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Abstract

The angular dependence of the radiation-zone output power and electric polarization of stim-

ulated terahertz amplified radiation (STAR) emitted from a dc voltage applied across cylindrical

and rectangular stacks of intrinsic Josephson junctions is calculated. The boundary conditions

are obtained from Love’s equivalence principles. During coherent emission, a spatially uniform ac

Josephson current density in the stack acts as a surface electric current density antenna source,

leading to an harmonic radiation frequency spectrum, as in experiment, but absent in all cavity

models of cylindrical mesas. Spatial fluctuations of the ac Josephson current allow its fundamental

mode to lock onto the lowest finite energy cylindrical cavity mode, causing it to resonate, leading to

a non-uniform magnetic surface current density radiation source, and a non-trivial combined funda-

mental frequency output power with linear polarization for general radiation directions, which may

be fully or partially coherent. The higher ac Josephson harmonics do not excite other cylindrical

cavity modes. For rectangular mesas, the lowest energy modes are empirically not excited, but the

non-uniform ac Josephson current can excite the harmonic sequence of modes with spatial varia-

tion across the rectangular widths, leading to combined radiation outputs both for the fundamental

and the higher harmonics, which combinations also may be either fully or partially coherent. The

superconducting substrate is modeled as a perfect magnetic conductor, greatly reducing the STAR

emitter power and modifying its angular dependence, especially parallel to the substrate. Based

upon this substrate model, existing Bi2Sr2CaCu2O8+δ crystals atop perfect electric conductors

could have STAR emitter power in excess of 5 mW, acceptable for many device applications.

PACS numbers: 07.57.Hm, 74.50.+r, 85.25.Cp
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I. INTRODUCTION

The recent discovery of coherent THz radiation emitted from mesas of the high-

temperature superconductor Bi2Sr2CaCu2O8+δ (BSCCO) has caused a great deal of

excitement[1, 2]. In these experiments, rectangular mesas were fashioned by Ar ion milling

of a single crystal of BSCCO, with a Au layer covering the mesa’s top, to which an elec-

trical lead was attached, and two additional electrical leads were attached to the remaining

BSCCO crystal substrate. Typical rectangular mesa dimensions were 60× 300× 1 µm. By

applying a static (dc) voltage V0 across the mesa, the ac Josephson effect was generated in

each of the N ∼ 103 junctions involved in the mesa, and coherent ac Josephson radiation

at THz frequencies was emitted. The ac Josephson relation is

ωJ =
2eV0

h̄N
, (1)

where 2e is the magnitude of the Cooper pair charge and h̄ is Planck’s constant divided by

2π. Equation (1) relates the ac Josephson frequency νJ = ωJ/(2π) to the applied V0/N . To

avoid confusion, here we write k and x for the wave vectors and positions outside the mesa,

and k′ and x′ for the wave vectors and positions inside the mesa. Since the frequencies are

the same inside and outside the mesa, they are left unprimed.

A. Rectangular mesas

Since BSCCO is a stack of Josephson junctions, with atomically thin superconducting

layers separated by thicker dielectric layers, it is extremely anisotropic. In analogy with

standard antenna theory[3–5], to zeroth order, one might consider a BSCCO mesa to be a

dielectric sandwiched between two metallic layers, as first suggested in the pioneering work

of Bulaevskii and Koshelev[6, 7], forming a cavity that produces the electric field which

generates the radiation[6–20]. In this cavity model, it was usually assumed that the ac

component of the electric field E(x′, t) and the ac Josephson supercurrent J(x′, t) both had

antisymmetric spatial configurations, with maxima along the length ` edges, and a node in

the center of the mesas of width w, leading to a radiation fundamental wavelength λ = 2w.

The wave vectors of very thin (with height h ¿ `, w) rectangular cavity modes are

k′mp = π
[(m

w

)2
+

(p

`

)2]1/2
, (2)
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where m and p are integers, when there is no spatial variation of the electromagnetic fields

in the ẑ direction normal to the layers. These modes are generated from the boundary

conditions, which allow for half-integral multiples of wavelengths across the width and the

length of the cavity. Usually, such modes in a cavity that is open on the sides only arise

when the tangential component H|| of the ac magnetic field H(x′, t) vanishes at the edge

of the cavity, unlike previous assumptions[6–20], forcing the normal derivative of E(x′, t)

to vanish there. Inside the mesa, electromagnetic waves propagate parallel to the layers

according to the dispersion relation

ωmp =
ck′mp

nr

, (3)

where nr ≈
√

ε is the index of refraction, and ε ≈ 18 for BSCCO in the relevant frequency

range[1, 2]. By varying the dc V0 experimentally, radiation is found to occur after one of the

harmonic ac Josephson frequencies nνJ locks onto that of a particular (m0p0) rectangular

cavity mode,

nωJ = ωm0p0 =
ck′m0p0

nr

. (4)

In experiments on rectangular samples, it appears that the fundamental n = 1 ac Josephson

frequency νJ locks onto the rectangular cavity (10) mode frequency, so that νJ = c/(2nrw),

also allowing for the higher ac Josephson harmonics with n > 1 to lock onto the higher

cavity (m0) modes, where m = n. The temperature T dependence of the radiation power

is very unusual, as it vanishes both at low T and at some T ≤ Tc, with a maximum that

can be either broad or sharp, depending upon the sample [2]. In addition, experiments on

the angular dependence of the radiation from rectangular mesas of BSCCO have concluded

that the radiation from the ac Josephson current source is of comparable strength to the

radiation from the excited electromagnetic cavity mode [21].

