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Abstract

This paper presents a measure of inference in classical and intuitionistic logics in
the Gentzen-style sequent calculi. The measure for a proof of a sequent is the width
of the proof tree, that is, the number of leaves of the proof tree. Then the measure
for a sequent is the minimum value of the widths of possible proofs of the sequent;
if it is unprovable, the assigned value is +"! It counts the indispensable cases for
possible proofs of a sequent. By this measure, we can separate between sequents
easy to be proved and ones di!cult; we can go further than provability and/or
unprovability! It is motivated by some economics/game theory problem (bounded
rationality). However, it would be not straightforward to obtain the exact value
of this measure for a given sequent. In this paper, we will develop a method of
calculating the value of the measure. We will apply our measure to various classes of
problems, for example, to evaluate the di!culty of proving contradictory sequents.
We also exemplify our measure with a problem of game theoretical decision making.

1. Introduction

This paper presents a measure of inference in classical and intuitionistic logics in the
Gentzen-style sequent calculus (Gentzen [7]). The denition of the measure takes two
steps: For each proof (tree) " , we measure the width, i.e., the number of leaves, of "!
Then the measure of inference assigns, to a given sequent # = ! # "$ the minimum
value of such widths of possible proofs of #$ if # is provable, and if it is unprovable,
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the assigned value is +"! It counts the indispensable cases for possible proofs of se-
quent #. By this measure, we represent the degree of di!culty in proving a given
sequent. Although our problem is highly proof-theoretic, we are motivated by some
general problems in game theory/economics. In Section 1, we explain, rst, our motiva-
tion; and second, the contribution of this paper. Lastly, we present one game theoretic
example, to which our theory will be applied in Section 5.

1.1. General Motivation

Our problem of measuring inferences for a given sequent is related to various elds in
mathematical logic but is arising in game theory/economics, as mentioned above. It
is an analysis of proofs further than provability. Provability of a sequent # = ! # "
is dened by existence of a proof of #. The literature of logic has largely focussed on
this denition, except for computational complexity to be mentioned presently. This
connes us to the scope of provability and/or unprovability, ignoring di!culty to reach
a proof. When the required size of a possible proof is very large, we may not reach a
proof (an example is discussed in Woodin [29]). We study this di!culty in this paper.

If the objective of mathematics is to nd a new theorem together with its proof, it
could be irrelevant to evaluate the required size of a proof. However, since mathematics
itself is constructed by human activities, we may not reach very complicated proofs,
while such theorems exist independent of human activities. Such theorems are not
separated in a clear-cut manner from easy to di!cult ones; they form a spectrum.
Therefore, a study of such as spectrum could be informative to mathematics itself.

One target of game theory/economics is to study human behavior and decision-
making in a game/social situation. It is more directly related to human activities
than mathematics. The importance of “bounded rationality” has been emphasized in
the economics literature since Simon [24]. Simon himself criticized the assumption of
“super-rationality” for economic agents’ decision making, but touched only a particular
perceptual form of “bounded rationality”. Since then, only scattered approaches have
been given. The problem of logical omniscience/omnipotence (cf., Weingartner [28])
may be regarded as the counterpart of “super-rationality” in philosophical logic. We
intend to touch a central part of “bounded rationality”.

Our approach is related to the computational complexity in computer sciences. This
evaluates the (limiting) performance of an algorithm (program); typically, it is formu-
lated as a question of how the required time and memory size increase as the length
of input data increases - - see Goldreich [8]. It is natural from the viewpoint of com-
puter sciences to evaluate and compare required algorithms (programs). The principal
question in the approach of “proof complexity” (“the lengths of proofs”) is along the
same line; the literature has focussed on the size of a required algorithm - - see Pudlák
[23]. In these approaches, algorithms are compared by their limiting behaviors, while

2



we focus on measuring inferences required for each xed single (perhaps, small) instance
of a sequent but not the performance of an algorithm. After the development of our
theory, we may connect our approach with that of proof complexity, but this paper does
not address this question.

Our approach is well understood from the viewpoint of “bounded rationality” in
game theory/economics. For this, we should mention two related literatures: epistemic
logics of shallow (interpersonal) depths; and inductive game theory.

In the game theory literature, it has often been treated as a non-mathematical
assumption that the structure (rules, payo" functions) of a game is common knowledge
among the participating players. This was regarded as necessary. Kaneko-Nagashima
[11], [12] formulated an innitary epistemic (predicate) logic to discuss the problem of
common knowledge explicitly. For the literature, see Meyer-van der Hoek [21], Fagin
et al. [6], and Kaneko, et al. [18]. The literature may be regarded as about “super
rationality” and “omniscience/omnipotence” in a social context.

A departure from this literature was taken by Kaneko-Suzuki [13], [14], [15]: They
developed a theory where interpersonal nesting structures can be restricted; for example,
only depth of interpersonal nesting is 2$ i.e., a player thinks about the beliefs of the other
player, but does not go further than this depth. This approach treats limitations on
interpersonal beliefs and inferences, while we target to study limitations on intrapersonal
inferences within one player. Since classical and intuitionistic logic logics form the
central parts of their epistemic logics, the approach here can be extended and connected
to their epistemic logics. We give one game theoretical example in Section 1.3.

Consider a sequent # = !# " from the viewpoint of epistemic logic, where a player
has # in his mind. Logic can discuss inferences from basic beliefs ! to their logical
consequences "$ but has no capability of discussing the source of such basic beliefs !!
Kaneko-Kline [10] has constructed inductive game theory (IGT), to look for a source for
such basic beliefs in players’ experiences with trials/errors, in repeating a social (game)
situation. This experiential source together with other cognitive postulates suggests
that it is di!cult to obtain precise basic beliefs through experiences with trials/errors.
The subject of the present paper is closely related to this line of research: Once the
measure of inference is appropriately dened, we can use it to describe di!culty in
inference to obtain basic beliefs from a player’s experiences.

1.2. Contributions of the Present Paper

We dene the measure of inference, denoted by %L!$ in classical and intuitionistic logics
L = CL or IL in Gentzen’s [7] sequent calculus. We have four types of those measures,
depending upon L = CL or IL, and with or without cuts, ! = w or f, i.e., %CLw$ %CLf$ %ILw
and %ILf!

We are interested in giving a method to calculate the exact value %L!(#) for an

3



arbitrary given sequent # = ! # ". Finding a proof " of # is not enough for the
calculation of %L!(#)$ since it gives only its upper bound for %L!(#). We give the lower
bound method (LB-method) to calculate %L!(#)! Specically, we dene a function &L
over the set of sequents so that its value &L(#) for each sequent # is calculated by looking
at the syntactical structures of #! We will prove (Theorem 4.4) that this function &L
gives a lower bound &L(#) of %L!(#) for any sequent #. This &L gives often the exact
value of %L!(#)! Then, we will apply this LB-method certain classes of problems.

Our concern is to measure the number of inference steps represented by %L!(#) as
the indispensable contents included in #. The LB-method is to estimate this value from
# itself. These problems are related to the question of what the class of possible proofs
of # is, but we do not aim to construct a proof itself. In this sense, our theory is not
about proof-search (cf., Pym-Ritter [22]).

One is a problem of game theoretical decision making. This is related to the original
motivation, which we describe in Section 1.3. This example will be used to motivate
the formulation of our logic; we take conjunctions and disjunctions of nite sets of
formulae, rather than to two formulae. Since a lot of assumptions (or basic beliefs) are
used in game theoretic practices, this language is more convenient than that with binary
conjunctions and disjunctions. We take the width of a proof for the denition of our
measure %L! for the same reason. The will be discussed in Section 5.

In Section 6, a contradictory statement is evaluated by our measure %L!! Evaluations
may di"er signicantly in the two cases with cuts and without cuts. In general, the value
of %L! is smaller when cuts are allowed. Also, %L!(! # ) and %L!(! # ¬' $ ') may
di"er, though those sequents are equivalent with respect to provability. The di"erence
is somewhat parallel to the di"erence between the measures %Lw and %Lf! We give also
an evaluation, by %L!$ of a specic contradictory statement arising in economics.

In Section 7, we will discuss a modication of %L! when we allow only binary conjunc-
tions and disjunctions. In Section 9, we will give other problems and various remarks.

1.3. A Game with Large and Small Stores

Consider the situation where a large store, 1 (a supermarket), and a small store, 2
(a minimart) are competing. Now, we consider decision-making by store 2. The small
store has the subjective understanding of the situation: Store 1 is large enough to ignore
store 2 for 1’s decision-making$ but store 2’s prots are inuenced by 1’s choice. His
understanding is described by Tables 1.1 and 1.2. That is, store 2 understands that
the situation is described by ((1$ (2)! Store 1 has only three alternative actions, and his
payo" is determined by his own choice. On the other hand, 1 has 10 alternative actions,
and the resulting payo"s are determined by the choices of both stores 1 and 2!

In this game, store 2 has a “dominant action”, s10$ which gives the highest payo"
whatever 1 chooses. To achieve this understanding, he compares the payo" from s10
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with that from s1$ !!!$ s9 in all the three cases of a1$a2 and a3; hence it needs at least
9× 3 = 27 comparisons.

Table 1.1; (1 Table 1.2; (2

a1 6000

a2 2000

a3 1000

s1 s2 s3 · · · s9 s10
1 2 3 · · · 9 10

5 6 7 · · · 13 14

5 7 9 · · · 21 23

Store 2 has an alternative decision procedure (criterion): First, he predicts the
choice by store 1$ and, using his prediction he chooses an action. For this procedure,
he needs 2 comparisons to predict that 1’s choice would be a1$ and then he needs again
at least 9 comparisons to verify that s10 is the best given the prediction a1! In this
case, the minimum number of required comparisons is 11! Hence, there is a “trade-o"”:
The concentration on his own payo" matrix does not require interpersonal inferences,
but interpersonal considerations may simplify his decision-making with respect to the
number of payo" comparisons. We do not explicitly consider interpersonal epistemic
aspects involved here, but the results given in the present paper can be extended in
epistemic logics of shallow depths in Kaneko-Suzuki [13], [14], [15].

The above argument can be described in terms of the measure %L! of inference. In
Section 5, an example where store 2 has no dominant strategy is also considered.

2. Classical and Intuitionistic Logics

Here we present classical and intuitionistic logics CL and IL. We adopt the following
list of primitive symbols:

countably innite number of propositional variables: p0$p1$ !!!;

logical connective symbols: ¬ (not)$% (implies)$ $ (and)$ & (or);
parentheses: ( $ ); comma: $ ; and braces { $ }!

