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Summary 

Constitutive activation of Notch signaling is required for the proliferation of a subgroup 

of human T cell acute lymphoblastic leukemias (T-ALL).  Previous in vitro studies 

demonstrated the therapeutic potential of Notch signaling inhibitors for treating T-ALL.  

To further examine this possibility, we applied a γ-secretase inhibitor (GSI) to T-ALL 

xenograft models.  Treatment of established subcutaneous tumors with GSI resulted in 

partial or complete regression of tumors arising from four T-ALL cell lines that were 

also sensitive to GSI in vitro.  To elucidate the mechanism of action, we transduced 

DND-41 cells with the active form of Notch1 (aN1), which conferred resistance to in 

vitro GSI treatment.  Nevertheless, in vivo treatment with GSI induced a partial but 

significant regression of subcutaneous tumors that developed from aN1-transduced 

DND-41 cells, whereas it induced complete regression of tumors that developed from 

mock-transduced DND-41 cells.  These findings indicate that the remarkable efficacy 

of GSI might be attributable to dual mechanisms; directly via apoptosis of DND-41 

cells through the inhibition of cell-autonomous Notch signaling, and indirectly via 

disturbance of tumor angiogenesis through the inhibition of non cell-autonomous Notch 

signaling.
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Introduction 

The Notch signaling pathway has a crucial role in a variety of cellular 

functions, including cell proliferation, differentiation, and apoptosis.(1,2)  Notch 

proteins are heterodimeric transmembrane receptors composed of an extracellular 

subunit and a transmembrane subunit, and associate with each other via 

heterodimerization (HD) domains in the extracellular regions.  Notch signaling, 

initiated by receptor-ligand interactions, requires subsequent proteolytic cleavage of the 

receptor by several proteases, resulting in liberation of the cleaved form of Notch1 that 

is functionally active (hereafter referred to as aN1) as it translocates into the nucleus 

and upregulates the transcription of Notch-RBP-Jκ-regulated genes.(3) 

Recent studies in tumorigenesis of hematologic malignancies and solid tumors 

revealed several examples of aberrant Notch signaling.(2,4,5)  Forced expression of aN1 

in mouse bone marrow results in the development of T-cell leukemia,(6) and more 

importantly, amplified Notch signaling contributes to approximately 50% of human 

T-cell acute lymphoblastic leukemia (T-ALL).(7,8)  The Notch signal amplification in 

T-ALL is due to gain-of-function mutations in the NOTCH1 gene, which have also been 

detected in many different murine T-ALL models.(9-12)  NOTCH1 activating mutations 

cluster at the HD and intracellular domains, leading to ligand-independent cleavage and 
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activation of Notch1, and increased stability of aN1, respectively.  Notch1 signaling, 

whether initiated by receptor-ligand interactions or triggered by NOTCH1-activating 

mutations in the HD domains, eventually depends on the proteolytic activity of 

γ-secretase.  γ-Secretase inhibitors (GSIs), available as small molecular compounds, 

suppress Notch signaling by blocking the activity of the γ-secretase complex.(13)  

Previous studies demonstrated that blockade of Notch signaling with GSI induces cell 

cycle arrest and apoptosis in a subset of human T-ALL cell lines,(7,14,15) and an 

early-phase clinical trial has already been conducted.(16)  Despite that, precise 

mechanisms of action of GSI on T-ALL in vivo are yet to be elucidated. 

Here, to examine the potential clinical applications for GSIs in T-ALL patients, 

and to evaluate the mechanisms of GSI action, we investigated the effects of the GSI 

compound YO01027(17) (referred to hereafter as YO) on human T-ALL growth in 

murine xenograft models, because YO administration to mice induced defective 

melanocyte stem cell maintenance but kept the mice otherwise healthy as shown in our 

previous paper.(18)  The results here indicated that YO is highly effective against 

T-ALL growth in vivo and demonstrated that the efficacy of GSI might be due to the 

inhibition of Notch signaling via two mechanisms.