One might wonder why the low energy excitations were not along the length of the

rectangular mesa, rather than along the width, as observed experimentally. Although the

experiments on rectangular mesas provided evidence for radiation frequencies νm0 ∝ m/w

up to four harmonics of νJ [1, 2], a lower set of modes with harmonic frequencies would

be ν0p ∝ p/`, especially for w ¿ `. Recent experiments suggested that standing waves

along the lengths of rectangular mesas might occur[22], although it is presently uncertain

whether these modes radiate. A possible resolution of this apparent paradox was suggested
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to arise from the component of H(x′, t) normal to the mesa side containing the rectangular

length, which was predicted to have a half-wavelength spatial variation across the rectangular

width[18].

However, this cavity analogy neglects the radiation from the real ac Josephson supercur-

rent J(x′, t) across each of the junctions. Therefore, the second zeroth order model is to

treat the mesa as a conducting dipole antenna with an ac current source, as commonly used

in microwave relay stations[3, 4, 15, 16, 18, 23]. In this picture, the most important part

of the ac Josephson current is its uniform portion across the mesa. This portion leads to a

non-vanishing H(x′, t) within the mesa arising from Ampère’s law. The important question

then, is how to treat the Ampère boundary condition. This has been done in very different

ways, with inconsistent results.

B. The Ampère boundary condition

Bulaevskii and Koshelev studied the damped Lawrence-Doniach equations for the intrinsic

Josephson junctions in thick, long rectangular mesas (with ` > h > w, unlike the case

considered here), and concluded that the magnetic induction B should be parallel to each

edge, with E||ẑ, normal to the substrate[6, 7]. In their pioneering treatment of the boundary

conditions, they obtained |B/E| = ±ζω(kz) at the sample surface, where ζω(kz) = |kω|(k2
ω−

k2
z)
−1/2 for |kz| < 2πνJ/c = kω, and ζω(kz) = −ikz(k

2
z − k2

ω)−1/2 for kz > kω. In the uniform

(kz → 0) limit, ζω → 1. The same sort of model for the boundary conditions was studied

with ζω = Z(ω), a complex constant, by Lin and Hu[9–11], a frequency-independent constant

by Lin, Hu, and Tachiki[17], and ζω = γ = 0.1 by Tachiki et al.[18]. Hu and Lin set the

tangential component of B = 0 on the edge of cylindrical mesas, but did not take account

of the ac Josephson current in the Ampère boundary condition[13, 14]. Matsumoto et al.

treated the Ampère boundary condition as providing constraints on B on opposite sides of

the long rectangular mesas in their numerical studies[15, 16]. Koyama et al. treated the

ac Josephson current as uniform in the mesa[20]. The general problem with these models

for the boundary conditions is that the approximations used to obtain either γ or ζω(kz)

limited the applicability of the expressions, and subsequent workers made different choices

for those quantities. In the radiation zone, one expects ζω = γ = ±1, but at the edge of

the sample, B is subject to the Ampère boundary condition, which depends upon the ac
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Josephson current within the mesa.

Knowledge of the boundary conditions can lead to a determination of the electromagnetic

fields in the near field adjacent to the source. However, in order to obtain the far-field

radiation measured in experiment, it is first necessary to construct effective current sources

from those boundary conditions, and then to integrate over the current sources weighted

with the outgoing wave form [3, 4]. The main point of the present work is that all of

the previous treatments of the boundary conditions did not include the possibility of the

uniform part of the ac Josephson current, or equivalently, the magnetic field generated by

the uniform ac Josephson current, as an additional radiation source, but instead focussed

upon on the electric field as the sole radiation source. If the amplification of the radiation

from the excitation of an electromagnetic cavity mode by the inhomogeneous part of the

ac Josephson current were sufficiently strong, then one could indeed neglect the magnetic

field as a radiation source, as was done in the above treatments. However, experiments on

the angular dependence of the radiation from rectangular mesas of BSCCO have concluded

that the radiation from the electric dipole source equivalent to the neglected magnetic field

source is of comparable strength to the radiation from the excited electromagnetic cavity

mode [21]. Hence, the boundary conditions should be reexamined.

Here we study the simplest and least ambiguous way to treat this boundary condi-

tion. We use Love’s equivalence principles[3, 4, 24, 25], which are variations on Huygens’

principle, treating the mesa as both electric conductor and magnetic conductor radiation

sources[3, 4, 25]. That is, E(x′, t) within the mesa is replaced by a surface magnetic current

density source MS(x′, t) = −n̂×E(x′, t)|S by the Love electric conductor equivalence prin-

ciple, and H(x′, t) inside the mesa is replaced by a surface electric current density source

JS(x′, t) = n̂×H(x′, t)|S, using the Love magnetic conductor equivalence principle[3, 4, 25].

We emphasize that the situation under study involves both a real, nonlinear ac Josephson

current that generates electromagnetic waves at multiple harmonic frequencies and a linear

electromagnetic cavity that obeys Maxwell’s equations, which fixes the harmonic frequen-

cies present in the ac Josephson current to the appropriate cavity dimension, and depending

upon the geometry, can amplify one or more of those harmonics. Thus, unlike other radia-

tion sources studied to date, the THz radiation from BSCCO mesas can only be understood

completely by this dual-source mechanism. A sketch of a cylindrical mesa with a uniform

JS and a nonuniform MS corresponding to the (11) cylindrical cavity mode is shown in
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FIG. 1: (Color online) Sketch of a cylindrical mesa with a surface electric current density JS (red

vertical arrows) and a magnetic current density MS (blue horizontal azimuthal arrows). The ±
signs refer to the signs of the (11) cavity mode, separated by the yellow line, with fixed angle φ0

indicated by the thin horizontal black arrow.

