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ABSTRACT

In this paper, we consider sequential estimation of the end points of the support based on

the extreme values when the underlying distribution has a bound support. Some sequential

fixed-width confidence intervals are proposed. Stopping rules based on the range are proposed

and the estimation procedures based on them are shown to be asymptotically efficient. The

results of numerical simulations are presented. Moreover, the sequential point estimation

problem is considered under squared loss plus cost of sampling.

1. INTRODUCTION

In the case of the uniform distribution U(0, θ) on the interval (0, θ) (θ ∈ R), sequential

estimation problems was studied by Graybill and Connell (1964), Cooke (1971), Govindara-

julu (1997), and others. A sequential point estimation of θ of the uniform distribution

U(θ− (1/2), θ + (1/2)) was also discussed by Wald (1950) and Akahira and Takeuchi (2003)

(see also Ghosh et al. (1997)). Mukhopadhyay et al. (1983) considered a similar sequential

point estimation problem in a power family distribution(see also Mukhopadhyay (1987) and

Mukhopadhyay and Cicconetti (2002)).

Recently, Koike (2007a,b) considered the case of a location-scale parameter family of

distributions with a bound support, obtained a sequential confidence interval with fixed width

and a sequential point estimation procedure of θ, and showed their asymptotic efficiencies.
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In this paper we consider sequential interval and point estimation problems of the end points

of the support for a non-regular distribution. These estimation procedures might be applied

to a truncated distribution. We can give the problem of the size selectivity of trawl gear as

an example (see, Millar (1992) and Millar and Fryer (1999)). The size of the mesh of the net

has a great influence on the size of fish captured, and the size of fish is distributed according

to a truncated distribution (see also Section 4.4 of Gulland (1983)).

2. SEQUENTIAL INTERVAL ESTIMATION

Let X1, X2, . . . be a sequence of i.i.d. random variables according to the density function

f0(x) (θ ∈ R1) with respect to the Lebesgue measure. We assume throughout the paper that

f0(x) has a bound support (θ1, θ2) (θ1 < θ2), i.e., f0(x) > 0 for θ1 < x < θ2, and f0(x) = 0

otherwise, and is twice continuously differentiable in (θ1, θ2).

We assume the following condition as non-regular distribution.

(A) f0(x) satisfies

lim
x→θ1+0

(x − θ1)
−γ1f0(x) = g1(θ2 − θ1), lim

x→θ2−0
(θ2 − x)−γ2f0(x) = g2(θ2 − θ1),

where γi > −1 (i = 1, 2) and g1(θ2 − θ1) and g2(θ2 − θ1) are strictly decreasing, continuous,

positive value functions of θ2 − θ1.

Note that f0(x) satisfying (A) converges to 0 with the order of (x−θ1)
γ1 and |x−θ2|γ2 as

x → θ1 + 0 and x → θ2 − 0, respectively. So, the density changes sharply at the end points

of the support if −1 < γi < 1 and changes smoothly if γi > 1 (i = 1, 2). This condition

is essentially the same as those in Akahira (1975a, b), Akahira and Takeuchi (1981, p. 31;

1995, pp. 81, 148) and Koike (2007a, b). And note that the assumptions concerning g1 and

g2 are satisfied for the uniform distribution U(θ1, θ2) over (θ1, θ2) (θ1 < θ2). In fact, in this

case, γ1 = γ2 = 0 and g1(θ2 − θ1) = g2(θ2 − θ1) = 1/(θ2 − θ1).

Hereafter we assume the condition (A).

Put X(1:n) := min1≤i≤n Xi, X(n:n) := max1≤i≤n Xi. Defining U := n1/(γ1+1)(X(1:n) − θ1)

and V := n1/(γ2+1)(X(n:n) − θ2), we can show by employing the same technique in Koike
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(2007a) that the joint density f
(n)
U,V (u, v) of (U, V ) satisfies

f
(n)
U,V (u, v) →

g1g2u
γ1(−v)γ2 exp

{
− g2

γ2+1
(−v)γ2+1 − g1

γ1+1
uγ1+1

}
(v < 0 < u),

0 (otherwise)

(2.1)

as n → ∞, where g1 = g1(θ2−θ1) and g2 = g2(θ2−θ1). Hence U and −V are asymptotically,

independently distributed according to Weibull distributions.