7 

 

Materials and Methods 

Cell cultures and reagents. 

Human T-ALL cell lines (ALL-SIL, DND-41, HPB-ALL, KOPT-K1, TALL-1,  

MOLT-4, PF-382, and CEM) were obtained from the Fujisaki Cell Center, Hayashibara 

Biochemical Laboratories Inc (Okayama, Japan), maintained in RPMI supplemented 

with 10% fetal bovine serum and penicillin/streptomycin, and incubated at 37°C with 

5% CO2.  Human umbilical vein endothelial cells (HUVEC, Lonza Walkersville Inc.; 

Walkersville, USA) were cultured in Endothelial Basal Medium-2 and SingleQuots 

(Lonza Walkersville Inc.).  The YO, which is an LY-411,575 analogue, was 

synthesized as described previously.(17)  YO was dissolved in dimethyl sulfoxide 

(DMSO) to create 10 mM or 50 mM stock solutions. 

Animals. 

SCID mice (C.B-17/Icr-scid/scidJcl; 6 weeks old, female) were purchased from CLEA 

Japan, Inc. (Tokyo, Japan) and maintained under specific pathogen-free conditions.  

All experimental procedures were performed in accordance with the guidelines for 

animal experiments of the University of Tokyo and Jichi Medical University. 

Xenograft mouse model. 

SCID mice at 6 to 8 weeks of age were inoculated subcutaneously in the right flank 
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with 3 × 107 cells in 300 μl of phosphate buffered saline (PBS).  In concurrent 

administration experiments, the mice were assigned to a control group and a YO-treated 

group the day after tumor inoculation.  YO was orally administered daily for at least 

30 days at a dose of 0.1 or 1 mg/kg/day.  In challenge experiments for established 

tumors, mice were similarly assigned as described above at approximately 2.5 to 3 

weeks (in HPB-ALL and TALL-1) or 8 to 12 weeks (in ALL-SIL and DND-41) after 

tumor cell inoculation, when tumor size had reached a certain volume.  YO was orally 

administered daily at a dose of 0.1, 1, or 10 mg/kg/day.  Tumor size was measured at 

the greatest length and width.  The volume was calculated as 1/2 × (tumor length) × 

(tumor width)2 . 

In vivo administration of YO. 

In vivo administration of YO was performed as described previously.(19)  Briefly, 0.1 to 

10 mg/kg of YO or an equal volume of vehicle (DMSO) in 300 μl of 0.5% 

methylcellulose (Wako; Osaka, Japan) was administered orally to SCID mice using a 

disposable oral zonde (FUCHIGAMI; Kyoto, Japan) once a day for the indicated 

periods. 

Plasmid construction and retroviral transduction. 

The cDNA for myc-tagged murine aN1(20) was subcloned into the BamHI restriction site 
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of the retrovirus vector pMYs/internal ribosomal entry site-enhanced green fluorescent 

protein (IRES-EGFP; pMYs/IG).(21)  Retroviral transduction of a human T-ALL cell 

line, DND-41, was performed using PLAT-F cells as described previously.(21)  

Following transduction, GFP-positive cells were sorted to 90% purity and used for 

further analysis. The proteins were detected by Western blotting using an anti-myc 

antibody (9E10). 

Proliferation assay. 

Cell growth was quantified using a WST-1-based assay (Cell Counting Kit-8, Dojindo 

Medical Technologies; Kumamoto, Japan), which is a highly sensitive colorimetric 

assay.  Briefly, human T-ALL cell lines (3 × 104 cells/well) or HUVEC (4 × 103 

cells/well) were seeded into 96-well plates.  Vascular endothelial growth factor (VEGF, 

100 ng/ml) was supplemented in the medium for HUVEC.  Various concentrations of 

YO were added, and proliferation was measured in duplicate at 7 days or 11 days using 

a WST-1-based assay according to the manufacturer’s instructions.  Proliferation was 

expressed as a percentage or fold change of vehicle-treated controls.  Results are 

expressed as mean value ± SD. 

Detection of apoptosis. 