In some examples, we use di"erent propositional variables and use lower case letters )$ *$
etc. to denote those variables. We dene formulae inductively: (o): any propositional
variable ) is a formula; (i): if +$, are formulae, so are (+ % ,) and (¬+); (ii): if # is
a nite set of formulae with its cardinality |#| ' 2, then ($#) and (&#) are formulae.
We denote the set of all formulae by P!

The conjunctive and disjunctive symbols $ and & are applied to a nite nonempty set
# of formulae with |#| ' 2. Since # is given as {'1$ !!!$ '!} (- ' 2) with set-theoretical
identication, we need commas and braces as primitive symbols. This deviates from
the standard formulation of formulae, on which we will comment in Section 7. We may

5



write ' $ .$' & . and ' & . & + for ${'$.}$&{'$.} and &{'$.$+}$ etc., when
these are easier. We often abbreviate the parentheses ($ ) when it causes no confusion.

Let !$" be nite (possibly empty) sets of formulae in P! Using auxiliary symbol
#$ we introduce a new expression ! # "$ which we call a sequent. We abbreviate
(set-theoretical) braces, for example, {'} ( ! # " ( {.} is written as '$! # "$ .$
and also, ! ( $ # " ( % is abbreviated as !$$ # "$%! We note that in expression
'$!# "$ ., we allow !$" to contain '$.$ respectively, and that in !$$# "$%$ they
may have nonempty intersections. Nevertheless, this sequent is identied by the triple
of the set !($$ #$ and the set "(%!We will make a stipulation on those expressions
and “side formulae”.

The logical inferences are governed by one axiom schema and various inference rules.

Axiom Schema (Initial Sequents): '# '$ where ' is any formula.

Structural Rules: The following inference rules are called the thinning and cut :

!# "

$$!# "$%
(/0)

!# "$ ' '$$# %

!$$# "$%
(12/)

In (/0)$ the sets $ and % may be empty. Formulae in $$% are called thinning formulae.
The formula ' in (12/) is called the cut-formula!

Operational Rules:

!# "$ '

¬'$!# "
(¬#)

'$!# "

!# "$¬'
(# ¬)

!# "$ ' .$$# %

' % .$!$$# "$%
(%#)

'$!# .$"

!# ' % .$"
(#%)

'$!# "

$#$!# "
($ #) where ' ) #

{!# "$ ' : ' ) #}
!# "$$#

(# $)

{'$!# " : ' ) #}
&#$!# "

(& #)
!# "$ '

!# "$&#
(# &) where ' ) #!

The uppersequents of (%#)$ (# $) and (& #) form sets of sequents. In the opera-
tional rules, we say that the formula(s) to be changes in the uppersequent(s) the side
formula(s), and that the formula formed in the lower sequent is the principal formula.
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For examples, in (# $)$ all ' in # are the side formulae, and $# is the principal for-
mula. It would be convenient to denotes, by 3[']$ the combination of an inference rule
3 with its principal formula '!

Although we allow that sets appearing in sequents may have intersections, we make
the following:

Stipulation S: For each inference rule, the cut or side formula(e) does not belong to
the neighboring sets in the upper sequents of the rule, for example, ' 4) " and ' 4) $$
and ' 4) ! in ($ #) and ' 4) " in (# $)!

Due to (/0)$ this stipulation a"ects neither provability nor our measure; only the depth
of a proof may be a"ected slightly. However, this stipulation enables us to determine
an immediate “descendant” uniquely, which will be stated and used in Section 8.

A proof " in CL is dened as a triple (5$6;7) with the following properties:

(i): (5$6) is a nite tree, and its immediate predecessor relation is denoted by 6"; 1

(ii): 7 is a function which associates a sequent 7(8) = $# % to each node 8 ) 5;
(a): for any leaf (maximal node) 8 in (5$6)$ 7(8) is an instance of the axiom;

(b): for any non-leaf 8 ) 5$
{7(80) : 8 6" 80}

7(8)
3 (2.1)

is an instance of one inference rule.
The same inference may be used several times in a proof " . To avoid ambiguity

caused by such multiple uses of the same inference, we identify the address of an appli-
cation of an inference 3 of (2.1) by the lower node 8 in "$ which we call an application
of inference 3 (3['] with the specication of its principal formula).

Let # = ! # " be a sequent. We say that " = (5$6;7) is a proof of # in CL i"
" is a proof in CL with 7(80) = # for the root 80 of (5$6)! We say that # is provable
in CL i" there is a proof of # in CL$ denoted by `CL #.

The above axiom schema and inference rules form classical logic CL! Intuitionistic
logic IL is obtained from CL by giving the restriction that the succedent of each sequent
has cardinality at most 1. See Gentzen [7] and Kleene [19]. A proof and provability for
IL are dened in the parallel manner with this restriction. Since a proof in IL is a proof
in CL$ `IL # implies `CL #.

A proof " in L = CL or IL is said to be cut-free i" " has no applications of (12/)!
The following theorem by Gentzen [7] (see also Kleene [19] and Takeuti [25]) plays an
important role in this paper.

Theorem 2.1 (Cut-Elimination for CL and IL). Let L be CL or IL. If `L #$ then
there is a cut-free proof " of # in L!

1We call !0 a predecessor of ! i" ! " !0; and an immediate predecessor of ! i" ! "! !0#
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We will dene our measure of inference focussing on the width of a proof. The
width of a proof matters only with the four rules (12/)$ (%#)$ (# $)$ (& #), since each
of the other inference rules has only one uppersequent! Given a sequent # = ! # "$
we estimate the size of a possible proof of # by looking at #! Here, (12/) becomes an
obstacle in estimating it from a given sequent #. Nevertheless, we dene and study our
measure of inference in the cases both with and without (12/)’s, since we would like to
study also the role of (12/). For this purpose, we need to rene Theorem 2.1, which will
be stated in Section 8.3.

3. Measure of Inference !L!

Here, we dene the measure of inference %L! for each # = ! # ", and give various
examples to illustrate it. In order to obtain the exact values of %L!, we need some
method of calculating the value of %L!(#)$ which will be discussed in Section 4.

For each proof " = (5$6;7) in L = CL or IL, we dene

%(" ) = the number of the leaves of the tree (5$6)! (3.1)

Thus, % measures the width of "$ and ignores its depth2#3! Later, we will explain why we
care about the width of a proof rather than the total number of applications of inferences
including the depth of a proof. This is also related to the choice of our language allowing
applications of $ and & to nite sets of formulae, which will be discussed in Section 7.

The width of a proof increases with the applications of (12/)$ (%#)$ (# $)$ and
(& #)$ but not with other inferences! To evaluate %(" )$ we should pay attention to
these inferences; one evaluation method will be discussed in Section 4. We note that
since % depends upon a single proof, we do not put subscript L to %!

Our ultimate goal is to study the measure for a sequent, rather than a proof.

Denition 3!1! We dene the measure %Lf of inference for a sequent # = ! # " in
logic L = CL or IL as follows:

%Lf(#) =

!
"

#

min{%(" ) : " is a cut-free proof of # in L} if `L #

+" otherwise.
(3.2)

By eliminating “cut-free” in (3.2), we have the other measure %Lw(#)! The expression
%L!(#) denotes either %Lf(#) or %Lw(#)!

2Urquhart [27] and Arai [1]counted the number of all sequents in a proof. Then, they studied the
computational complexities of various specic sets of problem instances.

3We do count all the initial sequents which may be identical as sequents. For some problems, it could
be more natural to count identical initial sequents only once. But this is less basic than our counting
form, and also is more complex. In this paper, we adopt the way of counting all initial sequents.
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The measure %L! counts the indispensable contents of the sequent # to be proved!
In other words, by tracing upwards in a proof " , we would meet an initial sequent,
and if this initial sequent occurs in any proof of #, we regard it as indispensable for
#. Technically, we take the minimum number of leaves of proofs of #$ since there may
be multiple proofs of a given # with di"erent number of initial sequents; these will be
presently exemplied by a few examples. When # is unprovable in logic L$ we dened
%L!(#) = +"! An unprovable case may be regarded as a limit of large proofs.

Since logic L is CL or IL, we have four types of measures;

%CLw(#)$ %CLf(#)$ %ILw(#) and %ILf(#)! (3.3)

We will concentrate on these measures; we will briey mention the corresponding mea-
sures for epistemic logics of shallow depths in Section 9.

Since a proof in IL is a proof in CL, we have the inequalities in (1) of Lemma 3.1.
Since a cut-free proof in L is a proof in L, we have the second assertion.

Lemma 3.1.(1): %CLw(#) * %ILw(#) and %CLf(#) * %ILf(#);

(2): %Lw(#) * %Lf(#) for L = CL, IL.

Examples for strict inequalities in (1) will be given in Example 4.2. Theorem 6.2
will give one sequent # so that %Lw(#) 6 %Lf(#) for L = CL, IL!

Now, we consider of how %L! works, using simple examples of sequents.

Example 3!1! Consider the sequent # = ) % * # ) % * ()$ * propositional variables):
Since # itself is a proof, and %L! takes positive integers as its values by (3.2), we have
%L!(#) = 1! But we have the following proof:

91 :

)# ) * # *

)$ ) % * # *
(%#)

) % * # ) % *
(%#)

Here, %(91) = 2! We do not need to look into the contents of two occurrences of ) % *
in #; we treat them as “chunks”, and each occurrence has a “companion.”

The next example shows that there may be di"erent proofs of a sequent # with the
same width, which means that the indispensable contents are not uniquely determined.
Also, this example shows that it is not straightforward to nd the exact value of %L!(#)!

Example 3!2! Consider # = )$ ) % *$ :$ : % * # *!We have two di"erent proofs (among
others) of #:

92 :

)# ) * # *

)$ ) % * # *
(%#)

)$ ) % *$ :$ : % * # *
(/0) 93 :

: # : * # *

:$ : % * # *
(%#)

)$ ) % *$ :$ : % * # *
(/0)
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We may regard either )$ ) % * or :$ : % * as superuous to obtain #$ but we cannot
discard both simultaneously. We expect %L!(#) = 2 from %(92) = %(93) = 2! We can
prove this fact as follows: It su!ces to show that %(" ) ' 2 for any proof " of #! Indeed,
let " be a cut-free proof of #! Then " has at least one application of (%#)! Hence,
%(" ) ' 2! When " has at least one cut, we have already %(" ) ' 2$ since (12/) has two
branches. Hence, %L!(#) = 2!