In the first place, we construct a sequential confidence interval for θ1. If θ2− θ1 is known,

we have

P{X(1:n) − d ≤ θ1 ≤ X(1:n)} =P
{
0 ≤ n1/(γ1+1)(X(1:n) − θ1) ≤ n1/(γ1+1)d

}
≈

∫ n1/(γ1+1)d

0

fU(u)du

=1 − exp

{
−g1(θ2 − θ1)

γ1 + 1
ndγ1+1

}
,

for n ∈ N, where “≈” means that the distribution of n1/(γ1+1)(X(1:n) − θ1) is approximated

by the asymptotic distribution of U whose density is given by

fU(u) = g1(θ2 − θ1)u
γ1 exp

{
−g1(θ2 − θ1)

γ1 + 1
uγ1+1

}
(u > 0) (2.2)

from (2.1). Letting n∗ = − (γ1+1) log α
g1(θ2−θ1)dγ1+1 , we have for n ≥ n∗

1 − exp

{
−g1(θ2 − θ1)

γ1 + 1
ndγ1+1

}
≥ 1 − α

for 0 < α < 1. n∗ is referred as the asymptotically optimal size of samples if θ2−θ1 is known.

Now we take as the stopping rule

τ1 := inf

{
n ≥ n0

∣∣∣∣ n ≥ −(γ1 + 1) log α

g1(Rn)dγ1+1

}
, (2.3)

where n0(≥ 2) is the initial size of sample and Rn := X(n:n) − X(1:n). Then we obtain the

asymptotic properties of the sequential interval estimation procedure (τ1, [X(1:τ1)−d,X(1:τ1)])

for θ1 as follows.

Theorem 2.1. Under the condition (A), we have the following.

(i) lim
d→0+

P{X(1:τ1) − d ≤ θ1 ≤ X(1:τ1)} = 1 − α (asymptotic consistency).
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(ii) τ1/n
∗ a.s.→ 1 (d → 0+).

(iii) E(τ1)/n
∗ → 1 (d → 0+) (asymptotic efficiency).

Proof. From Lemma 1 of Chow and Robbins (1965), the stopping rule τ1 given by (2.3)

satisfies

lim
d→0+

−τ1d
γ1+1g1(θ2 − θ1)

(γ1 + 1) log α
= lim

d→0+

τ1

n∗ = 1 a.s. (2.4)

Hence (ii) follows. Since U converges in distribution to a distribution with the density given

by (2.2) as n → ∞, it follows from Theorem 1 of Anscombe (1952) that τ
1/(γ1+1)
1 (X(1:τ1)−θ1)

converges in distribution to the same distribution as d → 0+. Hence, from (2.4), it follows

that

lim
d→0+

P{X(1:τ1) − d ≤ θ1 ≤ X(1:τ1)} = lim
d→0+

P
{

0 ≤ τ
1/(γ1+1)
1 (X(1:τ1) − θ1) ≤ τ

1/(γ1+1)
1 d

}
=1 − α.

To prove (iii), from Fatou’s lemma, we have

lim inf
d→0+

E(τ1)

n∗ ≥ E

(
lim inf
d→0+

τ1

n∗

)
= 1. (2.5)

On the other hand, since 0 ≤ Rn ≤ θ2 − θ1 with probability 1 for arbitrary n ∈ N and

the assumption (A), g1(θ2 − θ1) ≥ g1(Rn). Hence, n > −(γ1 + 1) log α/{dγ1+1g1(Rn)} for n

satisfying n > −(γ1 + 1) log α/{dγ1+1g1(θ2 − θ1)} + 1. So, we have

n0 ≤ τ1 ≤ n∗ + 1.

Dividing this by n∗, we have
E(τ1)

n∗ ≤ n∗ + 1

n∗ → 1

as d → 0+. Combining (2.5), we have the desired result. ¤

Remark 1. In a similar way to the above, we can construct a two-stage interval estimation

procedure of θ1. We denote

N1 := max

{
m,

[
− (γ1 + 1) log α

g1(θ2 − θ1)dγ1+1

]∗

+ 1

}
, (2.6)
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where [x]∗ means the largest integer smaller than x and m = o(d−(γ1+1)) (0 < l < γ1 +

1). Then we have the asymptotic consistency and efficiency of the two-stage procedure

(N1, [X(1:N1) − d,X(1:N1)]) for θ1. The proof is the same as in Theorem 2.1. The asymptotic

efficiencies of (τ1, [X(1:τ1)−d,X(1:τ1)]) and (N, [X(1:N1)−d, X(1:N1)]) are identical, but we have

to “afford” to start with a larger sample size when d gets smaller in the latter, while the

initial size of sample may be independent of d in the former (see, Mukhopadhyay (1980) and

pp.156–157 of Ghosh et al. (1997)).

