
Journal of the Operations Research
Society of Japan

2009, Vol. 52, No. 3, 245-262

RANKING BY RELATIONAL POWER BASED ON DIGRAPHS

Satoko Ryuo Yoshitsugu Yamamoto
University of Tsukuba

(Received June 6, 2008; Revised November 19, 2008)

Abstract In this paper we examine the ranking of objects whose relative merits are given by a directed
graph. We consider several measures and show their rationality through axiomatization as well as showing
the relationship with the Shapley value of games whose characteristic function is derived from the directed
graph. We also give some numerical examples and report the experience of the application to the best paper
selection problem.

Keywords: Game theory, relational power, ranking, directed graph, axiomatization,
Shapley value

1. Introduction

In this paper we consider the n objects named 1, 2, . . . , n that we need to rank hierarchically,
for example, pianists, wines, papers nominated for the best paper award and so on. We
assume that between every pair of objects a binary relation is available such as “i wins j”,
“j wins i” and “no match between i and j”. The binary relation between an object and
itself is assumed to be “no match”.

Van den Brink and Gilles [2] proposed some measures for ranking the objects based on
the above setting, and showed the rationality of the measures through axiomatization and
the discussion about the relationship with the Shapley value. The aim of this paper is to
propose new measures and show their rationality.

Take {1, 2, . . . , n} as the node set, and draw a directed arc from i to j when i wins j,
then we have a directed graph, or digraph in short. The digraph thus constructed does not
have self-loops or parallel arcs, i.e., (i, i) is not an arc and at most one of (i, j) and (j, i)
is an arc when i �= j. We denote the node set by N , i.e., N = {1, 2, . . . , n}, and the arc
set by D, which is a subset of N × N . Throughout this paper we will fix the node set and
represent the digraph by its arc set D alone. Let

SD(i) := { j ∈ N | (i, j) ∈ D }
for i ∈ N , and call the nodes in SD(i) the successors of i in D, and call the nodes in

PD(i) := { j ∈ N | (j, i) ∈ D }
the predecessors of i in D. We denote the cardinality of a set A by κ(A), and denote κ(SD(i))
and κ(PD(i)) by lower case letters sD(i) and pD(i), respectively for notational simplicity.
Let R

N denote the set of n-dimensional real vectors whose components are given indices of
N . We denote by D the collection of all digraphs on N without self-loops or parallel arcs.
We refer to the function f : D → R

N as a measure and to the ith component of f(D) as i’s
relational power with respect to digraph D.
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After reviewing the existing measures and their axiomatization we will propose several
new measures, show their rationality through axiomatizing them as well as showing the
relationship with the Shapley value. We will demonstrate the character of measures by
some numerical examples and also report the experience of their application to the best
paper selection.

2. Existing Measures and Axioms

2.1. α plus measure and β plus measure

Van den Brink and Gilles [2] introduced the α plus measure, which will be denoted by
α+ : D → R

N in this paper, as

α+
i (D) := sD(i) (∀i ∈ N, ∀D ∈ D)

and proposed a game theoretic axiomatization in terms of the following four axioms.

Axiom 2.1 (Normalization). The sum of all relational powers is equal to the number of
arcs, i.e., ∑

i∈N

fi(D) = κ(D) (∀D ∈ D).

Axiom 2.2 (Dummy node property). The relational power of the node which has no suc-
cessors is zero, i.e.,

SD(i) = ∅ implies fi(D) = 0 (∀i ∈ N, ∀D ∈ D).

Axiom 2.3 (Monotonicity).

SD(i) ⊇ SD(j) implies fi(D) ≥ fj(D) (∀i, j ∈ N, ∀D ∈ D).

For the fourth axiom they introduced an independent partition of D. A partition of D
is a collection S = {D1, . . . , Dm } that satisfies

· ⋃m
k=1 Dk = D,

· Dk ∩ Dl = ∅ (∀k, l ; 1 ≤ k < l ≤ m).

Definition 2.4. A partition S = {D1, . . . , Dm } of D is said to be independent when

κ({ k | PDk
(i) �= ∅ }) ≤ 1 (∀i ∈ N).

Figure 2.1 shows an example of the independent partition {D1, D2}, depicted by solid arrows
and broken arrows, respectively.

D2

D1

Figure 2.1: Independent partition
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Axiom 2.5 (Additivity over independent partitions). The sum of the relational powers
which are measured on an independent partition S of D is equal to the relational power on
D, i.e.,

fi(D) =
∑
Dk∈S

fi(Dk) (∀i ∈ N, ∀independent partition S = {D1, · · · , Dm} of D, ∀D ∈ D).

The axiomatization theorem of the α plus measure is as follows.

Theorem 2.6 (Theorem 3.3 [2]). A function f : D → R
N is equal to the α plus measure

on N if and only if it satisfies Axiom 2.1, 2.2, 2.3 and 2.5.

Van den Brink and Gilles also introduced the β plus measure given by

β+
i (D) :=

∑
j∈SD(i)

1

pD(j)
(∀i ∈ N, ∀D ∈ D)

and showed that it is axiomatized as will be shown in Theorem 2.8 by replacing Axiom 2.1
with the following normalization axiom.

Axiom 2.7 (Normalization). The sum of all relational powers is equal to the number of
the nodes which has some predecessors, i.e.,∑

i∈N

fi(D) = κ({ j ∈ N | PD(j) �= ∅ }) (∀D ∈ D).