The above proof of %L!(#) = 2 is specic to this example. It would be quite incon-
venient to nd this kind of argument in each example. Also, typically, the value %L!(#)
is larger than 2$ and it would not be easy to construct such arguments for those cases.
Therefore, we would like to have some method of calculating the exact value of %L!(#)
for #. We will develop one such method in Section 4.

It is easy to see that %L! satises the following inequalities along the inference rules.
But these inequalities do not help us obtain the exact value of %L!(#) for #.

Lemma 3.2.(0): %L!($$!# "$%) * %L!(!# ");

(1-): %L!(¬'$!# ") * %L!(!# "$ ');

(1:): %L!(!# "$¬') * %L!('$!# ")!

(2-): %L!($#$!# ") * min
$"!

%L!('$!# ");

(2:): %L!(!# "$$#) *
P
$"!

%L!(!# "$ ');

(3-): %L!(!# "$&#) * min
$"!

%L!(!# "$ ');

(3:): %L!(&#$!# ") *
P
$"!

%L!('$!# ");

(4-): %L!(' % .$!$$# "$%) * %L!(!# '$") + %L!(.$$# %);

(4:): %L!(!# "$ ' % .) * %L!('$!# "$ .)!

Proof. We prove only (2-). If 0L '$!# " for all ' ) #$ thenmin$"! %L!('$!# ") =
+" and thus we have the assertion. Suppose `L '$!# " for some ' ) #! Let " be a
proof of '0$!# " with '0 ) # and %(" ) = %L!('0$!# ") = min$"! %L!('$!# ")!
We add one more inference to " as follows:

"

$#$!# "
($ #)

We denote this proof by " 0! Then, %(" 0) = %(" ) = %L!('
0$!# ") = min$"! %L!('$!

# ")! By the denition (3.2)$ we have %L!($#$!# ") * min$"! %L!('$!# ")!

If the above inequalities hold with equalities, the assertions of the above lemma help
us calculate %L!(! # ")! However, only sometimes, these hold with equalities. Now,
we give two more examples to show these di!culties.
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Example 3.3. Consider # = $# # $# and #0 = # # $# with # = {)1$ !!!$ )10}!
The two sequents are deductively equivalent, but di"er with respect to %L!! First, we
observe %L!($## $#) = 1 but

P
%"! %L!($## )) = 10 since %L!($## )) = 1 for all

) ) #! Hence, (2:) of Lemma 3.2 holds for # with strict inequality. On the other hand,
the sequent ## $# is proved as follows:

½
)# )

## )
(/0)

¾

%"!

## $#
(# $)

Hence %L!(# # $#) * 10 by the denition (3.2) of %L!! In fact, %L!(# # $#) = 10
will be proved in Section 4! Thus, (2:) holds for #0 with equality, i.e., %L!(## $#) =P
%"! %L!(## ))!

Example 3.4. Consider the sequent # = )0$ )0 % $# # $#$ where # = {)1$ !!!$ )10}!
This sequent has two proofs:
!
$"

$#
)0 # )0

)& # )&
$## )&

($ #)

)0$ )0 % $## )&
(%#)

%
$&

$'
%""!

)0$ )0 % $## $#
(# $)

)0 # )0 $## $#
)0$ )0 % $## $#

(%#)!

Thus, the rst proof has value %(" ) = 20$ and the second has only 2! In fact, we will
prove %Lw(#) = %Lf(#) = 2 in Section 4!

4. The Lower Bound Method

As already mentioned in several examples in Section 3, the behavior of %L! is complex,
and it is not easy to calculate the exact value %L!(#) for a given sequent # = ! # "!
A mechanical method of calculation is expected only for some class of sequents4. Here,
we will provide one method of nding the exact value %L!(#)!

4.1. The Lower Bound Method

The following lemma is a small and straightforward observation, but explains our mo-
tivation to introduce a lower bound function.

Lemma 4.1 (LB-Method). Let & be a function assigning a natural number to every
sequent #! For any sequent #$ if (1) &(#) * %L!(#) and (2) &(#) = %(" ) for some proof
" of #$ then &(#) = %L!(#)!

4This was discussed in Kaneko-Suzuki [16] for epistemic logics of shallow depths with the intuitionistic
base logic.
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For a given #$ if we have (1) and (2), then we get the exact value of %L!(#)! A poor
example of & is given as &(#) = 1 if `L #; and &(#) = +" otherwise! However, this &
does not help us identify %L!(#) : If we have %(" ) ; 1 for any proof " of #$ then this &
says nothing; and if we nd a proof " of a sequent # with %(" ) = 1$ it automatically
implies %L!(#) = 1. We look for a more accurate &! A requirement for such a function
& is to be calculated only using the information included in #! Indeed, we will give such
a function, denoted by &L$ in Section 4.3 and will prove (1) for any #.

Our basic idea to dene the function &L is to count the occurrences of subformulae
$#$ && and' % + in # which are necessarily the principal formulae of some applications
of (# $)$ (& #) and (%#) in any proof of #. It is a strength of sequent calculi CL
and IL that we can estimate, to a certain extent, the applications of (# $)$ (& #) and
(%#) by looking only at #! For this estimation, rst, let us connect the width of a tree
with the number of branches in the tree.

Lemma 4.2. Let (5$6) be a nite tree with the nonterminal nodes 1$ !!!$ < with =&
branches at nonterminal node /. Let >1$ !!!$ >' be the nonterminal nodes for which
=(" ; 1 for all / = 1$ !!!$ ?! Then the number of terminal nodes of (5$6) is given as

'P
&=1
=(" + (?+ 1)! (4.1)

Proof. We prove the assertion by induction on ?. Let ? = 1! Then a tree has only one
nonterminal node with has multiple branches. Then the number of terminal nodes is
=(1 = =(1 + (?+ 1)!

Now, we assume the induction hypothesis that (4.1) holds for any tree with ? non-
terminal nodes with multiple branches! Now, let (5$6) be a tree with ?+1 nonterminal
nodes with multiple branches. We choose one nonterminal node, called >'+1$ with mul-
tiple branches but not (>'+1 6 >&) for all / = 1$ !!!$ ?. By eliminate all the branches
at >'+1 and their predecessor, we have have a tree, (5 0$ 60) with ? nonterminal nodes
with multiple branches. By the induction hypothesis, the number of terminal nodes of
(5 0$ 60) is given as

P'
&=1=(" + (?+ 1)! Now, we return to the original tree (5$6)! The

node >'+1$ which is a terminal node in (5 0$ 60)$ has =(#+1 branches and =(#+1 terminal
nodes as its predecessors. That is, one terminal node is eliminated, but =(#+1 terminal
nodes are newly added. Thus, the number of terminal nodes of (5$6) is calculated as:

(
'P
&=1
=(" + (?+ 1)) + (=(#+1 + 1) =

'+1P
&=1
=(" + (?+ 1+ 1)!

Now, we have (4.1) for ?+ 1!

The following lemma is an immediate consequence of Lemma 4.2. This observation
is suggestive for the denition &L!
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Lemma 4.3. Let " be a proof in L = CL or IL. We list all the applications of (# $)$
(& #)$ (%#)$ (12/) in " as

(1): (# $)[$#1]$ !!!$ (# $)[$#'1 ]; (2): (& #)[&&1]$ !!!$ (& #)[&&'2 ];

(3): (%#)['1 % .1]$ !!!$ (%#)[''3 % .'3 ]; (4): (12/1)$ !!!$ (12/'4)!

Then, %(" ) =
P'1
&=1 |#&|+

P'2
&=1 |&&|+ 2(?3 + ?4)+ (?1 + ?2 + ?3 + ?4 + 1)!

Note that some of the above applications have the same principal formulae.

4.2. Occurrences and Signs

To dene the lower bound function &L and to state the main theorem (Theorem 4.4),
we use various proof-theoretic concepts. They have been known in the folklore of proof
theory, but are usually discussed in an informal manner. Since our concern is directly
related to the structure of a proof, we need to introduce them explicitly.

First, we introduce a linear order , over the set of all formulae P. We stipulate
that each nite nonempty set # of formulae is ordered by ,: When # has = elements,
we may write # = {'1$ !!!$ ')} following the order ,$ i.e., '1 , !!! , ')!

We will use the concept of an occurrence @ at three levels, which indicates the address
of a formula . relative to (A) a formula '; (AA) a sequent #; and (AAA) a proof "! Only
(A) requires a careful consideration, and (AA)$ (AAA) are straightforward. Since (A) and (AA)
are need for Theorem 4.4, we give only (A) and (AA). (AAA) will be needed for a proof of
Theorem 4.4 and will be given in Section 8.

Consider one example:

' = ¬(&{)1$ )2$ .} % ${)1$ . % )2})$ (4.2)

where . = ${)1$ )2$ )3}! The subformulae in &{)1$ )2$ .} and ${)1$ . % )2} are ordered
by , ! This ' has two occurrences of .$ and we would like to separate each without
ambiguity. The left occurrence of . is identied in the following manner:

@ = [' | B · ¬ · (%$+1) · (&$ 3) : .]! (4.3)

The rst ' is the reference formula, and the last . is the target formula. The sequence
in the middle is the address of. relative to '! The null symbol B indicates the outermost
viewpoint. Then, we go through the immediate subformulae to the left. in (4.2). Since
%$ $$& have multiple immediate subformulae, (%$+1) is used to indicate the premise
of %$ and (%$ 1) indicates the conclusion. The expression (&$ 3) indicates to choose
the third disjunct of &{)1$ )2$ .}! These expressions are concatenated by ·! The right
occurrence of . in (4.2) is given as @0 = [' | B · ¬ · (%$ 1) · ($$ 2) · (%$+1) : .]! The trivial
example is [' | B : ']$ which is the occurrence of the target formula ' relative to the
reference formula ' itself!
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Formally, we dene an occurrence relative to a reference formula ' by induction
from the outermost viewpoint of ':
(0): the occurrence of ' relative to ' itself is @ = [' | B : ']!
Suppose that an occurrence of . relative to ' is already dened as @ = [' | C : .]!
Then, the occurrence of an immediate subformula + of . is dened as follows:

(1): if . = ¬+$ the occurrence of this + is given as [' | C · ¬ : +];

(2): if . = + % ,$ the occurrences of these + and , are given as [' | C · (%$+1) : +]
and [' | C · (%$ 1) : ,];

(3): if . = $# = ${+1$ !!!$ +*} (or . = &# = &{+1$ !!!$ +*})$ the occurrence of + = +!
in # (1 * - * <) is [' | C · ($$ -) : +] ([' | C · (&$ -) : +]$ respectively)!