Cells were incubated with various concentrations of YO for the indicated periods.  
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Apoptosis was assessed using a fluorescein isothiocyanate (FITC)-labeled Annexin V 

staining kit (Immunotech, Beckman-Coulter; Praha, Czech Republic) combined with 

7-amino-actinomycin D (7-AAD), according to the manufacturer’s instructions, with a 

FACS Calibur cytometer (BD Biosciences; San Jose, USA). 

TUNEL staining 

To detect apoptotic cells, ALL-SIL-bearing SCID mice were sacrificed after the 

treatment with 1 mg/kg YO or vehicle for 5 days.  Frozen blocks of tumors were 

cryosectioned and fixed with 1% paraformaldehyde, followed by analysis for apoptosis 

using ApopTag Plus Peroxidase In Situ Apoptosis Detection Kit (MILLIPORE; Billerica, 

USA) according to the manufacturer’s instructions. 

Western blotting. 

Western blotting was performed as described previously.(22)  The probes used were 

antibodies against cleaved Notch1 (Val1744) (Cell Signaling Technology; Danvers, 

USA) and GAPDH as a control.  The Val1744 antibody was incubated at a dilution of 

1:1000 overnight. 

Tube formation assay 

Upon the BD BioCoat Angiogenesis Plate (96 well; BD Biosciences; San Jose, USA), 2 

x 104 HUVEC were seeded per each well, with or without 100 nM YO.  After 18 h, 
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cells were stained with fluorescent dye, Calcein AM (BD Biosciences; San Jose, USA), 

according to the manufacturer’s instructions.  Images were captured with the 

microscope BIOREVO BZ-9000 (KEYENCE; Osaka, Japan), and the tube length was 

measured using BZ-H1C image analysis application (KEYENCE; Osaka, Japan). 

Histological analysis. 

Frozen blocks were cryosectioned at 5 μm and mounted on the slides.  Histological 

sections were air-dried and fixed in acetone for 15 min, followed by the immunostaining 

with a 1:200 dilution of anti-mouse CD31 antibody (clone; MEC13.3) 

(BD-Pharmingen; San Diego, USA) overnight at 4ºC.  Horseradish peroxide with a 

coloring agent diaminobenzidine (DAB) was used as the substrate.  Sections were then 

counterstained with hematoxylin.  Vessel counting was performed at × 40 

magnification in several randomly chosen areas. 

Statistics. 

Statistical analyses were performed using Student’s t test. A p value of less than 0.05 

was considered statistically significant.
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Results 

Human T-ALL lines are susceptible to Notch inhibition. 

Some human T-ALL cell lines with NOTCH1 activating mutations are sensitive 

to GSI in vitro.(7,13-15)  We examined the ability of YO, a GSI compound that has not 

been tested in cell-based experiments, to inhibit Notch signaling.  Various human 

T-ALL cell lines (ALL-SIL, KOPT-K1, DND-41, and HPB-ALL) were treated with YO 

for 48 h followed by immunoblotting with cleaved Notch1 (Val1744) antibody, which 

can specifically detect the aN1 proteins.  Treatment of these cell lines with 100 nM YO 

resulted in an almost complete block of Notch1 activity (Fig. 1A). 

To investigate the anti-proliferative effect of YO on T-ALL cells, we measured 

cellular viability using the WST-1-based assay in human T-ALL cell lines after YO 

treatment.  As expected, YO exerted an anti-proliferative effect on some T-ALL cell 

lines (ALL-SIL, KOPT-K1, HPB-ALL, DND-41, and TALL-1), whereas other cell lines 

(MOLT-4, PF-382, and CEM) were not sensitive to this compound (Fig. 1B).  To 

examine concentration dependency, DND-41 was treated with various concentrations of 

YO for 7 days and applied to the WST-1-based assay.  A steep concentration 

dependency was observed between 1 nM and 10 nM.  The effect was virtually 

saturated at >10 nM (Fig. 1C). 



