
Deterministic Algorithms for Some

Global Optimization Problems

Hidetoshi Nagai

March, 2006

Deterministic Algorithms for Some

Global Optimization Problems

Hidetoshi Nagai

(Doctoral Program in Computer Science)

Adviser

Associate Professor Takahito Kuno

Submitted to the Graduate School of

Systems and Information Engineering

the University of Tsukuba

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Engineering

March, 2006

Abstract

We study two major classes of problems in global optimization, concave minimiza-

tion and reverse convex programming. The former problem is of minimizing a

concave function under linear constraints and the latter problem is of minimizing

a linear function over the intersection of a convex and the complement of a convex

set. In general, both problems have enormous number of locally optimal solu-

tions, among which the usual algorithms can fail to find a globally optimal one.

To locate a globally optimal solution without fail in a practical amount of time,

we propose branch-and-bound algorithms incorporating some procedures for ac-

celerating convergence. The main idea behind the algorithms is to exploit special

structures potentially possessed by the real-world problems, e.g., network struc-

tures and low-rank nonconvexity. We assume that each target problem has some

favorable structures of these kinds and define relaxation problems needed to solve

in the bounding process in such a way that they inherit the structures from the

target problem. While this approach enables us to solve each relaxation problem

efficiently, the resulting lower bounds on the optimal value become worse than

those obtained by existing approaches and cause a rapid growth of the branching

tree. To overcome this drawback, we introduce some bound-tightening procedures

based on Lagrangian relaxation and surrogate relaxation. Although these pro-

cedures require us to solve a concave minimization problem, we show that the

computational time is bounded by a lower order polynomial in the problem size.

We also report numerical results for the proposed algorithms, which indicate that

those are far more promising compared with textbook algorithms.

i

Contents

List of Figures v

List of Tables vi

Notations vii

1 Introduction 1

2 Overview of the Branch-and-Bound Algorithm 5

2.1 Simplicial Algorithm for Concave Minimization 5

2.2 Conical Algorithm for Reverse Convex Programming 8

3 Simplicial Algorithm for Concave Minimization Problems 11

3.1 Introduction . 11

3.2 Problem Settings and the Simplicial Algorithm 13

3.2.1 Problem settings . 13

3.2.2 Linear programming relaxation at Step 2 of Standard SBB . 13

3.3 Modified Linear Programming Relaxation 15

3.3.1 Enlargement of the feasible set 15

3.3.2 Convergence property when using P̃(∆) 17

3.3.3 Some issues to resolve in relaxation P̃(∆) 19

3.4 Algorithm Using Two-Phase Bounding Operation 20

3.4.1 Lagrangian relaxation and its solution 20

3.4.2 Description of the modified algorithm 23

ii

Contents iii

3.5 Numerical Experiment . 25

3.5.1 Instances . 25

3.5.2 Computer codes . 26

3.5.3 Numerical results . 27

3.6 Conclusion and Future Issues . 31

4 Revised Simplicial Algorithm for Concave Minimization Prob-

lems 32

4.1 Introduction . 32

4.2 Problem Settings . 34

4.3 Linear Programming Relaxations 35

4.3.1 Troublesome issues . 35

4.3.2 Modified relaxation proposed in Chapter 3 36

4.3.3 New relaxation resolving all difficulties 39

4.4 Revised Simplicial Algorithm . 43

4.4.1 Lagrangian relaxation for tightening w̃ 43

4.4.2 Algorithm description and convergence properties 46

4.5 Numerical Experiment . 50

4.5.1 Instances . 50

4.5.2 Computer codes . 51

4.5.3 Numerical results . 52

5 Simplicial Algorithm for Concave Production-Transportation Prob-

lems 57

5.1 Introduction . 57

5.2 Problem Settings . 59

5.3 Finite Simplicial Algorithm . 62

5.3.1 Linear programming relaxation 62

5.3.2 Network flow relaxation . 64

5.4 Computational Results . 69

Contents iv

5.5 Concluding Remarks . 70

6 Conical Algorithm for Reverse Convex Programming Problems 75

6.1 Introduction . 75

6.2 Problem Settings . 76

6.3 Overview of the Conical Algorithm 77

6.4 Surrogate Relaxation and the Proposed Algorithm 79

6.5 Numerical Results . 82

7 Conclusion 85

Acknowledgements 87

Bibliography 88

List of Figures

3.1 Numbers of branching operations when (m′, n′, ω) = (40, 80, 5.0). . . 28

3.2 CPU seconds when (m′, n′, ω) = (40, 80, 5.0). 28

3.3 Numbers of branching operations when (m′, n′, r′) = (40, 80, 20). . . 29

3.4 CPU seconds when (m′, n′, r′) = (40, 80, 20). 29

4.1 Numbers of branching operations when (m′, n′, σ) = (40, 80, 5.0). . . 53

4.2 CPU seconds when (m′, n′, σ) = (40, 80, 5.0). 53

4.3 Numbers of branching operations when (m′, n′, r′) = (40, 80, 20). . . 54

4.4 CPU seconds when (m′, n′, r′) = (40, 80, 20). 54

6.1 CPU seconds when (m,n) = (10, 40) 84

v

List of Tables

3.1 Computational results of 2phase when ω = 5.0. 30

4.1 Computational results of revsbb and sbb 1 when σ = 5.0. 55

5.1 Computational results when γ = 0.1 71

5.2 Computational results when γ = 1.0 72

5.3 Computational results when γ = 10.0 73

6.1 Average numbers of branchig operations and CPU seconds 84

vi

Notations

Throughout this thesis, we use the following notations.

int(S) interior of the set S

conv(S) convex hull of the set S

cone(S) convex cone of the set S

∂S boundary of the set S

∇f(x) gradient vector of the function f at x

dxe, bxc integers obtained by rounding x up and down, respectively

I identity matrix of appropriate size

e all-ones vector of appropriate dimension

ei the ith unit vector of appropriate dimenstion

0 all-zeros vector of appropriate dimension

vii

Chapter 1

Introduction

Since G.B. Dantzig developed the simplex method for linear programming prob-

lems in 1947, optimization algorithms have been widely used in engineering, eco-

nomics and other sciences. At the same time, we have encountered an increasing

number of problems which we cannot solve successfully using standard techniques

for linear and nonlinear programming. These are nonconvex global optimization

problems, whose distinguishing feature is multiextremality, i.e., the presence of

multiple locally optimal solutions, many of which fail to be globally optimal. Un-

til the mid 1980’s, most researchers and practitioners believed that the best ap-

proach to these inherently difficult classes of problems is heuristic or stochastic

local search (see e.g., [41]). However, the emergence of inexpensive personal com-

puters and powerful workstations enabled us to solve small- to medium-scale global

optimization problems in a practical amount of time, using general purpose deter-

ministic algorithms. Those include, among others, outer approximation, cutting

plane, branch-and-bound, inner approximation, or combinations of these different

concepts (see [19] for details). They have been applied to some important classes

of global optimization problems such as

1. concave minimization: minimizing a concave function under linear or convex

constraints;

2. reverse convex programming; minimizing a linear function over the intersec-

1

1. Introduction 2

tion of a convex set and the complement of a convex set; and

3. d.c. optimization: minimizing or maximizing a d.c. function (difference of

two convex functions) under d.c. constraints.

Unfortunately, we often observe a rapid increase of computational time taken

by the above-mentioned general purpose algorithms as the size of the instance

increases. Therefore, it is still practically beyond our scope to solve even a con-

cave minimization problem with over one hundred variables, if it has no special

structures.

In this thesis, we specifically study concave minimization and reverse convex

programming problems, both assumed to be encountered in such areas as chemical

engineering, financial engineering, network optimization, production and inven-

tory control, and so on. Most of these problems, though highly nonconvex, can

be characterized by special structures such as network flow and/or low-rank non-

convexity, i.e., the property of becoming convex when a relatively few variables

are fixed. By exploiting these structures, we develop practically efficient algo-

rithms based on the branch-and-bound algorithm, originally proposed by H. Tuy

[52], in order to generate a globally optimal solution to each target problem of

larger-scale. To be precise, we define relaxation problems needed to solve in the

bounding process in such a way that they inherit the structures from the target

problem. While this approach enables us to solve relaxation problems efficiently,

the resulting lower bounds on the optimal value become worse than those obtained

by general-purpose algorithms and cause a rapid growth of the branching tree. To

overcome this drawback, we introduce some bound-tightening procedures based

on Lagrangian relaxation and surrogate relaxation. Although these procedures re-

quire us to solve a concave minimization problem, we show that the computational

time is bounded by a lower order polynomial in the problem size. We also report

numerical comparisons our proposed algorithms with general-purpose algorithms.

In Chapter 2, we will first overview the basic workings of the standard branch-

and-bound algorithms described in [19, 55].

1. Introduction 3

In Chapter 3, we will develop a simplicial branch-and-bound algorithm with

two-phase bounding operation for solving a class of concave minimization problems

to which many of problems with low-rank nonconvexity reduce. In the first phase of

the bounding operation, we enlarge the feasible set of the usual linear programming

relaxation problem to facilitate application of some procedures for improving the

efficiency. In the second phase, we tighten the lower bound deteriorated by this

enlargement, using the Lagrangian relaxation. Computational results indicate

that the proposed algorithm is promising, compared with a standard simplicial

branch-and-bound algorithm.

In Chapter 4, we will further develop a simplicial branch-and-bound algorithm

for concave minimization problems with low-rank nonconvex structures from the

proposed algorithm in Chapter 3. The preceding algorithm unfortunately have

two difficulties. First, the lower bound obtained by linear programming relaxation

problem is numerically unstable when the subsimplex becomes smaller. To pre-

vent this issue, we introduce a new underestimator, which is simply induced by a

gradient vector of the concave function f . Using this underestimator, we can solve

the problems more precisely with a less numerical trouble than the convex enve-

lope of the standard underestimator. Second, although our proposed relaxation

in Chapter 3 inherits special structures of the target problem to a great extent,

it destroys the original low-rank nonconvex problem behind the target problem.

We propose to remove all additional constraints imposed on the usual linear pro-

gramming relaxation problem. Therefore, in the bounding operation, we solve a

linear programming problem whose constraints are exactly the same as the target

problem. Although the lower bound worsens by this enlargement of the feasible

set, we offset this weakness by using an inexpensive bound-tightening procedure

based on Lagrangian relaxation. After giving a proof of the convergence, we report

a numerical comparison with existing algorithms.

In Chapter 5, we will consider a concave production-transportation problem for

an actual example of applying our algorithm to a concave minimization problem

with special structures. This problem is a network flow problem of optimizing

1. Introduction 4

production and transportation simultaneously. The production cost is assumed to

be a concave function in light of scale economy. The proposed algorithm generates

a globally optimal solution to this nonconvex minimization problem in finite time,

without assuming the separability of the production-cost function unlike existing

algorithms. We also report some computational results, which indicate that the

algorithm is fairly promising for practical use.

On the other hand, the purpose of Chapter 6 is to develop a conical branch-

and-bound algorithm for solving reverse convex programming problems. We also

assume that the problems have low-rank nonconvexity. We propose an inexpensive

bound-tightening procedure, which is based on the surrogate relaxation. This is

almost the same as the procedure mentioned in Chapter 3 and 4, which is using

Lagrangian relaxation. We show that this procedure considerably tightens the

lower bounds yielded by the usual linear programming relaxation. We also report

numerical results, which indicate that the proposed algorithm is much promising,

compared with existing algorithms.

The proposed algorithms from Chapter 3 to 6 have been published respectively

in [28], [29], [40], [39]. Finally, concluding remarks of the thesis will be discussed

in Chapter 7.

Chapter 2

Overview of the

Branch-and-Bound Algorithm

In this chapter, we will review the basic works of the standard simplicial branch-

and-bound algorithm and the standard conical branch-and-bound algorithm de-

scribed in [19, 55] on concave minimization problems and reverse convex program-

ming problems, respectively. The algorithms will be adapted for applying the

low-rank nonconvexity.

2.1 Simplicial Algorithm for Concave Minimiza-

tion

Let f be a concave function defined on an open convex set in a subspace Rr of

Rn (r ≤ n). The concave minimization problem we consider in this thesis is of

minimizing the function f over a polyhedron in Rn:

minimize z = f(x)

subject to Ax + By = b, (x,y) ≥ 0,
(2.1)

5

2. Overview of the Branch-and-Bound Algorithm 6

where A ∈ Rm×r, B ∈ Rm×(n−r) and b ∈ Rm. Let us denote the feasible set and

its projection onto the subspace Rr, respectively, by

W = { (x,y) ∈ Rn | Ax + By = b, (x,y) ≥ 0 }
X = {x ∈ Rr | ∃y, (x,y) ∈ W }.

Using these notations, (2.1) can be embedded in Rr:

P
minimize z = f(x)

subject to x ∈ X.

We assume that W is nonempty and bounded. The same is then true for the

projection X; and so we have

v := max{ eTx | x ∈ X } (2.2)

is finite, where e ∈ Rr is the all-ones vector. We also assume that the domain of

f is large enough to include the r-simplex

∆1 = {x ∈ Rr | eTx ≤ v, x ≥ 0 }.

Unless the objective function f is separable, the simplicial branch-and-bound

algorithm is a standard method for locating a globally optimal solution of (2.1),

or equivalently of P. In this algorithm, while subdividing ∆1 ⊃ X into smaller

simplices ∆k, k ∈ H, such that

⋃

k∈H
∆k = ∆1, int(∆p) ∩ int(∆q) = ∅ if p 6= q, p, q ∈ H,

where int(·) represents the set of interior points. We solve subproblems of the mas-

ter problem P one after another; the feasible set of each subproblem is restricted

by ∆k, and we need to solve the following with ∆ = ∆k for every k ∈ H:

P(∆)
minimize z = f(x)

subject to x ∈ X ∩∆.

This problem belongs to the same class of concave minimization problems as P

and cannot be solved directly. Therefore, subproblems are recursively processed

through three basic steps:

2. Overview of the Branch-and-Bound Algorithm 7

procedure Standard SBB

Let H := {1}. Set the incumbent x∗ by a vertex of X.

Repeat Steps 1–3 until H = ∅.
Step 1 (subproblem selection). Take an appropriate index k out of H,

set H := H \ {k}, and let ∆ := ∆k.

Step 2 (bounding operation). Compute a lower bound zk on the opti-

mal value z(∆) of P(∆). If we obtain a feasible solution xk to P

such that f(xk) < f(x∗), then update x∗ := xk. If f(x∗) ≤ zk,

then go back to Step 1.

Step 3 (branching operation). Otherwise, divide the simplex ∆ into

two subsimplices ∆2k and ∆2k+1, and set H := H∪ {2k, 2k + 1}.

If X ∩ ∆ = ∅, then z(∆) is +∞. When H eventually becomes empty in this

process, we see that the current incumbent x∗ is an optimal solution to the master

problem P. However, the algorithm can generate an infinite sequence of simplices

{∆k` | ` = 1, 2, . . . } such that

∆k1 ⊃ ∆k2 ⊃ · · · , X ∩
(∞⋂

`=1

∆k`

)
6= ∅. (2.3)

To guarantee the finiteness of the algorithm, we have to introduce a tolerance ε > 0

to the branching criterion f(x∗) ≤ zk of Step 2 as follows:

f(x∗)− ε ≤ zk or f(x∗)− ε|f(x∗)| ≤ zk, (2.4)

and besides to subdivide ∆1 in an exhaustive manner that makes
⋂∞

`=1 ∆k` a

singleton. The simplest exhaustive subdivision rule is bisection: we select the

longest edge of ∆ and divide it at a fixed ratio of α ∈ (0, 1/2]. In fact, this

can be done easily if ∆ is given as the convex hull ∆ = conv({v1, . . . ,vr+1}) of

its r + 1 vertices v1, . . . ,vr+1. Suppose vp–vq is the longest edge of ∆. Letting

v = (1− α)vp + αvq, then we have

∆2k = conv ({vi | i 6= p } ∪ {v}) , ∆2k+1 = conv ({vi | i 6= q } ∪ {v}) .

2. Overview of the Branch-and-Bound Algorithm 8

Note that the initial simplex ∆1 has vertices 0 and ve1, . . . , ver for v in (2.2), where

ei ∈ Rr is the ith unit vector. Thus, starting from ∆1 = conv({0, ve1, . . . , ver}),
we can generate ∆k for all k ∈ H. If we adopt the bisection rule and (2.4) as

the branching criterion with a tolerance ε > 0, we can obtain a globally ε-optimal

solution to P after a finite number of steps, using either of the following usual

selection rules at Step 1:

Depth first. The set H is maintained as a list of stack. An index k is

taken from the top of H; and 2k, 2k + 1 are put back to the top

at Step 3.

Best bound. The set H is maintained as a list of priority queue. Let wk

be the key value for k ∈ H, where w1 is given by an appropriate

value, and w2k, w2k+1 are set by zk at Step 3. An index k of least

wk is taken out of H; and 2k, 2k + 1 are put back to H at Step

3.

The most time-consuming step in the simplicial branch-and-bound algorithm

is the bounding operation of Step 2. In Chapters 3 and 4, we will discuss some

issues with Step 2 faced by existing algorithms and their resolution in treating our

target problem (2.1).

2.2 Conical Algorithm for Reverse Convex Pro-

gramming

The reverse convex programming problem we consider in this thesis is the follow-

ing:

minimize z = cTx

subject to Ax + Dy = b, (x,y) ≥ 0

g(x) ≥ 0,

(2.5)

2. Overview of the Branch-and-Bound Algorithm 9

where A ∈ Rm×r, D ∈ Rm×(n−r), b ∈ Rm, c ∈ Rr, and g : Rr → R is a convex

function. Let

F = {x ∈ Rr | ∃y ≥ 0, Ax + Dy = b, x ≥ 0 }
G = {x ∈ Rr | g(x) < 0 },

and assume that both F and G are bounded and have interior points. Then (2.5)

is embedded in the x-space as:

P
minimize z = cTx

subject to x ∈ F \G.

We assume that G contains at least one optimal solution x◦ to the associated

linear program min{ cTx | x ∈ F }. This condition makes (2.5) nontrivial. For

simplicity, we assume x◦ = 0 in the sequel.

The standard conical branch-and-bound algorithm on (2.5), or equivalently of

P, is much the same as the simplicial algorithm described in the preceding section.

It is obtained as a consequence of just replacing the simplices with cones.

Let ∆1 = {x ∈ Rr | x ≥ 0 }. Then ∆1 is a cone vertexed at x◦ = 0 and

includes the polytope F . Starting from this cone ∆1, we recursively divide it into

subcones ∆k, each vertexed at x◦, satisfying

⋃

k∈H
∆k = ∆1, int(∆p) ∩ int(∆q) = ∅ if p 6= q, p, q ∈ H,

where H denotes the set of indices of subdivided cones. This procedure generates

an infinite nested sequence of cones {∆k` | ∆k` ⊃ ∆k`+1 , ` = 1, 2, . . . }. To guaran-

tee the convergence of the algorithm, we need to subdivide ∆1 in such an exhaustive

manner that
⋂∞

`=1 ∆k` becomes a half line emanating from x◦. Suppose that ∆k

is spanned by r linearly independent vectors wi ∈ Rr, i = 1, . . . , r, and denote

∆k = cone({w1, . . . ,wr}). The easiest exhaustive subdivision rule is bisection,

i.e., we divide the longest edge of the associated base simplex conv({w1, . . . ,wr})
of ∆k, say wp–wq, at a fixed ratio of α ∈ (0, 1/2]. Letting w = (1− α)wp + αwq,

2. Overview of the Branch-and-Bound Algorithm 10

then we have

∆2k = cone({wi | i 6= p } ∪ {w}), ∆2k+1 = cone({wi | i 6= q } ∪ {w}).

For each subcone ∆ = ∆k, k ∈ H, we have a subproblem of P:

P(∆)
minimize z = cTx

subject to x ∈ (F \G) ∩∆.

This problem is essentially the same as (2.5) and cannot be solved directly. There-

fore, subproblems are recursively processed in almost the same three steps as the

previous section:

procedure Standard CBB

Let H := {1}. Set the incumbent value z∗ by +∞.

Repeat Steps 1–3 until H = ∅.
Step 1 (subproblem selection). Take an appropriate index k out of H,

set H := H \ {k}, and let ∆ := ∆k.

Step 2 (bounding operation). Compute a lower bound zk on the opti-

mal value z(∆) of P(∆). If we obtain a feasible solution xk to

P such that cTxk < z∗, then update z∗ := cTxk and x∗ := xk.