Theorem 2.8 (Theorem 2.7 [2]). A function f : D → R
N is equal to the β plus measure

on N if and only if it satisfies Axiom 2.2, 2.3, 2.5 and 2.7.

They also showed how these measures are related to the Shapley value [7]. Let us consider
the cooperative game with the node set N as its player set. Each non-empty subset C ⊆ N
is called a coalition. The characteristic function v : 2N → R is a function that gives the
coalition value v(C), the maximum utility that coalition C can obtain. The Shapley value
of player i is given by

ϕi(v) =
1

n!

∑
π∈Π

[v(V (i, π) ∪ { i }) − v(V (i, π))], (2.1)

where π is a permutation of N and Π is the collection of all permutations of N , V (i, π) is
the set of players that precede player i in permutation π, i.e., V (i, π) = { j ∈ N | π(j) <
π(i) }. A permutation π means the order in which the players enter the coalition, and
v(V (i, π)∪{ i })− v(V (i, π)) is the increment of the coalition value when player i enters the
coalition V (i, π), namely player i’s contribution to coalition V (i, π)∪{ i }. See, for example,
Owen [4] for further properties of the Shapley value.

Given D ∈ D and C ⊆ N , we define the set of successors of C in D as

SD(C) :=
⋃
i∈C

SD(i)

and denote its cardinality by sD(C). Note that sD(C) is not always identical to
∑

i∈C sD(i).
We define the set of predecessors PD(C) in the same manner and denote its cardinality by
pD(C). The following theorem concerning the relationship between β plus measure and the
Shapley value is due to van den Brink and Gilles [2].
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Theorem 2.9 (Theorem 4.2 [2]). For every C ⊆ N let

vβ(C) = sD(C),

then the Shapley value ϕ(vβ) on characteristic function game (N, vβ) is equal to the β plus
measure of digraph D.

In the similar manner we see the following theorem, whose proof is omitted.
Theorem 2.10. For every C ⊆ N let

vα(C) = κ({ (i, j) | i ∈ C, (i, j) ∈ D }),
then the Shapley value ϕ(vα) on characteristic function game (N, vα) is equal to the α plus
measure of digraph D.

3. New Measures, Axiomatization and Relationship with Shapley Value

In the preceding discussion on the α and the β plus measures of node i, we focused on only
the nodes that lose node i. We will propose new measures by fully utilizing the information
about who wins and who loses node i.

3.1. γ plus measure

We define the γ plus measure γ+ : D → R
N by

γ+
i (D) :=

∑
j∈SD(i)

sD(j) + 1

pD(j)
(∀i ∈ N, ∀D ∈ D).

The γ plus measure considers the nodes that node i wins, i.e., the sum is taken over all
nodes of SD(i), and also how many times those nodes win and lose. We will give several
axioms for the axiomatization of the γ plus measure. The first axiom is concerning the
normalization.
Axiom 3.1 (Normalization).∑

i∈N

fi(D) =
∑
j∈N

PD(j)�=∅

sD(j) + κ({ j ∈ N | PD(j) �= ∅ }) (∀D ∈ D).

Axiom 3.2 (Extended dummy node property).

SD

(
SD(i)

)
= ∅ implies fi(D) =

∑
j∈SD(i)

1

pD(j)
(∀i ∈ N, ∀D ∈ D).

Axiom 3.3 (Monotonicity).

SD(i) ⊇ SD(j) implies fi(D) ≥ fj(D) (∀i, j ∈ N, ∀D ∈ D).

In order to give the fourth axiom we define a subdigraph D′
k for each k ∈ N .

Definition 3.4. For k ∈ N , the subdigraph D′
k is defined as

D′
k := { (i, k) | i ∈ PD(k) } ∪ { (k, j) | j ∈ SD(k) }.

Axiom 3.5 (Additivity over subdigraphs). Node i’s relational power on the digraph D is
equal to the difference of two terms: the first term is the sum of node i’s relational power
on subdigraphs D′

k, and the second term is the number of i’s successors, i.e.,

fi(D) =
∑
k∈N

fi(D
′
k) − sD(i) (∀i ∈ N, ∀D ∈ D). (3.1)
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Then we show that the four axioms introduced above axiomatize the γ plus measure.

Theorem 3.6. A function f : D → R
N is equal to the γ plus measure on N if and only if

it satisfies Axiom 3.1, 3.2, 3.3 and 3.5.

Proof. Since it is easily seen that the γ plus measure satisfies Axiom 3.1, 3.2 and 3.3, we
will show that it satisfies Axiom 3.5. Let i ∈ N be fixed. For k ∈ N , there are four possible
cases: k ∈ SD(i), k ∈ PD(i), k = i and the rest. Then the right hand side of (3.1) with f
replaced by γ+ is rewritten as∑

k∈N

γ+
i (D′

k) − sD(i) =
∑

k∈SD(i)

γ+
i (D′

k) +
∑

k∈PD(i)

γ+
i (D′

k) + γ+
i (D′

i)

+
∑

k∈N\(SD(i)∪PD(i)∪{ i })
γ+

i (D′
k) − sD(i). (3.2)

Next we calculate the value of γ+
i (D′

k) in each case.