13 

 

Next, we explored whether the decreased proliferation of T-ALL cell lines after 

treatment with YO was due to the induction of cell cycle arrest and/or apoptosis.  We 

analyzed the cell cycle of the T-ALL cell lines after YO treatment using flow cytometry.  

As expected from previous reports,(7,13-15) YO induced G0-G1 arrest in all the T-ALL 

cell lines sensitive to YO (data not shown).  Then, we treated five T-ALL cell lines 

with YO for 7 days followed by Annexin V/7-AAD staining, and found that YO induced 

significant apoptosis of DND-41 cells (Fig. 1D), as well as the other T-ALL cell lines 

tested (Fig. 1E).  Similar results were observed using a pharmacologically distinct GSI, 

DAPT, known to block Notch activation (data not shown).  Taken together, these 

results confirmed that some human T-ALL cell lines are susceptible to YO treatment in 

vitro. 

 

Concurrent administration of YO with tumor inoculation resulted in the inhibition 

of tumor growth in T-ALL xenograft models. 

To examine in vivo antitumor effects of YO, we used murine xenograft models, 

in which SCID mice were inoculated subcutaneously with human cell lines.  

HPB-ALL and TALL-1 cell lines establish subcutaneous tumors in 2.5 to 3 weeks after 

the inoculation. The subcutaneous tumors of the YO-treated groups were significantly 
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smaller than those of control groups 2.5 to 4 weeks after the inoculation and the 

initiation of concurrent administration of YO or vehicle. Notably, in mice treated with 1 

mg/kg of YO, there was no tumor formation observed in any of the TALL-1-inoculated 

mice or in approximately half the HPB-ALL-inoculated mice (Fig. 2A,B). This result 

indicates that YO exerts in vivo antitumor effects on T-ALL, at least during the period 

of tumor engraftment. 

 

YO treatment against established tumors in T-ALL xenograft models results in 

partial or complete regression. 

Next, we evaluated the effects of YO treatment when the tumors grew to 

visible sizes.  In this experimental design, YO treatment resulted in partial (HPB-ALL) 

or complete (ALL-SIL, DND-41, and TALL-1) regression of the established 

subcutaneous tumors.  When treated with 10 mg/kg/day YO, the growth of tumors 

derived from HPB-ALL was suppressed to less than 50% compared with growth 

without treatment.  Tumors derived from ALL-SIL, DND-41, and TALL-1 completely 

regressed within 2 to 3 weeks following treatment with YO at 1 mg/kg/day (Fig. 3A). 

 To confirm the in vivo pharmacologic inhibition of Notch signaling by YO, we 

excised tumors made of ALL-SIL from mice with or without 1 or 10 mg/kg/day YO 
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treatment for 3 days, followed by immunoblotting of the tumor lysates with the Val1744 

antibody.  The level of cleaved Notch1 was reduced partially or almost completely 

after 1 or 10 mg/kg/day YO treatment, respectively.  Thus, YO administered at both 1 

and 10 mg/kg/day to SCID mice was pharmacologically active, and blocked Notch1 

signaling partially or almost completely, at least in cells of subcutaneous tumors (Fig. 

3B). 

 To determine whether YO treatment induces apoptosis in vivo, we performed 

TUNEL staining on tumors made of ALL-SIL, which was isolated from vehicle- or 

YO-treated mice.  TUNEL-positive cells were reproducibly increased in number by 

the YO treatment (Fig. 3C), demonstrating increased apoptosis of T-ALL cells in vivo. 

 

Effect of aN1 expression in tumor growth during YO treatment. 

We next expressed aN1 exogenously in DND-41 cell lines to examine whether 

aN1 rescues YO-induced cell growth arrest and tumor regression.  aN1 represents a 

protein that is already cleaved, and is thus not a substrate for γ-secretase.  Therefore, it 

is expected that DND-41 cells transduced with aN1 (hereafter referred to as 

DND-41/aN1) would become resistant to YO treatment. 