If z∗ ≤ zk, or g(xk) + ε ≥ 0 for a solution xk ∈ F satisfying

cTxk = zk, then go back to Step 1.

Step 3 (branching operation). Otherwise, divide the cone ∆ into two

subcones ∆2k and ∆2k+1, and set H := H ∪ {2k, 2k + 1}.

Chapter 3

Simplicial Algorithm for Concave

Minimization Problems

3.1 Introduction

In this chapter, we develop a branch-and-bound algorithm for solving a class of

concave minimization problems to which many of problems with low-rank noncon-

vexity [24] reduce. The major feature of this class is that the variables involved in

the objective function form a small fraction of the all variables. A typical example

would be the linear multiplicative program [23, 27, 33, 46]:

minimize
r∏

j=1

(cT
j y + cj0)

subject to By ≤ b, y ≥ 0,

(3.1)

where B ∈ Rm′×n′ , b ∈ Rm′
, cj ∈ Rn′ , cj0 ∈ R. We assume cT

j y + cj0 > 0

for any feasible solution y. In general, the number r of affine functions of the

objective function is assumed to be far less than the number of variables of (3.1).

If we introduce a vector x = (x1, . . . , xr)
T of auxiliary variables, (3.1) reduces to

11

3. Simplicial Algorithm for Concave Minimization Problems 12

a concave minimization problem which has the low-rank nonconvexity:

minimize
r∑

j=1

log(xj)

subject to −xj + cT
j y ≤ −cj0, j = 1, . . . , r

By ≤ b, (x,y) ≥ 0.

(3.2)

Another example is the production-transportation problem (see Chapter 5 and

[32, 40, 56, 58]). This is a problem of minimizing the sum of concave production

and linear transportation costs under the network flow constraints. If we move

the transportation cost function to the set of constraints by means of an auxiliary

variable, only the concave production cost and auxiliary variable are left in the

objective function. For various other examples, the readers are referred to the

textbook on low-rank nonconvex structures [24].

If the objective function is separated into a sum of univariate functions like the

objective function of (3.2), problems of this class can be solved rather efficiently

using the rectangular branch-and-bound algorithm [7, 27, 32]. To deal with a wider

range of problems, we do not assume the separability of the objective function in

this chapter. Thus, we tailor the simplicial branch-and-bound algorithm [15] to

this class and apply some procedures for improving the efficiency. In Section 3.2,

after giving the problem settings, we will bring up difficulties in implementation

of the simplicial branch-and-bound algorithm. In Section 3.3, to overcome those

difficulties, we will modify the linear programming relaxation problem to be solved

in the bounding operation, by enlarging the feasible set. This modification does

not affect the convergence property of the algorithm. However, it deteriorates the

quality of the lower bound on the optimal value, which causes the rapid growth of

the branching tree. To prevent it, we will propose the second bounding operation

based on a Lagrangian relaxation in Section 3.4, and give a detailed description of

the algorithm incorporating two bounding operations. Computational results to

compare with the standard simplicial branch-and-bound algorithm are reported

in Section 3.5. Lastly, we will discuss some remaining issues to be resolved in the

future, in Section 3.6.

3. Simplicial Algorithm for Concave Minimization Problems 13

3.2 Problem Settings and the Simplicial Algo-

rithm

3.2.1 Problem settings

Let D ⊂ Rr be an open convex set and f : D → R be a concave function. The

problem we consider in this chapter is a concave minimization over a polyhedral

set:

minimize z = f(x)

subject to Ax + By ≤ b, (x,y) ≥ 0,
(3.3)

where A ∈ Rm×r, B ∈ Rm×(n−r), b ∈ Rm and 1 ≤ r ≤ n. Letting X be the

projection of the feasible set onto the space of x, (3.3) can be embedded in Rr:

P
minimize z = f(x)

subject to x ∈ X.

We assume that X is bounded and has a nonempty interior. Then, we see that

v := max{∑r
j=1 xj | x ∈ X } is finite. We also assume the domain D of f large

enough to include the set {x ∈ Rr | 0 ≤ xj ≤ v, j = 1, . . . , r }.
Unless the objective function is separable, the most often used solution method

for concave minimization is the simplicial branch-and-bound algorithm [15, 19, 55],

Standard SBB described in Section 2.1.

3.2.2 Linear programming relaxation at Step 2 of Stan-

dard SBB

The most time-consuming step in Standard SBB is Step 2. As is well known, the

efficiency of algorithms of this kind depends largely on this bounding operation.

At Step 2, to compute a lower bound zk on the optimal value z(∆) of

P(∆)
minimize z = f(x)

subject to x ∈ X ∩∆,

3. Simplicial Algorithm for Concave Minimization Problems 14

we usually replace the objective function f of P(∆) by its convex envelope g on ∆

and solve a problem:

P(∆)
minimize z = g(x)

subject to x ∈ X ∩∆.

The convex envelope g is an affine function which agrees with f at r + 1 vertices

v1, . . . ,vr+1 of ∆. Since ∆ is given by the vertices, we can easily determine the

value of g at any point x ∈ ∆ if we have x as a convex combination of vi, i =

1, . . . , r + 1:

x =
r+1∑
i=1

viξi,
r+1∑
i=1

ξi = 1, ξ = (ξ1, . . . , ξr+1)
T ≥ 0. (3.4)

By the concavity of f , we immediately have

g(x) =
r+1∑
i=1

f(vi)ξi ≤ f(x), ∀x ∈ ∆. (3.5)

Substituting (3.4) into P(∆), we see that P(∆) is equivalent to a linear program

of n + 1 variables:

minimize z = f Tξ

subject to AVξ + By ≤ b

eTξ = 1, (ξ,y) ≥ 0,

(3.6)

where e ∈ Rr+1 is the all-ones vector and

f = [f(v1), . . . , f(vr+1)]
T, V = [v1, . . . ,vr+1]. (3.7)

Obviously, (3.6) has an optimal solution (ξ,y) if and only if X ∩∆ 6= ∅. Then we

get the following candidate z for the lower bound zk:

z =





f Tξ if X ∩∆ 6= ∅
+∞ otherwise.

(3.8)

Note that when X ∩∆ 6= ∅, we have a feasible solution x = Vξ to the subproblem

P(∆), and hence to the target problem P. We can therefore update the incumbent

x∗ with x if f(x) < f(x∗).

3. Simplicial Algorithm for Concave Minimization Problems 15

Certainly, the linearized subproblem P(∆) is by far easier to solve than P(∆).

However, since the number of subproblems generated in the course of iterating

Steps 1–3 can be exponential in r, in the worst case, we cannot obtain an optimal

solution nor an ε-optimal solution to P within a practical amount of time if we

solve P(∆) from scratch for each ∆k. In the rectangular and combinatorial branch-

and-bound algorithms, one can solve linearized subproblems successively using

sensitivity analysis of the simplex method, or using algorithms specialized for

some favorable structure of the original problem (3.3) if possible. Unfortunately,

such a procedure does not work well on P(∆) because

(a) when ∆ changes, (3.6) associated with P(∆) has a different constraint matrix,

(b) (3.6) does not inherit the structure of the original problem (3.3).

Due to (a), we cannot utilize the optimal solution to P(∆k) as the initial solu-

tion in solving P(∆2k), (or P(∆2k+1)), through sensitivity analysis, because it

might be neither primal feasible nor dual feasible for (3.6) associated with P(∆2k).

Moreover, due to (b), even if the original problem (3.3) has a nice structure, for

instance, a network flow structure, we cannot apply any network flow algorithms

to solve P(∆). To overcome these difficulties, we need to add some new twists to

the relaxation of subproblem P(∆) at Step 2.

3.3 Modified Linear Programming Relaxation

3.3.1 Enlargement of the feasible set

One way of removing both difficulties (a) and (b) is to replace the constraint x ∈ ∆

in P(∆) by a simple bounding constraint on x. Let s and t be r-dimensional vectors

whose jth components are given by

sj = min{ vij | i = 1, . . . , r + 1 },
tj = max{ vij | i = 1, . . . , r + 1 },

(3.9)

3. Simplicial Algorithm for Concave Minimization Problems 16

respectively, where vij denotes the jth component of vi. Also let

Γ(∆) = {x ∈ Rr | s ≤ x ≤ t }.

Then we have ∆ ⊂ Γ(∆). Instead of P(∆), we propose to solve the following for

a lower bound zk at Step 2:

P̃(∆)
minimize z = g(x)

subject to x ∈ X ∩ Γ(∆).

It should be noted that the objective function g is given as g(x) =
∑r+1

i=1 f(vi)ξi,

meaning that the constraint (3.4) should be contained in P̃ (∆). This still offers

the same difficulties as (a) and (b). Here, we try another way to draw an explicit

linear programming representation of P̃(∆).

Suppose that the convex envelope g of f is given by cTx + cr+1, where c ∈ Rr

and cr+1 ∈ R. Since g agrees with f at r +1 vertices of ∆, the following equations

hold:

cTvi + cr+1 = f(vi), i = 1, . . . , r + 1.

Note that vi’s are affinely independent if ∆ is generated according to the bisection

rule. By adding an all-ones vector eT to V given in (3.7) as the (r + 1)st row, we

have a nonsingular matrix:

U =


 V

eT


 ,

and for f in (3.7) we have

[cT, cr+1] = f TU−1.

Thus, g is specified as g(x) = cTx + cr+1, and P̃(∆) is represented explicitly as a

linear program in variables (x,y) only:

minimize z = cTx

subject to Ax + By ≤ b, s ≤ x ≤ t, y ≥ 0.
(3.10)

3. Simplicial Algorithm for Concave Minimization Problems 17

If X ∩ Γ(∆) 6= ∅, then (3.10) has an optimal solution (x̃, ỹ). The following can be

a candidate for the lower bound zk:

z̃ =





cTx̃ + cr+1 if X ∩ Γ(∆) 6= ∅
+∞ otherwise.

(3.11)

Lemma 3.1. The optimal value z(∆) of P(∆), z in (3.8) and z̃ in (3.11) satisfy

the inequality

z̃ ≤ z ≤ z(∆).

Proof. Immediately follows from (3.5) and the inclusion relation of the feasible

sets of P̃(∆) and P(∆).

It should be emphasized that (3.10) has the same set of constraints as the orig-

inal (3.3), except for the bounding constraint s ≤ x ≤ t, though associated with

a different subproblem P(∆). The bounding constraint can be treated in almost

the same way as the usual nonnegative constraint in the simplex and network flow

algorithms [1, 5]. Therefore, when (3.3) has some favorable structure, we can ex-

ploit it in solving (3.10). In general, we can generate an optimal solution (x̃2k, ỹ2k)

to (3.10) associated with P̃(∆2k) from the preceding (x̃k, ỹk) in two steps: (i) re-

store the feasibility of (x̃k, ỹk) for P̃(∆2k) with dual pivoting operations, and (ii)

reestablish the optimality of the resulting feasible basic solution with primal piv-

oting operations. Since (x̃k, ỹk) violates only the bounding constraint, step (i)

should require a very few pivoting operations. If step (i) fails, both P̃(∆2k) and

P(∆2k) are infeasible.

3.3.2 Convergence property when using P̃(∆)

The optimal solution x̃ to P̃(∆) obtained by solving (3.10) is obviously feasible for

the target problem P; and hence we can update the incumbent x∗ with x̃ when

f(x̃) < f(x∗). However, x̃ might be infeasible for P(∆) and can satisfy

f(x̃) < z̃, (3.12)

3. Simplicial Algorithm for Concave Minimization Problems 18

unlike the optimal solution x of P(∆). If (3.12) holds, ∆ contains no feasible

solution better than x̃, because z̃ is a lower bound of f on X ∩ ∆, and we can

discard ∆ from further consideration. In addition to this, we can discard ∆ if

f(x̃) < f(vi), ∀i = 1, . . . , r + 1. (3.13)

Recall that f is concave and achieves the minimum on ∆ at some vertex. Therefore,

the minimum of f(vi)’s is another lower bound on the value z(∆) of P(∆). We

propose to compute the lower bound zk at Step 2 of Standard SBB by

zk = max{z̃, min{f(v1), . . . , f(vr+1)}}. (3.14)

The essential reason for introducing (3.14) is merely to guarantee convergence

of the algorithm. If neither (3.12) nor (3.13) holds, the simplicial branch-and-

bound algorithm might generate an infinite sequence of nested simplices {∆k` |
` = 1, 2, . . . } when a tolerance ε in the branching criterion is zero. Even in that

case, we see that zk` defined in (3.14) tends to f(x̃k`) as ` → ∞, because Γ(∆k`)

shrinks to a single point as ∆k` does if the bisection rule is adopted. When a

positive tolerance ε is introduced, it follows from this property that f(x∗)− zk ≤ ε

holds for some k = k`.

Lemma 3.2. Suppose that {∆k` | ` = 1, 2, . . . } is an infinite sequence of nested

simplices generated by bisection. Then we have

lim
`→∞

(
f(x̃k`)− zk`

)
= 0. (3.15)

Proof. For the sequence {∆k` | ` = 1, 2, . . . } we can assume that

f(vk`) ≤ zk` < f(x̃k`), (3.16)

where vk` is a vertex of ∆k` minimizing f . Since the bisection makes an exhaustive

sequence of simplices, we have {v} =
⋂∞

`=1 ∆k` . Then we see from the definition

of Γ(∆k`) that
⋂∞

`=1 Γ(∆k`) = {v}. Since both vk` and x̃k` belong to Γ(∆k`), we

have vk` → v and x̃k` → v as ` →∞. Moreover, by the continuity of f we have

lim
`→∞

f(vk`) = lim
`→∞

f(x̃k`) = f(v),

which, together with (3.16), implies (3.15).

3. Simplicial Algorithm for Concave Minimization Problems 19

3.3.3 Some issues to resolve in relaxation P̃(∆)

Lemma 3.2 guarantees that Standard SBB works if we use the relaxation P̃(∆)

instead of P(∆) in the bounding operation of Step 2. There still remain two issues

to resolve.

First, P̃(∆) requires one to compute the inverse of the (r + 1)× (r + 1)-matrix

U every iteration to determine the objective function cTx of (3.10). This is the

main reason why the representation cTx + cr+1 of g has been avoided in the past.

However, this is not a big challenge if we adopt the depth first rule at Step 1 of

Standard SBB. Because most U’s are different from their predecessors in only one

column, we can obtain the inverse of the 2kth matrix U2k from that of Uk almost

always in time O(r) using the rank-one update [5]. Suppose that Uk and U2k are

the same except for the pth column. Let u2k
p = [(v2k

p)T, 1]T denote the pth column

of U2k and let

w = (Uk)−1u2k
p , E = I + (ep −w)eT

p /wp,

where I denotes the identity matrix and wp is the pth component of w. Then we

have

(U2k)−1 = E(Uk)−1. (3.17)

Note that E is an “eta matrix” with nonzero off-diagonal elements only in the pth

column. Since v2k
p is a convex combination (1− α)vk

p + αvk
q of two vertices of ∆k,

we have wp = 1−α, wq = α and other components of w are zeros. As a result, the

pth column of E has only two nonzero entries 1/(1−α) and −α/(1−α) in the pth

and qth rows, respectively. We see from (3.17) that the inverse of U2k is yielded

if we replace only the pth and qth rows of (Uk)−1 by their affine combinations.

The second issue is much more serious. Although the lower bound z̃ yielded by

P̃(∆) is somewhat tightened to zk by f(vi)’s in (3.14), as shown in Lemma 3.1, z̃

is not better than z; and the difference is not expected to be small. Therefore, the

branching tree when using P̃(∆) might grow more rapidly than when using P(∆).

To prevent the rapid growth of the branching tree, we have to introduce another

procedure for tightening z̃.

3. Simplicial Algorithm for Concave Minimization Problems 20

3.4 Algorithm Using Two-Phase Bounding Op-

eration

3.4.1 Lagrangian relaxation and its solution

For z̃ yielded by solving P̃(∆), let G = {x ∈ Rr | g(x) ≥ z̃ }. Since X ∩ ∆ is a

subset of this half space G, no feasible solution to P(∆) is overlooked even if we

add the constraint x ∈ G to P(∆). The resulting problem is the following:

minimize z = f(x)

subject to Ax + By ≤ b, (x,y) ≥ 0

x ∈ ∆, cTx ≥ z̃ − cr+1.

(3.18)

In the preceding section, we have relaxed the objective function f and the con-

straint x ∈ ∆. Instead, we relax Ax + By ≤ b here, by introducing a Lagrangian

multiplier 0 ≤ λ ∈ Rm. Then we have

L(∆; λ)
minimize z = f(x) + λT(Ax + By − b)

subject to x ∈ ∆, y ≥ 0, cTx ≥ z̃ − cr+1.

Note that x ≥ 0 for any x ∈ ∆. If cTvi < z̃ − cr+1, or f(vi) < z̃ equivalently,

for each vertex vi of ∆, then L(∆; λ) is infeasible. In that case, the hyperplane

∂G = {x ∈ Rr | g(x) = z̃ } separates ∆ and X; P(∆) is infeasible, then we can

discard ∆.

Suppose that L(∆; λ) has an optimal solution (x(λ),y(λ)) and denote the

value f(x(λ))+λT(Ax(λ)+By(λ)−b) by z(λ). As is well-known (see e.g. [42]),

we have

z(λ) ≤ z(∆), ∀λ ≥ 0.

However, for L(∆; λ) to provide a lower bound better than z̃, the multiplier λ

should be appropriately chosen so that z(λ) > z̃ holds.

Since the structure of L(∆; λ) is similar to P(∆), we can relax it into a linear

program as in the same way as we have obtained P̃(∆). Replacing f and ∆ by g and

3. Simplicial Algorithm for Concave Minimization Problems 21

Γ(∆), respectively, in L(∆; λ), and further dropping the constraint cTx ≥ z̃−cr+1,

we have

φ(λ) := min{ (cT + λTA)x + λTBy − λTb | s ≤ x ≤ t, y ≥ 0 },

where s and t are defined in (3.9). The right-hand side can also be viewed as a

Lagrangian relaxation of (3.10), i.e., problem P̃(∆). As long as λ satisfies λTB ≥
0, the value φ(λ) is finite and coincides with

ψ(λ) := max{ sTµ− tTν − bTλ | µ− ν = c + ATλ, (µ, ν) ≥ 0 }

by the duality theorem of linear programming. Therefore, we have

max{φ(λ) | λTB ≥ 0, λ ≥ 0 } = max{ψ(λ) | λTB ≥ 0, λ ≥ 0 }.

Note that the right-hand side of this equation can be rewritten as

maximize z =−bTλ + sTµ− tTν

subject to ATλ− µ + ν = −c

BTλ ≥ 0, (λ, µ, ν) ≥ 0,

(3.19)

which is the dual problem of (3.10). Let (λ̃, µ̃, ν̃) be an optimal solution to (3.19).

Lemma 3.3. For any λ ≥ 0, the inequality

φ(λ) + cr+1 ≤ z̃

holds, and the equality holds if λ = λ̃.

Since the dual optimal solution (λ̃, µ̃, ν̃) is generated as a byproduct in solving

the primal problem P̃(∆), adopting λ̃ as the Lagrangian multiplier of L(∆; λ̃) does

not cost additional computation. As is easily seen, L(∆; λ̃) can be decomposed

into

Lx(∆; λ̃)

∣∣∣∣∣∣
minimize zx = f(x) + λ̃

T
(Ax− b)

subject to x ∈ ∆ ∩G,

Ly(∆; λ̃)

∣∣∣∣∣∣
minimize zy = λ̃

T
By

subject to y ≥ 0.

3. Simplicial Algorithm for Concave Minimization Problems 22

The latter problem has an obvious optimal solution y(λ̃) = 0 because BTλ̃ ≥ 0.

Thus, for an optimal solution x(λ̃) to Lx(∆; λ̃) the optimal value of L(∆; λ̃) is

given by

z(λ̃) = f(x(λ̃)) + λ̃
T
(Ax(λ̃)− b). (3.20)

Theorem 3.4. The optimal value z(∆) of P(∆), z̃ of (3.11), and z(λ̃) of (3.20)

satisfy the inequality

z̃ ≤ z(λ̃) ≤ z(∆). (3.21)

Furthermore,

z̃ < z(λ̃)

if x(λ̃) 6∈ {v1, . . . ,vr+1} and f is strictly concave on ∆.

Proof. Since (λ̃, µ̃, ν̃) is an optimal solution to (3.19) and s ≤ vi ≤ t for each vi,

we have

f(vi) + λ̃
T
(Avi − b) = cTvi + cr+1 + λ̃

T
(Avi − b)

= µ̃Tvi − ν̃Tvi − λ̃
T
b + cr+1

≥ µ̃Ts− ν̃Tt− λ̃
T
b + cr+1

= ψ(λ̃) + cr+1 = φ(λ̃) + cr+1.

