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Abstract

In this paper, a brief introduction is presented for a stochastic sensi-
tivity analysis in financial engineering, The analysis is essentially based
on an integration by parts technique in the stochastic calculus of varia-
tions, traditionally known as Malliavin calculus. In particular, the present
technique is applied to the simulation of the Greeks, i.e., option price sensi-
tivities with respect to model parameters. We first describe a constructive
approach to compute the Greeks using integration by parts formula in
Malliavin calculus. Then, we apply the method first to European options
where formulas can be computed explicitly. Later we study the case of
Asian options where closed formulas are not available, and new estimators
are derived for Delta sensitivities. It is demonstrated that the present
technique enables the simulation of the Greeks without differentiation of
the payoff functions,

1 Introduction

In a risk management of derivative securities, sensitivities of an option price are
an important measure of the risk and there exists a great need for the efficient
computation of sensitivities, Commonly referred to as the Greeks in finance,
they are mathematically defined as the partial diffrential sensitivity coefficients
of the option price with respect to underlying model parameters. In financial
engineering, finite difference approximations are heavilly used to simulate the
Greeks by means of Monte Carlo or Quasi Monte Carlo procedures. However,
it is well:known that the finite difference approximation soon becomes inefficient
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particullary when payoff functions are complex and discontinuous., This is often
the case when we deal with exotic options such as American options, Asian op-
tions, lookback options, etc. For instance, in American options, the execution
time of options is not fixed but depend on & time interval, and in Asian options,
the payoff depends on some average of the asset value in a given period of time,

To overcome this difficulty, Broadie and Glasserman (1996) proposed a method
to take the differential of the payoff function inside the expectation operator re-
quired to compute the option price. But this idea (i.e., likelihood ratio method)
is applicable only when the density of the random variable involved is explicitly
known, Recently, Fournie et al. (1999) (2001) suggested the use of Malliavin cal-
culus, by means of an integration by parts, to shift the differential operator from
the payoff function to the underlying diffusion (e.g., Gaussian} kernel, introducing
a weighting function. Benhamou (2000) extended the method by expressing the
weighting function as a Skorohod integral to give a general description of solutions
for the Malliavin weights. Some extensions to barrier and lookback options have
been studied by Gobet and Kohatsu-Higa (2001). The real advantage of using
Malliavin calculus is that it is applicable when we deal with random variables
whose density is not explicitly known as the case of Asian options.

Another examples, which have been studied by Koda and Okano (2000) and
Okano and Koda (2001) but that are not covered in this paper are models in-
volving a step function and non-smooth objective functions. In these studies, the
stochastic sensitivity analysis technique based on the Novikov’s identity is used
instead of Malliavin calculus.

In this paper, we present a brief introduction of Malliavin Calculus, and de-
scribe a constructive method for a stochastic sensitivity analysis in financial en-
gineering, The present approach enables the simulation of the Greeks without
resort to direct differentiation of the payoff function. As a result, new estimators
are derived for Delta sensitivities of Asian options, where no closed form solutions
are available. For more complete and rigorous treatment of Malliavin Calculus,
interested readers are referred to Nualert (1995).

The remainder of the paper is organized as follows. In Section 2, we briefly
review the essence of Malliavin calculus. In section 3, we present the constructive
method to derive integration by parts formula. Section 4 shows some explicit
formulas for the case of European options. In Section 5, we investigate the case
of Asian options, We conclude in Section 6.