We established DND-41/aN1 cells by infection of parental DNA-41 cells with 



16 

 

aN1-expressing retrovirus, followed by bulk sorting of GFP-positive cells.  Expression 

of aN1 proteins was confirmed by Western blotting with an anti-myc antibody (Fig. 4A).  

Parental DND-41 and mock-infected DND-41 (DND-41/mock) were sensitive to YO, 

but, as expected, DND-41/aN1 was substantially resistant to YO in vitro when assessed 

by a cell proliferation assay (Fig. 4B).  The continuous presence of 100 nM YO 

allowed for selection of cells highly resistant to YO (DND-41/aN1/GSI; Fig. 4B).  The 

in vitro growth curves of these cells under basal conditions (without YO) were very 

similar with each other (data not shown). 

We implanted parental DND-41, DND-41/mock, DND-41/aN1, and 

DND-41/aN1/GSI cells subcutaneously to SCID mice.  Subcutaneous tumors began to 

be palpable and the tumor volume reached 700 mm3 in 8 to 12 weeks. Treatment with 

YO at 1 mg/kg/day or control vehicle was then initiated.  In vehicle-treated mice, the 

tumors derived from parental DND-41, DND-41/mock, DND-41/aN1, and 

DND-41/aN1/GSI cells grew in a similar manner, whereas YO treatment resulted in a 

substantial regression of the tumors derived from parental DND-41 and DND-41/mock 

cells (Fig. 4C,D).  Interestingly, in vivo YO treatment of tumors derived from 

DND-41/aN1 and DND-41/aN1/GSI cells, which were resistant to YO in vitro, induced 

significantly slower cell growth compared with the vehicle treatment, suggesting that 
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these cells were sensitive to YO to some degree in vivo (Fig. 4C,D).  In some mice, we 

observed a stabilization of the tumor volume.  Nevertheless, YO treatment was not 

sufficiently effective on DND-41/aN1 and DND-41/aN1/GSI to regress the tumors to an 

unpalpable level, unlike parental DND-41- and DND-41/mock-derived tumors. 

 

Effect of YO on in vitro tube formation and in vivo tumor vessels. 

Recent studies have demonstrated that inhibition of Notch signaling in solid 

tumors resulted in tumor regression via increased tumor vessels with poor 

perfusion.(23-26)  It has been shown that Notch inhibition leads to promotion of 

non-functioning angiogenesis. 

Tube formation assay was performed to investigate the effect of YO on in vitro 

angiogenesis using HUVEC.  We found that YO treatment significantly increased the 

tube length in the tube formation assay (Fig. 5A,B), suggesting that Notch inhibition 

promoted proliferation of endothelial cells, which is consistent with previous 

studies.(24,27)  In addition, cell proliferation in the presence of VEGF was measured 

with WST-1-based assay.  YO significantly promoted proliferation of HUVEC (Fig. 

5C) as previously reported. (24,27) 

To further clarify the mechanism of action with YO treatment, we analyzed the 
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tumor vasculature during YO treatment.  We implanted DND-41 cells into SCID mice 

and started YO or vehicle treatment after the tumor diameter reached approximately 1 

cm.  We sacrificed mice at treatment day 5, and analyzed tumor sections by 

immunostaining for anti-CD31, which is able to identify the vessels in tumors.  In the 

average, approximately 30 and >40 vessels per mm2 were observed in the 

vehicle-treated and YO-treated mice, respectively (Fig. 5D,E).  These results are 

consistent with the previous reports described above, in which tumor regression would 

result from increased but poorly functional tumor vessels.  Collectively, tumor 

regression in our models may depend partially on the disrupted tumor vasculature with 

paradoxically increased tumor vessels presumably through the inhibition of non 

cell-autonomous Notch signaling by YO. 
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Discussion 

The findings of the present study confirmed that the YO compound that we 

synthesized is a GSI that efficiently blocks Notch signaling in T-ALL cell lines carrying 

activating NOTCH1 mutations and induces apoptosis of these cell lines in vitro.  The 

cell-autonomous effect against Notch signaling described here is postulated to be the 

mechanism of anti-T-ALL, creating the bases for clinical studies of a GSI targeting 

T-ALL. 