Fig. 1. This combination of equivalence principles allows us to obtain analytic forms for the

distinct angle dependence, polarization, and frequency dependence of the radiation emit-

ted from each of the two sources suspended in vacuum, while properly accounting for the

Ampère boundary condition.

As long as rectangular mesas were the only radiation sources under study, it has proved

difficult to distinguish the results of these radiation sources, as all of the observed harmon-

ics can be amplified by the cavity features of the mesa[21, 23]. The extreme non-linear

current-voltage characteristic of each mesa allows for chaotic, nonequilibrium effects to be

important, so complications such as soliton kinks [18,19] or layer-dependent kinks [9-14]

could potentially play important roles in the origin of the radiation. As noted above, addi-

tional rectangular cavity modes might form across the length of the sample[22]. The only

practical ways to distinguish these models in rectangular mesas is by the observations of the

angular dependence of the output power, polarization, and coherence fraction. As indicated

previously[23], the antisymmetric cavity model necessarily leads to a maximum in the radi-

ation intensity at θ = 0◦, directly above the mesa, whereas the conducting dipole antenna

model leads to zero radiation intensity at θ = 0◦. The situation near θ = 90◦ is much less

clear. The conducting dipole antenna model leads to a substantial radiation intensity in

that direction in the absence of a superconducting substrate. However, depending upon

the index of refraction of the mesa, emission from the cavity model can lead either to a

vanishing or a non-vanishing output at θ = 90◦ for a non-superconducting substrate. Thus,
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m χm1 χm2 χm3 χm4 χm5 χm6

0 3.8317 7.0156 10.1735 13.3237 16.4706 19.6159

1 1.8412 5.3314 8.5363 11.7060 14.8636 18.0155

2 3.0542 6.7061 9.9695 13.1704 16.3475 19.5129

3 4.2012 8.0152 11.3459 14.5858 17.7887 20.9725

4 5.3176 9.2824 12.6819 15.9641 19.1960 22.4010

5 6.4156 10.5199 13.9872 17.3128 20.5755 23.8036

6 7.5013 11.7349 15.2682 18.6374 21.9317 25.1839

7 8.5778 12.9324 16.5294 19.9419 23.2681 26.5450

8 9.6474 14.1155 17.7740 21.2291 24.5872 27.8893

9 10.7114 15.2867 19.0046 22.5014 25.8913 29.2186

10 11.7709 16.4479 20.2230 23.7607 27.1820 30.5345

TABLE I: Table of the first six wave vector parameters χmp = k′mpa for m = 0, . . . , 10, where p

defines the rank ordering of the non-vanishing values of J ′m(χmp) = 0, for a thin cylindrical cavity

of radius a.

it is important to study a different experimental configuration, in which more substantial

differences between the output predictions of these two models would be clearly evident. It

is also crucial to consider the effects of the superconducting substrate.

C. Cylindrical mesas

Here the application of these two models to mesas with cylindrical geometry, which

recently have been studied experimentally [26], is described. Hu and Lin numerically studied

the radiation from cylindrical mesas suspended in vacuum [13, 14, 27]. In place of Eq. (2),

the mode frequencies for a thin cylindrical cavity of radius a and height h ¿ a with the

correct Love boundary condition Hφ(ρ
′ = a) = 0, are given by

k′mp = χmp/a, (5)

νmp =
ck′mp

2πnr

=
cχmp

2πanr

, (6)
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where the anharmonic χmp = k′mpa values are listed in Table I. From fits to three cylindrical

mesas[26], the choice nr ≈
√

18 fit the assumption that the fundamental ac Josephson

frequency locked onto the cavity (11) mode reasonably well, as it did in fitting the rectangular

cavity (10) mode on many samples[1, 2, 21]. Hence, in numerical calculations, the value

nr =
√

18 for the frequencies of interest shall be used.

Although a layered superconductor consists of a stack of Josephson junctions that in

some circumstances may behave rather independently[28], here it is assumed that under the

application of a dc voltage V0 across the N layers, all of the layers behave identically. This

assumption was also made by Tachiki et al.[18], and is consistent with the conclusions of

Bulaevskii and Koshelev [6–8], but is distinctly different from that made by Hu and Lin[9–

14]. For the electric dipole antenna model, the frequencies of the emitted radiation are the

same as those present in the ac Josephson current, νn = nνJ , since the integer harmonics

are generated by the nonlinear ac Josephson effect. For a cylindrical cavity obeying the

linear electrodynamics of Maxwell’s equations, however, the frequencies νmp of the amplified

radiation are the non-vanishing values generated by the pth zeroes of the first derivatives of

the mth regular Bessel functions Jm(z), which are far from integer multiples of one another,

as illustrated in Table I. If a particular cavity mode were to come in resonance with the

fundamental ac Josephson frequency νJ , then higher harmonics of the Josephson current

would not be resonant with any other cylindrical cavity mode, and could not be amplified

by the linear electromagnetic cavity obeying Maxwell’s equations. Hypothetically, if some

cavity modes did not require resonance with the Josephson current to radiate, the frequency

spectrum of the emitted radiation would be distinctly nonharmonic, as pictured by Hu and

Lin[14]. Hence, if resonance of the fundamental ac Josephson current frequency with a

non-uniform cylindrical cavity mode were the only way that the radiation could occur, one

would not expect to observe any higher harmonics in the output power. Observation of

higher harmonics would therefore be prima facie evidence that a substantial amount of the

radiation does not directly arise from the excitation and amplification of cylindrical cavity

modes.