2 Malliavin Calculus

Following the standard notations that can be found in Nualert (1995), the most
concise presentation of Malliavin Calculus may be as follows. Let W = {W;}tej0)
be a standerd one-dimensional Brownian motion defined on a complete probability
space (0, F, P). Assume F = {F, }se0,y) I8 generated by W. Let R be the space



of random variables of the form F = f(W,,,..., W, ), where f is smooth. For
F & R, DtF = Z?ﬂl B—i—‘ (Wtu e ,Wﬁn)ll(]'t‘](t). For k © Z+ and P 2 1, let IDk'P
be the completion of R with respect to the norm

ka1 T /,
1Ellep = (00 £ P+ E[(Z/o ' / | Dy F I o)),

J=1

where Di,, F = Dy, ... D, F. We let |[Flo, = (E[F¥]}¥? = |[Fll, and D> =
Ny, D%P. For procsses u = {w: }ieppy) on (2, F, P, Dz’ﬂp({o,m is defined as D*® but
. : 1 ;
with norm || @ {|x,p,L2¢0,= (Z[[} u "22([0,1})]+E[(>:;7=1 fol o Jo D3, st ”%2([0,1])
d81 - de)pﬂ])l/p.
We denote by D*(u) the Skorohod integral or the adjoint operator of D. This

adjoint operator behaves like a stochastic integral. In fact, if u; is JF; adapted,
then D*(u) = fol u,dW;, the Ito integral of u (see, e.g. Nualert (1995)). Here we

write D*(u) = ful u, dWy, even if u; is not F; adapted. Of the formulas we will
use, the following are worth mentioning,

1 1 1
D*(Fu) :=/ FutdwtzFf ’U:tth'"/ (D, F)udt (1)
0 0 0
for F € DM and E[F? [ u2dt) < oo; and

5] /0 I(DtF)utdt] — BIFD"(u)], )

where E[:] denotes a suitably defined expectation operator.

As a byproduct of all the above formulas one may obtain the integration by
parts formula. However, in this exposition, it is enough to note that the idea
behind the operator (i.e., Malliavin derivative) D is to differentiate & random
variable with respect to the underlying noise generated by the Wiener process
W, Accordingly, we just formally interprete that the relation D, = 5-(-‘;@“—,:7 holds.
With this in mind, we have some examples as follows: '

DtWt = 1,
D.f(Wy) = f'(W),

o.( [ smam) = [ smaaw.s som),

etc., where f is a continuous differentiable function with at most polynomial
growth at infinity.



3 Constructive Derivation of Integration by Parts
Formula

In this Section, we will formally describe a constructive approach to derive an
integration by parts formula proposed in Kohatsu-Higa and Montero (2001). To
begin with, a way to understand any integration by parts formula is through the
following general definition.

Definition: Given two random variables X and Y, we will say that the in-
tegration by parts formula is valid if for any smooth function f with bounded
derivatives, we have the relation

Bf'(X)Y] = E{f(X)H],

for some random variable H = H(X,Y).

One can deduce an integration by parts formula through the duality prin-
ciple given in Eq. (2). Let us denote Z = f(X) and using the chain rule of
differentiation, we have

D,Z = f{{X)D.X.

Then, multiplying the above by Y'h(s) where h is a process to be chosen appro-
priately, we obtain
D,ZYh{s) = f{(X)D: XY h(s).

Integrating this for s € [0, 1], we have
) 1 1 1
f D,ZYh(s)ds = / F(X)D,XYh(s)ds = F/(X)Y f h(s)D,Xds,
1] . 0 0

then, a simple manipultion of the terms in the above equation yields

Y vus)D,Zz
/ofolh(v)D,,dedswf(X)Y'

Therefore, by using the inner product notation and taking the expectation, we
have

E[< DZ,u > 2] = B (X)Y],

with
Yh(s)

"~ [T h(v)DeXdv'
Finally, if D* is the adjoint operator of D (i.e., see Eq. (2)), then we have

E[< DZ,u >L2([6»1])] = E[< Z, D%y >L2([0:1])] = E[ZD*(U)] = E[f’(X)Y],

Ug

or equivalently,

Yh
I h(v)p,,xazv

| 00 )| #rom.
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In particular for the case with h = 1, we have

H=HXY)=D (Tg—;ﬂ;) (3)

If one has higher order derivatives then this procedure should be repeated
iteratively. The use of the norms in the spaces I™? is necessary in order to prove
that the above expectations are finite (in particular the ones related to H). Note
that the integral fol h{v) D, Xdv should not be degenerate with probability one.
Otherwise the above argument is bound to fail. The process h that appears in
the calculation is a parameter process that can be chosen so as to obtain this non-
degeneracy. In particular, when h{v) = D, X, one obtains the so-called Malliavin
covariance matrix. It is important to note that we can construct different formulas
depending on the way how we choose the process h.