• case 1: k ∈ SD(i)
It holds that SD′

k
(i) = {k}. Then by the construction of D′

k we have

γ+
i (D′

k) =
∑

j∈SD′
k
(i)

sD′
k
(j) + 1

pD′
k
(j)

=
sD′

k
(k) + 1

pD′
k
(k)

=
sD(k) + 1

pD(k)
. (3.3)

• case 2: k ∈ PD(i)
Since SD′

k
(i) = ∅, we have

γ+
i (D′

k) = 0. (3.4)

• case 3: k = i
It holds that SD′

i
(j) = ∅ and PD′

i
(j) = {i} for every j ∈ SD′

i
(i). Then

γ+
i (D′

i) =
∑

j∈SD′
i
(i)

sD′
i
(j) + 1

pD′
i
(j)

=
∑

j∈SD′
i
(i)

1

1
= sD(i). (3.5)

• case 4: k ∈ N \ (SD(i) ∪ PD(i) ∪ { i })
Since SD′

k
(i) = ∅, we readily see

γ+
i (D′

k) = 0. (3.6)

Combining (3.3), (3.4), (3.5) and (3.6), we have

∑
k∈N

γ+
i (D′

k) − sD(i) =
∑

k∈SD(i)

sD(k) + 1

pD(k)
+ 0 + sD(i) + 0 − sD(i)

=
∑

k∈SD(i)

sD(k) + 1

pD(k)
= γ+

i (D). (3.7)

Supposing that a function f : D → R
N satisfies the four axioms, we show that f is equal

to the γ plus measure. Given D ∈ D we consider the value of the function f on subdigraph
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D′
k. It follows from the above discussion and Axiom 3.3 that there is a constant, say c ∈ R

such that for every i ∈ PD(k)

fi(D
′
k) = c. (3.8)

From Axiom 3.2 we also see that for every i /∈ PD(k) ∪ {k}

fi(D
′
k) = 0 (3.9)

and

fk(D
′
k) =

∑
j∈SD′

k
(k)

1

pD′
k
(j)

=
∑

j∈SD′
k
(k)

1

1
= sD(k). (3.10)

Applying Axiom 3.1 to the subdigraph D′
k, then we obtain that

∑
i∈N

fi(D
′
k) =

∑
j∈N

PD′
k
(j)�=∅

sD′
k
(j) + κ({ j ∈ N | PD′

k
(j) �= ∅ })

= sD(k) + (sD(k) + 1)

= 2sD(k) + 1. (3.11)

By (3.8), (3.9) and (3.10) we have

∑
i∈N

fi(D
′
k) =

∑
i∈PD(k)

fi(D
′
k) +

∑
i∈SD(k)

fi(D
′
k) + fk(D

′
k) +

∑
i∈N\(PD(k)∪SD(k)∪{k})

fi(D
′
k)

= pD(k) × c + 0 + sD(k) + 0

= pD(k) × c + sD(k), (3.12)

which together with (3.11) yields that c =
sD(k) + 1

pD(k)
. Then by Axiom 3.5, we obtain that

for every i

fi(D) =
∑
k∈N

fi(D
′
k) − sD(i)

=

( ∑
k∈SD(i)

fi(D
′
k) +

∑
k∈PD(i)

fi(D
′
k) + fi(D

′
i) +

∑
k∈N\(SD(i)∪PD(i)∪{i})

fi(D
′
k)

)
− sD(i)

=
∑

k∈SD(i)

sD(k) + 1

pD(k)
+ 0 + sD(i) + 0 − sD(i)

=
∑

k∈SD(i)

sD(k) + 1

pD(k)
= γ+

i (D).

Therefore we conclude that f = γ+.

Indeed the second term of Axiom 3.1 is observed in Axiom 2.7, and β plus measure
emerges in Axiom 3.2. Also the term sD(i) in Axiom 3.5 is the α plus measure. Thus the
γ plus measure is based on both the α plus measure and the β plus measure, however the
major drawback is that the axioms do not admit a natural interpretation.
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3.2. δ plus measure

Borm et al. [1] proposed the following measure, which we will call the δ plus measure in this
paper, but they did not axiomatize it:

δ+
i (D) :=

∑
j∈SD(i)∪{i}

1

pD(j) + 1
(∀i ∈ N, ∀D ∈ D).

This measure can also be axiomatized as follows.

Axiom 3.7 (Normalization). The sum of all relational powers is equal to n, the number of
nodes of N , i.e., ∑

i∈N

fi(D) = n (∀D ∈ D).

Axiom 3.8 (Dummy node property). The relational power of the node without successors
is one divided by the number of its predecessors incremented by one, i.e.,

SD(i) = ∅ implies fi(D) =
1

pD(i) + 1
(∀i ∈ N, ∀D ∈ D).

Axiom 3.9 (Monotonicity).

SD(i) ⊇ SD(j) implies fi(D) ≥ fj(D) (∀i, j ∈ N, ∀D ∈ D).

In order to give the fourth axiom we introduce another partition T = {D′′
k | k ∈ N } of

D, where
D′′

k = { (i, k) | i ∈ PD(k) }.
Axiom 3.10 (Additivity over partition T).

fi(D) − 1 =
∑
k∈N

(fi(D
′′
k) − 1) (∀i ∈ N, ∀D ∈ D). (3.13)

Then we see that the δ plus measure is characterized by the four axioms introduced
above.

Theorem 3.11. A function f : D → R
N is equal to the δ plus measure on N if and only if

it satisfies Axiom 3.7, 3.8, 3.9 and 3.10.