By the concavity of f and Lemma 3.3, the point x(λ̃) in ∆ must satisfy

z(λ̃) = f(x(λ̃)) + λ̃
T
(Ax(λ̃)− b) ≥ φ(λ̃) + cr+1 = z̃.

Suppose x(λ̃) 6∈ {v1, . . . ,vr+1}. Then x(λ̃) is a vertex of ∆ ∩ ∂G; and we have

x(λ̃) = (1− β)vp + βvq for some vp, vq and β ∈ (0, 1). Therefore, from the strict

concavity of f , we obtain

z(λ̃) > (1− β)[f(vp) + λ̃
T
(Avp − b)] + β[f(vq) + λ̃

T
(Avq − b)] ≥ z̃.

3. Simplicial Algorithm for Concave Minimization Problems 23

Since z̃ might coincide with z, e.g., when x̃ ∈ ∆, the bound z(λ̃) can be superior

even to z. Although Lx(∆; λ̃) yielding z(λ̃) is a concave minimization problem,

we can solve it in polynomial time if we assume an oracle telling the value of f .

Since the objective function is concave, x(λ̃) is a vertex of ∆ ∩ G. Furthermore,

the number of its vertices is O(r2) at most. We only need to check the objective

function value at vertices vi of ∆ in G and at the intersection of ∂G with each

edge vi–vj of ∆ connecting vi ∈ int(G) and vj 6∈ G.

3.4.2 Description of the modified algorithm

Now, recall the three basic steps of the simplicial branch-and-bound algorithm

given in Section 2.1. We propose the bounding operation of Step 2 consisting of

the following two phases:

Step 2.1. Solve P̃(∆) and compute zk defined in (3.14). If f(x∗)−ε ≤ zk

for the incumbent x∗, discard ∆ from further consideration.

Step 2.2. If f(x∗)−ε > zk, solve Lx(∆; λ̃) and compute z(λ̃). If f(x∗)−
ε ≤ z(λ̃), then discard ∆ from further consideration.

The following is the detailed description of our simplicial branch-and-bound algo-

rithm for solving problem P:

algorithm 2PHASE BB

begin

compute v := max{∑r
j=1 xj | x ∈ X } and let ∆1 := conv({0, ve1, . . . , ver});

H := {1}; z∗ := +∞; h := 1;

while H 6= ∅ do begin

select kh ∈ H and let H := H \ {kh}; ∆ := ∆kh ; /∗ Step 1 ∗/
let v1, . . . ,vr+1 denote the vertices of ∆ and let V := [v1, . . . ,vr+1];

U := [VT, e]T; [cT, cr+1] := [f(v1), . . . , f(vr+1)]U
−1;

solve P̃(∆) of minimizing g(x) = cTx + cr+1; /∗ Step 2.1 ∗/
if P̃(∆) is feasible then begin

3. Simplicial Algorithm for Concave Minimization Problems 24

let x̃kh be an optimal solution to P̃(∆) and z̃ := g(x̃kh);

if f(x̃kh) < z∗ then update z∗ := f(x̃kh) and x∗ := x̃kh ;

zkh := max{z̃, min{f(v1), . . . , f(vr+1)}};
if f(x∗)− ε > zkh then begin

/∗ Step 2.2 ∗/
define Lx(∆; λ̃) for a dual optimal solution (λ̃, µ̃, ν̃) to P̃(∆);

compute an optimal solution x(λ̃) to Lx(∆; λ̃) and the value z(λ̃);

if f(x∗)− ε > z(λ̃) then begin

/∗ Step 3 ∗/
select the longest edge vp–vq of ∆;

let v := (1− α)vp + αvq for a fixed α ∈ (0, 1/2];

∆2kh := conv({vi | i 6= p } ∪ {v});
∆2kh+1 := conv({vi | i 6= q } ∪ {v});
H := H ∪ {2kh, 2kh + 1}

end

end

end;

h := h + 1

end

end;

Theorem 3.5. Suppose the tolerance ε is 0. If algorithm 2PHASE BB termi-

nates after finite iterations, x∗ is a globally optimal solution to problem P. If not,

the algorithm with the best-bound rule generates an infinite sequence { x̃kh | h =

1, 2, . . . }. For each infinite subsequence L of iterations h = 1, 2, . . . such that the

associated simplices are nested, any accumulation point of { x̃k` | ` ∈ L} is a

globally optimal solution to problem P.

Proof. When the algorithm terminates in finite time, the assertion is obvious. Sup-

pose that it does not terminate and generates an infinite sequence of simplices. Let

{∆k` | ` ∈ L} be a subsequence of nested simplices for some infinite subsequence

3. Simplicial Algorithm for Concave Minimization Problems 25

L of iterations h = 1, 2, Since the best-bound rule is adopted, we have

zk` ≤ zj ≤ z(∆j), ∀j ∈ H,

at the `th iteration. Recall that z(∆j) is the optimal value of subproblem P(∆j)

and min{ z(∆j) | j ∈ H} is equal to the value z(∆1) of the target P. Therefore,

we have

zk` ≤ z(∆1) ≤ f(x̃k`), ∀` ∈ L.

However, by Lemma 3.2, we have f(x̃k`) − zk` → 0 as ` → ∞. This implies that

f(x̃k`) → z(∆1) as ` →∞.

Corollary 3.6. When ε > 0, algorithm 2PHASE BB with either the depth-first

rule or the best-bound rule terminates after a finite number of iterations. The

incumbent x∗ is a globally ε-optimal solution to problem P.

Proof. If the algorithm does not terminates, it generates an infinite sequence of

nested simplices {∆k` | ` = 1, 2, . . . }, and it holds that

f(xk`)− zk` ≥ f(x∗)− zk` > ε > 0, ` = 1, 2,

However, f(x̃k`)− zk` → 0 as ` →∞, which is a contradiction.

3.5 Numerical Experiment

3.5.1 Instances

Let us report numerical results of having compared 2PHASE BB and the standard

simplicial branch-and-bound algorithm using only the relaxation P(∆). We refer

to them here, as 2phase and standard, respectively. The test problem we solved is

a concave quadratic minimization problem of the form:

minimize −(1/2)xTQTQx− ωdTy

subject to A′x + B′y ≤ b′, (x,y) ≥ 0,
(3.22)

3. Simplicial Algorithm for Concave Minimization Problems 26

where Q ∈ Rr′×r′ , A′ ∈ Rm′×r′ , B′ ∈ Rm′×(n′−r′), b′ ∈ Rm′
, d ∈ Rn′−r′ and ω is

a positive weight. The matrix Q = [qij] is generated so as to have two nonzero

entries in each row, i.e., (qii, qi,i+1) for i = 1, . . . , r′ − 1, and (qr′1, qr′r′), where

qii = 1.0 for all i = 1, . . . , r′ and the rest are drawn randomly from the uniform

distribution on [0.0, 1.0]. Then QTQ has at most three nonzero entries in each

row. Also, each component of d is a uniformly random number in [0.0, 1.0]. To

make the feasible set bounded, b′ is an all-ones vector and each component in the

last row of [A′,B′] is fixed to 1.0/n′. Other components are all random numbers

in [−0.5, 1.0], where the percentages of zeros and negative numbers are about

20% and 10%, respectively. Selecting various sets of parameters (m′, n′, r′, ω), we

generated ten instances of (3.22) for each set, and solved them by 2phase and

standard on a Linux workstation (Linux 2.4.21, Itanium2 processor 1.3GHz).

3.5.2 Computer codes

Both codes 2phase and standard are written in GNU Octave (version 2.1.50) [43], a

Matlab-like computational tool. In both algorithms, the depth-first rule is adopted,

and the tolerance ε is fixed to 10−4. To adjust the form of (3.22) to (3.3), we

introduce an additional variable ζ and apply the algorithm 2phase to

minimize −(1/2)xTQTQx− ωζ

subject to A′x + B′y ≤ b′, (x,y) ≥ 0,

ζ − dTy ≤ 0, ζ ≥ 0.

(3.23)

where we should note ζ ≥ 0 because d ≥ 0. The size (m,n, r) of (3.23) is therefore

equal to (m′+1, n′+1, r′+1). As for standard, we apply it directly to (3.22) because

it uses only the relaxation problem P(∆), which can be written as

minimize (f ′)Tξ − ωdTy

subject to A′V′ξ + B′y ≤ b′

eTξ = 1, (ξ,y) ≥ 0,

where V′ = [v1, . . . ,vr′+1] and f ′ = [f(v1), . . . , f(vr′+1)]
T for r′ + 1 vertices vj’s

of ∆ ⊂ Rr′ . As the subdivision rule of ∆, bisection of ratio α = 1/2 is adopted

3. Simplicial Algorithm for Concave Minimization Problems 27

in 2phase, but not in standard, because we found in our preliminary experiment

that the convergence of standard with the bisection rule is too slow to be compared

with 2phase. Instead, we took the way to bisect the longest edge of the minimal

face of ∆ which contains an optimal x = V′ξ of P(∆). Although this subdivision

rule does not guarantee the convergence, standard incorporating it terminated for

every tested instance of (3.22) and generated the same output as 2phase with the

usual bisection rule.

3.5.3 Numerical results

Figures 3.1–3.4 give the line plots for comparing the behavior of 2phase by solid

lines with that of standard by broken lines when the size of constraint matrix

[A′,B′] is fixed to (m′, n′) = (40, 80).

Figure 3.1 shows the variation in the average number of branching operations

required by each algorithm when ω was fixed to 5.0 and r′ was increased from

16 to 32. We see that the dominance between 2phase and standard is reversed

around r′ = 25, and can confirm that the second phase of the bounding operation

using the Lagrangian relaxation Lx(∆; λ̃) works properly. The variations in the

average CPU seconds are plotted in Figure 3.2. The algorithm 2phase surpasses

standard in computational time for all value of r′, which, we can understand,

implies that the problem (3.10) associated with P̃(∆) is easy enough to cancel out

the inferiority of 2phase in the number of branching operations for r′ < 25. In

our preliminary experiments, we removed the second-phase procedure from 2phase

to make a simplified code 1phase, and tried to solve the same set of instances.

It performed as well as 2phase did when r′ < 25, but failed to terminate after

105 branching operations, for one instance with r′ = 26, 28, four instances with

r′ = 30 and three instances with r′ = 32. This implies that the second-phase bears

a crucial role in 2PHASE BB.

Figures 3.3 and 3.4 show the variations of the average number of branching

operations and CPU seconds, respectively, required by each algorithm when r′ was

3. Simplicial Algorithm for Concave Minimization Problems 28

 10

 100

 1000

 16 20 24 26 28 30 32

lo
g(

 #
 b

ra
nc

he
s

)

nonlinear variables (r’)

2phase
standard

Figure 3.1: Numbers of branching operations when (m′, n′, ω) = (40, 80, 5.0).

 0.1

 1

 10

 100

 16 20 24 26 28 30 32

lo
g(

 C
PU

 s
ec

on
ds

)

nonlinear variables (r’)

2phase
standard

Figure 3.2: CPU seconds when (m′, n′, ω) = (40, 80, 5.0).

3. Simplicial Algorithm for Concave Minimization Problems 29

 1

 10

 100

 1000

 0 5 10 15 20

lo
g(

 #
 b

ra
nc

he
s

)

Weight (ω)

2phase
standard

Figure 3.3: Numbers of branching operations when (m′, n′, r′) = (40, 80, 20).

 0.1

 1

 10

 100

 0 5 10 15 20

lo
g(

 C
PU

 s
ec

on
ds

)

Weight (ω)

2phase
standard

Figure 3.4: CPU seconds when (m′, n′, r′) = (40, 80, 20).

3. Simplicial Algorithm for Concave Minimization Problems 30

Table 3.1: Computational results of 2phase when ω = 5.0.

r′ = 0.2n′ r′ = 0.3n′ r′ = 0.4n′ r′ = 0.5n′

m′× n′ # time # time # time # time

60×120 23.2 0.646 41.0 1.309 91.0 4.030 141.9 10.56

180×120 17.0 2.646 54.4 5.311 49.2 6.554 141.3 18.34

80×160 15.8 1.156 55.0 3.376 134.9 12.06 238.3 42.29

240×160 8.0 7.854 77.2 20.08 117.4 33.19 229.5 80.40

100×200 22.0 2.526 54.8 6.117 129.0 23.97 256.1 89.83

300×200 26.6 21.83 66.6 41.55 135.4 81.56 200.2 170.8

fixed to 20 and ω was changed in {3.0, 3.5, 4.0, 5.0, 7.0, 10.0, 20.0}. Unfortunately,

both are very sensitive to the variation of ω, especially when ω < 5. Nevertheless,

2phase needs considerably less branching operations than standard when ω ≤ 4,

which is totally owing to the tight lower bound z(λ̃) computed in the second phase

of the bounding operation. This, together with the ease of solution to (3.10), yields

the significant advantage of 2phase against standard in computational time when

ω < 10. Incidentally, 1phase failed to terminate after 105 branching operations, on

seven instances with ω = 3.0 and three instances with ω = 3.5.

From the above observation, we can expect that 2PHASE BB has potential

for solving much larger scale problems than the standard algorithm does, unless

the concavity part of the objective function has a lot of weight. We therefore

tested the code 2phase on (3.22) of size (m′, n′) from (60, 120) to (300, 200) with

ω fixed to 5.0. The number of nonlinear variables r′ varied from 20% to 50% of

all the variables, i.e., the maximum size of (m′, n′, r′) was (300, 200, 100). The

computational results are listed in Table 3.1, in which # and time indicate the

average number of branching operations and CPU seconds, respectively, required

by 2phase for each (m′, n′, r′). We see from this table that the number of branching

operations increases rather mildly as m′ and n′ increase, in contrast to the case

of r′. The similar tendency can be observed in the CPU seconds. We could

3. Simplicial Algorithm for Concave Minimization Problems 31

solve still larger scale problems by elaborating the computer code of algorithm

2PHASE BB, as long as the number r′ of nonlinear variables is kept less than 30%

of all the variables.

3.6 Conclusion and Future Issues

We have developed a simplicial branch-and-bound algorithm for solving a low-rank

concave minimization problem (3.3). The major feature of this problem is that only

a small fraction of variables are involved in the objective function. In the bounding

operation of the algorithm, we have proposed to enlarge the feasible set of linear

programming relaxation problem, in order to facilitate application of specialized

algorithms and sensitivity analysis of the simplex method. Furthermore, to tighten

the lower bound deteriorated by this enlargement of the feasible set, we have

proposed the second bounding operation based on a Lagrangian relaxation. We

have seen that both operations work very well and the algorithm has potential for

solving much larger scale problems than the existing algorithm does.

To further expand the versatility of the algorithm, we need to resolve two

issues in the future. The first issue is concerning the transformation of problems.

Low-rank concave minimization problems can certainly be transformed into the

form of (3.3). However, many of such transformations destroy the structure of the

constraint, like the ones from (3.1) to (3.2) and from (3.22) to (3.23), and can take

away from the devices in the first phase of our bounding operation. The second

issue is on the subdivision rule. Even though bisection works reasonably well in

our algorithm compared with in the standard algorithm, its performance is still

far from satisfactory. Hence, we need to try out a variety of subdivision rules and

hybrids of them to accelerate the convergence. For these issues, we will report the

details elsewhere.

Chapter 4

Revised Simplicial Algorithm for

Concave Minimization Problems

4.1 Introduction

In this chapter, we develop a branch-and-bound algorithm to globally solve a

class of concave minimization problems, to which many of low rank nonconvex

structured problems reduce. Let us consider a concave function F defined on Rn

and suppose its nonconvexity rank [24, 45] is r << n− r. It is known that when

the value of each component of x ∈ Rr is fixed, F (Dxx + Dyy) becomes affine for

some orthogonal matrix D = [Dx,Dy] ∈ Rn×n with Dx ∈ Rn×r. The matrix D is

referred to as a certificate for the nonconvexity rank of F . If we try to minimize

such concave functions, we can move the affine part of the objective function to

the constraints by introducing an auxiliary variable. The resulting problem has a

characteristic structure that the variables involved in the objective function are a

small fraction of all variables, e.g., in the case associated with the above F , we have

a total of n+1 variables but r+1 among them in the objective function. Although

it might not be easy to identify D in general, there are a number of cases with

obvious certificates. A typical example is the production-transportation problem

(see e.g., [32, 40, 56, 58]). This is a class of minimum concave-cost flow problems

32

4. Revised Simplicial Algorithm for Concave Minimization Problems 33

and minimizes the sum of concave production and linear transportation costs on

a bipartite network (see Example 4.1 in Section 4.3).

Even if the objective function is not concave, some problems can be reduced to

our intended class. An example would be the linear multiplicative programming

problem (see e.g., [23, 27, 33, 46]):

minimize
r∏

i=1

(aT
i y + ai0)

subject to By = b, y ≥ 0,

(4.1)

where aT
i y + ai0 ≥ 0 for any feasible solution y ∈ Rn−r. Although the objective

function of (4.1) is not concave (see [3]), we can reduce it to a concave minimization

problem by introducing a vector x = (x1, . . . , xr)
T of auxiliary variables:

minimize
r∑

i=1

log(xi)

subject to xi − aT
i y = ai0, i = 1, . . . , r

By = b, (x,y) ≥ 0.

(4.2)

In general, the number r of affine functions in the objective function of (4.1) is

assumed to be far less than the number of variables y. Therefore, the variables

involved in the objective function of (4.2) are again a small portion of all the

variables.

If the objective function is separated into a sum of univariate functions like

(4.2), concave minimization problems can be solved rather efficiently using the

rectangular branch-and-bound algorithm (see e.g., [7, 27, 32]). To deal with a wider

range of problems, we do not assume the separability throughout this chapter. We

then tailor the simplicial branch-and-bound algorithm in [15] to the class and

to facilitate application of some procedures for improving the efficiency. After

giving the problem settings in Section 4.2, we will bring up some difficulties in

the implementation of existing bounding procedures and propose to simplify the

linear programming relaxation to be solved at each iteration in Section 4.3. This

simplification still guarantees the convergence but deteriorates the quality of the

4. Revised Simplicial Algorithm for Concave Minimization Problems 34

lower bound on the optimal value. It can cause rapid growth of the branching

tree. To prevent it, we will develop an additional bounding procedure based on

the Lagrangian relaxation in Section 4.4. Lastly, we will close the chapter with a

report of computational comparison of the proposed algorithm and two existing

algorithms in Section 4.5.

4.2 Problem Settings

Let f be a continuously differentiable concave function defined on an open convex

set in a subspace Rr of Rn (r ≤ n). The problem we consider in this chapter is of

minimizing the function f over a polyhedron in Rn:
∣∣∣∣∣∣

minimize z = f(x)

subject to Ax + By = b, (x,y) ≥ 0,
(4.3)

where A ∈ Rm×r, B ∈ Rm×(n−r) and b ∈ Rm. Let us denote the polyhedron and

its projection onto the subspace Rr, respectively, by

W = { (x,y) ∈ Rn | Ax + By = b, (x,y) ≥ 0 }
X = {x ∈ Rr | ∃y, (x,y) ∈ W }.

Using these notations, (4.3) can be embedded in Rr:

P

∣∣∣∣∣∣
minimize z = f(x)

subject to x ∈ X,

which we refer to as the master problem. We assume that W is nonempty and

bounded. The same is then true for the projection X; and so

v := max{ eTx | x ∈ X }

has a finite value, where e ∈ Rr is the all-ones vector. We also assume the domain

of f large enough to include the r-simplex

∆1 = {x ∈ Rr | eTx ≤ v, x ≥ 0 }.

4. Revised Simplicial Algorithm for Concave Minimization Problems 35

Unless the objective function f is separable, the simplicial branch-and-bound

algorithm in [7, 28] reviewed in Section (2.1) as Standard SBB is a standard method

for locating a globally optimal solution of (4.3), or equivalently of P.

The bounding operation of Step 2 in Standard SBB is the most time-consuming

step. In the next section, we will discuss troublesome issues with Step 2 faced by

existing algorithms and their resolution in treating our target problem (4.3).

4.3 Linear Programming Relaxations

4.3.1 Troublesome issues

At Step 2 of the usual simplicial branch-and-bound algorithm, we replace the

objective function of P(∆) by its convex envelope g on ∆ and solve a relaxed

problem:

Q(∆)

∣∣∣∣∣∣
minimize w = g(x)

subject to x ∈ X ∩∆.