Here the angle and frequency dependencies of the output power for both the cavity and

electric dipole models for cylindrical and rectangular mesas are calculated. It is shown

that the experiments on cylindrical mesas presented by Tsujimoto et al. provided strong

evidence that the radiation at the fundamental ac Josephson frequency, consistent with
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the (11) cylindrical cavity mode, is a mixture obtained from both the electric and magnetic

current sources[26]. To fit the data quantitatively, one must also take account of the dramatic

effects of the superconducting substrate. In particular, the higher frequencies observed in

the measured output power are harmonics (i. e., integral multiples) of the fundamental, and

cannot arise from the excitations of higher cavity modes. Studies of the angular dependence

of the power, polarization, and coherence of the emission at the fundamental frequency may

help to separate the two radiation sources, as well. For rectangular mesas, the corners make

the correct boundary condition B|| = 0 at the mesa edge difficult to impose. However,

with the Love equivalence principles, one can find a closed form expression for the far-field

radiation, the results of which are also presented.

The paper is organized as follows. In Secs. II-VI, the radiation emitted from cylindrical

cavities is studied theoretically, since the results for this geometry are the simplest. In Sec.

II, the primary radiation source, the ac Josephson current, is studied. In Sec. III, the

radiation intensity from an excited cavity mode alone is calculated. In Sec. IV, the output

power of the combined primary and excited cavity mode secondary radiation is calculated. In

Sec. V, the electric polarization and coherence of this combined radiation is calculated and

discussed. In Sect. VI, the effects of superconducting substrates are treated and discussed.

In Sec. VII, analogous results for rectangular mesas are presented. The overall results are

discussed and summarized in Sec. VIII.

II. PRIMARY CYLINDRICAL MESA RADIATION SOURCE

The intrinsic non-linearity of the Josephson junctions causes the ac Josephson current to

have a large number of harmonics at νn = nνJ , where νJ = ωJ/(2π), and ωJ is given by

Eq. (1). This occurs regardless of the spatial dependence of the Josephson current within

each junction. From Love’s magnetic equivalence principle, H(x′, t) in the cavity generated

by the ac Josephson current along ẑ′ according to Ampère’s law generates radiation that is

treated by replacing it with a surface electric current source JS, and setting the resulting

tangential component H|| of H(x′, t) at the surface of the mesa equal to zero[3, 4, 25]. This

ac Josephson current has two essential functions in the radiation. First, it radiates at all

of its harmonic frequencies. Second, the radiation at one of its frequencies may lock onto

that of a cylindrical cavity mode, exciting it, and causing it to radiate as well. Hence, the
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ac Josephson current is the primary radiation source. For simplicity, one may assume that

during emission, all or most of the N junctions have synchronized and radiate together[21],

so one may neglect the layer index of the spatial variation[28], and write within the mesa

J(x′, t) = ẑ′
∞∑

n=1

e−inωJ t[JJ
n + δJn(x′)], (7)

where 〈δJn(x′)〉, the spatial average of δJn(x′) within the mesa, vanishes. It is assumed that

any time dependence to δJn(x′) is slow with respect to the measurement times, and can be

neglected.

One may assume that no radiation emanates from the top and bottom surfaces of the

cylindrical mesa. This leads to the surface electric current density, which may be written

just inside the cylindrical mesa edge as

JS(x′, t) =
a

2
η(z′)δ(ρ′ − a)J(x′, t), (8)

where J(x′, t) is given by Eq. (7) and η(z′) = Θ(z′)Θ(h − z′). For h/a ¿ 1, it suffices to

take η(z′) → hδ(z′) when the mesa is suspended in vacuum. A sketch of the uniform part

of the surface electric current density JS at the edge of a cylindrical mesa is given in Fig. 1.

For the full set of harmonic ac Josephson frequencies, the magnetic vector potential

A(x, t) is given by

A(x, t) =
aµ0

8π

∞∑

n=1

∫
d3x′ẑ′η(z′)δ(ρ′ − a)

ein(kJR−ωJ t)

R
[JJ

n + δJn(x′)], (9)

where R = |x − x′|. Although ωJ must be the same inside and outside the mesa, kJ =

ωJ/c outside the mesa must match the wave vector of light in vacuum, whereas inside the

mesa, k′J = nrωJ/c. Since A||ẑ is parallel to the mesa edge, this wave vector change at

the boundary automatically satisfies the Maxwell boundary condition that the tangential

components of E are preserved across the boundary. One may then write

A(x, t) = AJ(x, t) + AδJ(x, t), (10)

separating it into its contributions from the spatially uniform JJ
n and inhomogeneous δJn(x′)

source amplitudes. In the Appendix, a theory for δJn(x′) is presented.