4 The Greeks in European Options

European options are contracts that are signed between two parties (usually a
bank and a customer) that allows to obtain possible monetary benefits if the price
of certain asset falls above {call option) or below {put option) a predetermined
fixed value, the strike price, at a certain fixed date, the expiration time. The
Greeks are partial fifferential sensitivity coeffcients of an option price with respect
to underlying model parameters. In general, let X = X () be a random variable
that depends on a parameter o, Suppose that the option price is computed
through a payoff function in the following form P(a) = E[®(X (), @)] where ©
is generally non-smooth. The Greeks are therefore a measure of the sensitivity
of this price with respect to its parameters. In particular, it can serve to avoid
future risks in holding these options. If the Leibnitz rule of operator exchange
between integratation (i.e. expectation) and differentiation is applicable, we have

OP(a) _ OB[2(X(e), )] _ B
D Oa

[2(x(), )+ DA (g

In this Section, we would like to discuss the application of the integration by parts
formula to European options to compute sensitivity derivatives without resort to
direct differentiation of the payoft function.

4,1 The Malliavin expressions

- The payoff function of European options depends only on the value of the under-
lying asset at the fixed expiration time T, i.e., Sp. The interest in the European
options lies in the fact that the Greeks can be computed explicitly in a closed
form for a particular class of payoff functions. The reason is that the probability
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density function is known for the random variable involved, i.e., Sr, whereas in
other options this is not the case.

First, we assume that our underlying asset 5 is described by a geometric
Brownian motion under the risk neutral probahility measure ¢ uniquely defined
in complete market with no-arbitrage:

t i
S = So+ f rSyds + f o5, dW,, (5)
1] 0 '

where r is the riskless interest rate and o denotes the volatility.
Second, from the previous argumenis it follows that X{a) must be in general
a functional of 5. In the case of European options, we have X (o) = Sr and from
Eq. (5) we obtain
Sr = Soexp{uT + Wi}, (6)

where p = 7 — 02/2. Note that Eq. (6) is frequently used in the subsequent
development,

Now we compute Delta, A; the first-order partial differential sensitivity co-
efficient of the (discounted) expected outcome of the option, with respect to the
present value of the asset:

A= o Ble bS] = B[ (30 3] = S

= —— B[P S
630 63{) SD [ (ST) T]:
where F[| denotes the expectation under the risk neutral measure Q.. Then,
applying the formula given in Eq. (3) with X =Y = Sr, we may perform the
integration by parts to give,
eurT

A = SEl8(SHH(X,Y)

- G;LTE[MST)D* (m)]

2 (e )|
= E®(ST)D¥| ||,
So (Sr) fOT D, Sydv

which removes the derivaqtgive of ® in the expectation as desired.
In order to evaluate fo D, Sprdv, we apply the rules of the stochastic derivative
introduced above, i.e.,

DSy = 0S7 D, Wy = UST_l{”ST}’

in which 11,y denotes the indicator of the event in braces, and then we obtain the
following result:

T
f D,Srdv = oT Sy, (7
0
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which frequenty appears in the subsequent development. Thus, usiﬁg Bag. (7), it
becomes possible to perform the stochastic integral,

1
D* ("‘““—“"T Sr_ ) :D*(MSTT ) = D*(—--) _Wr
f; DuSrdv oSt fy dv o'/ oT
with the help of Eq. (1) applied to F = 2. Then the final expression for A
reads,

A = B[ 78(Sy) s?fT] (8)

Let us move onto a new Greek, Vega, which is denoted by I in this exposition.
It measures how sensitive is the option price when the volatility changes, i.e.,

Y= B%E[e-r%(sT)] = B[ (ST)%S}] = e T B (Sr)Sr(Wr — oT)].