We can verify that the left occurrence of . in (4.2) is calculated by those steps and given
in (4.3). We denote the reference formula ' and target formula . of @ = [' | C : .] by
D[@] and E [@]!

We can also talk about an occurrence @ of . in ' in a sequent # = {+1$ !!!$ ++ $ !!!$ +)}
# {,1$ !!!$,*}$ where ' = ++ ! Here +1$ !!!$ ++ $ !!!$ +) and ,1$ !!!$,* are ordered by , !
The address of ' = ++ in # is described by [# | (F$ G)]$ stating that ' occurs as the G-th
formula ++ in the antecedent of #! Let occurrence @ = [' | C : .] be given. Then, we
have the occurrence @ in ++ = ' relative to sequent # as:

[# | (F$ G)] · @! (4.4)

If the indicated place is ,+ in the succedent of #$ then it is given as [# | (H$ G)] · @! The
occurrence [# | (F$ G)] · @ or [# | (H$ G)] · @ relative to a sequent # is denoted by I! Its
reference formula D[I] and target formula E [I] are dened by D[I] = D[@] and E [I] = E [@]!
Since I contains all the information of @$ it is enough to refer to I when we talk about
an occurrence relative to #!

The sign (positive or negative) of an occurrence I in a sequent # or a formula ' is
unambiguously dened as follows: We assign 1 or +1 to each component of the address
of an occurrence I in # as follows:

1 to [# | (H$ G)]$ J$ ($$ G)$ (&$ G)$ (%$ 1) and + 1 to [# | (F$ G)]$ (¬)$ (%$+1)$

where G = 1$ !!!! Then, regarding concatenation · as multiplication ×$ we can calculate
the sign of an occurrence in #! For example, when I is given as (4.4) and @ is given as
(4.3), we have

H(>[I] = +H(>(@) = +H(>([' | B · ¬ · (%$+1) · (&$ 3);.])
= (+1)× 1× (+1)× (+1)× 1 = +1!

A strength of the sequent calculus is the sign-preserving property that once a formula
occurs in a proof " , all descendants have the same sign. We will state this property as
Theorem 8.1 in Section 8.1 after we dene the concept of descendants.

14



4.3. The Lower Bound Function &L

Now, we isolate some occurrences in a sequent # using the concepts introduced above.
We say that an occurrence I 0 is a companion of another occurrence I in # i" E [I] = E [I 0]
and I$ I 0 have opposite signs. Then, we say that an occurrence I in # is legitimate i"

(i): I has no companions;

(ii): E [I] of I is expressed as either $#$ && or ' % +;

(iii): if E [I] = $#$ I is positive in #$ and if E [I] = && or ' % +$ it is negative in #!

The sequent # = )0$ )0 % $# # $# of Example 3.4 has two occurrences of $#; one is
negative and the other is positive; they are companions. Hence, neither is legitimate.
This sequent has only one legitimate occurrence )0 % $#!

Consider a set K of legitimate occurrences I1$ !!!$ I) in #! Let the target formulae
E [I1]$ !!!$ E [I)] be

$#1$ !!!$$#'1 $&&1$ !!!$&&'2 $ '1 % .1$ !!!$ ''3 % .'3 $ (4.5)

where some of them may be identical. Then we dene

L(K) =
'1P
&=1
|#&|+

'2P
&=1
|&&|+ 2?3 + (?1 + ?2 + ?3 + 1)! (4.6)

Here, K may the empty set -; then L(-) = +(+1) = 1!
By L(K) of (4.6), we estimate the number %(" ) of Lemma 4.3. But this depends upon

the choice of K! It may be too much to list all legitimate occurrences in #. For example,
the sequent )$ ) % *$ :$ : % * # * of Example 3.2 has two legitimate occurrences, i.e.,
) % * and : % *; each single occurrence is enough to obtain this sequent. Hence, we
should consider a certain subset of legitimate occurrences in #! It is chosen so that the
other occurrences could be replaced by new propositional variables while keeping its
provability. For )$ ) % *$ :$ : % * # *$ we can replace the legitimate occurrence ) % *
(or : % *) by a new propositional variable )0 but still we have `L )$ )0$ :$ : % * # * (or
)$ ) % *$ :$ )0 # *)!

In general, we should take care of nesting occurrences. Therefore, we consider a set
K of legitimate occurrences I1$ !!!$ I) in # satisfying

if I& is included in a legitimate occurrence I$ then I ) K! (4.7)

Thus, K is upward closed. Let I 01$ !!!$ I
0
* be the other legitimate occurrences in # each

of which is maximal in the sense of nesting, i.e., each I 0& (/ = 1$ !!!$ <) includes no
occurrences of I 01$ !!!$ I

0
* but I

0
& itself! However, we allow some of I

0
1$ !!!$ I

0
* to occur in

I1$ !!!$ I)! Let *1$ !!!$ ** be new propositional variables not occurring in #! Then, we dene
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#! = !! # "! to be the sequent obtained from # by replacing I 01$ !!!$ I
0
* by *1$ !!!$ **.

We say that a set of legitimate occurrences I1$ !!!$ I) satisfying (4.7) is genuine i"

`L !! # "!! (4.8)

Note that this denition depends upon the choice of CL or IL! We denote the set of all
genuine sets by ML(#)!

For # = )$ ) % *$ :$ : % * # * of Example 3.2, either ) % * or : % * can be
replaced by a new propositional variable )0! Hence,ML(#) = {{I$ I 0}$ {I}$ {I 0}}$ where
E [I] = ) % * and E [I 0] = : % *!

Now, we take the minimal value of L(K) overML(#)$ i.e.,

&L(#) = min
," ML (-)

L(K)! (4.9)

Now, we state the main theorem of this section: We have (1) of Lemma 4.1 for any
sequent #. We postpone its proof to Section 8, since a proof needs a few more proof
theoretical concepts. The theorem holds for L = CL$IL.

Theorem 4.4 (Lower Bound Function &L). &L(#) * %Lw(#) for any sequent # =
!# "!

By Lemma 3.1.(2), we have &L(#) * %Lw(#) * %Lf(#); an example for a strict
inequality will be given in Section 6. The dependence of &L(#) and %Lw(#) upon L =
CL or IL will be shown in Example 4.2.

The lower bound function &L often gives a good estimate of %L!! For # = )$ ) %
*$ :$ : % * # * of Example 3.2,ML(#) = {{I$ I 0}$ {I}$ {I 0}}!Hence, &L(#) =min," ML (-)L(K) =
2! Using, Theorem 4.4, we have &L(#) = 2 * %Lw(#) * %Lf(#)! Since we already gave a
cut-free proof " of # with %(" ) = 2$ we have %Lw(#) = %Lf(#) = 2 by Lemma 4!1!

In Example 3.3, #0 = ## $# has a unique legitimate occurrence E [I] = $#! Hence,
&L(#

0) = 10! Since we gave a proof " of #0 with %(" ) = 10$ we have %L!(#
0) = 10!

In the sequent # = )0$ )0 % $## $# of Example 3.4, $# has a companion. Hence,
# has a unique legitimate occurrence E [I] = )0 % $#$ which constitutes also a unique
genuine set. Hence, &L(#) = 2$ and %L!(#) = 2!

In those examples, the LB-method provided the exact value of %L!(#) independently
of CL or IL. An example showing the di"erence between %CL! and %IL! is # ) & (¬))
() is a propositional variable): %CLw(#) = %CLf(#) = 1$ but %ILw(#) = %ILf(#) = +".
We do not need Theorem 4.4 for this calculation. The next example is a less trivial one.
Theorem 4.4 provides the exact values %Lw(#)$ %Lf(#)!

Example 4.1 (Dependence upon L = CL or IL). Consider # = )0 & (¬)0)$ )0 %
)1$¬)0 % )1 # )1; let I1$ I2$ I3 be the three legitimate occurrences in the antecedent of
#! Let * be a new propositional variable. Then, `CL *$ )0 % )1$¬)0 % )1 # )1, but not
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in IL. Thus, {I2$ I3} is a genuine set in CL, but not in IL; and {I1$ I2$ I3} is a unique
genuine set in IL! Hence, &CL(#) = 2×2+(2+1) = 3 and &IL(#) = 3×2+(3+1) = 4!We
nd proofs "1 and "2 of #$ respectively, in CL and IL so that %("1) = 3 and %("2) = 4!
Indeed, "1 and "2 are given as follows:

"1 :

)0 # )0
# )0$¬)0

(# ¬)
)1 # )1

)0 % )1 # )1$¬)0
(%#)

)1 # )1
)1$ )0 % )1 # )1

(/0)

)0 % )1$¬)0 % )1 # )1
(/0)

)0 & ¬)0$ )0 % )1$¬)0 % )1 # )1
(/0)

"2 :

)0 # )0 )1 # )1
)0$ )0 % )1 # )1

(%#)

)0$ )0 % )1$¬)0 % )1 # )1
(/0)

¬)0 # ¬)0 )1 # )1
¬)0$¬)0 % )1 # )1

(%#)

¬)0$ )0 % )1$¬)0 % )1 # )1
(th)

)0 & ¬)0$ )0 % )1$¬)0 % )1 # )1
(#%)

5. An Application to the Game with Small and Large Stores

Here, we study decision making by small store 2 in the game in Section 1.3 in terms of
measure %L!. Recall that ((1$ (2) given by Tables 1.1 and 1.2 express store 2’s under-
standing of the situation. We consider two decision-making criteria for store 2 :

(i): the dominant-strategy criterion; and (ii): the prediction-decision criterion.

With (i), store 2 concentrates on Table 1.2 for his decision-making, while with (ii), he
rst uses Table 1.1 to predict what 1 would choose, and then he chooses an action based
on Table 1.2. Criterion (ii) requires store 2 to think about (predict) 1’s choice; it needs
interpersonal inferences. In the game theory literature, it is regarded as more complex
than (i). On the other hand, the number of steps required for (ii) is signicantly smaller
than that for (i): We meet a “trade-o"” between complexity of inferences involving
interpersonal thinking and that of the number of pure intrapersonal inferences.

In this paper, we do not consider the epistemic structures required for (i) and (ii),
which problem was discussed in Kaneko-Suzuki [13]. We will discuss those problems
also with the measure of inference for epistemic logics of shallow depths in [16].