The convex envelope g is an affine function which agrees with f at the r+1 vertices

of ∆. Since ∆ is given by the vertices, we can easily determine the value of g at

any point x ∈ ∆ if x is given as a convex combination of vj, j = 1, . . . , r + 1:

x =
r+1∑
j=1

ζjvj,

r+1∑
j=1

ζj = 1, ζ = (ζ1, . . . , ζr+1)
T ≥ 0. (4.4)

By the concavity of f , we have

g(x) =
r+1∑
j=1

ζjf(vj) ≤ f(x), ∀x ∈ ∆. (4.5)

Substituting (4.4) into Q(∆), we have an equivalent linear programming problem

of n + 1 variables:
∣∣∣∣∣∣∣∣

minimize w = fTζ

subject to AVζ + By = b

eTζ = 1, (ζ,y) ≥ 0,

(4.6)

4. Revised Simplicial Algorithm for Concave Minimization Problems 36

where

f = [f(v1), . . . , f(vr+1)]
T, V = [v1, . . . ,vr+1]. (4.7)

Obviously, (4.6) has an optimal solution (ζ◦,y◦) if and only if X ∩∆ 6= ∅. Since

the inequality in (4.5) holds, we can set the lower bound to

w◦ =





fTζ◦ if X ∩∆ 6= ∅
+∞ otherwise.

(4.8)

When X ∩∆ 6= ∅, we also have a feasible solution x◦ to the subproblem P(∆), and

hence to the master problem P, by letting x◦ = Vζ◦. We can therefore update

the incumbent x∗ with x◦.

The troublesome issues are

(a) when ∆ changes, (4.6) associated with Q(∆) has a different set of constraints,

(b) (4.6) does not inherit the structure of the target problem (4.3).

Despite the vast number of subproblems (4.6) we have to solve before convergence,

the solutions to previous ones are of little use in solving the current one, because

they might be neither primal feasible nor dual feasible, due to (a). Moreover,

even if the target problem (4.3) has some favorable structure, like network flow,

(b) prevents us from applying efficient algorithms to solve (4.6). These issues,

however, have been resolved partly in Chapter 3, as will be seen below.

4.3.2 Modified relaxation proposed in Chapter 3

In Chapter 3, we have relaxed the constraint x ∈ ∆ of Q(∆) into a bounding

constraint s ≤ x ≤ t. Component of the vectors s, t ∈ Rr are defined as

si = min{ vij | j = 1, . . . , r + 1 }
ti = max{ vij | j = 1, . . . , r + 1 }



 i = 1, . . . , r,

where vij denotes the ith component of vj. Let

Γ(∆) = {x ∈ Rr | s ≤ x ≤ t }.

4. Revised Simplicial Algorithm for Concave Minimization Problems 37

Then our alternative to Q(∆) is as follows:

Q(∆)

∣∣∣∣∣∣
minimize w = g(x)

subject to x ∈ X ∩ Γ(∆).

We have also proposed to abandon the variable transformation (4.4). Instead,

the convex envelope g(x) = cTx + cr+1 is identified by solving a system of linear

equations:

cTvj + cr+1 = f(vj), j = 1, . . . , r + 1, (4.9)

and Q(∆) is formulated with variables (x,y):

∣∣∣∣∣∣
minimize w = cTx

subject to Ax + By = b, s ≤ x ≤ t, y ≥ 0,
(4.10)

where

[cT, cr+1] = fT


 V

eT



−1

. (4.11)

If X ∩Γ(∆) 6= ∅, then (4.10) has an optimal solution (x,y). The lower bound can

be set to

w =





cTx + cr+1 if X ∩ Γ(∆) 6= ∅
+∞ otherwise,

(4.12)

because w ≤ w◦ holds by the inclusion relation between the feasible sets of Q(∆)

and Q(∆).

Except for the bounding constraint s ≤ x ≤ t, the subproblem (4.10) associ-

ated with Q(∆) for each ∆ shares constraints. We can solve the current subprob-

lem (4.10), using an optimal solution to the preceding one as the initial solution.

Since the solution violates only the bounding constraint at worst, it regains the

feasibility and optimality by a very few pivoting operations of the dual and pri-

mal simplex algorithms. Also, (4.10) inherits favorable structures of (4.3) at any.

Unfortunately, however, it is not that (4.10) inherits the structure of the original

low-rank nonconvex problem behind the target (4.3).

4. Revised Simplicial Algorithm for Concave Minimization Problems 38

Example 4.1. Let us consider the production-transportation problem mentioned

in Section 4.1: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑
i∈M

∑
j∈N

aijyij + f(x)

subject to
∑
j∈N

yij = xi, i ∈ M

∑
i∈M

yij = bj, j ∈ N

(x,y) ≥ 0,

(4.13)

where M = {1, . . . , r}, N = {r + 1, . . . , m}, x = (xi | i ∈ M) and y = (yij | i ∈
M, j ∈ N). We assume that the production cost f is a nonlinear and concave

function on the feasible set, and that the unit transportation cost aij is nonnegative

for each i ∈ M and j ∈ N . If the amount of production xi is constant for

each i ∈ M , then (4.13) is an ordinary Hitchcock problem and can be solved in

polynomial time using a special-purpose algorithm for network flow (see e.g., [1]).

Introducing an additional variable ξ ≥ 0, we have the same form as (4.3):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z = ξ + f(x)

subject to ξ −
∑
i∈M

∑
j∈N

aijyij = 0

xi −
∑
j∈N

yij = 0, i ∈ M

∑
i∈M

yij = bj, j ∈ N

(ξ,x,y) ≥ 0.

(4.14)

The linear programming representation of Q(∆) associated with (4.14) is then as

follows: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize w = c0ξ + cTx

subject to ξ −
∑
i∈M

∑
j∈N

aijyij = 0

xi −
∑
j∈N

yij = 0, i ∈ M

∑
i∈M

yij = bj, j ∈ N

s0 ≤ ξ ≤ t0, s ≤ x ≤ t, y ≥ 0.

(4.15)

4. Revised Simplicial Algorithm for Concave Minimization Problems 39

This is neither a Hitchcock problem any longer, nor even a network flow problem.

Therefore, the special purpose algorithm for network flow does not apply to (4.15).

In addition to this, we have another difficulty with this modification. To ob-

tain the objective function of (4.10), we need to solve the linear system (4.9) for

[cT, cr+1]. If we adopt the depth-first rule at Step 1, it can be done in O(r) al-

most always, as shown in Chapter 3. However, its solution becomes numerically

unstable as ∆ becomes smaller, and might fail to be computed at worst, due to

rounding errors.

4.3.3 New relaxation resolving all difficulties

Both difficulties involved in the above modification can be removed by combining

two kinds of relaxation.

Let

κ(∆) = min{ ‖vp − vq‖ | p = 1, . . . , r; q = p + 1, . . . , r + 1 }, (4.16)

and assume that (4.9) can be solved with sufficient precision if κ(∆) ≥ δ for some

number δ > 0. While κ(∆) ≥ δ is satisfied, we drop the bounding constraint

x ∈ Γ(∆) from Q(∆) and solve

Q̃g(∆)

∣∣∣∣∣∣
minimize w = g(x)

subject to x ∈ X.

If κ(∆) becomes smaller than δ, we further replace the objective function g by

a simpler underestimating function of f . For this purpose, we first compute the

gradient vector d = ∇f(u) of f at the centroid u =
∑r+1

j=1 vj/(r + 1) of ∆. Let

dr+1 = min{ f(vj)− dTvj | j = 1, . . . , r + 1 }, (4.17)

and let

h(x) = dTx + dr+1.

4. Revised Simplicial Algorithm for Concave Minimization Problems 40

From (4.17) and the concavity of f , we see that

h(x) ≤ f(x), ∀x ∈ ∆, (4.18)

where the equality holds at some vj that attains the minimum of (4.17). We then

solve the following:

Q̃h(∆)

∣∣∣∣∣∣
minimize w = h(x)

subject to x ∈ X.

The problem to be solved depends on κ(∆); but in any case it is equivalent to

a linear programming problem of the same form:
∣∣∣∣∣∣

minimize w = θTx

subject to Ax + By = b, (x,y) ≥ 0,
(4.19)

where

[θT, θr+1] =





[cT, cr+1] if κ(∆) ≥ δ

[dT, dr+1] otherwise.

Since X is nonempty, (4.19) has an optimal solution (x̃, ỹ) and we have the fol-

lowing lower bound on the value of P(∆):

w̃ = θTx̃ + θr+1. (4.20)

Proposition 4.2. The optimal value z(∆) of P(∆), w̃ of (4.20), w of (4.12), and

w◦ of (4.8) satisfy the inequality:

w̃ ≤ w ≤ w◦ ≤ z(∆). (4.21)

Proof. Let us show the first inequality. If [θT, θr+1] = [cT, cr+1], then it follows

from the inclusion relation between the feasible sets X of Q̃g(∆) and X ∩ Γ(∆) of

Q(∆). Recall that the objective function g of both problems is a convex envelope

of f , i.e., a maximal convex function underestimating f on ∆. Therefore, we have

h(x) ≤ g(x), ∀x ∈ ∆,

which proves the case where [θT, θr+1] = [dT, dr+1].

4. Revised Simplicial Algorithm for Concave Minimization Problems 41

We see from this proposition that w̃ can serve as zk at Step 2 of Standard SBB,

though it is inferior to w◦ and w. Problem (4.19) yielding w̃, however, has the

redeeming feature that the constraints are exactly the same as those of (4.3).

Whichever of Q̃g(∆) and Q̃h(∆) we need to solve, we can use an optimal solution

to the preceding subproblem as the initial feasible basic solution and start the

primal simplex algorithm immediately. The most important thing is that (4.19)

inherits not only the structure of (4.3) but also that of the original problem.

Example 4.3. Again, consider the problem (4.14) which is reduced from the

production-transportation problem (4.13). Associated with (4.14), we have the

following linear programming representation of Q̃g(∆) and Q̃h(∆):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize w = θ0ξ + θTx

subject to ξ −
∑
i∈M

∑
j∈N

aijyij = 0

xi −
∑
j∈N

yij = 0, i ∈ M

∑
i∈M

yij = bj, j ∈ N

(ξ,x,y) ≥ 0.

(4.22)

If we substitute the first constraint into the objective function and eliminate ξ,

then (4.22) reduces to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize w = θ0

∑
i∈M

∑
j∈N

aijyij + θTx

subject to
∑
j∈N

yij = xi, i ∈ M

∑
i∈M

yij = bj, j ∈ N

(x,y) ≥ 0,

(4.23)

which is a transshipment problem, a generalization of the Hitchcock problem, and

can be solved efficiently using the network simplex algorithm or an appropriate

polynomial-time algorithm for network flow (see [1] for details).

4. Revised Simplicial Algorithm for Concave Minimization Problems 42

Example 4.4. Let us consider a more general example:

minimize z = F (w)

subject to Mw = b, w ≥ 0,
(4.24)

where M ∈ Rm×n, F : Rn → R is a concave function of nonconvexity rank r,

which we assume is less than n. Since the objective function can be written as

F (Dxx + Dyy) = f(x) + aTy + a0

for some a0 ∈ R, a ∈ Rn−r and a certificate D = [Dx,Dy] ∈ Rn×n with Dx ∈ Rn×r,

problem (4.24) is equivalent to

minimize z = ξ + f(x)

subject to ξ − aTy = a0

MDxx + MDyy = b

Dxx + Dyy ≥ 0.

(4.25)

Hence, the subproblem of (4.25) has the simplex constraint (x, ξ) ∈ ∆. However, in

our proposed linear programming representation of Q̃g(∆) and Q̃h(∆) associated

with (4.25), the constraint (x, ξ) ∈ ∆ is dropped, and then it is formulated as

follows:

minimize w = θ0ξ + θTx

subject to ξ − aTy = a0

MDxx + MDyy = b

Dxx + Dyy ≥ 0.

(4.26)

Therefore, this problem can be transformed into the following with the same set

of constraints as (4.24):

minimize w = (θT, θ0a
T)D−1w

subject to Mw = b, w ≥ 0.
(4.27)

4. Revised Simplicial Algorithm for Concave Minimization Problems 43

4.4 Revised Simplicial Algorithm

4.4.1 Lagrangian relaxation for tightening w̃

Besides the advantage we have seen in the preceding section, the use of Q̃g(∆)

and Q̃h(∆) in combination has yet another advantage over the existing linear

programming relaxations. In Chapter 3, we have proposed to adopt Q(∆), which

is P̃(∆) in Chapter 3, and proved the convergence of the algorithm by the property

of the constraint x ∈ Γ(∆). Although neither Q̃g(∆) nor Q̃h(∆) has such an

additional constraint, the convergence behavior of the objective function of Q̃h(∆)

enables us to prove it without any extra effort. On the other hand, however, both

Q̃g(∆) and Q̃h(∆) have the obvious drawback that their value w̃ is inferior to

w◦ and w as the lower bound on the value of P(∆). Before proceeding to the

convergence analysis, we discuss a procedure, based on the Lagrangian relaxation,

for tightening w̃. In Chapter 3, it has been reported that a similar procedure works

well for tightening w.

For the lower bound w̃, let

G = {x ∈ Rr | θTx ≥ w̃ − θr+1 },

where [θT, θr+1] = [cT, cr+1] if w̃ is yielded by Q̃g(∆); otherwise, [θT, θr+1] =

[dT, dr+1]. Since X ∩ ∆ is a subset of G, no feasible solution to the subproblem

P(∆) is overlooked even if we add the constraint x ∈ G. The resulting problem is

then ∣∣∣∣∣∣∣∣

minimize z = f(x)

subject to Ax + By = b, (x,y) ≥ 0

x ∈ ∆, θTx ≥ w̃ − θr+1.

(4.28)

Introducing a Lagrangian multiplier λ ∈ Rm for the constraint Ax + By = b, we

have a problem:

L(∆; λ)

∣∣∣∣∣∣
minimize w = f(x)− λT(Ax + By − b)

subject to x ∈ ∆, y ≥ 0, θTx ≥ w̃ − θr+1.

4. Revised Simplicial Algorithm for Concave Minimization Problems 44

If θTvj < w̃ − θr+1 for all vertices vj of ∆, then L(∆; λ) is infeasible. In that

case, the hyperplane ∂G = {x ∈ Rr | θTx = w̃ − θr+1 } separates ∆ from X; and

because ∆ can never contain an optimal solution to the master problem P, we can

discard it. In the rest of this subsection, we assume

∃j ∈ {1, . . . , r + 1}, θTvj ≥ w̃ − θr+1. (4.29)

Let (x(λ),y(λ)) be an optimal solution to L(∆;λ) and let

w(λ) = f(x(λ))− λT(Ax(λ) + By(λ)− b).

Then w(λ) is a lower bound on z(∆) for any λ (see e.g. [42]). The question is how

to fix the value of λ in L(∆; λ) inexpensively so that w(λ) > w̃ holds. Suppose

that λ is constant for a while, and consider a linear programming problem:
∣∣∣∣∣∣

minimize w = (θT − λTA)x− λTBy + λTb

subject to (x,y) ≥ 0,
(4.30)

which is obtained from L(∆; λ) by dropping the constraint x ∈ ∆ and θTx ≥ w̃−
θr+1, and by replacing f with its underestimating function g or h. If θT−λTA ≥ 0

and λTB ≤ 0, then (4.30) has a trivial optimal value λTb. These conditions

simultaneously ensure the feasibility of the dual problem of (4.30):

∣∣∣∣∣∣∣∣

maximize w = bTλ

subject to ATλ ≤ θ

BTλ ≤ 0.

(4.31)

If we think of λ as a vector of variables, (4.31) is the dual problem of the linear

programming problem (4.19) introduced in the previous section. Therefore, the

value of λ maximizing the optimal value of (4.30) is given by an optimal solution

λ̃ to the dual problem of Q̃g(∆) or Q̃h(∆). Hence, λ = λ̃ is the desired multiplier.

Note that the dual optimal solution λ̃ is yielded as a byproduct in solving

the primal problem (4.19). Moreover, we see from the constraints of (4.31) that

y(λ̃) = 0 because the coefficient of y in the objective function of L(∆; λ̃) is a

4. Revised Simplicial Algorithm for Concave Minimization Problems 45

nonnegative vector. Therefore, we could delete y from L(∆; λ̃), and solve the

following reduced problem to obtain w(λ̃):
∣∣∣∣∣∣

minimize w = f(x)− λ̃
T
(Ax− b)

subject to x ∈ ∆, θTx ≥ w̃ − θr+1.
(4.32)

Proposition 4.5. The optimal value z(∆) of P(∆), w̃ of (4.20), and the optimal

value w(λ̃) of L(∆; λ̃) satisfy the inequality

w̃ ≤ w(λ̃) ≤ z(∆). (4.33)

The first inequality holds strictly if x(λ̃) 6∈ {v1, . . . ,vr+1} and f is strictly concave

on ∆.

Proof. Let wj denote the objective function value of (4.32) at each vertex vj of ∆.

Since g is a convex envelope of f on ∆ and λ̃ satisfies the constraints of (4.31), we

have

wj = f(vj)− λ̃
T
(Avj − b) = g(vj)− λ̃

T
(Avj − b)

≥ θTvj + θr+1 − λ̃
T
(Avj − b)

= (θT − λ̃
T
A)vj + λ̃

T
b + θr+1

≥ λ̃
T
b + θr+1 = w̃.

This, together with the concavity of f , implies that the objective function value

of (4.32) at any point in ∆ is bounded from below by w̃. Therefore, for x(λ̃) ∈ ∆,

we have

w̃ ≤ f(x(λ̃))− λ̃
T
(Ax(λ̃)− b) = w(λ̃),

by noting y(λ̃) = 0. Suppose that x(λ̃) 6∈ {v1, . . . ,vr+1}. Since x(λ̃) lies on

some vertex of ∆ ∩ ∂G, there are some vertices vp, vq of ∆ and µ ∈ (0, 1) such

that x(λ̃) = (1− µ)vp + µvq. Since f is assumed to be strictly concave, we have

w(λ̃) > (1− µ)wp + µwq ≥ w̃.

Note that w(λ̃) can be superior even to w◦ yielded by the usual relaxation

Q(∆) because Q(∆) shares the objective function with Q̃g(∆) and hence w◦ might

4. Revised Simplicial Algorithm for Concave Minimization Problems 46

coincide with w̃ when x̃ ∈ ∆ and κ(∆) ≥ δ. We should also remark that w(λ̃) can

be computed in time polynomial in r if we assume an oracle telling the value of f ,

though L(∆; λ̃) is a concave minimization problem. Since the objective function of

(4.32) is concave, x(λ̃) is assumed to be a vertex of ∆∩G. Moreover, the number

of its vertices is O(r2) at most. We need only to check the objective function value

at each vj ∈ G and at the intersection of ∂G with each edge vp–vq of ∆ connecting

vp ∈ int(G) and vq 6∈ G.

Example 4.6. Let us continue Examples 4.1 and 4.3. If we solve (4.23) as the

relaxation problem Q̃g(∆) or Q̃h(∆) of (4.14), we cannot directly obtain the value

λ̃0 of the dual variable corresponding to the first constraint of (4.14). However,

it is an easy exercise in linear programming to show that λ̃0 = θ0 holds. Thus,

L(∆; λ̃) for (4.14) is as follows:∣∣∣∣∣∣∣

minimize w = (1− θ0)ξ + f(x)−
∑
i∈M

λ̃ixi +
∑
j∈N

λ̃jbj

subject to (ξ,x) ∈ ∆, θ0ξ + θTx ≥ w̃ − θr+1.

Similarly, we can obtain L(∆; λ̃) for (4.25) from (4.27) in Example 4.4 without

any difficulty.

4.4.2 Algorithm description and convergence properties

Let us summarize the discussion so far. Recall the three basic steps of the simpli-

cial branch-and-bound algorithm given in Section (2.1). Step 2 of the bounding

operation we propose is implemented for given ε ≥ 0 and δ > 0 in two stages:

Step 2.1. If κ(∆) ≥ δ, then solve Q̃g(∆). Otherwise, solve Q̃h(∆). Let

zk := w̃. If f(x∗)− ε ≤ zk for the incumbent x∗, then discard ∆.

Step 2.2. If f(x∗) − ε > zk, then solve L(∆; λ̃) and let zk := w(λ̃). If

f(x∗)− ε ≤ zk, then discard ∆.