Proof. It can easily be seen that the δ plus measure satisfies Axiom 3.7, Axiom 3.8 and
Axiom 3.9. Now we will show that it satisfies Axiom 3.10. Let i ∈ N be fixed. For each
k ∈ N , consider the three possible cases: k ∈ SD(i), k = i and the rest. Then the right
hand side of (3.13) with f replaced by δ+ is written as∑

k∈N

(δ+
i (D′′

k) − 1) =
∑

k∈SD(i)

δ+
i (D′′

k) + δ+
i (D′′

i ) +
∑

k∈N\(SD(i)∪{ i })
δ+
i (D′′

k) − n.

• case 1: k ∈ SD(i)
Since SD′′

k
(i) = {k} and PD′′

k
(i) = ∅, we have

δ+
i (D′′

k) =
∑

j∈SD′′
k
(i)∪{ i }

1

pD′′
k
(j) + 1

=
1

pD(k) + 1
+ 1 (∀k ∈ SD(i)). (3.14)
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• case 2: k = i
Since SD′′

i
(i) = ∅, we see

δ+
i (D′′

i ) =
∑

j∈SD′′
i
(i)∪{ i }

1

pD′′
i
(j) + 1

=
1

pD(i) + 1
(k = i). (3.15)

• case 3: k ∈ N \ (SD(i) ∪ { i })
We have SD′′

k
(i) = ∅ and PD′′

k
(i) = ∅, and then

δ+
i (D′′

k) =
∑

j∈SD′′
k
(i)∪{ i }

1

pD′′
k
(j) + 1

= 1 (∀k ∈ N \ (SD(i) ∪ { i })). (3.16)

According to (3.14), (3.15) and (3.16), we obtain that (3.14) is∑
k∈N

(δ+
i (D′′

k) − 1) =
∑

k∈SD(i)

δ+
i (D′′

k) + δ+
i (D′′

i ) +
∑

k∈N\(SD(i)∪{ i })
δ+
i (D′′

k) − n

=
∑

k∈SD(i)

(
1

pD(k) + 1
+ 1

)
+

1

pD(i) + 1
+ 1 × (n − (sD(i) + 1)) − n

=
∑

k∈SD(i)

1

pD(k) + 1
+ sD(i) +

1

pD(i) + 1
− sD(i) − 1

=
∑

k∈SD(i)∪{i}

1

pD(k) + 1
− 1

= δ+
i (D) − 1.

This proves that δ plus measure satisfies Axiom 3.10.
Next supposing that a function f : D → R

N satisfies the four axioms, we will show that
f = δ+. For k ∈ N we consider the value of the function f on D′′

k . Since for every i ∈ PD(k)
i.e., k ∈ SD(i) it follows from the above discussion and Axiom 3.9 that there is a constant
c ∈ R such that

fi(D
′′
k) = c. (3.17)

For i = k it follows from the above discussion and Axiom 3.8 that

fk(D
′′
k) =

1

pD′′
k
(k) + 1

=
1

pD(k) + 1
. (3.18)

For i ∈ N \ (PD(k) ∪ {k}) we have from the above discussion and Axiom 3.8 that

fi(D
′′
k) =

1

0 + 1
= 1. (3.19)

We apply Axiom 3.7 to D′′
k , and we obtain that∑

i∈N

fi(D
′′
k) = n, (3.20)

while according to (3.17), (3.18) and (3.19),∑
i∈N

fi(D
′′
k) =

∑
i∈PD(k)

fi(D
′′
k) + fi(D

′′
i ) +

∑
i∈N\(PD(k)∪{k})

fi(D
′′
k)

= pD(k) × c +
1

pD(k) + 1
+ n − (pD(k) + 1).
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Then from (3.20) we see c = 1+
1

pD(j) + 1
. Since digraphs D′′

k form a partition T, it follows

from Axiom 3.10 that for every i ∈ N

fi(D) =
∑
k∈N

(fi(D
′′
k) − 1) + 1

=
∑
k∈N

fi(D
′′
k) − n + 1

=
∑

k∈SD(i)

fi(D
′′
k) + fi(D

′′
i )

∑
k∈N\(SD(i)∪{i})

fi(D
′′
k) − n + 1

=
∑

k∈SD(i)

(
1 +

1

pD(k) + 1

)
+

1

pD(i) + 1
+ n − (sD(i) + 1) − n + 1

= sD(i) +
∑

k∈SD(i)

1

pD(k) + 1
+

1

pD(i) + 1
+ n − sD(i) − 1 − n + 1

=
∑

k∈SD(i)∪{i}

1

pD(k) + 1
= δ+

i (D).

Therefore we conclude that f = δ+.

3.3. Two-stage game

We will show in this subsection a relationship between the γ plus measure and the Shapley
value. The key idea is, say two-stage game. Namely, based on the given digraph D we
construct the first stage game and obtain the Shapley value. The second stage game is
constructed based on not only the digraph D but also thus obtained Shapley value. We will
show that if appropriately constructed, the second stage game will provide us with the γ
plus measure as the Shapley value. The idea is illustrated below, where e is the vector of
ones.

e ∈ R
N

1st configuration

}
→ (N, v1) → ϕ(v1)

2nd configuration

⎫⎬
⎭ → (N, v2) → ϕ(v2) = γ+

For C ⊆ N let us denote the set of nodes of C and their successors by

SD(C) := C ∪ SD(C).