We demonstrated a marked in vivo effect of YO in a xenograft model that was 

more dramatic than we had expected.  Although the mechanisms of YO action on 

T-ALL have been virtually confined to the cell-autonomous Notch signal inhibition, 

including a recent report describing the combinatorial effect of steroid with GSI,(28) the 

strong effect of GSI in vivo could also be attributed to cell-non-autonomous inhibition 

of Notch signaling. 

Our findings were consistent with the recent reports on the role of Notch 

signaling in tumor angiogenesis.(23-26)   Delta-4, one of the Notch ligands, is expressed 

on tip cells in the endothelium of newly elongating tumor vessels by stimulation with 

VEGF.  Engagement of Notch1 expressed on the stalk cells in the endothelium by 

neighboring tip cell-expressing Delta-4 blocks differentiation of the stalk cells into tip 
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cells, which represents the process required for the normally functioning tumor vessel 

formation.  Blockade of this signaling pathway impairs normal tumor angiogenesis and 

creates hyper-blanched, non-functioning vasculature, which results in regression of the 

solid tumor.  Whereas we used T-ALL cell lines in our experiments, we chose the 

subcutaneous tumor injection model because it is more convenient to observe and 

measure the tumors.  In this subcutaneous tumor model, we observed the similar 

tendency regarding tumor vessel density, from which we could easily speculate the 

same mechanism underlying this phenomenon. 

The introduction of the GSI-insensitive cleaved form of Notch1 into DND-41 

cells transformed these cells to be completely resistant to YO in vitro, exactly as 

expected, but failed to confer complete resistance to YO in the subcutaneous xenograft 

model.  Whereas the subcutaneous tumors derived from DND-41/aN1 were 

significantly more resistant to YO than tumors derived from parental DND-41 and 

DND-41/mock cells, they still significantly responded to YO.  These observations fit 

the idea that the marked in vivo antitumor effect of YO against subcutaneous tumors 

derived from parental DND-41 as well as DND-41/mock cells was mediated through, in 

addition to the cell autonomous effect, a blockade of tumor vasculature that supplies 

blood to the tumor cells in non cell-autonomous fashion. 
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We confirmed that subcutaneous tumors made of a colon cancer cell line, LoVo, 

which was non-sensitive to YO in vitro, were partially regressed by YO at 10 mg/kg/day 

(data not shown).  The effect of YO on the LoVo tumors, however, was not as strong as 

on tumors made of parental DND-41 and several other T-ALL cell lines, again 

supporting the idea that the exceptionally strong effect of YO on T-ALL xenografts is 

due to the inhibiting effect of YO on Notch signaling at two independent targets in vivo. 

As shown in Fig. 3B, inhibition of Notch1 activation in vivo was almost 

complete with YO at 10 mg/kg but incomplete with YO at 1 mg/kg.  On the other hand, 

the effect of YO in vitro was saturated by YO >10 nM, as shown in Fig. 1C.  These 

findings might indicate that >10 nM serum/tissue concentration is achieved with 10 

mg/kg and 1-10 nM with 1 mg/kg administration, if both in vitro and in vivo results are 

considered together.  Whereas administration of YO at 1 to 3 mg/kg/day for up to 4 

weeks did not cause weight loss, diarrhea, or hair coat abnormalities in mice, treatment 

at 10 mg/kg/day for more than 2 weeks resulted in obvious weight loss, diarrhea, and 

hair coat roughness.  This implies a narrow window of YO for the treatment purpose.  

Nevertheless, it also indicates that the sensitivity to YO is variable among tissues and 

cells, and this difference might be important for YO to be considered as a drug.  

Together with the results described in previous papers,(18,29,30) a subset of T-ALL cells 
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may be the most sensitive among others and possibly similar to melenocyte stem cells 

and splenic marginal zone B cells.  In contrast, thymocyte progenitors and intestinal 

goblet cells appear to be less sensitive to YO. 