In the far field, or radiation zone, r/a À 1, one may use the standard approximation

eikR

R
→ eikr

r
e−ik·x′ , (11)
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FIG. 2: (Color online) Plots of the radiation intensity in arbitrary units emitted from the uniform

JJ
n part of the ac Josephson current when a cylindrical mesa is suspended in vacuum. (a) The

radiation at the fundamental n = 1 mode. (b) The radiation at the n = 2 second harmonic mode.

where |x| = r and ẑ′ → −θ̂ sin θ in spherical coordinates, and inside the mesa, k · x′ =

kρ′ sin θ cos(φ − φ′) in cylindrical coordinates [3–5]. The integral in Eq. (9) is readily

evaluated, leading to EA = −∂A
∂t

and HA = 1
µ0

∇ ×A. In the radiation zone, the uniform

contribution EAJ
from AJ to EA is given by

EAJ
(x, t) →

r/aÀ1
− iθ̂ sin θvµ0

4πr

∞∑

n=1

ein(kJr−ωJ t)nJJ
n ωJJ0(nkθ)S

J
n (θ), (12)

where v = πa2h is the volume of the mesa, kθ = kJa sin θ, J0(z) is a regular Bessel func-

tion, and SJ
n (θ) = 1 for a sample suspended in vacuum. The radiation from the surface

electric current source is linearly polarized with EAJ
||θ̂. So far, however, kJ = ωJ/c is only

determined by the applied V0/N , and is unspecified with respect to the mesa dimensions.

When the fundamental ac Josephson mode frequency νJ locks onto the (mp) cavity mode

frequency, the resulting k′J and kJ values are given by k′J = ωJnr/c = χmp/a inside the

BSCCO mesa, and kJ = ωJ/c = χmp/(anr) in vacuum outside the mesa.

The radiation-zone intensity I(θ, φ) for the conducting dipole model is given by the

differential power per unit solid angle dP/dΩ = 1
2
Re[r2r̂ · E ×H∗][5], where · · · is a time

average. The contribution to dP/dΩ from the uniform JJ
n source in the radiation zone is

dPJ

dΩ
→

r/aÀ1
sin2 θ

∑
n

|Bn(θ)J0(nkθ)|2, (13)

where Bn(θ) = JJ
n vSJ

n (θ)nkJ

√
Z0/(4

√
2π), and Z0 =

√
µ0/ε0 is the vacuum impedance. The

radiation patterns expected with kJa = χ11/nr ≈ 1.8412/nr from the uniform part of the

conducting dipole model alone at the fundamental (n = 1) and second harmonic (n = 2)

when the mesa is suspended in vacuum are pictured in Figs. 2(a) and 2(b), respectively.

These I(θ, φ) patterns are nearly indistinguishable, except for their emission frequencies, due
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FIG. 3: (Color online) Sketch of the lowest five wave vectors of the ac Josephson current harmonics

(long thin black) and the lowest 19 cylindrical cavity modes (short thick red), assuming the funda-

mental (n = 1) ac Josephson frequency locks onto the lowest energy (11) cavity mode frequency.

The (mp) indices of the cavity modes are indicated.

to their long wavelengths in vacuum relative to the mesa size. The I(θ, φ) vanish at θ = 0◦,

due to the geometric factor sin θ in the radiation-zone spherical coordinate representation of

ẑ′, are independent of φ, and exhibit a maximum at θ = 90◦, as for ordinary electric dipole

radiation from a quasi-one-dimensional wire or thin rod-shaped source.

III. RADIATION FROM A CYLINDRICAL CAVITY MODE

From Table I and the calculations in the Appendix, we assume the lowest energy (11)

cylindrical cavity mode frequency locks onto the fundamental ac Josephson frequency. The

other cylindrical cavity mode frequencies are then far from the harmonic frequencies in the

ac Josephson current, as sketched in Fig. 3. Let us now study the angular dependence of the

radiation, assuming that a particular cavity mode (mp) = (m0p0) is excited and radiates.

After equilibrium has been achieved, the electric field in the cavity is obtained from the

displacement current, the most important part of which arises from the resonant part of the

particular solution A(p)
z (x′, t) to the inhomogeneous wave equation for Az(x

′, t) studied in
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q =0 

f01  

(b) q =0 

f01 

FIG. 4: (color online) Plots of the radiation intensity in arbitrary units emitted from cavity modes

when the mesa is suspended in vacuum. (a) The cavity (11) mode with k11a = 1.8412/nr. (b) The

cavity (12) mode with k12a = 5.3314/nr.
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f00 
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q =0 

FIG. 5: (Color online) Plots of the radiation intensity in arbitrary units emitted from cavity modes

when the mesa is suspended in vacuum. (a) The cavity (01) mode with k01a = 3.8317/nr. (b) The

cavity (21) mode with k21a = 3.0542/nr.

the Appendix. Then, MS(x′, t) = −n̂×E(p)(x′, t)|S, [3, 4, 25] where n̂ = ρ̂′, is

MS(x′, t) = −φ̂′a
2
η(z′)δ(ρ′ − a)

∂A(p)
z (x′, t)
∂t

, (14)

where η(z′) is given following Eq. (8) for a sample suspended in vacuum.

For a single frequency ω and wave vector k, the electric vector potential F (x, t) outside

the sample is

F (x, t) =
ε0

4π

∫
d3x′MS(x′, t)eikR/R, (15)

where MS(x′, t) is evaluated at ω = ck[3–5].