Lemma 3.12. Let the characteristic function vD : 2N → R be defined as

vD(C) =
∑
i∈C

κ
(
SD({i}))

for C ⊆ N . Then node i’s Shapley value ϕi(vD) is sD(i) + 1.

Proof. Let [ ] be the indicator function which gives one if the statement in the brackets is
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true and zero otherwise, see Graham et al. [3]. Then

vD(C) =
∑
i∈C

κ
(
SD({i}))

=
∑
i∈C

∑
j∈SD({i})

1

=
∑
i∈C

∑
j∈N

[ j ∈ SD({i}) ]

=
∑
i∈C

∑
j∈N

[ j ∈ SD({i}) ∪ {i} ]

=
∑
i∈N

∑
j∈N

[ i ∈ C ][ j ∈ SD({i}) ∪ {i} ]

=
∑
i∈N

∑
j∈N

[ i ∈ C, (i, j) ∈ D ] +
∑
i∈N

[ i ∈ C ]

=
∑
i∈N

∑
j∈N

[ i ∈ C, (i, j) ∈ D ] + κ(C). (3.21)

Using D′′
j = { (i, j) | i ∈ PD(j) } introduced in Section 3.2, we consider the sum

∑
j∈N vD′′

j
(C):

∑
j∈N

vD′′
j
(C) =

∑
j∈N

(∑
i∈N

∑
k∈N

[ i ∈ C, (i, k) ∈ D′′
j ] + κ(C)

)

=
∑
j∈N

(∑
i∈N

[ i ∈ C, (i, j) ∈ D ] + κ(C)

)

=
∑
i∈N

∑
j∈N

[ i ∈ C, (i, j) ∈ D ] + nκ(C)

= vD(C) + (n − 1)κ(C). (3.22)

Note that κ is the function that gives the cardinality of a set, and then we obtain from the
the additivity of the Shapley value that

ϕi(vD) = ϕi

(∑
j∈N

vD′′
j
− (n − 1)κ

)

=
∑
j∈N

ϕi(vD′′
j
) − (n − 1)ϕi(κ). (3.23)

Let C be a coalition and node i be outside of C. Then

vD′′
j
(C ∪ {i}) − vD′′

j
(C) =

⎧⎨
⎩

2 if i ∈ PD(j)
1 if i = j
1 otherwise.

(3.24)

It should be noted that node i’s contribution to a coalition is independent of the coalition.
Take the average of node i’s contributions over all permutations of N , and we obtain from
(2.1) and (3.24) that

ϕi(vD′′
j
) =

⎧⎨
⎩

2 if i ∈ PD(j)
1 if i = j
1 otherwise.

(3.25)
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Note that ϕi(κ) = 1 since κ(C ∪ {i}) − κ(C) = 1 whenever i /∈ C. According to (3.23) and
(3.25), we obtain that

ϕi(vD) =
∑
j∈N

ϕi(vD′′
j
) − (n − 1)ϕi(κ)

=
∑

j∈SD(i)

ϕi(vD′′
j
) + ϕi(vD′′

i
) +

∑
j∈N\(SD(i)∪{i})

ϕi(vD′′
j
) − (n − 1)ϕi(κ)

=
∑

j∈SD(i)

2 + 1 +
∑

j∈N\(SD(i)∪{i})
1 − (n − 1)1

= 2sD(i) + 1 + n − sD(i) − 1 − n + 1

= sD(i) + 1.

Lemma 3.13. Given θ ∈ R
N , let the characteristic function v(D,θ) be

v(D,θ)(C) :=
∑

j∈SD(C)

θj ,

and consider the game (N, v(D,θ)). Then node i’s the Shapley value is given as

ϕi(v(D,θ)) =
∑

j∈SD(i)

θj

pD(j)
.

Proof. First we rewrite v(D,θ)(C) by using the bracket notation.

v(D,θ)(C) =
∑

j∈SD(C)

θj =
∑
j∈N

θj [ ∃i ∈ C, (i, j) ∈ D ].

Similarly for D′′
j = { (i, j) | i ∈ PD(j) } we have∑

j∈N

v(D′′
j ,θ)(C) =

∑
j∈N

∑
k∈SD′′

j
(C)

θk

=
∑
j∈N

∑
k∈N

θk[ ∃i ∈ C, (i, k) ∈ D′′
j ]

=
∑
j∈N

θj [ ∃i ∈ C, (i, j) ∈ D ]. (3.26)

Therefore we see that
v(D,θ)(C) =

∑
j∈N

v(D′′
j ,θ)(C) (3.27)

holds for every C ⊆ N .
For the digraph D′′

j , coalition C and node i ∈ N \ C we have

v(D′′
j ,θ)(C ∪ {i}) − v(D′′

j ,θ)(C) =

{
θj if i ∈ PD(j) and C ∩ PD(j) = ∅
0 otherwise.

(3.28)

Let the elements of PD(j) be {i1, i2, . . . , ipD(j)}. Focusing on the element of PD(j), we divide
all the permutations into pD(j) groups: for l = 1, 2, . . . , pD(j) group Gl consists of all the

c© Operations Research Society of Japan JORSJ (2009) 52-3



256 S. Ryuo & Y. Yamamoto

permutations where il precedes other nodes of PD(j). Then each group consists of n!/pD(j)
permutations. Therefore from (2.1) together with (3.28), the Shapley value of node i in
game (N, v(D′′

j ,θ)) is given by

ϕi(v(D′′
j ,θ)) =

⎧⎪⎨
⎪⎩

θj

pD(j)
if i ∈ PD(j)

0 otherwise.