Based on the facts that subcutaneous tumors from T-ALL cell lines do not 

represent common clinical presentations and that our finding might depend on the 

experimental model that we chose in this study, the question arises as to how the current 

findings can be translated to clinical application.  The vasculature component might be 

negligible in the leukemia model, but the effect of combination of cell-autonomous 

apoptosis induction in leukemia cells with the inhibition of angiogenesis in leukemic 

cell-infiltrating bone marrow is not known.  The effectiveness of YO in a leukemia 

model must be examined using the same T-ALL cell lines. 

The discovery of NOTCH1 activating mutations in T-ALL has made the Notch 

pathway an attractive target for therapy.(31)  The results described here indicate the 

rationale for the use of GSI in the treatment of T-ALL, as well as for solid tumors whose 

tumor vasculature formation is dependent on Notch signaling. 

Nevertheless, resistance of T-ALL against GSI might limit the clinical use of 

GSI.  Recently, mutational loss of PTEN gene, which encodes a key tumor suppressor 

that inhibits the PI3K-AKT signaling pathway, was discovered in T-ALL cells that are 



23 

 

resistant to GSI.(32)  This could explain the variation of GSI sensitivity among T-ALL 

cells.  Our results with HPB-ALL raise a different issue.  This cell line was very 

sensitive to YO in vitro, but subcutaneous tumors derived from HPB-ALL appeared to 

be less sensitive to YO compared to other cells such as DND-41.  This result indicates 

that YO concentrations sufficient to inhibit Notch1 activation may not be achieved in 

the subcutaneous tumor made from HPB-ALL.  In addition, it is likely that inhibition 

of tumor vessel formation is less efficient for the reduction of subcutaneous HPB-ALL 

tumors for some reasons, such that this particular tumor is less dependent on tumor 

vessels. 

Expectations and questions are intermingled with regard to the development of 

GSI and other Notch signal inhibitors for the treatment of T-ALL as well as other 

tumors.  Nevertheless, various Notch signal inhibitors are being developed aiming at 

clinical use.
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Figure Legends 

Fig. 1. Inhibition of Notch signaling impairs growth of human T-ALL cell lines. 

(A) Western blot analysis for cleaved Notch1 in human T-ALL cell lines treated with 

100 nM YO01027 for 48 h.  GAPDH is shown as a loading control. 

(B) Proliferation assay of a panel of human T-ALL cell lines treated for 7 days with 100 

nM YO01027 or vehicle control.  The percent of viable cell number indicates the 

proportion of viable cells in the treated populations relative to untreated populations. 

(C) Dose dependent effects of YO01027 on the proliferation of DND-41 cell line treated 

for 7 days with 3, 10, 30, 100, 300, 1000 nM YO01027 or vehicle control.  The percent 

of viable cell number indicates the proportion of viable cells in the treated populations 

relative to untreated populations. 

(D) Annexin V assay of DND-41 cell line treated for 7 days with 10 nM YO01027 or 

vehicle control. 

(E) Dose dependent effects of YO01027 on the apoptosis of human T-ALL cell lines 

treated for 7 days with 0.1, 1, 10, 100 nM YO01027 or vehicle control.  The apoptotic 

fraction denotes the fraction of Annexin V (+)/7-AAD (+) cells, and the percent of 

apoptotic fraction indicates the proportion of apoptotic cells among the total cells within 

each treated well. 
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Fig. 2. Antitumor effects of YO on xenograft models of human T-ALL, with concurrent 

administration of YO with tumor inoculation. 

Mice were inoculated subcutaneously with HPB-ALL (A) or TALL-1 cell lines (B).  

The next day, mice were randomly assigned to receive vehicle alone or varying doses of 

YO01027 daily, as described in “Materials and methods”.  Data represent the mean 

tumor volume (mm3) ± SD grown in vehicle-treated mice, YO (0.1 mg/kg)-treated mice, 

or YO (1 mg/kg)-treated mice.  * P<0.05; **P<0.01, statistically significant 

differences (vehicle versus YO). 