We invoke again the recipe in Section 3, by using Eq. (3) with X = Sr and
Y = Sp(Wr — oT), to derive

V=B [@(ST)D* (%)] = eifa(sn Dt (U2 1)),

where we have used Eq. (7). So the computation we must face is
* WT - 1 *

Here a new instance of stochastic integral appears, D*(Wy). Applying again Eq.
(1) with F = W;, we have

T
D*(Wr) = W2 — / D,Wyds = W2 T,
0
which leads to the following final expression for ¥/:

Wi 1

= Ele-T 2L Wi~ =
v =E[eTa(sn{ L - wr~ 2], ©)
The last example involves a second-order derivative: Gemma. I' gives sen-

sitivity information on the second-order dependence of the option price on the
actual value of the underlying asset, i.e,,

o e
= 5% 3

After the first integration by parts, by applying Eq. (3) with X = Spand Y = 53,
we derive '

—rT
r

EleT®(Sp)] = o E[®"(Sr) 52

B eurT , . ‘ S% B—TT , . ST
"= ??E[¢ (52D (ff D,,Swa)} 5 E[@ (S2)D (ET)]
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The above stochastic integral may be simplified by using once more Eq. (1) with
F= %, which leads to

D*(%) = %D*( f D,Spds = ST{ 1}.

Likewise, the second integration by parts yields

e-rT

r = S sloese (% 1)

- S B 2(sr)D (-—f;fl—)%%;d;{%"%'-l})}-

The stochastic integral involved is slightly cumbersome, but it does not endow
any complexity and we have,

D*(Tg‘%@{%“l}F“D*(UT' 1)= af[‘{ w2}

If we bring together the previous partial results, we obtain the final expression,

= SgirTE[ e C ){"‘" ~ W= E}] (10)

Comparing Eqgs. (9} and (10), we find the following relationship between ¥

and I':
v

=, 11

SgoT (11)
Since there exists closed expressions for all the Greeks, we may easily check the
correctness of the above results. These formulas are already well-known although

their proofs do not usually follow the integration by parts formula in the form we
have presented here,

4.2 The vanilla options

For European options, there is a closed and tractable expression for the prob-
ability density function associated w1th Sp. This is the lognormal distribution
written as

p(e) = M\/IW exp{—[log(z/So) — uT]?/20°T}.

When p(z) is available, we can compute all the partial derivatives, starting from
the explicit formulation for the security price, P,

P =Bl Ta(sn) = [ o@pte)is



which is the Black-Scholes formula in integral form. Thus the knowledge of p(x)
allows us, in principle, to compute all the Greeks once a payoff function has been
selected.
One of the most popular choice is wanilla call option in which the payoff
function reads,
O(X) = maz(X - K,0), (12)

where K denotes the constant strike price. Then we can easily derive the following
explicit expressions for the Greeks:

1 a¥)
A = ~—— f e > 2dz,
VAT J_oo

U = S /%e—[dl (/2.

M o= — L alors

S()O'\/ 27T

where

dy (i) = a_}/“-f [log(So/K) + {r + %UQ)T],

as it can be found in any standard textbook on derivative securities, e.g., in
Wilmot (1998). When we deal with European options, the constructive method
prsented here yields the equivalent results we attain if we directly differentiate
the probability density function given above.

5 The Greeks in Asian Options

In this Section, we consider the Greeks for options written on the average value
of the security price, i.e., 5 fOT S,ds, instead of the final value Sz, as in European
options, Note that the density function of the random variable does not have a
known closed formula in this case. Delta for the Asian option is given by

I S et o1l T 1 7
A—EEEE[e (I’<f/o Sudt)] = 5 Bo (?fo Stdt)i_;/o Sudt).
Then, applying the formula given in Eq. (3) with X =Y = fOT S.dt, we may

perform the integration by parts to give,

e-—w-'r‘T r 1 T
A= e @(f /0 Stdt)H(X,Y)}

' -T [ T '
- & E@(%fo Stdt)D*(“—‘—ﬁ)TD}:de)]
—rT

T T T ./ JTSd
- eso 5|0 (% fo Sudt) D (——__—Uf}: t;;t)],
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where we have used the following calculation using the Malliavin derivative,