Next, we construct a sequential confidence interval for θ2 in a similar way to the above.

If θ2 − θ1 is known, we have

P{X(n:n) ≤ θ2 ≤ X(n:n) + d} =P
{
−n1/(γ2+1)d ≤ n1/(γ2+1)(X(n:n) − θ2) ≤ 0

}
≈

∫ 0

−n1/(γ2+1)d

fV (v)dv

=1 − exp

{
−g2(θ2 − θ1)

γ2 + 1
ndγ2+1

}
,

for n ∈ N, where “≈” means that the distribution of n1/(γ2+1)(X(n:n) − θ2) is approximated

by the asymptotic distribution of V whose density is given by

fV (v) = g2(θ2 − θ1)(−v)γ2 exp

{
−g2(θ2 − θ1)

γ2 + 1
(−v)γ2+1

}
(v < 0)

from (2.1). Letting n∗∗ = − (γ2+1) log α
g2(θ2−θ1)dγ2+1 , we have for n ≥ n∗∗

1 − exp

{
−g2(θ2 − θ1)

γ2 + 1
ndγ2+1

}
≥ 1 − α

for 0 < α < 1. n∗∗ is referred as the asymptotically optimal size of samples if θ2 − θ1 is

known.

Now we take as the stopping rule

τ2 := inf

{
n ≥ n0

∣∣∣∣ n ≥ −(γ2 + 1) log α

g2(Rn)dγ2+1

}
,

where n0(≥ 2) is the initial size of sample. Then we obtain the following.

Theorem 2.2. Under the condition (A), we have the following.

(i) lim
d→0+

P{X(τ2:τ2) ≤ θ2 ≤ X(τ2:τ2) + d} = 1 − α (asymptotic consistency).
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(ii) τ2/n
∗∗ a.s.→ 1 (d → 0+).

(iii) E(τ2)/n
∗∗ → 1 (d → 0+) (asymptotic efficiency).

The proof is omitted since it is similar to the one of Theorem 2.1.

Example 2.1. If the parent distribution is U(θ1, θ2), then γ1 = γ2 = 0, g1(θ2 − θ1) =

g2(θ2 − θ1) = 1/(θ2 − θ1). Hence τ1 ≈ n∗ = −{(θ2 − θ1) log α}/d as d → 0+. Note that this

stopping rule is the same as the one given in Chaturvedi et al. (2001), in which they consider

one-parameter case U(0, θ).

Example 2.2. We generalize the power family distribution in Mukhopadhyay et al. (1983).

as follows. Let X1, X2, . . . be a sequence of i.i.d. random variables according to the density

function

f0(x) =

δ(x − θ1)
δ−1(θ2 − θ1)

−δ (θ1 < x < θ2),

0 (otherwise)

(2.7)

with known δ > 0 and unknown θ1 < θ2. In this case, (x − θ1)
−δ+1f0(x) → δ(θ2 − θ1)

−δ as

x → θ1 + 0 and (θ2 − x)0f0(x) → δ(θ2 − θ1)
−1 as x → θ2 − 0. Hence the assumption (A) is

satisfied. τ1 in (2.3) is given by

τ1 = inf

{
n ≥ n0

∣∣∣∣ n ≥ −Rδ
n log α

dδ

}
,

and τ1 ≈ n∗ = − (θ2−θ1)δ log α
dδ .

3. SEQUENTIAL POINT ESTIMATION

In this section, at first, we construct an asymptotic sequential point estimation procedure

for θ1.

Since the asymptotic density of U := n1/(γ1+1)(X(1:n)−θ1) is given by (2.2), the asymptotic

expectation of U2 is

E(U2) ≈
∫ ∞

0

g1u
γ1+2 exp

{
− g1

γ1 + 1
uγ1+1

}
du =

(
γ1 + 1

g1

)2/(γ1+1)

Γ

(
γ1 + 3

γ1 + 1

)
,

where g1 = g1(θ2 − θ1) and Γ(·) is the gamma function. In a similar way to Lemma 2.1 of

Koike (2007b), we can show that there exists a constant C such that E(U2) → C as n → ∞.
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In addition to this, we assume the following condition.