We may of course replace the backtracking criterion by f(x∗) − ε|f(x∗)| ≤ zk, as

in (2.4). The following is the detailed description of our simplicial algorithm for

solving the master problem P:

4. Revised Simplicial Algorithm for Concave Minimization Problems 47

algorithm REVISED SBB

begin

compute v := max{ eTx | x ∈ X } and let ∆1 := conv({0, ve1, . . . , ver});
L := {1}; z∗ := +∞; k := 1;

while L 6= ∅ do begin

select ik ∈ L and let L := L \ {ik}; ∆ := ∆ik ; /∗ Step 1 ∗/
let v1, . . . ,vr+1 denote the vertices of ∆;

κ(∆) := min{ ‖vp−vq‖ | p = 1, . . . , r; q = p+1, . . . , r +1 }; /∗ Step 2.1 ∗/
if κ(∆) ≥ δ then begin

V := [v1, . . . ,vr+1]; W := [VT, e]T; /∗ Q̃g(∆) ∗/
[θT, θr+1] := [f(v1), . . . , f(vr+1)]W

−1

else

u :=
∑r+1

j=1 vj/(r + 1); d := ∇f(u); /∗ Q̃h(∆) ∗/
dr+1 := min{ f(vj)− dTvj | j = 1, . . . , r + 1 }; [θT, θr+1] := [dT, dr+1]

end;

solve (4.19) of minimizing θTx+θr+1 on X to compute xk := x̃ and zk := w̃;

if f(xk) < z∗ then update z∗ := f(xk) and x∗ := xk;

if z∗ − zk > ε then begin

/∗ Step 2.2 ∗/
if θTvj ≥ w̃ − θr+1 for some j ∈ {1, . . . , r + 1} then begin

define (4.32) for a dual optimal solution λ̃ to (4.19); /∗ L(∆; λ̃) ∗/
solve (4.32) and update zk := w(λ̃);

if z∗ − zk > ε then begin

/∗ Step 3 ∗/
select the longest edge vp–vq of ∆;

let v := (1− α)vp + αvq for a fixed α ∈ (0, 1/2];

∆2k := conv({vj | j 6= p } ∪ {v});
∆2k+1 := conv({vj | j 6= q } ∪ {v});
L := L ∪ {2k, 2k + 1}

end

4. Revised Simplicial Algorithm for Concave Minimization Problems 48

end

end;

k := k + 1

end

end;

To analyze its convergence property, we will first show how algorithm RE-

VISED SBB behaves when it does not terminate. In that case, an infinite se-

quence of nested simplices is generated as in (2.3); and it shrinks to a single point

because ∆ is subdivided according to the bisection rule. Moreover, we can show

the following:

Lemma 4.7. Suppose that algorithm REVISED SBB generates an infinite se-

quence of simplices {∆k` | ` = 1, 2, . . . } such that

∆k1 ⊃ ∆k2 ⊃ · · · , X ∩
(∞⋂

`=1

∆k`

)
6= ∅.

Then we have

lim
`→∞

(f(xk`)− zk`) = 0. (4.34)

Proof. For each ` = 1, 2, . . ., we can assume without loss of generality that φ(∆k`) <

δ. Then we have

f(xk`) > zk` ≥ hk`(xk`) = (dk`)Txk` + dk`
r+1, (4.35)

where hk` represents the objective function of Q̃h(∆
k`). Let uk` denote the centroid

of ∆k` and vk` be the vertex defining dk`
r+1 via (4.17). Then we have

dk` = ∇f(uk`), dk`
r+1 = f(vk`)− (∇f(uk`))Tvk` .

Also let {v′} =
⋂∞

`=1 ∆k` . Then uk` → v′ and vk` → v′ as ` → ∞, because uk`

and vk` are points of ∆k` . Since f is assumed to be continuously differentiable, we

have as ` →∞

dk` → ∇f(v′), dk`
r+1 → f(v′)− (∇f(v′))Tv′.

4. Revised Simplicial Algorithm for Concave Minimization Problems 49

Also, by taking a subsequence if necessary, we have xk` → x′ for some x′ ∈ X as

` →∞, because xk` ’s lie in the compact set X. Therefore, we have as ` →∞

hk`(xk`) → (∇f(v′))T(x′ − v′) + f(v′) ≥ f(x′),

by the concavity of f . This, together with (4.35), implies (4.34).

The convergence of algorithm REVISED SBB follows from this lemma.

Theorem 4.8. Suppose ε = 0. If algorithm REVISED SBB terminates in finite

time, x∗ is a globally optimal solution to the master problem P. If not, every

accumulation point of the sequence {xk | k = 1, 2, . . . } generated with the best-

bound selection rule is a globally optimal solution to P.

Proof. If the algorithm terminates, the assertion is obvious. Assume that it does

not terminate and generates an infinite sequence of nested simplices {∆k` | ` =

1, 2, . . . }. Since the best-bound rule is adopted, we have

zk` ≤ zi ≤ z(∆i), ∀i ∈ L

at the k`th iteration. Note that z(∆1) is the optimal value of the master problem

P and besides equals min{ z(∆i) | i ∈ L}. Therefore, we have

zk` ≤ z(∆1) ≤ f(xk`), ` = 1, 2,

However, we see from Lemma 4.7 that f(xk`) − zk` → 0 as ` → ∞. This implies

that f(xk`) → z(∆1) as ` →∞.

Corollary 4.9. When ε > 0, algorithm REVISED SBB with either of the selection

rules, depth first or best bound, terminates after a finite number of iterations and

yields a feasible solution x∗ to the master problem P such that

f(x∗) ≤ f(x) + ε, ∀x ∈ X. (4.36)

4. Revised Simplicial Algorithm for Concave Minimization Problems 50

Proof. If the algorithm does not terminate, it generates an infinite sequence of

nested simplices {∆k` | ` = 1, 2, . . . } such that

f(xk`)− zk` ≥ f(x∗)− zk` > ε > 0, ` = 1, 2,

However, f(xk`)−zk` → 0 as ` →∞, which contradicts the backtracking criterion.

If we adopt the other backtracking criterion f(x∗)− zk ≤ ε|f(x∗)|, then (4.36)

is replaced by

f(x∗) ≤ f(x) + ε|f(x∗)|, ∀x ∈ X,

but the corollary can be proved in the same way.

4.5 Numerical Experiment

4.5.1 Instances

In this section, we present numerical results of having compared REVISED SBB

and two existing algorithms, the algorithm proposed in Chapter 3 and the standard

simplicial branch-and-bound algorithm (see e.g., [19, 17, 55]). We refer to those

algorithms here, as revsbb, sbb 1 and sbb 2, respectively. The test problem we

solved is a concave quadratic minimization problem of the form:
∣∣∣∣∣∣

minimize z = −(1/2)xTCTCx− σdTy

subject to A′x + B′y ≤ b′, (x,y) ≥ 0,
(4.37)

where A′ ∈ Rm′×r′ , B′ ∈ Rm′×(n′−r′), b′ ∈ Rm′
, d ∈ Rn′−r′ , C ∈ Rr′×r′ and σ is a

positive weight. Along the lines of the experiment in Chapter 3, we generate C =

[cij] so as to have two nonzero entries in each row, i.e., (cr′1, cr′r′) and (cii, ci,i+1)

for i = 1, . . . , r′ − 1, where cii = 1.0 for i = 1, . . . , r′ and the rests are drawn

randomly from the uniform distribution on [0.0, 1.0]. Hence, CTC has at most

three nonzero entries in each row. Also, each component of d is a uniformly

random number in [0.0, 1.0]. To make the feasible set bounded, b′ is an all-ones

4. Revised Simplicial Algorithm for Concave Minimization Problems 51

vector and each component in the last row of [A′,B′] is fixed to 1.0/n′. Other

components are all random numbers in [−0.5, 1.0], where the percentages of zeros

and negative numbers are about 20% and 10%, respectively. Selecting various

sets of parameters (m′, n′, r′, σ), we generated ten instances of (4.37) for each set,

and solve them by revsbb, sbb 1 and sbb 2 on a Linux workstation (Linux 2.4.21,

Itanium2 processor 1.3GHz).

4.5.2 Computer codes

Each of the codes revsbb, sbb 1 and sbb 2 was written in GNU Octave (version

2.1.50) [43], a MATLAB-like computational tool, according to the depth-first rule.

To adjust the form of (4.37) to (4.3), we introduced additional variables ξ ∈ R,

η ∈ Rm′
and applied the algorithms revsbb and sbb 1 to

∣∣∣∣∣∣∣∣

minimize z = −σξ − (1/2)xTCTCTx

subject to A′x + B′y + η = b′, (x,y) ≥ 0

ξ − dTy = 0, (ξ, η) ≥ 0,

(4.38)

Note that ξ ≥ 0 because d ≥ 0. The size (m,n, r) of (4.38) is therefore equal to

(m′ + 1,m′ + n′ + 1, r′ + 1). As for sbb 2, we applied it directly to (4.37) because

it uses only the relaxation problem Q(∆), which can be written with the slack

variable η as follows (see e.g., [19, 17, 55]):

∣∣∣∣∣∣∣∣

minimize w = (f ′)Tζ − σdTy

subject to A′V′ζ + B′y + η = b′

eTζ = 1, (ζ,y, η) ≥ 0,

where V′ = [v1, . . . ,vr′+1] and f ′ = [f(v1), . . . , f(vr′+1)]
T for r′+1 vertices vj’s of

∆ ⊂ Rr′ .

The branching criterion is f(x∗)−zk ≤ ε|f(x∗)| with ε = 10−5 in each code. As

the subdivision rule of ∆, we adopt bisection of ratio α = 1/2 in revsbb and sbb 1,

but does not in sbb 2, because we found in our preliminary experiment that the

convergence of sbb 2 with the bisection rule is too slow to compare with the other

4. Revised Simplicial Algorithm for Concave Minimization Problems 52

two codes. Instead, we took the way to bisect the longest edge of the minimal face

of ∆ which contains an optimal x◦ = V′ζ◦ of Q(∆). Although this subdivision

rule does not guarantee the convergence, sbb 2 with it terminated for every tested

instance of (4.37) and generated the same output as revsbb and sbb 1 with the

usual bisection rule.

4.5.3 Numerical results

In Figures 4.1–4.4, line plots are given for comparing the behavior of revsbb

(solid lines with circle markers), sbb 1 (dotted lines with cross markers) and sbb 2

(dashed lines with triangle markers) when the size of constraint matrix [A′,B′] is

fixed to (m′, n′) = (40, 80).

Figure 4.1 shows the variation in the average number of branching opera-

tions required by each algorithm when σ was fixed to 5.0 and r′ was changed

in {16, 20, 24, 28, 30, 32, 34}. First, it is noteworthy that revsbb and sbb 1 took the

same number of branching operations for each value of r′. Both codes incorpo-

rate a similar kind of bound tightening procedures based on Lagrangian relaxation.

However, taking account of the relationship between the bounds w̃ and w shown in

Proposition 4.2, we can conclude that it is more effective in the algorithm revsbb of

REVISED SBB. We also see that the tightening procedures work better for larger

value of r′, and in fact the dominance of the standard sbb 2 over revsbb and sbb 1

is reversed around r′ = 25. The variations in the average CPU seconds are plotted

in Figure 4.2. For every value of r′, the algorithm revsbb surpasses the other two

algorithms. In particular, compared with sbb 2, it requires only fortieth part of

the CPU seconds. This proves that problem (4.19) associated with Q̃(∆) is easy

enough to cancel out the inferiority of revsbb to sbb 2 in the number of branching

operations for r′ < 25.

Figures 4.3 and 4.4 show that the variations of the average number of branch-

ing operations and CPU seconds, respectively, required by each code when r′ was

fixed to 20 and σ was changed in {3.0, 3.5, 4.0, 5.0, 7.0, 10.0, 20.0}. Unfortunately,

4. Revised Simplicial Algorithm for Concave Minimization Problems 53

 10

 100

 1000

 16 18 20 22 24 26 28 30 32 34

lo
g(

 #
 b

ra
nc

he
s

)

nonlinear variables (r)

revsbb
sbb_1
sbb_2

Figure 4.1: Numbers of branching operations when (m′, n′, σ) = (40, 80, 5.0).

 0.1

 1

 10

 100

 16 18 20 22 24 26 28 30 32 34

lo
g(

 C
PU

 s
ec

on
ds

)

nonlinear variables (r)

revsbb
sbb_1
sbb_2

Figure 4.2: CPU seconds when (m′, n′, σ) = (40, 80, 5.0).

4. Revised Simplicial Algorithm for Concave Minimization Problems 54

 1

 10

 100

 1000

 0 5 10 15 20

lo
g(

 #
 b

ra
nc

he
s

)

Weight (σ)

revsbb
sbb_1
sbb_2

Figure 4.3: Numbers of branching operations when (m′, n′, r′) = (40, 80, 20).

 0.1

 1

 10

 100

 0 5 10 15 20

lo
g(

 C
PU

 s
ec

on
ds

)

Weight (σ)

revsbb
sbb_1
sbb_2

Figure 4.4: CPU seconds when (m′, n′, r′) = (40, 80, 20).

4. Revised Simplicial Algorithm for Concave Minimization Problems 55

Table 4.1: Computational results of revsbb and sbb 1 when σ = 5.0.

r′ = 0.2n′ r′ = 0.3n′ r′ = 0.4n′ r′ = 0.5n′

m′× n′ # time # time # time # time

60×120 revsbb 18.2 0.445 79.9 1.082 103.6 2.430 230.9 9.081

sbb 1 18.2 0.480 79.9 1.234 103.6 2.706 230.9 9.747

180×120 revsbb 21.6 2.418 58.8 3.486 111.3 6.034 199.2 13.06

sbb 1 21.6 2.589 58.8 3.979 111.3 7.958 199.2 14.82

80×160 revsbb 37.6 1.102 97.0 2.865 128.2 7.850 256.6 27.83

sbb 1 37.6 1.203 97.0 3.238 128.2 8.699 256.6 29.43

240×160 revsbb 12.6 7.026 38.6 8.892 83.2 14.83 151.2 32.01

sbb 1 12.6 7.225 38.6 9.833 83.2 17.56 151.2 38.12

100×200 revsbb 45.6 2.180 88.4 5.245 115.4 15.77 227.6 63.60

sbb 1 45.6 2.752 88.4 5.753 115.4 16.99 227.6 66.57

300×200 revsbb 9.6 19.06 47.4 24.16 110.8 39.09 236.4 105.2

sbb 1 9.6 18.88 47.4 24.55 110.8 45.00 236.4 117.3

each algorithm is rather sensitive to variations of σ, especially when σ < 5. Nev-

ertheless, revsbb and sbb 1 need considerably less branching operations than the

standard sbb 2 when σ < 4, which is totally owing to the tight lower bound yielded

by the Lagrangian relaxation. This, together with the ease of solution to (4.19),

yields the significant advantage of revsbb against sbb 2 in computational time when

σ < 10.

It would be clear from the above observation that revsbb and sbb 1 are of

more promise than the standard sbb 2. To compare revsbb and sbb 1 in more

detail, we next solved (4.37) of larger scale using those two algorithms. The size

(m′, n′) ranged from (60, 120) to (300, 200) and σ was fixed to 5.0. The number

of nonlinear variables r′ varied from 20% to 50% of all the variables, i.e., the

maximum size of (m′, n′, r′) was (300, 200, 100). The computational results are

listed in Table 4.1, in which the columns # and time show the average number of

4. Revised Simplicial Algorithm for Concave Minimization Problems 56

branching operations and CPU seconds, respectively, required by revsbb and sbb 1

for each (m′, n′, r′). Again, we notice that both codes took the same number of

branching operations. Therefore, the difference between the CPU seconds of sbb 1

and revsbb directly reflects the difficulty of (4.10) and (4.19), associated with Q(∆)

and Q̃(∆), repectively. Although the test problem (4.37) has no special structure,

the computational time is improved by ten percent from sbb 1 to revsbb for each

(m′, n′, r′). If we solve favorable structured problems, we can expect even more

significant improvement. The number of branching operations and CPU seconds

increase rather mildly as m′ and n′ increase, in contrast to the case of r′. We could

solve still larger scale problems by elaborating the computer code of algorithm

REVISED SBB, as long as the number r′ of nonlinear variables is less than half

of n′.

Chapter 5

Simplicial Algorithm for Concave

Production-Transportation

Problems

5.1 Introduction

The production-transportation problem is a kind of network flow problem and

arises when we try to simultaneously optimize production at factories manufac-

turing a common product, and transportation of finished goods to warehouses with

given demands. If the production cost is given by an affine function, the problem is

reduced to a Hitchcock problem and can be solved in polynomial time (see [1, 4]).

However, due to scale of economy, the production cost is assumed to be a nonde-

creasing and concave function of production. As a result, the problem can have

multiple locally optimal solutions, many of which fail to be globally optimal. From

the viewpoint of computational complexity, the production-transportation prob-

lem is equivalent to the capacitated minimum concave-cost flow problem, which is

known as a typical NP-hard problem (see [9, 10]).

Compared with ordinary multiextremal optimization problems, the produc-

tion-transportation problem has some favorable characteristics. First, the vari-

57

5. Simplicial Algorithm for Production-Transportation Problems 58

ables functioning nonlinearly are much fewer than other variables. If the numbers

of factories and warehouses are m and n respectively, the concave production cost

is a function of only m variables among a total of m + mn variables. Second, the

associated Hitchcock problem is easy to solve and provides a good approximate

solution. Each of the algorithms proposed so far exploits at least one of these

characteristics. The extreme use of the first characteristic can be seen in a series

of parametric algorithms in [26, 30, 31, 56, 57, 58]. The number of factories m is

assumed to be a constant in single digit, and locally optimal solutions are enumer-

ated as changing the quantity of production. Algorithms of this class are low-order

polynomial or pseudo-polynomial in n. However, they are all exponential in m and

serve no practical use when m exceeds around five. Another promising class of

algorithms is the branch-and-bound method proposed in [49, 14, 32], where the

second characteristic is fully exploited for the bounding operation. In the exist-

ing branch-and-bound algorithms, the production cost is further assumed to be a

separable function, i.e., a sum of m univariate functions. The feasible production

set is subdivided into a set of m-dimensional rectangles to generate subproblems.

Under the separability assumption, it is easy to compute a convex envelope, i.e.,

a maximal affine function underestimating the production cost on the rectangle.

Using this convex envelope, the subproblem is linearized into a Hitchcock problem,

whose value is a tight lower bound on the optimal value.

In this chapter, we develop a branch-and-bound algorithm to solve this concave

cost network flow problem. Unlike the existing algorithms, we do not impose the

separability assumption on the production cost. Since the factories manufacture

a common product, they would accommodate one another with raw materials.

Therefore, the production cost of each factory usually depends upon the production

of other factories as well. If the production cost is inseparable, the rectangle

subdivision of the feasible production set has no advantage any more. Instead, we

propose a simplicial subdivision, which subdivides the feasible production set into

a set of simplices. In Section 5.2, we describe the problem settings. Although the

simplicial branch-and-bound algorithm is possible to define a convex envelope of

5. Simplicial Algorithm for Production-Transportation Problems 59

the production cost on each simplex, the network structure needed in efficiently

solving the subproblem is damaged by this subdivision scheme. In Section 5.3,

we devise some procedures for restoring the network structure of each subproblem

and linearize it into a network flow problem giving a lower bound on the optimal

value. Section 5.4 is devoted to a report on computational results of comparing

those procedures. In Section 5.5, we discuss some concluding remarks.

5.2 Problem Settings

Let M denote the set of m factories and N the set of n warehouses. Also let

E = M × N . Then G = (M,N, E) constitutes a bipartite graph of node sets M

and N , and arc set E. For each i ∈ M and j ∈ N , the production capacity of

factory i and the demand of warehouse j are ui and bj units, respectively, and the

cost of shipping a unit from factory i to warehouse j is cij, where ui and bj are

both positive integers and cij is a real number. Note that for the problem to make

sense, it is necessary that ∑
j∈N

bj ≤
∑
i∈M

ui. (5.1)

Let g(y) be the total cost of producing yi units at each factory i ∈ M , where

y = (y1, . . . , ym)T. We assume that g is a nonlinear, nondecreasing and concave

function defined on some open convex set including

∆1 =

{
y ∈ Rm

∣∣∣∣∣
∑
i∈M

yi = B, y ≥ 0

}
, (5.2)

where B =
∑

j∈N bj. Letting x = (xij | (i, j) ∈ E)T denote the flow variables of

finished products from factories to warehouses, then our problem is formulated as

5. Simplicial Algorithm for Production-Transportation Problems 60

follows:

minimize z =
∑

(i,j)∈E

cijxij + g(y)

subject to
∑
j∈N

xij = yi, i ∈ M

∑
i∈M

xij = bj, j ∈ N

x ≥ 0, 0 ≤ y ≤ u,

(5.3)

where u = (u1, . . . , um)T. If we add a source 0 of supply B to the graph G and

connect it to each node i ∈ M through a directed arc (0, i) of capacity ui, we see

that (5.3) is a special class of minimum concave-cost flow problem (see [10]). A

major difference from the usual one is that the objective function is not assumed

completely separated into univariate functions.