Fig. 3. Antitumor effects of YO on xenograft models of human T-ALL, with YO 

treatment after tumor establishment. 

(A) Mice were inoculated subcutaneously with HPB-ALL, TALL-1, DND-41, or 

ALL-SIL cell lines.  When the diameter of the tumor reached 12 to 13 mm, mice were 

randomly assigned to receive vehicle alone or varying doses of YO01027 daily, as 

described in the “Materials and methods”.  Data represent the mean tumor volume 

(mm3) ± SD grown in vehicle-treated mice or YO (0.1 or 1 or 10 mg/kg)-treated mice.  

* P<0.001, statistically significant differences (vehicle versus YO). 

(B) Western blot analysis for cleaved Notch1 in engrafted tumors treated with YO.  

ALL-SIL-challenged mice were treated daily with vehicle alone or YO01027, and 
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tumors were harvested 72 h after the initiation of treatment, followed by Western 

blotting of tumor lysates with cleaved Notch1 (Val1744) antibody.  GAPDH is shown 

as a loading control. 

(C) YO treatment induces apoptosis of ALL-SIL cells in vivo.  ALL-SIL-bearing mice 

were treated daily with vehicle alone or YO01027 at a dose of 1 mg/kg, and tumors 

were harvested 5 days after the initiation of treatment.  Tumor sections were fixed with 

1% paraformaldehyde and apoptotic cells were stained using TUNEL assay. 

Fig. 4. Establishment of DND-41/aN1 and effects of aN1 rescue on tumor growth 

during YO treatment. 

(A) Expression of aN1 proteins tagged with myc in DND-41/aN1 cells and 

DND-41/aN1/GSI cells was confirmed by Western blotting analysis. 

(B) Proliferation assay of established DND-41/aN1 and DND-41/aN1/GSI cell lines, 

compared with DND-41/WT and DND-41/mock cell lines, after treatment for 11 days 

with varying doses of YO.  The percent of viable cell number indicates the proportion 

of viable cells in the treated populations relative to untreated populations. 

(C) Antitumor effects of YO on xenograft models of DND-41/WT, DND-41/mock, 

DND-41/aN1, and DND-41/aN1/GSI (pre-selected by GSI in vitro).  “1 mg/kg/day” 

denotes the group that received the YO treatment at a dose of 1 mg/kg/day.  Data 
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represent the mean tumor volume (mm3) ± S.D. of vehicle-treated mice or YO (1 

mg/kg)-treated mice.    * P<0.01, statistically significant differences. 

(D) Representative appearance of subcutaneous xenograft models during YO treatment.  

DND-41 cells stably expressing control vector or aN1 (pre-selected by GSI in vitro) 

were grown as xenografts in SCID mice.  Representative mice from each group are 

shown. 

Fig. 5. In vitro and in vivo analysis of vascular cells after YO treatment. 

(A) The in vitro tube formation analysis of HUVEC, either with or without 100 nM YO 

treatment.  The cells were stained with fluorescent dye, Calcein AM, and the 

representative images are shown.  Original magnification; x 20. 

(B) Quantitative analysis of tube length after tube formation of HUVEC with or without 

100 nM YO.  Fold change of tube length was shown, compared with that of vehicle 

control.    * P<0.05, statistically significant differences. 

(C) The cell proliferation assay of HUVEC in the presence of VEGF, either with or 

without 100 nM YO for 7 days.  Fold change of absorbance at 450 nm was shown, 

compared with that of vehicle control.    * P<0.05, statistically significant differences. 

(D) Anti-CD31 immunostainings of tumor sections in DND-41-bearing SCID mice, 

either after YO treatment at a dose of 1 mg/kg/day or after vehicle treatment.  Original 
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magnification; x 40. 

(E) Quantitative analysis of vessels in tumors after YO treatment.  The cells stained 

with anti-CD31 were counted, and data represent the mean vessel density (/mm2) ± S.D. 

in tumors derived from DND-41.    * P<0.05, statistically significant differences. 