The generalized F (x, t) is then obtained from Eq. (15) by replacing ω with ωm0p0 = nωJ ,

as described in the Appendix. Using the Schelkunoff expression for the electric field, EF =

13



− 1
ε0

∇× F , the resonant contribution EFr to EF in the radiation zone is

EFr(x, t) →
r/aÀ1

−(−i)mG(n)
mp

ei(kmpr−ωmpt)

4πr
δnωJ ,ωmp{φ̂ cos θ sin[m(φ− φ0n)]J+

m(kθ
mp)

+θ̂ cos[m(φ− φ0n)]J−m(kθ
mp)}

∣∣∣ p=p0
m=m0

, (16)

G(n)
mp =

v

2ε
kmpteffC(n)

mpJm(k′mpa)SM
mp(θ), (17)

where J±m(z) = [Jm+1(z)±Jm−1(z)]/2, kθ
mp = kmpa sin θ, and the φ0n are constants describing

δJn(x′), SM
mp(θ) = 1 for a sample suspended in vacuum, as detailed in the Appendix. The

magnetic field HFr at the resonant frequency may be obtained from −∂HFr

∂t
= ∇ × EFr .

The overall factor −(−i)m in EFr plays a very important role when EAJ
is added to EFr ,

as discussed in Sec. IV.

One may then calculate the output power of the (m0p0) cavity mode in the radiation

zone, which is averaged over t after the resonance has saturated. Some or all of the φ0n

might vary with experimental run, in which case an average of the output power over all

possible φ0n values might be warranted. One then obtains

dPm0p0

dΩ
→

r/aÀ1

√
ε|G(n)

mp|2
32π2

[(
cos[m(φ− φ0n)]J−m(kθ

mp)
)2

+
(
cos θ sin[m(φ− φ0n)]J+

m(kθ
mp)

)2]∣∣∣∣ p=p0
m=m0

. (18)

In the radiation zone, spherical plots of the radiation intensity I(θ, φ) patterns for the four

TMz
mp cavity modes with the lowest energies and with φ0n fixed are shown for a cylindrical

mesa suspended in vacuum in Figs. 4-5. For fixed φ0n, the radiation patterns all possess

C2mv point group symmetry, exhibiting invariance under rotations of π/m about the θ = 0◦

axis and 2m mirror planes containing that axis. For m = 0, the point group symmetry is

denoted as C∞v, as it is rotationally invariant about θ = 0◦. The far-field radiation from the

m = 1 cavity modes, two I(θ, φ) of which are pictured in Fig. 4, exhibit absolute maxima at

θ = 0◦ and a substantial azimuthal (φ) anisotropy with a substantial azimuthal average for

the (11) mode pictured in Fig. 4(a) near θ ≈ 90◦, where the output from the experiments

appears to vanish[26]. When the mesa is suspended in vacuum, the contributions to I(θ, φ)

from all other cavity modes, such as the (01) and (21) modes pictured in Fig. 5, vanish

at θ = 0◦, unlike the experimental observations[26]. All cavity modes emitted from mesas

suspended in vacuum have large outputs for θ = 90◦. I(θ, φ) of the cavity (01) mode pictured

in Fig. 5(a) is independent of φ, and is very similar to that of the ac Josephson n = 2 mode

14



pictured in Fig. 2(b). Hu and Lin presented very similar results for the output from the

cavity modes pictured in Figs. 4-5 [14, 27].

IV. COMBINED PRIMARY AND SECONDARY RADIATION

When both electric and magnetic surface current sources make significant contributions

to the radiation, one may use the Schelkunoff procedure of adding the electric and magnetic

fields from the two sources, E = EA+EF and H = HA+HF [3, 4]. The main contributions

to EA and HA are EAJ
and HAJ

, arising from the uniform part of the ac Josephson current.

The main contributions to EF and HF are EFr and HFr , arising from the excitation of a

cavity mode (or modes, for rectangular mesas). The combined dP/dΩ is then computed

using E and H as described just prior to Eq. (13).

After equilibrium has been achieved, one may assume that the fundamental n = 1 ac

Josephson frequency has locked onto that of the cavity (m0p0) = (11) mode, with the

wave vector amplitude k11a = 1.8412/nr, as observed for three cylindrical mesas[26]. The

combined far-field electric field from its main contributions E = EAJ
+ EFr then has the

components

Eθ = i[G
(1)
11 cos(φ− φ01)J

−
1 (kθ)−B1 sin θJ0(kθ)]

ei(kJr−ωJ t)

4πr
, (19)

Eφ = iG
(1)
11 cos θ sin(φ− φ01)J

+
1 (kθ)

ei(kJr−ωJ t)

4πr
, (20)

Bn = nvµ0ωJJJ
n SJ

n (θ), (21)

and G
(1)
11 is given by Eq. (17). The components to Eθ from EAJ

and EFr are either in phase

or out of phase by π, depending upon φ01.

The combined dP11/dΩ of the fundamental n = 1, spatially homogeneous ac Josephson

surface current density frequency locked onto that of the cavity (11) mode at ωJ = ω11 is

given in the radiation zone by

dP11

dΩ
→

r/aÀ1

√
ε

32π2

[∣∣∣G(1)
11 cos θ sin(φ− φ01)J

+
1 (kθ)

∣∣∣
2

+
∣∣∣G(1)

11 cos(φ− φ01)J
−
1 (kθ)−B1 sin θJ0(kθ)

∣∣∣
2]

, (22)

where kθ = kJa sin θ. Note that the fully coherent output power is asymmetric in φ, lowering

the C2v point group symmetry to C1, with a single mirror plane normal to the substrate
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FIG. 6: (Color online) Plots of the radiation power emitted from the mixed n = 1 ac Josephson

and (11) cavity (11) mode with φ01 fixed and k11a = 1.8412/nr for the mesa suspended in vacuum.