Let us formulate (i) and (ii) in our propositional language. We introduce propo-
sitional variables as follows: )(a!$a!0)$ -$ -0 = 1$ 2$ 3; and *(s.$ s.0 | a!)$ - = 1$ 2$ 3 and
:$ :0 = 1$ !!!$ 10! They are possible (strict) preferences by stores 1 and 2 : )(a!$a!0) means
that 1 prefers a! to a!0 ; and *(s.$ s.0 | a!) means that conditional upon the choice a! by
1$ store 2 prefers strictly s. to s.0 !

Game ((1$ (2) : Tables 1.1 and 1.2 are expressed as the sets of preferences:

(̂1 = {)(a!$a!0)$¬)(a!0 $a!) : -$ -0 = 1$ 2$ 3 with - 6 -0}; (5.1)
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(̂2 = {*(s.$ s.0 | a!)$¬*(s.0 $ s. | a!) : : ; :0 and - = 1$ 2$ 3}! (5.2)

The rst states that store 1 prefers action a! to a!0 if - 6 -0$ and the second states that
when 1 chooses a!$ store 2 would prefer s. to s.0 with : ; :0! Thus, Tables 1.1 and 1.2
are expressed in terms of preferences induced by the numerical payo"s.

Now, let us go to two decision-criteria.

Dominant-Strategy (DS) Criterion: It is formulated as ${*(s.$ s.0 | a!) : :0 6= : and
- = 1$ 2$ 3}$ which is denoted by Dom2(s.)! It suggests to choose an action s. so that he
prefers it to the other actions whatever 1 chooses. Looking at Table 1.2, we nd that
s10 is a unique dominant strategy. This claim is formulated as the sequent and `L (̂2 #
Dom2(s10)! A proof of (̂2 # Dom2(s10) is given as

" :

½
*(s10$ s.0 | a!)# *(s10$ s.0 | a!)

(̂2 # *(s10$ s.0 | a!)
(/0)

¾

.0 6=10 and !=1#2#3

(̂2 # ${*(s10$ s.0 | a!) : :0 6= 10 and - = 1$ 2$ 3}
(# $) (5.3)

Here, %(" ) = 3 × 9 = 27! Also, we have &L((̂2 # Dom2(s10)) = 27$ since Dom2(s10)
is a unique legitimate occurrence and constitutes a unique genuine set! Hence, we have
%L!((̂2 #Dom2(s10)) = 27 by the LB-method (Lemma 4.1 and Theorem 4.4). In fact,
we can add (̂1 to this statement, i.e., %L!((̂1$ (̂2 # Dom2(s10)) = 27!

The DS-criterion may be incapable in recommending any action in some situations.
To see this, we consider the following variant!

Game ((1$ (02) : We replace Table 1.2 by Table 1.2
0; if store 1 takes action a3, store 2’s

payo" ordering is completely opposite to that for the other choices by 1. Then, there is
no dominant strategy for store 2!

Table 1.20; (02
s1 s2 s3 · · · s9 s10

a1 1 2 3 · · · 9 10

a2 11 12 13 · · · 20 21

a3 +1 +2 +3 · · · +9 +10

The set of preferences (̂02 is dened based on this table in a parallel manner as (5.2).
Since 0L (̂02 # Dom2(s10)$ we have %L!((̂

0
2 # Dom2(s10)) = +"! However, it holds that

`L (̂02 # ¬&.Dom2(s.)$ which store 2 may notice. In this sequent, only &.Dom2(s.) is
a legitimate occurrence. It holds that &L((̂

0
2 # ¬&.Dom2(s.)) = 10!We have a proof of

this sequent: ½
. . .

(̂02$Dom2(s.)#

¾

.=1#///#10

(̂02$&.Dom2(s.)#
(& #)

(̂02 # ¬ &. Dom2(s.)
(# ¬)
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Thus, %L!((̂
0
2 # ¬&.Dom2(s.)) = 10 by the LB-method! Again, we can add (̂1 to this

statement, i.e., %L!((̂1$ (̂
0
2 # ¬&.Dom2(s.)) = 10!

The above is interpreted as follows: Store 2 nds the DS-criterion does not allow
any action by checking his payo" matrix. He needs 10 comparisons to have this knowl-
edge. In game ((1$ (2)$ the DS-criterion does not require interpersonal thinking about 1’s
decision-making, but in game ((1$ (02)$ this criterion has no power for decision-making.
Therefore, store 2 needs something else: One procedure is to predict what 1 would
choose. The prediction-decision criterion is such a procedure. From the viewpoint of
our measure %L! , however, we can even compare the required inferences for the DS-
criterion and prediction-decision criteria in ((1$ (2)!

Prediciton-Decision (PD) Criterion: The prediction part is formulated as ${)(a!$a!0) :
-0 6= -}$ denoted by Bt1(a!)$ where - = 1$ 2$ 3!That is, store 2 thinks that 1 would
choose the best action. The prediction-decision criterion is formulated as $![Bt1(a!) %
$.0 6=.*(s.$ s.0 | a!)]$ denoted by PD2(s.)! This means that for each prediction (unique in
our example), s. is best preferred to other alternative actions. This PD-criterion was
an instance of the general form given in Kaneko-Suzuki [13]5. Since we adopt classical
and intuitionistic logics, we do not explicitly include epistemic structures.

In game ((1$ (2)$ store 2 with this criterion looks at 1’s preferences (̂1 as well as his
own preferences (̂2! He predicts that 1 would prefer a1 to a2$a3 (so he would choose
a1), and he nds that s10 is better than the other alternative actions. The same holds
for the game ((1$ (02)! These are described as

`L (̂1$ (̂2 # PD2(s10) and `L (̂1$ (̂02 # PD2(s10)! (5.4)

Either sequent has two legitimate occurrences: $![Bt1(a!) % $.0 6=10*(s10$ s.0 | a!)] and
$.0 6=10*(s10$ s.0 | a1)! Neither Bt1(a2) nor Bt1(a3) holds for (1$ which implies that
$.0 6=10*(s10$ s.0 | a2) and $.0 6=10*(s10$ s.0 | a3) can be replaced by new propositional
variables without destroying provability of (5.4). Hence, these constitute a unique gen-
uine set. Hence,

&L((̂1$ (̂2 # PD2(s10)) = &L((̂1$ (̂
0
2 # PD2(s10)) = (3 + 9)+ (2+ 1) = 11! (5.5)

Actually, we can nd a proof " of each sequent with %(" ) = 11! Hence, we have
%L!((̂1$ (̂2 # PD2(s10)) = %L!((̂1$ (̂

0
2 # PD2(s10)) = 11!

The above argument for (5.5) looks slightly di"erent from that given in Section 1.1,
though the resulting values are the same. In fact, the argument in Section 1.1 can be
expressed so that a2 and a3 are not chosen, rather than that a1 is chosen. Then, it is
exactly the same as the calculation for (5.5).

5A general formulation requires the existence of a prediction in addition to the above implication
part. It is not important in this example, we ignore the existence requirement of a prediction for
simplicity.
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Let us summarize the above arguments:

Table 5.1
game: ((1$ (2) game: ((1$ (02)

DS-criterion %L!((̂2 # Dom2(s10)) = 27 %L!((̂
0
2 # ¬ &. Dom2(s.)) = 10

PD-criterion %L!((̂1$ (̂2 # PD2(s10)) = 11 %L!((̂1$ (̂2 # PD2(s10)) = 11

In sum, the DS-criterion works for ((1$ (2)$ but not for ((1$ (02). This requires no inter-
personal thinking, and is often regarded as more “natural” than requiring interpersonal
one. In ((1$ (2), the PD-criterion suggests the same action, but requires a much smaller
number of comparisons. This di"erence could be larger by increasing the number of
alternative actions by store 1. Hence, interpersonal thinking is less reliable but sim-
plies decision making. In game ((1$ (02), the DS-criterion does not work. For store 2
to notice this fact, he should check (̂02 # ¬&.Dom2(s.)$ which needs at least 10 steps.
Once he notices this fact, he may go to the PD-criterion, which requires 11 steps to nd
a decision. We can combine these two logical arguments:

%L!((̂1$ (̂
0
2 # (¬ &. Dom2(s.)) $ PD2(s10))) = 10 + 11 = 21!

That is, store 2 rst veries that the DS-criterion recommends no action, and then he
uses the PD-criterion and nds one recommendation.

6. Evaluations of Some Contradictory Statements

Contradiction-freeness is one important criterion for an axiomatic system. For set-
theory, Woodin [29] discussed the possibility that an axiomatic system may contain
a contradiction from the objective point of view, but we may not nd the system is
contradictory when a proof to reach a contradiction is too large. This is relevant also
for game theory/economics in that the beliefs owned by a player may be contradictory
but he himself does not notice it. When measure %L! takes a large value to derive
a contradiction, it would be di!cult for a game player (us) to notice it. Thus, it is
important to analyze the behavior of %L! for contradictory statements. Here, we give
some general considerations, and then a specic problem arising in economics.

6.1. General Considerations

In logic L = CL or IL, a contradictory statement is formulated as either `L ! # or
`L !# ¬'$' for some (any) '! With respect to provability, they are equivalent, but
they di"er in general with respect to our measure of inference.
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Theorem 6.1: Suppose `L !# . Then, for any formula '$

%Lw(!# ¬' $') * %Lw(!# ) * %Lw(!# ¬' $') + 1! (6.1)

Proof. First, we have the inequality: %Lw(!# ¬'$') * %Lw(!# )$ since !# ¬'$'
is derived from !# by (/0)!Next, we show that the di"erence between %Lw(!# ¬'$')
and %Lw(!# ) is at most 1! Indeed, since %Lw(¬' $'# ) = 1 and

· · ·
!# ¬' $'

· · ·
¬' $'#

!#
(12/)$

we have %Lw(!# ) * %Lw(!# ¬'$')+%Lw(¬'$'# ) = %Lw(!# ¬'$')+1!

We conjecture that %Lw(! # ¬' $ ') = %Lw(! # )$ but so far, we have suc-
ceeded in neither proving this equality nor nding a counter example. The inequality
corresponding to (6.1) does not hold for the measure %Lf$ which is the next subject.

Let '& = ${)&$ *} for / = 1$ !!!$=$ and .& = &{)&$ *} for / = 1$ !!!$ >$ where )1$ !!!$
and * are all propositional variables. Then, consider the following sequents:

#0 = & {'1$ !!!$ ')} # $ {.1$ !!!$ .(}; (6.2)

#1 = &{'1$ !!!$ ')}$¬ $ {.1$ !!!$ .(}# ;

#2 = &{'1$ !!!$ ')}$¬ $ {.1$ !!!$ .(}# ¬* $ *!