(B1) There exists a positive valued, increasing, continuous function h1(θ2 − θ1) of θ2 − θ1

satisfying E(U2) → h1(θ2 − θ1) as n → ∞.

Note that (B1) is satisfied for the uniform distribution U(θ1, θ2) over (θ1, θ2) (θ1 < θ2). In

fact, in this case, γ1 = γ2 = 0, and an easy computation yields E(U2) = 2n2(θ2 − θ1)
2/{(n +

1)(n + 2)} → 2(θ2 − θ1)
2 as n → ∞.

If θ1 is estimated by X(1:n), then the risk is given by

r(1)
n := E(X(1:n) − θ1)

2 + dn,

where d(> 0) is the cost per observation. From U = n1/(γ1+1)(X(1:n)−θ1), r
(1)
n is approximated

by h1(θ2 − θ1)n
−2/(γ1+1) + dn, which is minimized at the integer closest to n = n∗∗∗ :={

2h1(θ2−θ1)
(γ1+1)d

}(γ1+1)/(γ1+3)

and the minimized value is r
(1)∗
n∗∗∗ := h1(θ2 − θ1)

{
d(γ1+1)

2h1(θ2−θ1)

}2/(γ1+3)

·
(

γ1+3
γ1+1

)
. However, unless θ2−θ1 is known, one can not attain this risk with a non-sequential

procedure. Since the range Rn = X(n) − X(1) converges to θ2 − θ1 almost surely as n → ∞,

therefore we consider the following stopping rule:

τ3 :=

{
n ≥ m

(1)
d

∣∣∣∣∣ n ≥
{

2h1(Rn)

(γ1 + 1)d

}(γ1+1)/(γ1+3)
}

,

where m
(1)
d is the initial size of samples with d−l ≤ m

(1)
d = o(d−(γ1+1)/(γ1+3)) (0 < l <

(γ1 + 1)/(γ1 + 3)). Then we have the (first order) asymptotic efficiency of the estimation

procedure [τ3, X(1:τ3)] as follows.

Theorem 3.1. Under the conditions (A) and (B1), as d → 0+, we have

(i) τ3/n
∗∗∗ a.s.→ 1. (ii) E (τ3)/n

∗∗∗→1, (iii) r(1)
τ3

/r
(1)∗
n∗∗∗ → 1.

Proof. The proof is similar to the one of Theorem 2.1 in Koike (2007b)(see also Lai (1996)).

At first, we note that

m
(1)
d ≤ τ3 ≤ n∗∗∗ + 1 with probability 1. (3.1)
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In fact, since 0 ≤ Rn ≤ θ2 − θ1 with probability 1, we have

0 ≤
{

2h1(Rn)

(γ1 + 1)d

}(γ1+1)/(γ1+3)

≤
{

2h1(θ2 − θ1)

(γ1 + 1)d

}(γ1+1)/(γ1+3)

with probability 1. Hence, n > {2h1(Rn)/((γ1 + 1)d)}(γ1+1)/(γ1+3) for n satisfying n >

{2h1(θ2 − θ1)/((γ1 + 1)d)}(γ1+1)/(γ1+3). Therefore (3.1) holds. Since τ3
a.s.→∞ and Rn

a.s.→ θ2−θ1,

Rτ3
a.s.→ θ2 − θ1. By the definition of τ3,{

2h1(Rτ3)

(γ1 + 1)d

}(γ1+1)/(γ1+3)

≤ τ3 < m
(1)
d +

{
2h1(Rτ3−1)

(γ1 + 1)d

}(γ1+1)/(γ1+3)

.

Dividing this by n∗∗∗, we have (i) as d → 0+ since d−l ≤ m
(1)
d = o(d−(γ1+1)/(γ1+3)). To prove

(ii), we have from (i) that

lim inf
d→0+

E (τ3/n
∗∗∗) ≥ 1.

by Fatou’s lemma. On the other hand, by (3.1),

E (τ3)

n∗∗∗ ≤ n∗∗∗ + 1

n∗∗∗ → 1 (d → 0+),

hence E (τ3) /n∗∗∗ → 1 as d → 0+. So, we have (ii).