(3.29)

Applying the additivity property of the Shapley value to (3.27) and (3.29) yields that

ϕi(v(D,θ)) = ϕi

(∑
j∈N

v(D′′
j ,θ)

)
=
∑
j∈N

ϕi(v(D′′
j ,θ))

=
∑

j∈SD(i)

ϕi(v(D′′
j ,θ)) +

∑
j∈N\SD(i)

ϕi(v(D′′
j ,θ)) =

∑
j∈SD(i)

θj

pD(j)

for all i ∈ N .

Theorem 3.14. Let

v1
D(C) :=

∑
i∈C

κ(SD({i}))

for every C ⊆ N , and let ϕ(v1
D) be the Shapley value of the game (N, v1

D). Let v2
D(C) be

defined as

v2
D(C) :=

∑
j∈SD(C)

ϕj(v
1
D).

Then the Shapley value of the game (N, v2
D) is equal to the γ plus measure.

Proof. Straightforward from Lemma 3.12 and Lemma 3.13.

3.4. Minus measures and plus minus measures

Exchanging simply the roles of SD(i) and PD(i), we obtain the minus measures. Note that
the more a node loses, the higher relational power the minus measure gives to the node. A
combination of the plus and minus measures will give the plus minus measures. We list the
definition of each measure and the characteristic function giving it in Table 3.1. Since the γ
plus and minus measures are obtained through the two-stage game, we do not provide the
characteristic function for the γ plus minus measure.

4. Experiment and Experience

4.1. Numerical experiment

Generating possible digraphs on the node set N , we computed the relational power given
by the measures discussed so far, and compare them with that provided by the Analytic
Network Process, ANP for short.

First we consider the digraphs every pair of which is connected by an arc, which we
will refer to as a complete digraph. When the digraph D expresses a total order on N , the
transitivity is met, namely (i, j), (j, k) ∈ D implies (i, k) ∈ D. The digraph lacking in this
property has a directed cycle, and hence the number of directed cycles in D can be viewed
as the degree of inconsistency.
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Table 3.1: List of measures

name symbol definition characteristic function
α plus [2] α+

i (D) sD(i) κ({(i, j) | (i, j) ∈ D, i ∈ C})
α minus α−

i (D) pD(i) κ({(j, i) | (j, i) ∈ D, i ∈ C})
α plus minus α±

i (D) α+
i (D) − α−

i (D)
κ({(i, j) | (i, j) ∈ D, i ∈ C})
−κ({(j, i) | (j, i) ∈ D, i ∈ C})

β plus [2] β+
i (D)

∑
j∈SD(i)

1
pD(j)

κ({k | i ∈ C, (i, k) ∈ D}) [2]

β minus β−
i (D)

∑
j∈PD(j)

1
sD(j)

κ({k | j ∈ C, (k, j) ∈ D})

β plus minus β±
i (D) β+

i (D) − β−
i (D)

κ({k | i ∈ C, (i, k) ∈ D})
−κ({k | j ∈ C, (k, j) ∈ D})

γ plus γ+
i (D)

∑
j∈SD(i)

sD(j) + 1
pD(j)

first :
∑
i∈C

κ(SD({i}))

second :
∑

j∈SD(C)

ϕj(v1
D)

γ minus γ−
i (D)

∑
j∈PD(i)

pD(j) + 1
sD(j)

first :
∑
i∈C

κ(P D({i}))

second :
∑

j∈PD(C)

ϕj(v1
D)

γ plus minus γ±
i (D) γ+

i (D) − γ−
i (D)

δ plus [1] δ+
i (D)

∑
j∈SD(i)∪{i}

1
pD(j) + 1

κ({j ∈ N | PD(j) ∪ {j} ⊂ C}) [1]

δ minus δ−i (D)
∑

j∈PD(i)∪{i}

1
sD(j) + 1

κ({j ∈ N | SD(j) ∪ {j} ⊂ C})

δ plus minus δ±i (D) δ+
i (D) − δ−i (D)

κ({j ∈ N | PD(j) ∪ {j} ⊂ C})
−κ({j ∈ N | SD(j) ∪ {j} ⊂ C})

Let the n × n matrix T := [tij ]i,j∈N be constructed as{
tij := θ
tji := 1/θ

if (i, j) ∈ D

for some θ > 1. The ANP uses the principal eigenvector of the matrix T as the vector of
relational powers. In the following computation we took θ = 2.

We generated all possible complete digraphs on five nodes and computed relational
powers. We will show several examples of them. The first example is a complete digraph
whose adjacency matrix is given by⎡

⎢⎢⎢⎢⎣
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Table 4.1 shows the relational powers given by the measures and ANP as well as the rankings
based on them. Upper case alphabets A to E are node names, and the sign of minus measures
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is reversed for ease of comparison. Clearly all measures as well as ANP provide the same
ranking as expected.