Those sequents are provable and deductively equivalent in L = CL, IL. The sequents #1
and #2 are the targets of the present discussion. However, #0 is closely related to these
sequents, and is used to directly show the di"erence between %Lw and %Lf! We have the
following theorem, which will be proved below.

Theorem 6.2: (0): &L(#0) = &L(#1) = &L(#2) = =+ >+ 1;

(1): %Lw(#0) = %Lw(#1) = %Lw(#2) = =+ >;

(2): %Lf(#0) = %Lf(#1) = =× > and %Lf(#2) = =+ >!

This theorem has various implications other than the exemplication of Theorem
6.1. When =$> ' 2 and not (= = > = 2)$ we have %Lf(#0) = %Lf(#1) = = × > ;
%Lf(#0) = %Lw(#1) = =+ >$ which states that Lemma 3.1.(2) holds in strict inequality.
Also, =× > is much larger than =+ > for large =$>!

The inequality %Lw(#0) = = + > 6 %Lf(#0) = = × > shows a di"erence caused by
(12/)’s6. On the other hand, %Lf(#1) = = × > ; %Lf(#2) = = + > assumes no (12/)’s

6This argument is reminiscent of Boolos [3]: In a rst-order tableau system with equality and no
($%!)’s, he presented one example where if ($%!)’s are additionally available, its poof became much
smaller than the original proof.
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and is caused by additional ¬* $ *! This additional ¬* $ * plays the same role as (12/)
in proving these sequents.

Here, the LB-method may not give even an approximation of %Lf(#0) = %Lf(#1)!
When the LB-method is not available, we would have a di!culty to evaluate the exact
value of %L!! Indeed, to prove (1) and (2), we cannot directly use the LB-method.
Nevertheless, we use it in various steps of those proofs.

Proof of Theorem 6.2: In each sequent, &{'1$ !!!$ ')}$${.1$ !!!$ .(} are legitimate
occurrences, and they form a unique genuine set. Hence, &L(#0) = &L(#1) = &L(#2)
= =+ >+ (2+ 1) = =+ >+ 1!

Here, we prove only %Lf(#1) = =× > and %Lw(#1) = =+ >! For %Lf(#1) = =× >$ it
su!ces to show that (i) there is a cut-free proof "1 of #1 with %("1) = =× >; and (ii)
%Lf(#1) ' =× >!

For (i), we give a cut-free proof "1 of #1 with %("1) = =× > :
!
"#

"$

% · · ·
$$ # 0%

&

$=1&'''(

${$1#///#$(} # 0%
($#)

'
"(

")
%=1&'''&)

${$1#///#$(} # %{01#///#0%}
${$1#///#$(}#¬%{01#///#0)} # (¬#)

(# $)$ where the top left is
* " *

* " #{+%&*}
$$ # 0%

Consider (ii). Let " be a cut-free proof of #1! Denote the occurrences of &{'1$ !!!$ ')}
and ${.1$ !!!$ .(} in # in " by I1 and I2! In #1$ &{'1$ !!!$ ')} and ${.1$ !!!$ .(}
are legitimate occurrences. The uppermost ancestors of I1 and I2 are the principal
formulae of (& #) and (# $)$ respectively. A lowest occurrence of such an application
is expressed as

{'&$$# % : / = 1$ !!!$=}
&{'1$ !!!$ ')}$$# %

(& #) or
{$# %$ .& : / = 1$ !!!$ >}
$# %$${.1$ !!!$ .(}

(# $). (6.3)

Consider the left case. The right case can be treated in a parallel manner. Then,
$ contains ¬ $ {.1$ !!!$ .(} or % contains ${.1$ !!!$ .(}! Consider an upper sequent
'&$$# %! Since " is cut-free, the sequent '&$$# % can be expressed as

'&$¬ $ {.1$ !!!$ .(}# ${.1$ !!!$ .(}; or '& # ${.1$ !!!$ .(}! (6.4)

Consider the case of the rst sequent. The second case is similar. Some uppermost
ancestors of one occurrence of ${.1$ !!!$ .(} in this sequent is the principal formula of
(# $). Hence, the subtree determined by '&$$ # % has at least > leaves. Since this
holds for each '&$$ # %$ we have %(" ) ' = × >! For the case of (6.4), we can prove
the same inequality in a similar manner.

Now, let us prove %Lw(#1) = =+ >! We nd a proof "
0
1 of #1 with %("

0
1) = =+ > :

% 1 # 1
$% # 1 (%#)

&

%=1&'''&(

${$1#///#$(} # 1 ($#)

% 1 # 1
1 # 0$

(#$)
&

$=1&'''&)

1 # %{01#///#0)} (#%)
#{,1&'''&,(} " ${-1&'''&-)}

#{,1&'''&,(}&¬${-1&'''&-)} "
(¬#)

(12/)
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We show %Lw(#1) ' =+>! By (0), &L(#1) = =+>+1! Hence, %Lw(#1) ' =+>+1! Let
" be an arbitrary proof of #1! If it has no (12/), then &(" ) ' =×> by %Lf(#1) = =×>!
Let " contains at least one (12/)! Then, " has already (# &) and (# $) with principal
formula &{'1$ !!!$ ')} and ${.1$ !!!$ .(}. Hence, &(" ) ' =+ >+2+ (3+ 1) = =+ >!
Hence, we have %Lw(#1) ' =+ >!

The sequent #2 has a cut-free proof " with %(" ) = =+ > :
% 1 # 1
1 # 0$

(#$)
&

$=1&'''&)

1 # %{01#///#0)} # (#%)

1#¬%{01#///#0)} #
(¬#)

¬%{01#///#0)} # ¬1 (#¬)

${$1#///#$(}#¬%{01#///#0)} # ¬1 (&2)

% 1 # 1
$% # 1 (%#)

&

%=1&'''&(

${$1#///#$(} # 1 ($#)

${$1#///#$(}#¬%{01#///#0)} # 1 (&2)

${$1#///#$(}#¬%{01#///#0)} # ¬1%1 (# $)

This additional ¬* $ * in the succedent plays a similar role to the cut-formula.

6.2. Inferences for a Cyclical Contradiction

In economics, cyclical preferences have been discussed a lot. They do not allow the
decision maker (DM) to choose the best preferred action: Cyclical preferences are con-
tradictory in this sense (see Tversky [26] and MacCrimmon-Larsson [20] for possible
sources and di!culties arising). Logically speaking, cyclical preferences themselves are
not contradictory; under some additional conditions such as transitivity and asymme-
try, cyclical preferences yield a contradiction. As already stated, if it takes a too long
time to nd a contradiction in either sense, DM could not nd it. Here, we discuss this
problem from the viewpoint of our measure of inference.

Suppose that DM faces a problem to choose one from < alternatives a1$ !!!$a*! He
has two types of beliefs:

(1) basic preferences comparing consecutive alternatives;

(2) additional properties for preferences.

To describe those, we prepare propositional variables ).3 (1 * :$ H * <$ : 6= H); each ).3
is intended to mean that DM strictly prefers alternative a. to a*!

For (1), DM makes direct comparisons only between a. to a.+1 (<+1 is understood
as 1)! Then, we suppose that he prefers a. to a.+1 for all : = 1$ !!!$ <! These preferences
are called the basic preferences over < alternatives: Then let

$* = {)12$ )23$ !!!$ )(*&1)*} ( {)*1}! (6.5)

He has a cycle of preferences over those alternatives.
The set $* of basic preferences constitutes raw data for him. This lacks preference

comparisons between remote alternatives, a. and a3 (|: + H| ; 1)! DM may compensate
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for such missing parts by some beliefs of general properties for preferences. Here, we
assume transitivity and asymmetry for his preferences:

'4* = {).3 $ )3& % ).& : 1 * :$ H$ / * <}; (6.6)

'$* = {).3 % (¬)3.) : 1 * :$ H * <}! (6.7)

The sets '4* and '
$
* describe the agent’s beliefs of basic properties! DM makes direct

comparisons between two consecutive alternatives, which are described by the set $* of
direct data. Indirect comparisons between nonconsecutive alternatives such as )13 are
made from the raw data and his beliefs of basic properties. For example, he derives )13
from )12$ )23 using )12 $ )23 % )13!

The set $* of basic preferences itself is not contradictory. The union of three sets
$*$'

4
* $'

$
* $ yields a contradiction. Indeed, using the raw data $* and transitivity '

4
*

successively, we have )1*$ which together with '$* implies ¬)*1! On the other hand, $*
contains )*1; thus we have a contradiction, `L $*$'4* $'

$
* # ! The value of measure

%L! is given in the following theorem, which is proved in the end of this section.

Theorem 6.3 (Cyclical Contradiction): Let < ' 2! Then we have:

(1): &L($*$'
4
* $'

$
* # ) = 2< + 2;

(2): %Lw($*$'
4
* $'

$
* # ) = %Lf($*$'

4
* $'

$
* # ) = 2< + 2!

We show these claims in the cases of < = 2$ 3$ and give a sketch for a general case.
Let < = 2! Then, $* = {)12$)21}$'42 = - and '$2 = {)12 % (¬)21)$ )21 % (¬)12)}!

The raw data $* = {)12$)21} and asymmetry '$2 already lead to a contradiction. In
this case, each formula in '$2 is legitimate in the sequent #2 = $2$'

$
2 # , but only

one is enough to have a contradiction. Thus &L(#2) = 2$ and we have a proof " of
$2$'

$
2 # with %("2) = 2! Hence, %Lf(#2) = %Lw(#2) = 2 by the LB-method.

Let < = 3. To obtain )13, we use Transitivity once, and then ¬)31 by Asymmetry
once, which contradicts his raw preference )31! Transitivity consists of )12$)23%)13$ and
this has two legitimate occurrences )12$)23%)13 and )12$)23 in the sequent$3$'43 $'

$
3 #

! Hence, &L($3$'
4
3 $'

$
3 # ) = 2×3+2 = 4! Since we can nd a proof " of this sequent

with %(" ) = 4$ and thus, by the LB-method, %L!($3$'
4
3 $'

$
3 # ) = 4!

In the above argument, many formulae in '4* $'
$
* are not used. To prove the theo-

rem, we choose some subsets '4* $'
$
* of '

4
* $'

$
* so that $*$'

4
* $
'$* is still contradictory:

Indeed, let

'4* = {)1& $ )&(&+1) % )1(&+1) : / = 2$ !!!$ < + 1} and '
$
* = {)1* % ¬)*1}!