To prove (iii), we may assume θ1 = 0 without loss of generality. Putting Sk,n := (k +

n)1/(γ1+1)X(1:k+n) − k1/(γ1+1)X(1:k) (k ≥ 1, n ≥ 0), we have by Minkowski’s inequality, that

0 ≤
(
E|Sk,n|4

)1/4
=

(
E|(k + n)1/(γ1+1)X(1:k+n) − k1/(γ1+1)X(1:k)|4

)1/4

≤
(
E|(k + n)1/(γ1+1)X(1:k+n)|4

)1/4
+

(
E|k1/(γ1+1)X(1:k)|4

)1/4
= O(1) (3.2)

from the condition (B1) and Lemma 2.2 in Koike (2007b). Taking η and λ satisfying 0 < λ <

{h1(θ2 − θ1)}(γ1+1)/(γ1+3) < η, we have P
(
{d(γ1 + 1)/2}(γ1+1)/(γ1+3)τ3 ≥ η

)
→ 0 as d → 0+

from (i). By (3.2) and Theorem B of Serfling (1980),

E max
1≤i≤n

|Sk,i|4 = O(1) for k ≥ k0, n ≥ 1. (3.3)
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Since τ3 ≥ m
(1)
d with probability 1, we have by denoting l0 := {d(γ1 + 1)/2}(γ1+1)/(γ1+3),

η−2/(γ1+1){d(γ1 + 1)/2}2/(γ1+3)E
{

τ
2/(γ1+1)
3 X2

(1:τ3)I (λ ≤ l0τ3 ≤ η)
}

≤E
(
X2

(1:τ3)

)
≤E

{
X2

(1:τ3)I (τ3 ≤ λ/l0)
}

+ λ−2/(γ1+1) {d(γ1 + 1)/2}2/(γ1+3) E
[
τ

2/(γ1+1)
3 X2

(1:τ3)I {λ ≤ l0τ3 ≤ η}
]

+ E
{
X2

(1:τ3)I (τ3 ≥ η/l0)
}

, (3.4)

where I(A) is the indicator function of an event A. By Schwarz’s inequality and (3.3),

E
{
X2

(1:τ3)I (τ3 ≥ η/l0)
}

≤η−2l20

∞∑
j=0

2−2j
[
E

{
max∗|n1/(γ1+1)X(1:n)|4

}]1/2 [
P

{
2jη/l0 ≤ τ3 ≤ 2j+1η/l0

}]1/2

=o

(
d(2γ1+2)/(γ1+3)

∞∑
j=0

2−2j2jd−(γ1+1)/(γ1+3)

)
= o

(
d(γ1+1)/(γ1+3)

)
since P (τ3 ≥ η/l0) → 0 as d → 0+, where max∗ means taking the maximum over 2jη/l0 ≤

n ≤ 2j+1η/l0. For an ε > 0 satisfying λ(γ1+3)/(γ1+1) < h1(θ2 − θ1) − ε,

P {τ3 ≤ λ/l0}

≤P

{
λ/l0 ≥

(
2h1(Rn)

d(γ1 + 1)

)(γ1+1)/(γ1+3)

for some m
(1)
d ≤ n ≤ λ/l0

}
=P

{
λ(γ1+3)/(γ1+1) ≥ h1(Rn) for some m

(1)
d ≤ n ≤ λ/l0

}
≤P

{
λ(γ1+3)/(γ1+1) ≥ h1(Rm

(1)
d

)
}

(by the monotonicity of Rn w.r.t. n)

≤P
(
h1(θ2 − θ1) − ε ≥ h1(Rm

(1)
d

)
)

=O
(
αm

(1)
d

)
, (3.5)
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where α ∈ (0, 1) is a constant. By Schwarz’s inequality and (3.5),

E
{
X2

(1:τ3)I(τ3 ≤ λ/l0)
}

≤
{
E|X(1:τ3)|4

}1/2
P 1/2 (τ3 ≤ λ/l0)

≤
∑

j:2j≥m
(1)
d

2−2j

{
E

(
max

2j≤n≤2j+1
|n1/(γ1+1)X(1:n)|4

)}1/2

P 1/2 (τ3 ≤ λ/l0)

=D
∑

j:2j≥m
(1)
d

2−2j
(
O

(
αm

(1)
d

))1/2

= O
(
m

(1)
d

−1
αm

(1)
d /2

)
,

where D is some constant. On the other hand, since |a2 − b2| ≤ |a − b|2 + 2|b||a − b| for

a, b ∈ R, ∣∣∣E {
τ

2/(γ1+1)
3 X2

(1:τ3)I(λ ≤ l0τ3 ≤ η)
}
− E

{(
[λ/l0]