Table 4.1: Relational powers for a complete digraph with no cycle

relational power ranking
measure A B C D E A B C D E

ANP 0.323 0.245 0.185 0.141 0.107 1 2 3 4 5
α+ 4.000 3.000 2.000 1.000 0.000 1 2 3 4 5
α− 0.000 -1.000 -2.000 -3.000 -4.000 1 2 3 4 5
α± 4.000 2.000 0.000 -2.000 -4.000 1 2 3 4 5
β+ 2.083 1.083 0.583 0.250 0.000 1 2 3 4 5
β− 0.000 -0.250 -0.583 -1.083 -2.083 1 2 3 4 5
β± 2.083 0.833 0.000 -0.833 -2.083 1 2 3 4 5
γ+ 6.417 2.417 0.917 0.250 0.000 1 2 3 4 5
γ− 0.000 -0.250 -0.917 -2.417 -6.417 1 2 3 4 5
γ± 6.417 2.167 0.000 -2.167 -6.417 1 2 3 4 5
δ+ 2.283 1.283 0.783 0.450 0.200 1 2 3 4 5
δ− -0.200 -0.450 -0.783 -1.283 -2.283 1 2 3 4 5
δ± 2.083 0.833 0.000 -0.833 -2.083 1 2 3 4 5

We observed the following fact concerning the digraphs that have a single cycle on three
nodes. The digraph is divided into three strongly connected components, one of which is
the cycle on three nodes and the other two consist of a single node, and there is a total order
among these three strongly connected components. The observation is that all nodes on the
cycle receive the same value of relational power, and the rankings provided by all measures
as well as ANP coincide with the total order among the strongly connected components.

We also observed that different rankings emerge when there are more than one cycle.
Table 4.2 shows the result for the digraph with three cycles given by⎡

⎢⎢⎢⎢⎣
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Next we generated all possible incomplete digraphs on four nodes. We excluded the
α measure from comparison because we did not think it useful for incomplete digraphs
since it only counts the number of nodes linked directly to each node. We focused on how
many arcs are linked to the node, which we call the comparison number. We observed that
when all nodes have the identical comparison number, the same ranking is provided by
all measures. Conversely, when comparison number varies, significantly different rankings
emerged. Table 4.3 shows the rankings for the digraph defined by the following matrix,
where the comparison number is one for node A, two for B and C, and three for D.⎡

⎢⎢⎣
0 0 0 0
0 0 0 1
0 1 0 0
1 0 1 0

⎤
⎥⎥⎦ .
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Table 4.2: Relational powers for a complete digraph with three cycles

relational power ranking
measure A B C D E A B C D E

ANP 0.259 0.240 0.186 0.145 0.170 1 2 3 5 4
α+ 3.000 3.000 2.000 1.000 1.000 1 1 3 4 4
α− -1.000 -1.000 -2.000 -3.000 -3.000 1 1 3 4 4
α± 2.000 2.000 0.000 -2.000 -2.000 1 1 3 4 4
β+ 1.833 1.167 0.667 0.333 1.000 1 2 4 5 3
β− -1.000 -0.333 -0.667 -1.167 -1.833 3 1 2 4 5
β± 0.833 0.833 0.000 -0.833 -0.833 1 1 3 4 4
γ+ 6.167 2.833 1.333 0.667 4.000 1 3 4 5 2
γ− -4.000 -0.667 -1.333 -2.833 -6.167 4 1 2 3 5
γ± 2.167 2.167 0.000 -2.167 -2.167 1 1 3 4 4
δ+ 1.583 1.333 0.833 0.500 0.750 1 2 3 5 4
δ− -0.750 -0.500 -0.833 -1.333 -1.583 2 1 3 4 5
δ± 0.833 0.833 0.000 -0.833 -0.833 1 1 3 4 4

Table 4.3: Different comparison number

ranking
measure A B C D

β+ 4 2 2 1
β− 1 3 1 3
β± 4 3 2 1
γ+ 4 1 3 1
γ− 1 3 1 3
γ± 4 1 1 1
δ+ 4 2 2 1
δ− 4 3 1 1
δ± 4 3 2 1

4.2. Application to the best paper selection at University of Tsukuba

Owing to the contribution of emeritus professor Y. Kuratani, College of Policy and Planning
Sciences, University of Tsukuba opened up an award for the best undergraduate thesis in
2007, when a total of 57 theses were submitted for the major of management science. An
agreement was that the ranking should be decided according to the evaluation by a total
of 22 faculty members who attended the thesis presentation. Each faculty member gave
a grade on the scale of one to ten to each presentation that he or she attended. Due
to the lack of prior consensus, it turned out impossible to compare the grades given by
different faculty members, namely grade 7 of a member does not mean the same as grade
7 of another member. Furthermore, the presentations failed to have the audience of the
same size, some had 6 present while some had 12 present. Therefore the total of the grades
that each presentation received is totally useless, and the average is not reliable, either. We
concluded that the ranking of presentations should be made based on the order that each
faculty member placed on the presentations.