These are enough for the above derivation of a contradiction from $*$'
4
* $'

$
* , i.e., `L

$*$'
4
* $
'$* # . We should count the legitimate occurrences in '4* $'

$
* noting that

24



each )1& $ )&(&+1) % )1(&+1) contains two legitimate occurrences in the sequent. Then,
we have (1). For (2), we can construct a proof " of $*$'4* $'

$
* # with %(" ) = 2<+ 2

by induction on <!

7. Binary Conjunctions and Disjunctions

We take conjunction $ and disjunction & directly for nite sets of formulae. But it is
more standard in the literature of logic to apply $ and & to ordered pairs of formulae.
Our choice is to avoid too many repeated applications of them, since conjunctive and/or
disjunctive formulae consisting of many components often appear in game theoretical
practices. Here, we give a brief discussion on how the choice of the di"erent language
a"ects the measure %L! of inference!

Consider the subset P5 of P in which $ and & are applied only to binary sets of
formulae. We denote logic L= CL$ IL with P5 by L57! The theory developed in this paper
is available for L5; %L.! and &L. are dened in the same way only with the replacement
of L by L5! It is important to emphasize that the LB-method holds for them without
any changes. However, we should ask how di"erent %L! and %L.! are. In this section,
we give only brief discussions on this question.

Let us start with the following simple lemma: We say that a sequent # = !# " is
for L5 i" ! (" / P5.

Lemma 7.1. %L.!(#) = %L!(#) for any sequent for L5!

The case of %L.f(#) = %Lf(#) is straightforward due to the subformula property of a
cut-free proof, but the case of %L.w(#) = %Lw(#) is not, and will be proved later.

To make a comparison between %L.! and %L! for a sequent # containing non-binary
$ and &$ we translate # into the other one by expressing the non-binary $ and & by
repeated applications of binary $ and &! Let {'1$ !!!$ ')} be any set of formula in P
with = ' 2$ where '1$ !!!$ ') are ordered by , ! Then, we dene

V
{'1$ !!!$ ')} andW

{'1$ !!!$ ')} by induction on = as follows:
V
{'1$ '2} = ${'1$ '2}; and

V
{'1$ !!!$ ')} = ${

V
{'1$ !!!$ ')&1}$ ')}; (7.1)W

{'1$ '2} = &{'1$ '2}; and
W
{'1$ !!!$ ')} = &{

W
{'1$ !!!$ ')&1}$ ')}!

Then, we dene the translator M from P to P5 inductively as follow:

(o): M()) = ) for all propositional variables;

(i): M(¬') = ¬M(') and M(' % .) = M(') % M(.);
7 If we adopt the language where ! and " are applied to the ordered pairs of formulae, we will have

again other small di"erences. In this case, we can give the restriction on a proof that no formula in the
antecedent or succedent of each sequent occurs more than twice (cf., Došen [5]) Our logical system L.
is similar to the standard formulation with this restriction.
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(ii): M(${'1$ !!!$ ')}) =
V
{M('1)$ !!!$ M('))};

(iii): M(&{'1$ !!!$ ')}) =
W
{M('1)$ !!!$ M('))}!

This M is surjective but not injective, for example, M(${'1$ '2$ '3}) = M(${${'1$ '2}$ '3})
=
V
{'1$ '2$ '3}! Now, we can make a comparison between %L!(#) and %L.!(M(#)) for

a sequent # in L!
We dene (#

V
) and (

W
#) in terms of repeated applications of (# $) and (& #)

as follows: for #* = {'1$ !!!$ '*}$ < = 2$ !!!$=$

!# "$ '1 !# "$ '2
!# "$$#2
. . .
. . .

(# $)

. . .
!# "$

V
#)&2

(# $)
!# "$ ')&1

!# "$
V
#)&1

(# $)
!# "$ ')

!# "$
V
#)

(# $)

In the parallel manner, (
W
#) is dened! Both width and depth of (#

V
) (or (

W
#))

are =$ while (# $)[$#)] has width = and depth 2!
From any proof " of # in logic L, we can obtain a proof "5 of M(#) in logic L5

by replacing applications of (# $) and/or (& #) by the corresponding (#
V
) and/or

(
W
#). This is stated in the following lemma.

Lemma 7.2. Let " be a proof of a sequent # in logic L = CL, IL. Then, there is a
proof "5 of M(#) in L5 such that %(" ) = %("5)!

The depth of "5 is typically much deeper than that of "!
It follows from Lemma 7.2 that %L.!(M(#)) * %L!(#) for any # for L. Thus, if # is a

sequent for L5$ we have %L.!(#) * %L!(#)! On the other hand, we have %L.!(#) ' %L!(#)$
since a proof of # in L5 is also a proof in L. In sum, we have Lemma 7.1.

These lemmas may be interpreted as meaning that with respect to width, the choice
of the non-binary language P or binary P5 does not matter. However, we have an ex-
ample for %L.!(M(#)) 6 %L!(#)!

Example 7.1. Consider # = ${)1$ !!!$ ))} # ${)1$ !!!$ ))&1} in L! We can show
%L!(#) = =+1! However, M(#) =

V
{)1$ !!!$ ))}#

V
{)1$ !!!$ ))&1}$ and

V
{)1$ !!!$ ))} =

${
V
{)1$ !!!$ ))&1}$ ))}! Then %L!(M(#)) = 1$ since M(#) is proved as follows:

V
{)1$ !!!$ ))&1}#

V
{)1$ !!!$ ))&1}

${
V
{)1$ !!!$ ))&1}$ ))}#

V
{)1$ !!!$ ))&1}

($ #)!

We can state a su!cient condition for the equivalence between %L!(#) = %L.!(M(#))
in terms of &L and &L. ! The following holds.
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Lemma 7.3. If &L(#) = &L.(M(#)) and %L!(#) = &L(#), then %L!(#) = %L.!(M(#))!

Proof. By Theorem 4.4 for L5$ we have &L.(M(#)) * %L.!(M(#))! Thus, %L!(#) =
&L(#) = &L.(M(#)) * %L.!(M(#))! By Lemma 7.2, we have %L!(#) ' %L.!(M(#))! Thus,
%L!(#) = %L.!(M(#))!

This means that as far as &L(#) = &L.(M(#)) and the LB-method gives the exact
value for %L!(#), the two measures %L! and %L.! are equivalent. Hence, our question
is now when &L(#) = &L.(M(#)) holds. We have not succeeded in nding good su!-
cient conditions for this equivalence. Nevertheless, they take the same values in all the
examples in this paper except for Example 7.1.

8. Proof of Theorem 4.4

We prepare a few more proof theoretical concepts in order to prove Theorem 4.4.

8.1. Ancestors and Descendants in a Proof

Consider a proof tree " = (5$6;7)! Let [# | (F$ G)] ·@ (or [# | (H$ G)] ·@) be an occurrence
relative to the sequent # = 7(8) (8 ) 5). Then, its occurrence relative to " = (5$6;7)
is dened by adding the address of 8 in " ;

[" | 8] · [# | (F$ G)] · @ (or [" | 8] · [# | (H$ G)] · @)! (8.1)

We denote the occurrence of (8.1) by the symbol N! The reference and target formulae
are also denoted by D[N] (= D[@]) and E [N] (= E [@])!

Since an occurrence in (8.1) contains all relevant information about the address of
[# | (F$ G)] · @ or [# | (H$ G)] · @$ we can regard it as an occurrence relative to # = 7(8)!
Conversely, when an occurrence I relative to a sequent # is given and also a proof " of
# is given, I is regarded as an occurrence relative to " by adding [" | 80] · I$ where 80 is
the root of "! Hence, we use also symbol I when the reference sequent is well specied.

The introduction of an occurrence in a proof " = (5$6;7) enables us to dene a
descendant and an ancestor. In each case of the 12 inference rules in Section 2, we need
to dene immediate descendants and ancestors. However, since these are similar, we
give the denition only in the case of

'$!# "

$#$!# "
($ #)[$#]$ where ' ) #!

Suppose that this occurs in a proof " = (5$6$7)$ and that the upper and lower sequents
are given as 7(8) = # and 7(80) = #0 (8$ 80 ) 5)! Let . be a subformula occurring in
7(8) = '$!# ". Consider an occurrence N = [" | 8]·[# | (F$ /)]·@ or [" | 8]·[# | (H$ /)]·@
with E [N] = . and @ = [D[N] | C : .].
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I1: Let D[N] be in !! Then, an immediate descendant N0 of N is [" | 80] · [#0 | (F$ /0)] · @$
where formula D[N] is the /0-th formula in {$#} ( ! with respect to , !

I2: Let D[N] be the side formula ' of ($ #)! Then an immediate descendant N0 of N is
[" | 80] · [#0 | (F$ /0)] ·@0, where $# is the /0-th formula in {$#}(! and @0 = [' | ($$ <) ·C :
.]$ i.e., ' is the <-th formula in #!

I3: If N is in the succedent of # = 7(8)$ i.e., it is [" | 8] · [# | (H$ /)] ·@$ then the immediate
descendant N0 of N is N0 = [" | 80] · [#0 | (H$ /)] · @!

Under Stipulation S in Section 2, the following lemma holds.

Lemma 8.1.(Unique Immediate Descendant): Consider an occurrence N in " in
logic L, which is neither a cut-formula nor in the endsequent. It has a unique immediate
descendant.

We say that an occurrence N0 is called a descendant of N in a proof " if there is a
chain {N0$ !!!$ N*} so that N0 = N$ N* = N0$ and N& is an immediate descendant of N&&1 for
/ = 1$ !!!$ <!

When N0 is a descendant of N$ we say that N is an ancestor of N0! An immediate
ancestor may not be uniquely determined. In the above (2) for ($ #)[$#]$ if ! contains
already $#$ then the occurrence of ' in the lower sequent has two immediate ancestors
in the upper sequent. Also, since (# $)$ (& #) or (%#) has multiple uppersequents,
N in its lowersequent may have multiple ancestors. However, Lemma 8.1 is enough for
the proof of Theorem 4.4.

The sign of an occurrence N = [" | 8] · [# | (F$ G)] · @ or [" | 8] · [# | (H$ G)] · @ in
" = (5$6;7) is simply the sign of [# | (F$ G)] · @ or [# | (H$ G)] · @ in #! Then, we have:

Theorem 8.2.(Sign-Preservation Property): Let " be a proof in L = CL or IL.
Consider an occurrence N in "! Every descendant of N has the same sign as that of N.