1/(γ1+1)X(1:[λ/l0])

)2
}∣∣∣

≤E

{
max

λ/l0≤n≤η/l0

∣∣∣n2/(γ1+1)X2
(1:n) −

(
[λ/l0]

1/(γ1+1)X(1:[λ/l0])

)2
∣∣∣}

+ E
[(

[λ/l0]
1/(γ1+1)X(1:[λ/l0])

)2 {I (l0τ3 < λ) + I (l0τ3 > η)}
]

≤
{

E

(
max

λ/l0≤n≤η/l0

∣∣n1/(γ1+1)X(1:n) − [λ/l0]
1/(γ1+1)X(1:[λ/l0])

∣∣4)}1/2

+ 2
[
E

{(
[λ/l0]

1/(γ1+1)X(1:[λ/l0])

)2
}]1/2

·
{

E

(
max

λ/l0≤n≤η/l0

∣∣n1/(γ1+1)X(1:n) − [λ/l0]
1/(γ1+1)X(1:[λ/l0])

∣∣4)}1/4

+
{

E
∣∣[λ/l0]

1/(γ1+1)X(1:[λ/l0])

∣∣4}2 {
P 1/2 (l0τ3 < λ) + P 1/2 (l0τ3 > η)

}
from Schwarz’s inequality. Therefore, since E

{(
[λ/l0]

1/(γ1+1)X(1:[λ/l0])

)2
}

∼ h1(θ2 − θ1) as

d → 0. η and λ can be taken arbitrary close to {h1(θ2 − θ1)}(γ1+1)/(γ1+3),

E
(
X(1:τ3) − θ1

)2 ∼ h1(θ2 − θ1) {d(γ1 + 1)/(2h1(θ2 − θ1))}2/(γ1+3) . (3.6)

By (ii) and (3.6), we have (iii). ¤

Remark 2. In a similar way to the above, we can construct a two-stage point estimation

procedure of θ1. We denote

N2 := max

{
m,

[{
2h1(Rm)

d(γ1 + 1)

}(γ1+1)/(γ1+3)
]∗

+ 1

}
, (3.7)
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where d−l ≤ m = o(d−(γ1+1)/(γ1+3)) (0 < l < (γ1 +1)/(γ1 +3)). Then we have the (first order)

asymptotic efficiency of the two-stage procedure (N2, [X(1:N2) − d,X(1:N2)]) for θ1. The proof

is the same as in Theorem 3.1. The asymptotic efficiencies of (τ3, [X(1:τ3) − d,X(1:τ3)]) and

(N2, [X(1:N2) − d,X(1:N2)]) are identical up to the first oder (see, Ghosh and Mukhopadhyay

(1981)).

We may consider a sequential point estimation procedure for θ2 in the same way. In that

case we assume the following instead of (B1).

(B2) There exists a positive valued, increasing, continuous function h2(θ2 − θ1) of θ2 − θ1

satisfying E(V 2) → h2(θ2 − θ1) as n → ∞, where V = n1/(γ2+1)(X(n:n) − θ2).

If θ2 is estimated by X(n:n), then the risk is given by

r(2)
n := E(X(n:n) − θ2)

2 + dn,

where d(> 0) is the cost per observation. From V = n1/(γ2+1)(X(n:n)−θ2), r
(2)
n is approximated

by h2(θ2 − θ1)n
−2/(γ2+1) + dn, which is minimized at the integer closest to n = n∗∗∗∗ :={

2h2(θ2−θ1)
(γ2+1)d

}(γ2+1)/(γ2+3)

and the minimized value is r
(2)∗
n∗∗∗∗ := h2(θ2 − θ1)

{
d(γ2+1)

2h2(θ2−θ1)

}2/(γ2+3)

·
(

γ2+3
γ2+1

)
. However, unless θ2−θ1 is known, one can not attain this risk with a non-sequential

procedure. Since the range Rn converges to θ2 − θ1 almost surely as n → ∞, therefore we

consider the following stopping rule:

τ4 :=

{
n ≥ m

(2)
d

∣∣∣∣∣ n ≥
{

2h2(Rn)

(γ2 + 1)d

}(γ2+1)/(γ2+3)
}

,

where m
(2)
d is the initial size of samples with d−l ≤ m

(2)
d = o(d−(γ2+1)/(γ2+3)) (0 < l <

(γ2 + 1)/(γ2 + 3)). Then we have the asymptotic efficiency of the estimation procedure

[τ4, X(τ4:τ4)] as follows.