Let S denote the feasible set of (5.3). Since the objective function is continuous

and S is a bounded polyhedron, problem (5.3) has an optimal solution (x∗,y∗) as

long as (5.1) holds. Moreover, (x∗,y∗) is assumed to be a vertex of S because

the objective function is concave. As seen above, the set of all constraints is

essentially the same as minimum cost flow problems; and hence, the constraint

matrix possesses the total unimodularity (see [1] for details). These facts imply

the following:

Lemma 5.1. Under condition (5.1), problem (5.3) has a globally optimal solution

(x∗,y∗), each component of which is an integer.

When the objective function is inseparable and concave, one of the popular

solution methods is the simplicial branch-and-bound algorithm in [19, 55]. In the

rest of this section, we will review its basic workings.

If (5.1) holds, any feasible production y of (5.3) belongs to the (m−1)-simplex

∆1 defined in (5.2). Therefore, no feasible solution to (5.3) is overlooked if we add

5. Simplicial Algorithm for Production-Transportation Problems 61

the constraint y ∈ ∆1. The resulting problem is then given below for ∆ = ∆1:

P(∆)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij + g(y)

subject to
∑
j∈N

xij = yi, i ∈ M

∑
i∈M

xij = bj, j ∈ N

x ≥ 0, y ≤ u, y ∈ ∆.

To locate (x∗,y∗), the simplicial branch-and-bound algorithm solves this problem

recursively, as replacing ∆ by simplices ∆′ and ∆′′ such that

∆ = ∆′ ∪∆′′, int(∆′) ∩ int(∆′′) = ∅, (5.4)

where int(·) represents the set of relative interior points. The simplex ∆ is usually

maintained as a convex hull of its m vertices vi, i ∈ M :

∆ =

{
y ∈ Rm

∣∣∣∣∣ y =
∑
i∈M

λiv
i, eTλ = 1, λ ≥ 0

}
,

where e denotes a vector of ones and λ = (λ1, . . . , λm)T. For the initial simplex

∆1 we have vi = Bei, where ei denotes the ith unit vector. If we select an edge

of ∆, say vp–vq, and divide it at a midpoint v := (1−µ)vp + µvq for a fixed ratio

µ ∈ (0, 1/2], we can immediately generate ∆′ and ∆′′ as

∆′ =



y ∈ Rm

∣∣∣∣∣∣
y = λpv +

∑

i∈M\{p}
λiv

i, eTλ = 1, λ ≥ 0





∆′′ =



y ∈ Rm

∣∣∣∣∣∣
y = λqv +

∑

i∈M\{q}
λiv

i, eTλ = 1, λ ≥ 0



 .

We refer to this division rule as bisection of ratio µ on edge vp–vq.

The simplicial subdivision (5.4) has an advantage over other subdivision schemes

in computing a tight lower bound of g. Since each point y ∈ ∆ can be represented

as y =
∑

i∈M λiv
i for some λ ≥ 0 such that eTλ = 1, a lower bound of g at y

is given simply by g(y) =
∑

i∈M λig(vi). This function g is an affine function of

5. Simplicial Algorithm for Production-Transportation Problems 62

y, which agrees with g at m vertices of ∆, and known as a convex envelope of

g, i.e., a maximal convex function underestimating g on ∆. On the other hand,

there is a difficulty in the implementation against our problem (5.3). Except for

the initial one, the additional constraint y ∈ ∆ damages the network structure

of P(∆), which is essential to efficient computation of z(∆). In the subsequent

section, we develop some procedures for overcoming this difficulty.

5.3 Finite Simplicial Algorithm

The key to efficiency of the simplicial branch-and-bound algorithm is mainly held

by the bounding operation of Step 2 of Standard SBB in Section 2.1. To compute a

lower bound z(∆), we solve a relaxation problem of P(∆), where the concave func-

tion g is replaced by its convex envelope g on ∆. Usually, instead of representing g

explicitly as a function of y, we eliminate y altogether from the relaxation problem

by substituting y =
∑

i∈M λiv
i into the constraints as well (see [19, 55] for details).

This approach is handy but destroys the network structure completely. Here, we

take an alternative approach which keeps the damage as small as possible.

5.3.1 Linear programming relaxation

For m vertices vi, i ∈ M , of ∆, let

V = [v1, . . . ,vm], w = [g(v1), . . . , g(vm)].

Since vi’s are linearly independent if they are generated according to the bisection

rule, we can uniquely identify λ = V−1y for any y ∈ ∆. Substituting it to

g(y) =
∑

i∈M λig(vi), we have

g(y) = wV−1y, ∀y ∈ ∆.

Similarly, we can rewrite the simplex ∆ as follows:

∆ = {y ∈ Rm | eTV−1y = 1, V−1y ≥ 0 }.

5. Simplicial Algorithm for Production-Transportation Problems 63

Note that eTV−1y = 1 is satisfied by any feasible production y of (5.3). Since each

vi and the feasible production y belong to the initial simplex defined by (5.2), the

equalities eTvi = B and eTy = B hold. Then we have

eTV−1y = (1/B)eTy = 1.

We can therefore replace the constraint y ∈ ∆ of P(∆) by V−1y ≥ 0. Furthermore,

replacing g by g, we have a linear programming problem:

RP1(∆)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij + wV−1y

subject to
∑
j∈N

xij = yi, i ∈ M

∑
i∈M

xij = bj, j ∈ N

x ≥ 0, y ≤ u, V−1y ≥ 0.

Let (x1,y1) be an optimal solution when RP1(∆) is feasible, and let

z1(∆) =





∑

(i,j)∈E

cijx
1
ij + wV−1y1, if RP1(∆) is feasible

+∞, otherwise.

Lemma 5.2. If z1(∆) = +∞, then subproblem P(∆) is infeasible. Otherwise,

P(∆) has an optimal solution of value z(∆), and we have

z1(∆) ≤ z(∆).

Proof. Both feasible sets of P(∆) and RP1(∆) coincide with S∩∆, where S denotes

the feasible set of (5.3). For any (x,y) ∈ S ∩∆, we have
∑

(i,j)∈E

cijxij + wV−1y ≤
∑

(i,j)∈E

cijxij + g(y), (5.5)

because g(y) = wV−1y is a convex envelope of g on ∆.

We see from this lemma that the optimal value z1(∆) of RP1(∆) can serve as

the lower bound z(∆) on the value of P(∆). Moreover, since any feasible solution of

RP1(∆) is feasible to P(∆), we can update the incumbent (x◦,y◦) by (x1,y1). The

only drawback of RP1(∆) is that the constraint V−1y ≥ 0 still spoils the network

structure and prevents us from applying efficient network flow algorithms.

5. Simplicial Algorithm for Production-Transportation Problems 64

5.3.2 Network flow relaxation

The easiest way to restore the network structure of RP1(∆) is to drop the con-

straint V−1y ≥ 0:

RP2(∆)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij + wV−1y

subject to
∑
j∈N

xij = yi, i ∈ M

∑
i∈M

xij = bj, j ∈ N

x ≥ 0, 0 ≤ y ≤ u.

Then we can eliminate y and have a Hitchcock problem:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij

subject to
∑
j∈N

xij ≤ ui, i ∈ M

∑
i∈M

xij = bj, j ∈ N

x ≥ 0,

(5.6)

where cij = cij + wV−1ei and ei denotes the ith unit vector. Since the feasible

set does not depend on ∆, problem (5.6) always has an optimal solution x2 under

condition (5.1). It is well known that the number of arithmetic operations needed

to compute x2 is a lower order polynomial in m and n (see [1, 4]). The optimal

value z2(∆) :=
∑

(i,j)∈E cijx
2
ij obviously exceeds neither z1(∆) nor z(∆), and hence

can serve as the lower bound z(∆) on the value of P(∆). Let y2
i =

∑
j∈N x2

ij for

each i ∈ M . Then (x2,y2) is a feasible solution to the target problem (5.3), though

it might be infeasible to P(∆). Thereby, we can update the incumbent (x◦,y◦).

The relaxation problem RP2(∆) fairly meets our requirements. Unfortunately,

however, the removal of V−1y ≥ 0 degrades the quality of the lower bound. To

improve the lower bound, we need to retighten the constraints.

Let us introduce 2m numbers:

si = dmin{ yi | y ∈ ∆ }e, ti = min{ bmax{ yi | y ∈ ∆ }c, ui }, i ∈ M, (5.7)

5. Simplicial Algorithm for Production-Transportation Problems 65

where d · e and b · c represent the integers obtained by rounding up and down,

respectively. Also let s = (s1, . . . , sm)T and t = (t1, . . . , tm)T. Unless y ∈ ∆ is an

integral vector, it might not satisfy s ≤ y ≤ t. However, we see from Lemma 5.1

that at least one optimal solution (x∗,y∗) is integral, and satisfies s ≤ y∗ ≤ t if

y∗ ∈ ∆. Then, even if we replace the constraint y ∈ ∆ in RP1(∆) by s ≤ y ≤ t,

no integral optimal solution to P(∆) is overlooked. Let us denote the resulting

problem by

RP3(∆)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij + wV−1y

subject to
∑
j∈N

xij = yi, i ∈ M

∑
i∈M

xij = bj, j ∈ N

x ≥ 0, s ≤ y ≤ t.

Let (x3,y3) be an optimal solution when RP3(∆) is feasible, and let

z3(∆) =





∑

(i,j)∈E

cijx
3
ij + wV−1y3, if RP3(∆) is feasible

+∞, otherwise.

Note that z3(∆) is not always a lower bound on z1(∆), nor even on z(∆), because

there is no inclusive relation between the sets ∆ and {y | s ≤ y ≤ t }. However,

since the target problem (5.3) has an integral optimal solution, the use of z3(∆) as

the lower bound z(∆) in the branch-and-bound algorithm is justified if we under-

stand that the integral constraint on (x,y) is hidden in (5.3) and its subproblem

P(∆).

Lemma 5.3. If z3(∆) = +∞, then subproblem P(∆) has no integral feasible

solution. Otherwise, let z̃(∆) denote the value of the best integral solution to

P(∆). Then we have

z2(∆) ≤ z3(∆) ≤ z̃(∆).

Proof. Since all integral points in ∆ satisfy s ≤ y ≤ t, problem P(∆) has no

integral feasible solution if RP3(∆) is infeasible. The rest follows from (5.5) and

the inclusive relation between the feasible sets of three problems.

5. Simplicial Algorithm for Production-Transportation Problems 66

Furthermore, RP3(∆) can be transformed into a minimum cost flow problem

similar to the target problem (5.3). We construct the underlying network as fol-

lows. First, we introduce a source 0 of supply
∑

i∈M ti and a sink n′ of demand
∑

i∈M ti − B to the graph G. Then, we connect these auxiliary nodes, 0 and n′,

respectively to each node i ∈ M with directed arcs (0, i) of capacity ti and (i, n′)

of capacity ti− si. In this network, it is easy to see that the flow on each arc (0, i),

i ∈ M , is equal to ti for every feasible flow. Therefore, the difference between ti

and the flow on arc (i, n′) gives the value of yi in RP3(∆). Since the objective

function is linear, we can solve this network flow problem in polynomial time of

m and n (see [1]). Again, (x3,y3) might be infeasible to P(∆), but is feasible to

(5.3) and can be used for the incumbent update.

The network flow relaxation problem RP3(∆) has been drawn by exploiting the

integrality of an optimal solution (x∗,y∗) to the target problem (5.3). We can

use a similar idea to terminate the simplicial branch-and-bound algorithm within

finite iterations. Using s and t defined in (5.7), we can see that ∆ contains just

one integral feasible production ỹ of (5.3) if and only if

(a) si = ti for all i ∈ M and
∑

i∈M si =
∑

i∈M ti = B;

and ∆ contains no integral feasible production of (5.3) if and only if

(b) si > ti for some i ∈ M , and/or (c)
∑

i∈M si > B or
∑

i∈M ti < B.

In the case of (a), we can compute the value of the best integral solution to P(∆)

by solving P(∆) with fixed ỹ, which is reduced to a Hitchcock problem. On the

other hand, in the case of (b) and/or (c), we need not solve any relaxation problem

RPk(∆), k = 1, 2, 3. In either case, each nested simplex from ∆ does not contain

any integral feasible production of (5.3) except ỹ. Therefore, we can stop the

branching operation and can save computational time.

As seen in Section 2.1, when the algorithm does not terminate, it generates

an infinite sequence of nested simplices {∆r | r = 1, . . . }, which converges to a

5. Simplicial Algorithm for Production-Transportation Problems 67

singleton if we apply the bisection rule on the longest edge of ∆. Let

d(∆) = max{ ‖vi − vj‖ | i < j, i, j ∈ M }.

Then we have d(∆r) ≥ d(∆r+1) for each r, and d(∆r) → 0 as r → ∞. In this

sequence, if d(∆r) <
√

2 holds, then ∆r contains at most one integral point, and

∆r must satisfy one of the stopping criteria (a)–(c). This implies that if we apply

these criteria (a)–(c), each nested sequence {∆r | r = 1, . . . } generated by the

algorithm is finite. Hence, even by adopting the depth first rule to select ∆, we

can guarantee the finite convergence of the algorithm. The depth first rule selects

∆ most recently added to D, and requires less memory than the best bound rule.

We are now ready to give a detailed description of the algorithm, where conv(V)

denotes the convex hull of the columns of V:

algorithm Simplicial BB

begin

for i ∈ M do vi := Bei;

V := [v1, . . . ,vm]; ∆ := conv(V); D := {∆}; z◦ := +∞;

while D 6= ∅ do begin

/∗ Step 1. (best bound or depth first) ∗/
select ∆ ∈ D and set D := D \ {∆};
define a subproblem P(∆);

/∗ Step 2. (bounding operation) ∗/
for i ∈ M do begin

si := dmin{ yi | y ∈ ∆ }e; ti := min{ bmax{ yi | y ∈ ∆ }c, ui }
end;

if s = t and eTs = B = eTt then begin

ỹ := s;

solve P(∆) with fixed ỹ and obtain an optimal solution x̃;

if
∑

(i,j)∈E cijx̃ij + g(ỹ) < z◦ then begin

(x◦,y◦) := (x̃, ỹ); z◦ :=
∑

(i,j)∈E cijx̃ij + g(ỹ)

5. Simplicial Algorithm for Production-Transportation Problems 68

end

else if s ≤ t and eTs ≤ B ≤ eTt then

w := [g(v1), . . . , g(vm)]; g(y) := wV−1y;

define a relaxed problem RPk(∆) of P(∆) using g;

solve RPk(∆) and obtain a lower bound z(∆) := zk(∆);

let (xk,yk) denote an optimal solution to RPk(∆);

if
∑

(i,j)∈E cijx
k
ij + g(yk) < z◦ then begin

(x◦,y◦) := (xk,yk); z◦ :=
∑

(i,j)∈E cijx
k
ij + g(yk)

end;

if z(∆) < z◦ then begin

/∗ Step 3. (branching operation; µ ∈ (0, 1/2]) ∗/
select the longest edge vp–vq of ∆ and let v := (1− µ)vp + µvq;

V′ := [v1, . . . ,vp−1,v,vp+1, . . . ,vm];

V′′ := [v1, . . . ,vq−1,v,vq+1, . . . ,vm];

∆′ := conv(V′); ∆′′ := conv(V′′); D := D ∪ {∆′, ∆′′}
end

end

end;

(x∗,y∗) := (x◦,y◦)

end;

Theorem 5.4. The algorithm Simplicial BB terminates after finitely many itera-

tions, and yields a globally optimal solution (x∗,y∗) to (5.3).

Proof. If the algorithm terminates, it is obvious that it yields an optimal solution

(x∗,y∗) to (5.3). Let us show that it terminates in finite time, assuming µ = 1/2

for simplicity. We can prove other cases similarly.

If we apply the algorithm to (5.3), it generates a branching tree, each node of

which corresponds to a subproblem P(∆). If we trace the tree from an arbitrary

node P(∆r) to the root (5.3), we have a nested sequence {∆1, . . . , ∆r}, where

∆1 denotes the initial simplex given by (5.2). As we have seen, such a sequence

5. Simplicial Algorithm for Production-Transportation Problems 69

has a finite length because the algorithm backtracks along the branching tree if

d(∆r) <
√

2. More precisely, the length is bounded by m log B when µ = 1/2,

since ∆1 has m edges of length
√

2B. Therefore, the branching tree contains a

total of O(2m log B) nodes at most. This implies that the algorithm solves O(2m log B)

linear programming problems RPk(∆)’s, even in the worst case, and yields (x∗,y∗)

optimal for (5.3).

5.4 Computational Results

Let us report numerical results of comparing the algorithms of using z1(∆), z2(∆)

and z3(∆) as the lower bound z(∆) on randomly generated instances of problem

(5.3). We refer to the algorithms by SBB1, SBB2 and SBB3, respectively.

Each instance is generated in the following manner: cij’s are integers drawn

from the uniform distribution on [1, 10]; ui’s and bj’s are fixed to 200 and

b(∑i∈M 0.75ui)/nc, respectively; and the concave production cost is defined by

g(y) = γ
∑

k∈M

βk

√∑
i∈M

αkiyi,

where γ is selected from {0.1, 1.0, 10.0}, αki and βk are random numbers such that

αki ∈ (1.0, 2.0) if k = i, otherwise αki ∈ (0.0, 1.0), and βk ∈ [10.0, 20.0]. The size

of m range from 4 to 7, and n is set to each of {10m, 20m, 40m, 80m}.
The algorithms were coded mainly in GNU Octave (version 2.1.34) [43],

a Matlab-like computational tool, according to the description in Section 5.3.

We also coded the revised simplex algorithm for solving the relaxation prob-

lem RP1(∆), and the successive shortest path algorithm for solving RP2(∆) and

RP3(∆) (see [1, 4]). Neither algorithm is polynomial, but we improved the effi-

ciency by exploiting an optimal solution to the preceding relaxation problem as the

initial solution. While Matlab-like tools are powerful for matrix computation due

to binary libraries for linear algebra, they are generally poor at other operations,

especially at processing discrete structures. We therefore took the way to call a

5. Simplicial Algorithm for Production-Transportation Problems 70

shortest path procedure coded in C++ (GCC version 2.96) from the successive

shortest path program of Octave. Each program code of SBB1, SBB2 and SBB3

adopted the depth first rule, µ = 1/2, and solved ten instances for each (m,n, γ)

on a Linux workstation (Linux 2.4.18, Itanium 2 processor, 1GHz).

Tables 5.1–5.3 show the results, each for γ ∈ {0.1, 1.0, 10.0}. The average

CPU seconds (time) and the average number of branching operations (branches)

taken by SBB1, SBB2 and SBB3 are listed in each row. The worst figures are also

given in brackets. These figures are omitted to list if there were instances not

solved within 10,000 seconds. We see from the tables that both SBB2 and SBB3

are superior to SBB1 in CPU seconds for all (m,n, γ) except (7, 70, 1.0), even

though they require many more branching operations than SBB1. This implies

that the computational burden of solving each of RP2(∆) and RP3(∆) is low

enough to cancel the dominance of z1(∆) over z2(∆) and z3(∆). Since the number

of branching operations required by SBB3 is rather less than that by SBB2, we can

conclude that z3(∆) is tightened sufficiently from z2(∆). Also, we should remark

that the gap of performance among SBB1, SBB2 and SBB3 tends to widen as the

size of n increases for each m. As to the effect of change in γ, we can see that it

is fairly mild if we compare three tables. The algorithm Simplicial BB is therefore

expected to solve still more highly nonlinear problems when m is less than seven.

5.5 Concluding Remarks

The production-transportation problem (5.3) can be thought of as an example of

the simplest supply chain models. However, if we assume the production cost to

be an inseparable concave function of a total amount of production, it is not so

easy to figure out a globally optimal solution even for small-scale problems. To

solve this intractable problem, we proposed a simplicial branch-and-bound algo-

rithm, Simplicial BB. Unlike the usual simplicial algorithms, our algorithm always

maintains the network structure possessed by the original problem in the course

of computation. This causes rather rapid growth of branching trees but enables

5. Simplicial Algorithm for Production-Transportation Problems 71

T
ab

le
5.