Let N := {1, 2, . . . , 57} be the set of theses, and let F := {1, 2, . . . , 22} be the set of
faculty members. We define for each f ∈ F and i, j ∈ N


 Df := { (i, j) | f gives higher grade to i than j }
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 Ef := { {i, j} | f gives the same grade to i and j }

 p(i, j) := κ({ f ∈ F | (i, j) ∈ Df })

 t(i, j) := κ({ f ∈ F | {i, j} ∈ Ef })

 suc(i) := { j ∈ N | (i, j) ∈ Df for some f ∈ F }

 tie(i) := { j ∈ N | {i, j} ∈ Ef for some f ∈ F }

 pre(i) := { j ∈ N | (j, i) ∈ Df for some f ∈ F }

Based on these definitions we modified the measures, among which we show the modified
plus measures below:

β̂+
i :=

∑
j∈suc(i)∪tie(i)

p(i, j) + 1
2
t(i, j)∑

k∈pre(j) p(k, j) + 1
2

∑
k∈tie(j) t(k, j)

γ̂+
i :=

∑
j∈suc(i)∪tie(i)

p(i, j) + 1
2
t(i, j) +

∑
k∈suc(j) p(j, k) + 1

2

∑
k∈tie(j) t(j, k)∑

k∈pre(j) p(k, j) + 1
2

∑
k∈tie(j) t(k, j)

δ̂+
i :=

∑
j∈suc(i)∪tie(i)∪{i}

p(i, j) + 1
2
t(i, j)

1 +
∑

k∈pre(j) p(k, j) + 1
2

∑
k∈tie(j) t(k, j)

.

In Table 4.4 and 4.5 we list the 14 theses that were listed top-eight by some of measures.
Note that C and L vie with each other for the lead by all the measures except γ̂ plus.

Table 4.4: Relational power given by measures

β̂+ β̂− β̂± γ̂+ γ̂− γ̂± δ̂+ δ̂− δ̂±

A 1.77 -0.31 1.46 93.83 -44.13 49.69 1.77 -0.31 1.46
B 1.19 -1.44 -0.26 98.92 -91.91 7.01 1.18 -1.44 -0.26
C 3.02 -0.11 2.91 89.57 -11.19 78.38 3.03 -0.11 2.92
D 2.26 -0.56 1.70 102.20 -44.82 57.39 2.25 -0.56 1.69
E 1.78 -0.56 1.23 102.42 -37.83 64.59 1.77 -0.56 1.22
F 1.37 -0.19 1.17 98.47 -24.41 74.07 1.39 -0.20 1.19
G 1.24 -0.36 0.88 63.98 -31.88 32.10 1.24 -0.36 0.88
H 1.40 -0.95 0.45 103.20 -81.43 21.77 1.39 -0.94 0.45
I 1.07 -0.34 0.73 89.34 -35.96 53.39 1.07 -0.34 0.73
J 0.85 -0.29 0.56 84.43 -27.34 57.09 0.86 -0.30 0.56
K 1.70 -0.51 1.19 96.27 -44.47 51.80 1.69 -0.51 1.18
L 2.65 -0.10 2.55 89.74 -7.33 82.41 2.67 -0.10 2.57
M 1.95 -0.31 1.63 101.10 -29.74 71.36 1.93 -0.32 1.62
N 1.77 -0.62 1.15 86.12 -51.37 34.75 1.76 -0.62 1.14

5. Conclusion and Remarks

We proposed the γ measure, considered other several measures, proved their rationality, and
compared them by some numerical experiment. We also applied the measures to the best
paper selection problem. One lesson we learned from the numerical experiment and the ap-
plication is that the design of the thesis-jury combination counts very much for determining
a reliable ranking. The combination should be designed so that every thesis has the same
comparison number, or at minimum every thesis has nearly the same number of attendance
of faculty members.
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Table 4.5: Ranking by relational powers

β̂+ β̂− β̂± γ̂+ γ̂− γ̂± δ̂+ δ̂− δ̂±

A 7 5 5 8 10 10 6 5 5
B 20 46 30 5 51 21 20 46 30
C 1 2 1 10 2 2 1 2 1
D 3 14 3 3 13 6 3 14 3
E 5 13 6 2 8 5 5 13 6
F 14 3 8 6 3 3 14 3 7
G 19 8 11 30 6 15 19 8 11
H 13 28 18 1 24 18 13 28 18
I 22 7 15 11 7 8 22 7 15
J 31 4 16 18 4 7 30 4 16
K 8 11 7 7 12 9 8 11 8
L 2 1 2 9 1 1 2 1 2
M 4 6 4 4 5 4 4 6 4
N 6 17 9 16 15 13 7 17 9

To compare the measures with ANP we introduce three matrices

A = [αij ]i,j∈N :=

{
1 if (i, j) ∈ D
0 otherwise,

B = [βij ]i,j∈N :=

{
1/pD(j) if (i, j) ∈ D

0 otherwise,

Δ = [δij ]i,j∈N :=

{
1/(pD(j) + 1) if (i, j) ∈ D or i = j

0 otherwise

and let e be the vector of ones. Then it is readily seen that Ae, Be and Δe are equal to
the α plus measure, the β plus measure and the δ plus measure, respectively. Therefore the
Shapley value given by the multi-stage game is simply written as, for example Ake when
the game that provides the α plus measure is played k times. In the same way we see that
the γ plus measure is given as (A + ee�)Be. Furthermore we can regard the matrix Δ as a
transposed transition probability matrix since δij ≥ 0 for all i, j ∈ N and

∑
i∈N δij = 1. The

principal eigenvector of Δ, that is a nonzero vector w ∈ R
N satisfying w = Δw, is known as

the stationary distribution and obtained as Δ∞e = limk→∞ Δke. Since the solution of ANP
is the principal eigenvector of what is called the super matrix, it could be considered as the
Shapley value of a game repeatedly played infinitely many times. Some drawbacks of ANP
might have roots in this infinite repetition. See Sekitani [5, 6] for the detailed discussion
about merits and demerits of ANP.
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