure 4.

In Figure 6 we present the best value performance of GA for different
numbers of converters (K = 0, 2, 3, 5, 10, 20, 50, and 82) for the Kanto
Network with F' = 3 and )\,q = 0.01. The GA parameters are: '

e Population size = 40
e Mutation probability = 0.00333
s Crossover probability = 0.6

e Maximum number of generations = 200

As expected, a larger number of converters can decrease the value of block-
ing probability. As the search space becomes larger, the convergence is attained
more slowly. The value K = 0 corresponds to the case in which no converters
are placed in the network. It can be used as the upper bound of the blocking
probability. The value K = 82 corresponds to the case in which all nodes
are equipped with converters. It provides the lower bound of the blocking
probability.

Table 1 compares the computational time of our GA with the exhaustive
search algorithm for the Kanto Network with various numbers of convert-
ers. The computational time requirement of the exhaustive search algorithm
becomes large in proportion to the size of the search space which ErOwWs ex-
ponentially with the number of converters. In contrast, the computational
time requirement of GA barely grows with the number of converters. This
experiment shows that the computational time of GA achieves considerable
improvement over the exhaustive search.

13



Table 1: Runtime of exhaustive search and GA for the Kanto Network.
K| Search Space [ Exhaustive (min.) [ GA (min.)

2 3321 1:06 5:02
3 88560 28:45 5:32
512.72853 x 107 7.45 days 6:08
10 { 2.13928 x 10 - 7:20

20 | 6.20877 x 10! - 9:02
50 | 5.93991 x 10 - 12:30

6 Conclusion

‘The purpose of our GA method is to produce a possibly optimal solution for
a certain population of individuals in a limited number of generations. This
method is tested to obtain the optimal converter placement for the Ibaraki
and Kanto Networks constructed from the NTT office locations. We have
compared the performance with the exhaustive search algorithm.

A major difference between GA and exhaustive search algorithm is in the
search space for the optimal solution. Exhaustive search must work to compare
the blocking probability values for all combinations of converter placement in
a network. For large networks where the number of combinations grows, it
needs explosive computational time for searching the optimal solution. On the
other hand, since GA restricts trials to feasible solutions it does not need to
compare all of the blocking probability values.

GA tries to reach an optimal solution for a certain population in a number
of generations. Using probability model in crossover and mutation to produce
more diversity in the population, it can bring more chance to produce the so-
lution with optimal value. It has been shown by our experiment that GA can
produce an optimal solution in a limited number of generations by spending
less time than the exhaustive search method.
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Figure 3: Configuration of the Kanto Network.
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Figure 4: Exhaustive search for the Kanto Network with 2 converters.
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Figure 5: GA performance for the Kanto Network with 2 converters.
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Figure 6: GA best value performance for the Kanto Network with K= 0, 2, 3,
5, 10, 20, 50, and 82 converters.

18



Bk ) F I

RN