1:
C

om
p
u
ta

ti
on

al
re

su
lt

s
w

h
en

γ
=

0.
1

S
B
B
1

S
B
B
2

S
B
B
3

m
×

n
ti

m
e

br
a
n
ch

es
ti

m
e

br
a
n
ch

es
ti

m
e

br
a
n
ch

es

4×
40

0.
27

7
(
0.

38
9)

14
.2

(
29

)
0.

07
6

(0
.1

13
)

27
.0

(
35

)
0.

07
5

(0
.1

13
)

26
.8

(
41

)

4×
80

1.
19

3
(
1.

66
0)

19
.8

(
31

)
0.

10
6

(0
.1

91
)

35
.8

(
65

)
0.

10
3

(0
.1

86
)

35
.6

(
65

)

4×
16

0
7.

77
2

(
9.

79
9)

25
.2

(
31

)
0.

13
3

(0
.1

77
)

39
.0

(
51

)
0.

13
0

(0
.1

74
)

38
.8

(
51

)

4×
32

0
58

.7
1

(
70

.3
1)

30
.0

(
35

)
0.

26
9

(0
.3

69
)

57
.8

(
79

)
0.

24
6

(0
.2

74
)

47
.0

(
51

)

5×
50

1.
00

2
(
2.

48
0)

48
.4

(
13

7)
0.

53
8

(0
.9

05
)

18
3.

6
(

31
7)

0.
47

4
(0

.7
45

)
16

3.
8

(
25

5)

5×
10

0
4.

56
5

(
7.

23
1)

48
.8

(
81

)
0.

57
1

(0
.7

99
)

17
5.

6
(

25
5)

0.
53

4
(0

.7
38

)
16

6.
2

(
22

7)

5×
20

0
31

.2
8

(
41

.0
0)

56
.2

(
73

)
0.

75
0

(1
.0

50
)

19
2.

4
(

26
7)

0.
70

7
(0

.9
62

)
17

8.
8

(
23

9)

5×
40

0
27

2.
1

(
46

4.
1)

85
.2

(
13

7)
1.

94
3

(2
.6

48
)

33
5.

8
(

43
5)

1.
64

5
(2

.3
27

)
25

7.
2

(
36

9)

6×
60

5.
26

2
(
9.

48
0)

18
4.

4
(

38
1)

2.
36

5
(3

.9
78

)
84

8.
8

(
1,

44
7)

2.
29

9
(3

.8
51

)
84

1.
8

(
1,

42
7)

6×
12

0
31

.3
8

(
56

.5
8)

24
8.

2
(

43
3)

3.
41

7
(4

.8
29

)
1,

06
0

(
1,

40
7)

3.
27

3
(4

.4
74

)
1,

04
1

(
1,

36
5)

6×
24

0
19

5.
1

(
47

5.
7)

22
0.

6
(

48
5)

8.
50

5
(1

6.
62

)
1,

81
1

(
3,

38
3)

5.
45

5
(1

0.
57

)
1,

09
9

(
2,

03
5)

6×
48

0
1,

48
2

(2
,4

39
)

26
5.

8
(

44
5)

17
.4

4
(2

6.
77

)
2,

35
8

(
3,

56
5)

10
.4

8
(1

6.
79

)
1,

28
3

(
2,

02
7)

7×
70

28
.4

2
(
70

.0
4)

67
7.

4
(1

,5
37

)
19

.6
6

(2
9.

80
)

6,
51

2
(

9,
93

9)
17

.9
5

(2
5.

78
)

5,
98

1
(

8,
40

3)

7×
14

0
16

9.
8

(
36

3.
2)

80
1.

4
(1

,6
53

)
34

.2
4

(6
4.

06
)

9,
15

7
(1

6,
67

1)
29

.7
5

(5
0.

31
)

8,
08

8
(1

3,
34

1)

7×
28

0
1,

43
5

(3
,6

78
)

99
3.

0
(2

,0
75

)
46

.5
7

(7
9.

88
)

8,
94

7
(1

4,
88

1)
42

.4
4

(6
8.

37
)

8,
10

0
(1

2,
65

1)

7×
56

0
−

(
−)

−
(

−)
25

9.
1

(6
78

.6
)

26
,6

17
(6

7,
75

3)
10

4.
5

(2
00

.4
)

9,
50

0
(1

7,
99

7)

5. Simplicial Algorithm for Production-Transportation Problems 72

T
ab

le
5.

2:
C

om
p
u
ta

ti
on

al
re

su
lt

s
w

h
en

γ
=

1.
0

S
B
B
1

S
B
B
2

S
B
B
3

m
×

n
ti

m
e

br
a
n
ch

es
ti

m
e

br
a
n
ch

es
ti

m
e

br
a
n
ch

es

4×
40

0.
43

0
(
0.

58
8)

34
.2

(
53

)
0.

17
7

(0
.2

64
)

67
.4

(
10

3)
0.

15
8

(
0.

22
1)

58
.0

(
83

)

4×
80

1.
99

5
(
4.

18
0)

56
.0

(
14

5)
0.

25
1

(0
.5

61
)

89
.6

(
20

1)
0.

22
5

(
0.

47
3)

79
.0

(
16

7)

4×
16

0
11

.1
3

(
16

.4
1)

53
.6

(
83

)
0.

26
5

(0
.4

54
)

79
.4

(
13

3)
0.

25
4

(
0.

36
6)

74
.2

(
10

5)

4×
32

0
91

.9
5

(
11

3.
8)

62
.4

(
73

)
0.

63
3

(0
.7

91
)

13
7.

6
(

17
1)

0.
45

9
(
0.

63
6)

88
.0

(
12

7)

5×
50

2.
33

4
(
5.

19
0)

14
4.

4
(

34
5)

1.
93

3
(3

.6
12

)
69

7.
0

(
1,

27
1)

1.
33

7
(
2.

53
3)

46
3.

4
(

86
7)

5×
10

0
9.

59
6

(
13

.9
5)

15
0.

2
(

22
1)

1.
82

0
(2

.9
75

)
59

1.
0

(
95

5)
1.

41
1

(
2.

00
4)

44
0.

4
(

62
1)

5×
20

0
71

.1
0

(
16

3.
2)

18
4.

2
(

46
5)

2.
65

1
(4

.0
63

)
70

0.
2

(
1,

02
9)

1.
94

8
(
3.

18
8)

49
0.

8
(

78
3)

5×
40

0
75

3.
8

(1
,3

48
)

29
7.

0
(

56
7)

7.
27

7
(1

3.
24

)
1,

27
0

(
2,

33
7)

4.
22

8
(
7.

42
4)

66
1.

0
(

1,
13

3)

6×
60

12
.6

5
(
25

.4
5)

51
1.

0
(

88
9)

6.
58

7
(1

6.
50

)
2,

37
6

(
5,

76
1)

5.
15

4
(
8.

04
1)

1,
85

0
(

2,
84

1)

6×
12

0
79

.3
8

(
13

9.
0)

68
8.

6
(1

,1
19

)
8.

36
5

(1
2.

49
)

2,
61

6
(

3,
72

9)
7.

48
4

(
10

.6
0)

2,
30

3
(

3,
09

9)

6×
24

0
55

6.
2

(1
,3

01
)

74
3.

4
(1

,6
49

)
39

.7
8

(6
5.

01
)

8,
98

3
(

14
,9

33
)

16
.0

6
(
24

.2
0)

3,
28

8
(

4,
80

9)

6×
48

0
5,

32
6

(8
,4

55
)

1,
02

7
(1

,5
59

)
95

.7
2

(1
78

.7
)

13
,1

43
(

26
,9

07
)

34
.7

8
(
51

.5
5)

4,
22

5
(

6,
25

5)

7×
70

75
.6

9
(
17

4.
6)

1,
97

1
(4

,5
99

)
10

2.
3

(2
04

.4
)

33
,4

21
(

67
,2

81
)

60
.7

8
(
97

.3
7)

19
,4

53
(

30
,4

53
)

7×
14

0
57

4.
7

(1
,1

64
)

2,
95

5
(5

,7
11

)
21

4.
2

(4
60

.8
)

57
,2

08
(1

22
,7

27
)

96
.9

2
(
16

8.
1)

25
,2

22
(

42
,9

21
)

7×
28

0
4,

27
2

(6
,8

86
)

3,
28

5
(5

,9
95

)
30

6.
4

(5
48

.3
)

57
,9

41
(1

04
,9

47
)

14
2.

6
(
20

4.
7)

25
,9

57
(

36
,7

63
)

7×
56

0
−

(
−)

−
(

−)
−

(
−)

−
(

−)
61

4.
0

(2
,5

18
)

55
,6

86
(2

22
,7

99
)

5. Simplicial Algorithm for Production-Transportation Problems 73

T
ab

le
5.

3:
C

om
p
u
ta

ti
on

al
re

su
lt

s
w

h
en

γ
=

10
.0

S
B
B
1

S
B
B
2

S
B
B
3

m
×

n
ti

m
e

br
a
n
ch

es
ti

m
e

br
a
n
ch

es
ti

m
e

br
a
n
ch

es

4×
40

0.
87

5
(
1.

67
9)

74
.8

(
15

1)
0.

31
3

(
0.

51
5)

11
7.

0
(

19
7)

0.
26

6
(0

.4
52

)
99

.2
(

17
1)

4×
80

3.
70

0
(
9.

21
8)

96
.6

(
27

5)
0.

40
2

(
1.

08
5)

14
0.

2
(

37
7)

0.
33

7
(0

.9
62

)
11

6.
2

(
34

1)

4×
16

0
25

.3
5

(
41

.0
4)

10
4.

2
(

16
3)

0.
50

9
(
0.

96
9)

13
8.

6
(

26
3)

0.
45

2
(0

.8
32

)
12

1.
2

(
22

7)

4×
32

0
22

1.
0

(
38

6.
9)

12
1.

6
(

20
1)

0.
97

1
(
2.

00
6)

15
8.

2
(

29
9)

0.
86

1
(1

.4
76

)
15

1.
2

(
26

7)

5×
50

4.
37

4
(
8.

64
9)

26
5.

6
(

58
5)

2.
81

2
(
5.

92
1)

97
7.

6
(

2,
00

3)
1.

64
0

(3
.0

37
)

57
2.

0
(

1,
06

7)

5×
10

0
16

.2
6

(
34

.7
3)

22
3.

2
(

54
1)

2.
51

1
(
4.

77
7)

80
3.

8
(

1,
51

3)
1.

71
3

(3
.3

05
)

53
7.

0
(

1,
02

7)

5×
20

0
15

1.
0

(
21

6.
3)

33
0.

4
(

46
9)

3.
43

9
(
4.

81
2)

82
1.

0
(

1,
23

5)
2.

47
5

(3
.3

46
)

58
0.

4
(

75
7)

5×
40

0
1,

33
1

(1
,9

73
)

30
1.

4
(

39
7)

4.
51

0
(
9.

58
3)

54
9.

6
(

1,
24

1)
3.

44
0

(6
.0

79
)

41
7.

4
(

76
9)

6×
60

25
.5

2
(
45

.6
4)

86
0.

8
(

1,
47

3)
8.

97
3

(
13

.7
0)

3,
10

2
(

4,
63

5)
6.

72
9

(9
.5

43
)

2,
35

6
(

3,
29

9)

6×
12

0
13

2.
0

(
21

4.
9)

80
2.

0
(

1,
13

5)
8.

93
5

(
12

.5
6)

2,
57

2
(

3,
51

3)
7.

93
1

(1
0.

86
)

2,
33

1
(

3,
15

7)

6×
24

0
1,

54
3

(3
,9

54
)

1,
69

2
(

4,
78

1)
49

.9
8

(
13

5.
1)

9,
91

5
(

24
,7

89
)

24
.6

9
(6

9.
10

)
4,

77
1

(1
3,

23
9)

6×
48

0
−

(
−)

−
(

−)
93

.6
5

(
30

9.
7)

8,
30

9
(

26
,3

43
)

34
.8

8
(8

4.
34

)
3,

03
3

(
7,

15
5)

7×
70

19
4.

4
(
51

6.
0)

4,
79

4
(1

3,
07

3)
19

3.
0

(
46

5.
9)

60
,7

40
(1

41
,6

07
)

96
.5

6
(2

02
.5

)
30

,4
29

(6
2,

88
7)

7×
14

0
1,

61
4

(3
,0

66
)

5,
95

8
(1

2,
24

3)
28

2.
6

(1
,0

03
)

69
,0

03
(2

30
,1

87
)

13
1.

1
(3

21
.6

)
32

,3
53

(7
6,

93
5)

7×
28

0
−

(
−)

−
(

−)
27

0.
1

(
94

0.
2)

40
,4

75
(1

32
,0

11
)

18
1.

5
(4

18
.7

)
27

,4
47

(5
7,

61
5)

7×
56

0
−

(
−)

−
(

−)
2,

70
4

(9
,2

33
)

20
8,

18
7

(7
27

,3
97

)
35

8.
1

(6
69

.0
)

26
,3

16
(4

6,
59

1)

5. Simplicial Algorithm for Production-Transportation Problems 74

us to use efficient network flow procedures, and results in the advantage over the

algorithm ignoring the network structure, as seen in the previous section. Since

we tested the algorithms on limited instances, we can not make a final conclusion.

Nonetheless, the algorithm Simplicial BB is fairly promising for practical use and

will serve as a stepping stone to solve further complicated supply chain models.

Chapter 6

Conical Algorithm for Reverse

Convex Programming Problems

6.1 Introduction

Let us consider a class of reverse convex programs, i.e., linear programs with an

additional reverse convex constraint (LPARC). The feasible set of this class is a

difference of a polyhedron and an open convex set. We need to optimize a lin-

ear function on such a nonconvex set, which might be disconnected. Therefore,

LPARC can have multiple locally optimal solutions, many of which fail to be glob-

ally optimal. Although LPARC is just a subclass of the reverse convex program, it

involves a wide variety of problems (see e.g., [19]). Among others, of importance

is the linear complementarity problem: find x ∈ Rn such that

x ≥ 0, Mx + q ≥ 0, xT(Mx + q) = 0,

where M ∈ Rn×n and q ∈ Rn. Even this well-known problem is an instance of

LPARC: ∣∣∣∣∣∣∣∣∣∣

minimize z

subject to Mx− y = −q, (x,y) ≥ 0

z −
n∑

j=1

min{xj, yj} ≥ 0.

75

6. Conical Algorithm for Reverse Convex Programming Problems 76

To solve LPARC, various algorithms have been proposed since the pioneer

work by Hillestad [11]. In this chapter, we focus on the conical branch-and-bound

algorithm, which was originally proposed by Tuy [52] for concave minimization

problems and applied to LPARC later in, e.g., [36, 38]. In the bounding process,

we usually relax each subproblem into a linear program and solve it to obtain a

lower bound on the optimal value. We will show that the lower bound yielded by

this linear programming relaxation can be tighten considerably using a nonlinear

surrogate relaxation. Recently, it was reported in [28, 29] that a similar procedure

works well in simplicial branch-and-bound algorithms for concave minimization

problems. After giving our problem settings of LPARC in Section 6.2, we explain

basic workings of the standard conical branch-and-bound algorithm in Section 6.3.

We then describe the nonlinear surrogate relaxation and incorporate it into the

branch-and-bound algorithm in Section 6.4. Section 6.5 is devoted to a report of

numerical results on the proposed algorithm.

6.2 Problem Settings

The problem we consider in this chapter is the following LPARC:

minimize z = cTx

subject to Ax + Dy = b, (x,y) ≥ 0

g(x) ≥ 0,

(6.1)

where A ∈ Rm×r, D ∈ Rm×(n−r), b ∈ Rm, c ∈ Rr, and g : Rr → R is a convex

function. In many applications, we can assume that r is much smaller than n

because of the low-rank nonconvexity (see [24]). Low-rank-nonconvex structured

instances of LPARC are generally formulated into

minimize z = cTx + dTy

subject to Ax + Dy = b, (x,y) ≥ 0

g(x) + hTy ≥ 0,

(6.2)

6. Conical Algorithm for Reverse Convex Programming Problems 77

where d, h ∈ Rn−r and n >> r. If we introduce auxiliary variables ζ−, ζ+, η− and

η+, then (6.2) reduces to the form of (6.1):
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize cTx + ζ+ − ζ−

subject to Ax + Dy = b, (x,y) ≥ 0

ζ+ − ζ− − dTy = 0, (ζ−, ζ+) ≥ 0

η+ − η− − hTy = 0, (η−, η+) ≥ 0

g(x) + η+ − η− ≥ 0.

Let

F = {x ∈ Rr | ∃y ≥ 0, Ax + Dy = b, x ≥ 0 }
G = {x ∈ Rr | g(x) < 0 },

and assume that both F and G are bounded and have interior points. Then (6.1)

is embedded in the x-space as min{ cTx | x ∈ F \ G }. We assume that at least

one optimal solution x◦ to the associated linear program min{ cTx | x ∈ F } is a

point in G. This condition makes (6.1) nontrivial, but provides us with a valuable

information about its optimality [19, 55]:

Proposition 6.1. If F \ G 6= ∅, there exists a globally optimal solution (x∗,y∗)

to (6.1) such that x∗ is located at the intersection of an edge of the polyhedron F

with the boundary of the set G.

For simplicity, we assume x◦ = 0 in the sequel.

6.3 Overview of the Conical Algorithm

In this section, we will overview the basic workings of the standard conical branch-

and-bound algorithm on (6.1) [19, 55].

Let ∆1 = {x ∈ Rr | x ≥ 0 }. Then ∆1 is a cone vertexed at x◦ = 0 and

includes the polytope F . Starting from this cone ∆1, we recursively divide it into

subcones, each vertexed at x◦, satisfying

∆k = ∆2k ∪∆2k+1, int(∆2k) ∩ int(∆2k+1) = ∅, k = 1, 2, . . . ,

6. Conical Algorithm for Reverse Convex Programming Problems 78

where int(·) denotes the interior. This procedure generates an infinite sequence

of cones {∆k` | ∆k` ⊃ ∆k`+1 , ` = 1, 2, . . . }. To guarantee the convergence of the

algorithm, we need to subdivide ∆1 in such an exhaustive manner that
⋂∞

`=1 ∆k`

becomes a half line emanating from x◦. Suppose that ∆k is spanned by r linearly

independent vectors wi ∈ Rr, i = 1, . . . , r, and denote ∆k = cone({w1, . . . ,wr}).
The easiest exhaustive subdivision rule is bisection, i.e., we may divide the longest

edge of ∆k = conv({w1, . . . ,wr}), say wp–wq, at a fixed ratio of α ∈ (0, 1/2],

where conv(·) denotes the convex hull. Letting w = (1 − α)wp + αwq, then we

have

∆2k = cone({wi | i 6= p } ∪ {w}), ∆2k+1 = cone({wi | i 6= q } ∪ {w}).

For each subcone ∆ = ∆k, we have a subproblem of (6.1):

P(∆)

∣∣∣∣∣∣
minimize cTx

subject to x ∈ (F \G) ∩∆.

This problem is essentially the same as (6.1) and cannot be solved directly. We

instead compute a lower bound on the optimal value of P(∆). If the bound is

greater than or equal to the value of the best feasible solution x∗ to (6.1) obtained

so far, we can discard P(∆) from further consideration. For each i = 1, . . . , r, let

βi be a positive number such that g(βiwi) = 0, and let

V = [v1, . . . ,vr], vi = βiwi.

Then we have ∆ = {x ∈ Rr | x = Vλ, λ ≥ 0 }. We also see from the convexity

of g that

∆ \G ⊂ {x ∈ Rr | x = Vλ, eTλ ≥ 1, λ ≥ 0 },
where e is the all-ones vector. This implies that a lower bound of P(∆) is given

as the optimal value of a linear program:

P(∆)

∣∣∣∣∣∣∣∣∣∣∣

minimize cTx

subject to Ax + Dy = b, y ≥ 0

x−Vλ = 0, λ ≥ 0

eTλ ≥ 1,

6. Conical Algorithm for Reverse Convex Programming Problems 79

which is known as the linear programming relaxation of P(∆). Let (x,y) denote

an optimal solution to P(∆), and let z(P) = cTx.

6.4 Surrogate Relaxation and the Proposed Al-

gorithm

To tighten the lower bound z(P), we propose here a kind of surrogate relaxation

of P(∆).

Let us consider the dual problem of P(∆):
∣∣∣∣∣∣∣∣

maximize bTπ + η

subject to ATπ + ρ = c, DTπ ≤ 0

eη −VTρ ≤ 0, η ≥ 0.