(a) |B1/G
(1)
11 | = 5 and is φ01 fixed as indicated. (b) |B1/G

(1)
11 | = 7 and φ01 is random.

that contains φ01. A plot of the combined output I(θ, φ) from Eq.(22) for |B1/G
(1)
11 | = 5

when φ01 is fixed and the mesa is suspended in vacuum is shown in Fig. 6(a). The output

power in Fig. 6(a) is finite at both θ = 0◦ and θ = 90◦.

A plot of I(θ, φ) for the incoherently combined n = 1 dipole and (11) cavity modes with

φ01 random and |B1/G
(1)
11 | = 7 is shown in Fig. 6(b). Averaging over φ01 has a drastic effect

on the output point group symmetry, which is now C∞v, exhibiting rotational invariance

about θ = 0◦. Such an incoherent combination was successfully used in fits to experimental

data on cylindrical mesas [25]. As seen in Sec. V, it also has an effect on the polarization.

In fits to the data, the total integrated power is P11 = 2π
∫ π/2
0 sin θdθdP11(θ)/dΩ, where

dP11/dΩ was averaged over φ01[26], and the coefficients B1(θ) and G
(1)
11 (θ) were both taken

to be proportional to cos θ for a sample on a superconducting substrate, as discussed in Sec.

VI. P11 then has the form A + Bα(0), where α(0) = |B1(0)/G
(1)
11 (0)|, and the fraction of the

radiation arising from the uniform ac Josephson current source is [1 + (B/A)α(0)]−1[26].

V. ELECTRIC POLARIZATION OF THE COMBINED RADIATION

The electric polarization of the combined output at the fundamental frequency ωJ =

ω11 and kJ = k11/nr is more interesting. The radiation of the combined Josephson n =

1 fundamental frequency locked onto that of the cavity (11) mode generally has linear

polarization, the direction of which generally depends upon (θ, φ). Some special cases are: (I)

If φ01 is random during the measurement, the radiation is linearly polarized along θ̂, arising

from the dipole radiation only. This vanishes at θ = 0◦, where the radiation is unpolarized.
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(II) If φ− φ01 = 0, π, the polarization is along θ̂. (III) If θ = 0◦, the polarization direction

depends strongly upon φ− φ01. But in a measurement at θ = 0◦, one would integrate over

all φ values, measuring an unpolarized radiation, in agreement with experiment[26]. (IV) If

θ = 90◦, the radiation is linearly polarized along θ̂. (V) There is in addition one line given

by

φ− φ01 = cos−1
( |B1| sin θJ0(kθ)

|G(1)
11 |J−1 (kθ)

)
, (23)

where Eθ = 0 and the polarization is along φ̂. For the general case, the polarization is tilted

away from the θ̂ direction by the angle τ given by[3, 4]

τ = tan−1
(Eφ

Eθ

)
. (24)

In Fig. 7, three-dimensional plots of 2τ/π in radians versus θ in degrees and r = |B1/G
(1)
11 |

for φ− φ01 = π/2 and φ− φ01 = π/4 in the left and right panels are respectively presented.

In Fig. 7(a), when φ−φ01 = π/2, Eθ is only given by the ac Josephson (or dipole) radiation,

which vanishes in the limits θ = 0◦ and r = 0. When θ = 90◦, as long as r > 0, the

polarization is along θ̂. From this figure, it is evident that when r ≈ 1 or greater and

θ ≈ 10◦ or greater, τ ≈ 0, and the polarization lies along θ̂. In Fig. 7(b), when θ = 0◦

or r = 0, the polarization is -45◦ between φ̂ and θ̂. Then, as either r ≈ 1 and θ ≈ 10◦,

the polarization switches to the θ̂ direction, assuming the coherent combination with φ01

fixed during the measurement. If φ01 is random, the polarization is always along θ̂, except

at θ = 0◦, where it is unpolarized. Preliminary measurements confirmed the unpolarized

radiation at θ = 0◦[26]. However, that single experiment cannot distinguish whether φ01 is

fixed or random, because at θ = 0◦, the polarization averages to zero, both for fixed and

random φ01. Measurements of the polarization and the degree of coherence for θ 6= 0◦ could

distinguish these possibilities.

VI. SUPERCONDUCTING SUBSTRATES

Here it is argued that the ac Meissner effect in the superconducting substrate sketched in

Fig. 8(a) causes it to behave as a perfect magnetic conductor (PMC)[3, 4, 23], which can be

treated by the image source technique as sketched in Fig. 9. The Love magnetic conductor
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FIG. 7: (Color online) Plots of the normalized tilt angle 2τ/π in radians of the polarization from θ̂,

versus θ in degrees and r = B1/G
(1)
11 of the mixed source radiation for fixed φ01 at the fundamental

n = 1 frequency with k11a = 1.8412/nr when the mesa is either suspended in vacuum or on a

superconducting substrate. (a) φ− φ01 = π/2. (b) φ− φ01 = π/4. .