8.2. Proof of Theorem 4.4 for %Lf

First, we prove Theorem 4.4 for the cut-free case, i.e., &L(#) * %Lf(#). If # is not
provable, then %Lf(#) = +" and nothing should be proved! Let # be provable in L!

Lemma 8.3 (Cut-Free Case). Let " be any cut-free proof of a given sequent # in
L. Then, there is a genuine set K of legitimate occurrences in # such that L(K) * %(" ).

Proof. Let I be a legitimate occurrence in #. As remarked above, this I can be regarded
as an occurrence relative to "! We say that I is " -essential i" there is some uppermost
ancestor C[I] of I in " so that its target formula is the principal formula of (# $)$ (& #)
or (%#)! Let K be the set of all " -essential legitimate occurrences in #!

This K satises condition (4.7): Indeed, suppose that I& ) K is a suboccurrence of
another legitimate occurrence I 6= I& in # = 7(86)! Consider the uppermost ancestor
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C[I&] of I& so that it is the principal formula of (# $)$ (& #) or (%#)! The target
formula E [I&] is a subformula in a conjunct or a disjunct of E [I] if E [I] is expressed
as $# or &&; or in ' or . of E [I] if it is ' % .! Hence, there is an application of
(# $)$ (& #) or (%#) between I& and C[I&] such that its principal formula is E [I]!
Hence, I is " -essential, so I ) K!

Now, let I 01$ !!!$ I
0
* be the other legitimate occurrences in # so that each I

0
& is not a

suboccurrence of any other I 0&0 (/
0 6= /). Let *1$ !!!$ ** be new propositional variables.

Then, we replace all ancestors of I 0& by *& (/ = 1$ !!!$ <)$ respectively, in proof "! We
show that the replacement does not destroy the proof structure of " : Indeed, since "
is cut-free and each I 0& has no companions, no uppermost ancestor is introduced by an
initial sequent. By the denition of K$ all the ancestors of each I 0& are introduced by
(/0)$ ($ #) or (# &)! The endsequent obtained by this replacement is denoted by #!.
Hence, `L #!! Hence, K is a genuine set.

Finally, for each I ) K$ we have an application of (# $)$ (& #) or (%#) so that
its principal formula is E [I]! For any I$ I 0 ) K$ if I 6= I 0$ the uppermost ancestors are
di"erent by Lemma 8.1. Hence, one occurrence I in K has at least one distinguished
application with its principal formula E [I]! Hence, by the denition (4.6) of L and
Lemma 4.3, we have L(K) * %(" )!

Proof of Theorem 4.4 for %Lf. Let " be a cut-free proof of #! Let K be the genuine
set of occurrences given in Lemma 8.3. Then, L(K) * %(" ). By (4.9), we have &L(#) =
min,0"ML (-)L(K

0) * L(K) * %(" )! Since " is a cut-free proof of #, we have &L(#) *
%Lf(#) = min{%(" ) : " is a cut-free proof of #}!

8.3. Proof of Theorem 4.4 for %Lw

The proof of Lemma 8.3 does not work when a proof " has a (12/). However, we can
prove the same assertion for any proof " with (12/)’s, constructing a further argument
based on Lemma 8.3. For this purpose, we should rene the cut-elimination theorem
(Theorem 2.1).

Consider a proof " of # with/without cuts. Also consider applications (# $)[$#]$
(& #)[&&] and/or (%#)[' % .] in "! Suppose that the endsequent # has the descen-
dants I1$ I2$ I3 of the principal formulae $#$ && and/or ' % . of those applications!
By Lemma 8.1, each descendant is uniquely determined. Hence, we can write (#
$)[$#]hI1i$ (& #)[&&]hI2i and/or (%#)[' % .]hI3i! For example, (# $)[$#]hI1i
means that in "$ once an application of (# $)[$#] occurs and I1 is its descendant
in the endsequent # of "! By this concept, we can distinguish between two applica-
tions with the same principal formulae, e.g., when (# $)[$#] occurs in two di"erent
places in "$ they are distinguished by their descendants in the end sequent. We have
the possibility that " has (12/)’s and the endsequent does not have a descendant of
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the principal formula of such an application. But this possibility is irrelevant in the
following argument.

The following theorem can be proved in almost the same way as Gentzen’s [7] proof
of the cut-elimination theorems for CL and IL8.

Theorem 8.4 (Renement of the Cut-Elimination Theorem): Let L be CL or
IL, and # any sequent in L. Let I1 be a positive occurrence in # with E [I1] = $#$ and
let I2$ I3 be negative occurrences in # with E [I2] = &&$ E [I3] = ' % .!

Let " be a proof of # in L. Then, there is a cut-free proof " 0 of # such that if
" 0 has applications of (# $)[$#]hI1i$ (& #)[&&]hI2i and/or (%#)[' % .]hI3i$ then
" has applications of the same inferences with the same principal formulae and their
descendants I1$ I2 and/or I3 in the endsequent #.

Using this theorem, we can modify Lemma 8.3 in the case for a proof with (12/)’H!
Once we have the following modication, the above proof of Theorem 4.4 is the same.

Lemma 8.30 (Case with Cuts). Let " be any proof of a sequent # with (12/)’s in
L. Then, there is a genuine set K of legitimate occurrences in # such that L(K) * %(" ).

Proof. Let " 0 be a cut-free proof given by Theorem 8.4. Then, let K be the set given
in the proof of Lemma 8.3 for " 0! Although K is dened and proved to be a genuine set
depending upon " 0, the denition of a genuine set does not depend upon the choice of
a proof. Hence, K is a genuine set.

Let I ) K! Then, we have an application of (# $)[$#]hIi$ (& #)[&&]hIi or (%#
)[' % .]hIi in " 0! Then, the original " has the corresponding application by Theorem
8.4. By Lemma 8.1, if I and I 0 in K are di"erent, then the corresponding applications
in " are di"erent. Thus, by the denition (4.6) of L and Lemma 4.3, we have L(K) *
%(" )!

9. Conclusions and Some Remarks

We have developed a theory of the measure of inference for classical logic CL and
intuitionistic logic IL. In either L = CL or IL, the measure %L! gives, to a given sequent
#, the minimum number of the widths of possible proofs - - it counts the number of
indispensable contents included in #! To calculate the exact value %L!(#), we developed
the LB-method in Section 4, and using it, we calculated the values for various examples.
By these considerations, we have had certain important consequences both from the
viewpoints of logic as well as game theory/economics.

In Section 5, we studied the degrees of di!culties coming from two di"erent decision
criteria: the dominant-strategy (DS) criterion and prediction-decision (PD) criterion.
We have shown a trade-o" between the di!culties caused by these decision criteria. The

8A proof will be sent upon request.
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DS does not require interpersonal thinking; on the other hand, the PD does but may
simplify a lot his thinking to reach a decision.

Section 6 is about a contradictory sequent. In the Gentzen-style sequent formulation,
two sequents !# and !# ¬*$ * are equivalent with respect to provability. However,
it was argued in Section 6.1 they may be di"erent with respect to our measure %L! :
In particular, the two cases with/without (12/)’s are quite di"erent, and the succedent
¬* $ * may perform in a similar way as (12/)! In Section 6.2, we considered also the
contradictory statement arising from economics. We can make the example so that the
value of %L! for the sequent is arbitrary large. It means that when the value is very large,
the premises (antecedent) are contradictory from the objective point of view, while this
fact may be di!cult to be perceived.

We have a lot of di"erent aspects as well as a lot of applications to be considered.
Here, we will discuss a few aspects and applications to be emphasized.

(1): Renement of the LB-Method: This works well in the examples in this paper
in that &L(#) gives the exact value %L!(#) or approximates it! Only two exceptions are
the sequents #0 and #1 given in (6.2) in that &L(#) is very di"erent from %Lf(#). This
is caused by the fact that the lower bound function &L counts legitimate occurrences
as a summation form. However, in the examples #0 and #1$ the ancestors of legitimate
occurrences are nesting, which requires us to count them as a multiplication form.
The di"erence caused by nesting can be seen more severely in the application of the
LB-method to the Pigeonhole Principle (see Buss [4], Arai [1]). A renement of the
LB-method toward this direction is an important open question.

(2): Computational Complexity and Proof Search: By (1), we may recall the
literature of computational complexity and proof search. Once the measure of inference
is well developed, we can use it for an analysis of computational complexity for various
classes of problem instances as well as for proof search. This is a side problem along
the line of our original motivation. Nevertheless, it would be important to think about
this application.

(3): Epistemic Logics of Shallow Depths: This is closely related to the present
research in motivations, and was briey discussed in the game with large and small
stores in Section 5. The extension of the measure %L! itself to those epistemic logics is
straightforward, though we have di"erent possible ways of counting epistemic depths.
Also, the function &L and Theorem 4.4 can be extended to those logics. Then, we can
discuss the trade-o" mentioned above in a more explicit manner.

(4):Mechanical Method of Calculations: Lemma 3.2 gave decomposition properties
along the principal formula of an application of an inference. However, it gave only
decompositions with inequalities, and does not help the calculation of %L!. Therefore, we
have developed the LB-method. However, when we restrict our attention to some class of
sequents, we can expect those decompositions with equalities, perhaps, for intuitionistic
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logic L = IL. In fact, this is partially done for intuitionistic-based epistemic logics! Then
we can calculate %L! in a mechanical way, and expect to a mechanical construction of a
proof.

(5): Hilbert-Style Logic: Measure %L! is system-specic, as it depends upon the
choice of a language. If we adopt a Hilbert-style formulation of classical or intuitionistic
logics, then the value changes a lot. There are diverse formulations of Hilbert-style
systems. In the case of classical logic, one system in Kaneko-Nagashima [11] may
be well comparable with the sequent formulation of the present paper. A proof in
a sequent calculus can be converted into the Hilbert-style formulation and vice versa.
For this conversion, (12/) does play an important role. Since the LB-method works
even for %CLw$ we would be able to compare our measure for that for the Hilbert-style
formulation.

(6): Connections to Inductive Game Theory: From our research viewpoint, it is
more direct to apply the theory to the induction process in inductive game theory of
Kaneko-Kline [10]. For example, the inductive process itself was not formulated in [10],
but it can be formulated as an algorithm from accumulated experiences to an individual
view. This algorithm can be formulated as a set of beliefs of a player, and he infers his
view based on this set of beliefs from his accumulated experiences. If our measure gives
a large number, he would have a di!culty in constructing his view.

The present authors have already developed some of those problems - - some papers
[16] and [17] will be available. Yet, we have a lot of open problems about the theory
presented here. We expect a lot of further contributions along the line of the research
given in this paper.
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