T
/Ddefu = f / D, Sidtdv
0
_ / / 5,D,W,dtdy
== / f O'Stl{z,sﬂd't}dt
o Jo
T ot T
= f f oSdvdt = o f 1S, dt.
0 p=0 0

We obtain finally the following three formulas for Delta, A;(i = 1,2, 3);

e—-rT 1 T ‘ )
A= —SO—E[@) (—f /0 Sgdt) Hi] (i=1,2,3) (13)
where Hy(i =1,2 3) are defined as follows:
L5 T2 > '
H = T { e } [Benhamou(2000)] (14)
1 (Wp <T%> :
H, = TS {-—; <TS } —1 [Kohatsu — Higa(2001)]  (15)
1 Wr
= — =1 K 2
Hy pry T 1 [Koda(2002)] (16)
where
T
2
<T> = ———-——f"TtStd ,
fo Sidt
T2 t
< T2 > = j;)Tt Std )
Iy Sedt

which are analogous to the first- and second-moment of ¢ weighted by S; over
the finite time horizon ¢ € [0, T, respectively. In the three formulas given above,

last two are brand new, among Wthh Eq (16) is the simplest. Note that these

estimators are obtained for H = D* (—{%T%‘%), corresponding to the different
L+

ways of decomposition of u and F' in Eq. (1) as follows:

1 /7 1
Hy: u=-—/ Sdt , F=—m
o Jo fo thdt
dt
Hy: uz—l—, f” 5
o — JTes,dt
1
-~ Hy: UY = | F:f S,dt
: afgtstdt 0
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Thus, the derivative of & has been removed as desired.
There are other ways of performing the integration by parts, For instance, in
Fournie et al. (1999), we have the following expression:

e 1 2 fy S:dW,
o= (3 [ o) ()]

whereas another variant of it can be found in Fournie et al. (2001):

—-rT T -
A= .2_‘3__2_5{@(1/ Stdt) (S“,; S _ u)]
SOG T 0 fﬁ Stdt
Although we have diffrent expressions for A as we have seen above, they are all
statistically identical. Depending on the nature of the process of the underlying
and associated volatility structures, it may be decided which one to use either of
these different formulas.

'The present method also applies to the computation of other Greeks by means
of integration by parts technigque. Then, Vega in this case becomes

UV o= E%E[e-f%(% /0 TS,dt)]
= e‘TTE[@’(% /0 Stdt) - /0 %jidt]

- ~TTE[¢>’(T / .S'tdt / S (W, mat)dt]

As before, followmg the recipe in Sectlon 3 by applying the formula given in Eq.
(3) with X = fo Sydt and Y = [T S,(W: — at)dt, we have

e“"TE[tI)(;_, f $1dt) D* (o 5 YXdu)]

= e“”TE[tI)(% /0 Stdt)p*(m—-—ai%’f;ﬁj:q)}

which yields the following final expression:

— —rT l[T
U =e E[@(T 0 Stdt)
{f.,io(fo"’" SWedt)aW, [y S, [y SWdt )
: _wl.
Jf[;r tS:dt - (fgtstdt)z

Note that this result is essentially identical to the one that is obtained by Ben-
hamou (2000). Using Eq. (11), it is straightforward to compute Gamma as I/
divided by SioT. ' o

v

i
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6 Conclusion

In this paper, a constructive approach is presented to derive the Greeks in finance
by means of integration by parts technique in Malliavin calculus, In particular,
new estimators are derived for the simulation of Delta in the case of Asian op-
tions. This enables us to smoothen the payoff function to be estimated by the
Monte Carlo or Quasi Monte Carlo procedure, Although the results presented
in this study are theoretical, they will help us to obtain useful insights into the
practical applications of the stochastic sensitivity analysis to financial engineering
in general. Numerical validation of the present method will be a subject of the
future study.
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