Theorem 3.2. Under the conditions (A) and (B2), as d → 0+, we have

(i) τ4/n
∗∗∗∗ a.s.→ 1. (ii) E (τ4)/n

∗∗∗∗→1, (iii) r(2)
τ4

/r
(2)∗
n∗∗∗∗ → 1.

11



The proof is omitted since it is similar to the one of Theorem 3.1.

Example 3.1. If the parent distribution is U(θ1, θ2), then γ1 = γ2 = 0, h1(θ2 − θ1) =

2(θ2 − θ1)
2. Hence τ3 ≈ n∗∗∗ = {4(θ2 − θ1)

2/c}1/3
and rτ3 ≈ rn∗∗∗ = 2−1/3{d(θ2 − θ1)}2/3 as

d → 0+.

Example 3.2. If the parent distribution is the power family distribution in (2.7), an easy

computation yields

E
{
n2/δ(X(1:n) − θ1)

2
}

=(θ2 − θ1)
2n(2/δ)+1Γ

(
2

δ
+ 1

)
Γ(n)

/
Γ

(
2

δ
+ n + 1

)
→(θ2 − θ1)

2Γ

(
2

δ
+ 1

)
exp{−(δ/2) − 1}

as n → ∞. Hence the assumption (B1) is satisfied. In this case, the stopping rule τ3 is given

by

τ3 =

n ≥ m
(1)
d

∣∣∣∣∣∣ n ≥

{
2R2

nΓ
(

2
δ

+ 1
)
exp{−(δ/2) − 1}
δd

}δ/(δ+2)
 ,

where m
(1)
d is the initial size of samples with d−l ≤ m

(1)
d = o(d−δ/(δ+2)) (0 < l < δ/(δ + 2)),

and τ3 ≈ n∗∗∗ =

{
2(θ2−θ1)2Γ( 2

δ
+1) exp{−(δ/2)−1}

δd

}δ/(δ+2)

as d → 0+.

Remark 3. Similarly, we may construct sequential interval and point estimation procedures

of the range θ2 − θ1 based on the Rn which are asymptotically efficient. The stopping rules

depend on the magnitude of γ1 and γ2.

4. NUMERICAL EXAMPLE

In this section we examine the coverage probability of the procedure

(τ1, [X(1:τ1) − d,X(1:τ1)]) in Theorem 2.1 by simulation based on 10000 repetitions. Suppose

that X1, X2, . . . , Xn, . . . is a sequence of i.i.d. random variables according to the uniform

distribution U(θ1, θ2) (θ1 < θ2). We may assume θ1 = 0 without loss of generality.

When α = 0.05, d = 0.01(0.01)0.05, θ2 = 1(1)5 and n0 = 5, Tables 1 and 2 show the

values of coverage probabilities and the average sample sizes of the sequential estimation

procedure (τ1, [X(1:τ1) − d,X(1:τ1)]), respectively. The result suggests that the estimation

procedure is almost consistent for this case.

12



Table 1. Coverage probabilities of [X(1:τ1) − d,X(1:τ1)]

θ2 \ d 0.01 0.02 0.03 0.04 0.05

1 0.9485 0.9488 0.9452 0.9470 0.9484

2 0.9486 0.9457 0.9461 0.9462 0.9475

3 0.9473 0.9515 0.9470 0.9480 0.9477

4 0.9483 0.9472 0.9441 0.9510 0.9455

5 0.9505 0.9449 0.9453 0.9422 0.9493

Table 2. Average sample sizes of [X(1:τ1) − d,X(1:τ1)]

θ2 \ d 0.01 0.02 0.03 0.04 0.05

1 299.786 150.285 100.453 75.5243 60.58

2 598.378 299.757 200.02 150.168 120.211

3 896.152 449.261 299.342 224.829 180.331

4 1194.86 598.556 398.941 299.875 239.867

5 1493.92 747.616 499.066 374.182 299.727

5. SUMMARY

Sequential interval and point estimation procedures of the end points of the support

were presented for a non-regular distribution with a bound support. And the asymptotic

efficiencies were shown. Moreover, numerical simulations were presented.
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