(6.3)

We can obtain an optimal solution (π, η, ρ) to (6.3) as a byproduct in solving

P(∆). For this π ∈ Rm, let us define the following:

S(∆)

∣∣∣∣∣∣∣∣∣∣∣

minimize cTx

subject to πTAx + πTDy = πTb, (x,y) ≥ 0

x−Vλ = 0, λ ≥ 0

g(x) ≥ 0,

where x ≥ 0 is redundant and can be eliminated. Let us denote by z(S) the

optimal value of this problem.

Proposition 6.2. Between z(S) and z(P), there exists a relationship:

z(S) ≥ z(P).

Proof. Consider the linear programming relaxation of S(∆):
∣∣∣∣∣∣∣∣∣∣∣

minimize cTx

subject to πTAx + πTDy = πTb, y ≥ 0

x−Vλ = 0, λ ≥ 0

eTλ ≥ 1.

(6.4)

6. Conical Algorithm for Reverse Convex Programming Problems 80

The dual of this problem is

∣∣∣∣∣∣∣∣

maximize bTπζ + η

subject to ATπζ + ρ = c, DTπζ ≤ 0

eη −VTρ ≤ 0, η ≥ 0.

(6.5)

Then (x,y) and (1, η, ρ) are feasible for (6.4) and (6.5), respectively. Moreover,

we have cTx = bTπ + η, and see that (x,y) and (1, η, ρ) are optimal for these

problems. Thus, even the relaxed problem of S(∆) has the same optimal value

z(P) as P(∆).

Problem S(∆) belongs to the same class of (6.1), but we can solve it in poly-

nomial time if the value of g is given by oracle. Let F ′ = {x ∈ Rr | πTAx ≥
πTb } ∩ ∆. Then we have x◦ ∈ arg min{ cTx | x ∈ F ′ }, and further

F ′ = {x ∈ Rr | ∃(y, λ) ≥ 0, πTAx + πTDy = πTb, x−Vλ = 0, x ≥ 0 }

by noting DTπ ≤ 0 and y ≥ 0. We see from Proposition 6.1 that S(∆) has

an optimal solution (x̃, ỹ) such that x̃ lies on some edge of F ′. Since F ′ is an

intersection of the cone ∆ with r edges and a halfspace, the maximum number of

its edges is r(r + 1)/2. This implies that (x̃, ỹ) can be found if we evaluate g at

most O(r2) times.

We are now ready to give a detailed description of our proposed algorithm for

solving (6.1). Here, ε ≥ 0 is a given tolerance.

algorithm Conical BB

begin

∆1 := cone({e1, . . . , er}), where ei is the ith unit vector;

H := {∆1}; z∗ := +∞;

while H 6= ∅ do begin

select a cone ∆k ∈ H; H := H \ {∆k};
∆ := ∆k = cone({w1, . . . ,wr});
for i = 1, . . . , r do compute βi such that g(βiwi) = 0 and βi > 0;

6. Conical Algorithm for Reverse Convex Programming Problems 81

V := [β1w1, . . . , βrwr];

let ∆ denote {x ∈ Rr | x = Vλ, λ ≥ 0 };
/∗ bounding operation ∗/

solve P (∆), and obtain a lower bound zP ;

let (xk,yk, λk) be an optimal solution to P (∆);

if g(xk) ≥ −ε then begin

if zP < z∗ then z∗ := zP ; x∗ := xk; y∗ := yk

else if zP < z∗ then

define S(∆, π) for the dual optimal solution (π, η, ρ) to P (∆);

solve S(∆, π), and obtain a lower bound zS;

search for a local optimal solution (x̃, ỹ, λ̃) to P (∆);

if cTx̃ < z∗ then z∗ := cTx̃; x∗ := x̃; y∗ := ỹ;

if zS < z∗ then begin

/∗ branching operation ∗/
select the longest edge wp–wq of conv({w1, . . . ,wr});
let w := (1− α)wp + αwq for a fixed ratio α ∈ (0, 1/2];

∆2k := cone({wi | i 6= p } ∪ {w});
∆2k+1 := cone({wi | i 6= q } ∪ {w});
H := H ∪ {∆2k, ∆2k+1}

end

end

end

end;

We refer to (x,y) satisfying the following as an ε-feasible solution to (6.1):

Ax + Dy = b, (x,y) ≥ 0, g(x) + ε ≥ 0.

Theorem 6.3. If ε > 0, then algorithm Conical BB terminates after finitely many

iterations and yields an ε-feasible solution (x∗,y∗) to (6.1) such that cTx∗ ≤ cTx

for all (x,y) feasible to (6.1).

6. Conical Algorithm for Reverse Convex Programming Problems 82

Proof. When Conical BB terminates in a finite number of iterations, the assertion

is obvious. Suppose that the algorithm does not terminate and generates an infinite

sequence of nested cones {∆k` | ∆k` ⊃ ∆k`+1 , ` = 1, 2, . . . } such that

g(xk`) < −ε < 0, ` = 1, 2,

Let vk`
i be the ith column of V for each ∆k` . Since

⋂∞
`=1 ∆k` is a half line, we have

vk`
i → v as ` → ∞ for all i = 1, . . . , r, where g(v) = 0. Here, we should notice

that P(∆k`) is also an instance of LPARC because g′(x, λ) = eTλ− 1 is a convex

function. Let

F ′ = { (x, λ) | ∃y ≥ 0, Ax + Dy = b, x−Vλ = 0, (x, λ) ≥ 0 }
G′ = { (x, λ) | eTλ− 1 < 0 }.

Then we have (x◦, λ◦) = (0,0) ∈ arg min{ cTx | (x, λ) ∈ F ′ } by assumption, and

besides (x◦, λ◦) ∈ G′. Therefore, for the optimal solution (xk` ,yk` , λ
k`

) of P(∆k`)

we have (xk` , λ
k`

) ∈ ∂G′ by Proposition 6.1, where ∂ · denotes the boundary; and

eTλ
k`

= 1 holds for each ` = 1, 2, This means that xk` is given as convex

combination of vk`
i ’s, and then xk` → v as ` →∞. Therefore, we have g(xk`) → 0

as ` →∞, which is a contradiction.

6.5 Numerical Results

In this section, we present numerical results of having compared our algorithm

incorporating the surrogate relaxation S(∆) with a standard algorithm only using

the linear programming relaxation P(∆). We refer to those algorithms as cbb s

and cbb lp, respectively. Both adopted the depth first rule in selecting ∆k ∈ H,

α = 1/2, ε = 10−4 and were written in GNU Octave (version 2.1.34) [43] and C++

(GCC version 2.96) in part.

6. Conical Algorithm for Reverse Convex Programming Problems 83

The test problem we solved is as follows:

∣∣∣∣∣∣∣∣∣∣

minimize cTx

subject to Ax + [D′, I]y = e, (x,y) ≥ 0
r∑

j=1

γjx
2
j ≥ 1,

(6.6)

where I ∈ Rm×m is an identity matrix; e ∈ Rm is an all-ones vector; each compo-

nent in the last row of A ∈ Rm×r and D′ ∈ Rm×(n−r−m) is fixed to 1.0/(n −m),

and other componets of [A,D′] are all random numbers in [−2.0, 8.0], and about

50% of them are zeros; each component of c ∈ Rr is drawn randomly from the

uniform distribution on [10.0, 11.0]; and each number γj is positive and selected so

that (6.6) is feasible but not trivial. Selecting seven sets of parameters (m,n, r),

we generated ten instances of (6.6), and solved them by cbb s and cbb lp on a

Linux workstation (Linux 2.4.18, Itanium 2 processor 1GHz).

Table 6.1 shows the average number of branching operations and CPU seconds

for each set of (m,n, r). Each figure in brackets represents the number of instances

not solved in two hours. We see from this table that the surrogate relaxation S(∆)

is of help to cut down the number of branching operations considerably, which

also implies that the inequality in Proposition 6.2 held strictly in many iteration

of cbb s. As a consequence, cbb s is much faster than cbb lp in CPU seconds.

Figure 6.1 compares the difference of the average CPU seconds taken by cbb s and

cbb lp when (m,n) = (10, 40). As for the instances not solved in two hours, the

CPU seconds are plotted at 7, 200 seconds expediently.

Even though we tested the codes on rather limited instances, the performance

of the proposed algorithm was promising, compared with the standard one. For

some instances, however, both codes were numerically unstable due to rounding

errors, and failed to terminate in two hours. In the next paper, we will discuss

how to resolve this troublesome issue.

6. Conical Algorithm for Reverse Convex Programming Problems 84

Table 6.1: Average numbers of branchig operations and CPU seconds

cbb lp cbb s

m, n, r branch time(sec) branch time(sec)

10, 30, 10 4031 58 489 8

10, 40, 10 10959 129 1687 23

10, 50, 10 21998 334 5177 91

20, 50, 10 9891 190 3062 50

30, 50, 10 11392 237 3179 67

10, 40, 15 (3) (3)

10, 40, 20 (7) (3)

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000

cb
b

s
(l

og
,
se

c)

cbb lp (log, sec)

r = 10

¤

¤
¤

¤ ¤

¤

¤

¤
¤

¤

¤
r = 15

× ×

×

××

××

×

×

×

×
r = 20

e

e

e

eee

e

e

e

ee

Figure 6.1: CPU seconds when (m,n) = (10, 40)

Chapter 7

Conclusion

Our main results in this thesis is to propose simplicial branch-and-bound algo-

rithms for concave minimization problems, which can use special structures of the

problems fully, unlike the standard ones. Also, part of the procedures proposed in

them can be applied to a conical branch-and-bound algorithm for reverse convex

programming problems. In spite of that our numerical experiments to verify the

effectiveness of the proposed algorithms have been done on restricted instances,

the results show that our algorithms are considerably promizing, compared with

the standard ones.

The goal of our study is that we have subproblems hold the favorable structures

of the original problem, in order to make full use of low-rank nonconvexity. In a

series of studies from Chapter 3 to 5, we can say that we have achieved our aim.

However, for the reverse convex programming problems considered in Chapter 6,

we should refine our algorithm more and more. For example, even if the problem

has a network structure except for the reverse convex constraint, our algorithm

cannot use it at all. We will resolve this issue in future works.

In our algorithms, we compute a lower bound for the optimal value to each

subproblem without relaxing a concave function or a reverse convex constraint

which have been relaxed into linear in earlier studies. We expect that this proce-

dure can be applied to some of other global optimization problems. Actually, we

lately have attempted applying it to more general problems containing the reverse

85

7. Conclusion 86

convex programming problems. The results will be appeared in elsewhere.

Furthermore, a new underestimator of the concave function have been proposed

in Chapter 4. This is a fairly simple but quite new and hopeful approach. This

underestimator would greatly help reseachers who are troubled about rounding

errors the same as us.

Acknowledgements

I would first like to express my sincere gratitude to warm encouragement and

support of my adviser, Professor Takahito Kuno in pursuing this study. It was he

who introduced me to the field of global optimization. This thesis would not have

been possible without his help.

I would especially like to thank Professors Yoshitsugu Yamamoto and Akiko

Yoshise for their valuable suggestions and thoughtful criticisms. I am also grateful

to Professors Maiko Shigeno, Junya Gotoh, Masahiro Hachimori, Nobuo Ohbo, and

Jiro Tanaka for their perceptive comments. My gratitude also goes to Professor

Kazutoshi Ando of Shizuoka University for his support when he was in University

of Tsukuba.

I wish to extend special thanks to my friends Daisuke Zenke, Ayami Suzuka,

Hiroaki Sorimachi, Kiyoshi Yamamoto, Takafumi Nakanishi, Azusa Nozaki, and

other colleagues of the laboratory with which I affiliate.

Finally, a special word of appreciation goes to my family.

87

Bibliography

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin. Network Flows: Theory, Algo-

rithms and Applications. Prentice-Hall, N.J., 1993.

[2] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex

enumeration of arrangements and polyhedra. Discrete and Computational

Geometry 8 (1992), 295–313.

[3] M. Avriel, W. E. Diewett, S. Schaible and I. Zang. Generalized Concavity.

Plenum Press, N.Y., 1988.

[4] M. S. Bazaraa, J. J. Jarvis and H. D. Sherali. Linear Programming and

Network Flows, 2 ed. John Wiley & Sons, N.Y., 1990.

[5] V. Chvátal. Linear Programming. Freeman, N.Y., 1983.

[6] G. B. Dantzig. Linear programming and extensions. Princeton Univ. Press,

1963.

[7] J. E. Falk and R. M. Soland. An algorithm for separable nonconvex program-

ming problems. Management Science 15 (1969), 550–569.

[8] J. Fülöp. A finite cutting plane method for solving linear programs with

an additional reverse convex constraint. European Journal of Operational

Research 44 (1990), 395–409.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman, CA, 1979.

88

Bibliography 89

[10] G. M. Guisewite and P. M. Pardalos. Minimum concave-cost network flow

problems:applications, complexity, and algorithms. Annals of Operations Re-

search 25 (1990), 75–100.

[11] R. J. Hillestad. Optimization problems subject to a budget constraint with

economies of scale. Operations Research 23 (1975), 1091–1098.

[12] R. J. Hillestad and S. E. Jacobsen. Linear programs with an additional reverse

convex constraint. Applied Mathematics and Optimization 6 (1980), 257–269.

[13] R. J. Hillestad and S. E. Jacobsen. Reverse convex programming. Applied

Mathematics and Optimization 6 (1980), 63–78.

[14] K. Holmberg and H. Tuy. A production-transportation problem with stochas-

tic demand and concave production costs. Mathematical Programming 85

(1999), 157–179.

[15] R. Horst. An algorithm for nonconvex programming problems. Mathematical

Programming 10 (1976), 312–321.

[16] R. Horst and P. M. Pardalos. Handbook of Global Optimization. Kluwer

Academic Publishers, 1995.

[17] R. Horst, P. M. Pardalos and N. V. Thoai. Introduction to Global Optimiza-

tion. Kluwer Academic Publishers, Dordrecht, 1995.

[18] R. Horst and N. V. Thoai. Dc programming: Overview. Journal of Optimiza-

tion Theory and Applications 103 (1999), 1–43.

[19] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches, 3 ed.

Springer-Verlag, Berlin, 1996.

[20] S. E. Jacobsen and K. Moshirvaziri. Computational experience using an edge

search algorithm for linear reverse convex programs. Journal of Global Opti-

mization 9 (1996), 153–167.

Bibliography 90

[21] B. Jaumard and C. Meyer. A simplified convergence proof for the cone par-

titioning algorithm. Journal of Global Optimization 13 (1998), 407–416.

[22] B. Jaumard and C. Meyer. On the convergence of cone splitting algorithms

with ω-subdivisions. Journal of Optimization Theory and Applications 110

(2001), 119–144.

[23] H. Konno and T. Kuno. Linear multiplicative programming. Mathematical

Programming 56 (1992), 51–64.

[24] H. Konno, P. T. Thach and H. Tuy. Optimization on Low Rank Nonconvex

Structures. Kluwer Academic Publishers, Dordrecht, 1997.

[25] B. Korte and J. Vygen. Combinatorial Optimization. Springer, 2000.

[26] T. Kuno. A pseudo-polynomial algorithm for solving rank three con-

cave production-transportation problems. Acta Mathematica Vietnamica 22

(1997), 159–182.

[27] T. Kuno. A finite branch-and-bound algorithm for linear multiplicative pro-

gramming. Computational Optimization and Applications 20 (2001), 119–135.

[28] T. Kuno and H. Nagai. A simplicial algorithm with two-phase bounding

operation for a class of concave minimization problems. Pacific Journal of

Optimization 1 (2005), 297–313.

[29] T. Kuno and H. Nagai. A simplicial branch-and-bound algorithm conscious

of special structures in concave minimization problems. Technical Report CS-

TR-05-2, University of Tsukuba, Ibaraki, 2005. Submitted to Computational

Optimization and Applications.

[30] T. Kuno and T. Utsunomiya. A decomposition algorithm for solving certain

classes of production-transportation problems with concave production cost.

Journal of Global Optimization 8 (1996), 67–80.

Bibliography 91

[31] T. Kuno and T. Utsunomiya. A pseudo-polynomial primal-dual algorithm

for globally solving a production-transportation problem. Journal of Global

Optimization 11 (1997), 163–180.

[32] T. Kuno and T. Utsunomiya. A lagrangian based branch-and-bound algo-

rithm for production-transportation problems. Journal of Global Optimiza-

tion 18 (2000), 59–73.

[33] T. Kuno, Y. Yajima and H. Konno. An outer approximation method for

minimizing the product of several convex functions on a convex set. Journal

of Global Optimization 3 (1993), 325–335.

[34] M. Locatelli and N. V. Thoai. Finite exact branch-and-bound algorithms

for concave minimization over polytopes. Journal of Global Optimization 18

(2000), 107–128.

[35] K. Moshirvaziri. Construction of test problems for concave minimization un-

der linear and nonlinear constraints. Journal of Optimization Theory and

Applications 98 (1998), 83–108.

[36] K. Moshirvaziri and M. A. Amouzegar. A subdivision scheme for linear pro-

grams with an additional reverse convex constraint. Asia-Pacific Journal of

Operations Research 15 (1998), 179–192.

[37] K. Moshirvaziri and M. A. Amouzegar. A cutting plane algorithm for linear

reverse convex programs. Annals of Operations Research 105 (2001), 201–212.

[38] L. D. Muu. A convergent algorithm for solving linear programs with an

additional reverse convex constraint. Kybernetika 21 (1985), 428–435.

[39] H. Nagai and T. Kuno. A conical branch-and-bound algorithm for a class

of reverse convex programs. Technical Report CS-TR-05-3, University of

Tsukuba, Ibaraki, 2005. Submitted to The 4th International Conference on

Bibliography 92

Nonlinear Analysis and Convex Analysis (NACA), Okinawa (Japan), June,

2005.

[40] H. Nagai and T. Kuno. A simplicial branch-and-bound algorithm for

production-transportation problems with inseparable concave production

cost. Journal of the Operations Research Society of Japan 48 (2005), 97–

110.

[41] G. L. Nemhauser, A. H. G. RinnooyKan and M. J. Todd, Eds. Optimization,

vol. 1 of Handbooks in Operations Research and Management Science. Elsevier

Science Publishers, Amsterdam, 1989.

[42] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.

John Willey & Sons, N.Y., 1988.

[43] Octave home page. http://www.octave.org/.

[44] M. Porembski. How to extend the concept of convexity cuts to derive deeper

cutting planes. Journal of Global Optimization 15 (1999), 371–404.

[45] R. T. Rockafellar. Convex Analysis. Princeton, N.J., 1970.

[46] H. S. Ryoo and N. V. Sahinidis. Global optimization of multiplicative pro-

grams. Journal of Global Optimization 26 (2003), 387–418.

[47] S. Sen and H. D. Sherali. On the convergence of cutting plane algorithms for

a class of nonconvex mathematical programs. Mathematical Programming 31

(1985), 42–56.

[48] S. Sen and H. D. Sherali. Nondifferentiable reverse convex programs and

facetial convexity cuts via a disjunctive characterization. Mathematical Pro-

gramming 37 (1987), 169–183.

[49] R. M. Soland. Optimal facility location with concave costs. Operations Re-

search 22 (1974), 373–382.

Bibliography 93

[50] N. V. Thoai and H. Tuy. Convergent algorithms for minimizing a concave

function. Mathematics of Operations Research 5 (1980), 556–566.

[51] N. V. Thuong and H. Tuy. A finite algorithm for solving linear programs

with an additional reverse convex constraint. Lecture Note in Economics and

Mathematical Systems 255 (1984), 291–302.

[52] H. Tuy. Concave programming under linear constraints. Soviet Mathematics

5 (1964), 1437–1440.

[53] H. Tuy. Convex programs with an additional reverse convex constraint. Jour-

nal of Optimization Theory and Applications 52 (1987), 463–486.

[54] H. Tuy. Canonical dc programming problem: Outer approximation methods

revisited. Operations research letters 18 (1995), 99–106.

[55] H. Tuy. Convex Analysis and Global Optimization. Kluwer Academic Pub-

lishers, Dordrecht, 1998.

[56] H. Tuy, N. D. Dan and S. Ghannadan. Strongly polynomial time algorithms

for certain concave minimization problems on networks. Operations Research

Letters 14 (1993), 99–109.

[57] H. Tuy, S. Ghannadan, A. Migdalas and P. Värbrand. Strongly polynomial

algorithm for a production-transportation problem with concave production

cost. Optimization 27 (1993), 205–227.

[58] H. Tuy, S. Ghannadan, A. Migdalas and P. Värbrand. Strongly polynomial

algorithm for a production-transportation problem with a fixed number of

nonlinear variables. Mathematical Programming 72 (1996), 229–258.