FIG. 8: (a) Sketch of a mesa with JS and MS surface current sources. (b) Mesa during coherent

emission with applied dc I0, V0, and Iac confined to it. Curve c is the integration path for the

Ampère boundary condition. See text.

equivalence principle allows one to replace the magnetic field internal to the mesa by a surface

electric current, and to set H|| = 0 on the surface of the mesa. Present mesa antennas atop

a PMC substrate emit dramatically lower output power than those atop a substrate that

is an insulator or perfect electric conductor (PEC)[3, 4]. Note that a superconducting Nb

substrate was previously used as a ground plane for a square lattice of Nb/Al2O3 Josephson

junctions, the output of which was amplified by a cavity at the edge of the array[33–35].

Without the ground plane, the radiation was not detectable. In that case, the ac Josephson

FIG. 9: (Color online) Sketches of the electric (dashed, black) and magnetic (solid, red) actual and

image sources and on a perfect magnetic conductor substrate. From Ref. (3).
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current source was parallel to the substrate [33–35], so that the image of the supercurrent in

the PMC substrate was parallel to the source current, as sketched by the two (black, dashed)

arrows second from the left in Fig. 9. In the case of BSCCO mesas atop a BSSCO substrate,

both the electric and magnetic image currents are opposite to the respective source currents,

as in the far left and far right arrow pairs in Fig. 9, causing a cancelation of the output

power at θ = 90◦. This model thus can explain why I(90◦, φ)/I(0◦, φ) is unexpectedly so

small.

Here the effects of superconducting substrates are studied quantitatively[1, 2]. As

sketched in Fig. 8(b), during coherent Josephson radiation, the ac Josephson current is

essentially confined to the mesa by the applied dc current I0 and voltage V0. With only a

dc surface current density ∝ I0 and B||,ac(t) = 0 beyond the skin depth (≈ 0.15 µm ) inside

the BSCCO substrate due to the ac Meissner effect, the Ampère boundary condition forces

H||,ac(t) = 0 just above the BSCCO substrate[5]. This corresponds to a PMC substrate,

with the effective image sources sketched in Fig. 9[3, 4]. Thus, for a BSCCO substrate, we

restrict θ to 0◦ ≤ θ ≤ 90◦ and replace η(z′) in Eqs. (14) and (8) by

η−(z′) = sgn(z′)Θ[h2 − (z′)2]. (25)

For cylindrical mesas in the radiation zone, h << a, r, it is safe to assume h ¿ 1/kn for the

relevant n. One may expand eiknR/R in Eqs. (9) and (15) for small z′. From Eq. (25), the

electric and magnetic current substrate factors are simply obtained from terms linear in z′.

In the radiation zone,

SJ
n (θ) →

r→∞ −iknh cos θ Θ(90◦ − θ), (26)

and SM
mp(θ) is obtained from SJ

n (θ) by kn → kmp, where (mp) applies to either cylindrical or

rectangular cavity modes, the latter as discussed in Sec. VII.

In Figs. 10(a) and 10(b), the predictions are shown for the radiation power emitted from

the mixed fundamental n = 1 ac Josephson and (11) cavity modes of a cylindrical mesa

atop a superconducting substrate. In each case, the radiation vanishes at θ = 90◦, unlike

the radiation from the same modes shown in the left panels of Figs. 2 and 4 when the mesa is

suspended in vacuum. In Fig. 10(a), it was assumed that φ01 was fixed, and |B1/G
(1)
11 | = 7,

which maintains the point kink found for the combined output pictured in Fig. 6(a) for the

mesa suspended in vacuum. In Fig. 10(a), the predicted radiation vanishes at θ = 90◦, but
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FIG. 10: (Color online) Plots of the radiation power emitted from the mixed n = 1 ac Josephson

and the (11) cylindrical cavity modes with k11a = 1.8412/nr fixed and the mesas sit atop a

superconducting substrate. (a) φ01 is fixed as indicated, and |B1/G
(1)
11 | = 7. (b) φ01 is random and

|B1/G
(1)
11 | = 1.
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FIG. 11: (Color online) Plot of the radiation power at the n = 2 second harmonic of the ac

Josephson current for a cylindrical mesa with 2kJa = 3.6824/nr on a superconducting substrate.

it is still highly anisotropic for θ < 90◦, with a point kink that is off center (not at θ = 0◦).

Experiments to date cannot eliminate this possibility, because scans across the diameter of

the cylinder have only been made on two perpendicular planes, and it is possible that such

a point kink would have been missed. In Fig. 10(b), |B1/G
(1)
11 | = 1, φ01 is random, the point

kink is removed, and the output power has a maximum at θ ≈ 34.5◦. These predictions

are remarkably similar to the experimental results[26]. In Fig. 11, the modification to Fig.

2(b) for the second ac Josephson harmonic at n = 2 due to the superconducting substrate

is shown. It has a maximum at θ ≈ 42.2◦.

VII. RECTANGULAR MESAS

Let us finally reconsider the more complicated rectangular mesas. A sketch of the electric

and magnetic surface current densities for the (10) rectangular mesa cavity mode is shown

in Fig. 12. Although JS(x′, t) is uniform along the edge of the mesa, MSn(x′, t) for the
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FIG. 12: (Color online) Sketch of a rectangular mesa with a surface electric current density JS

(red vertical arrows) and a magnetic current density MS (blue horizontal azimuthal arrows). The

± signs refer to the signs of the rectangular (10) cavity mode, separated by the yellow line.

(n0) mode changes its direction by 90◦ at each of the corners.

For a rectangular mesa of length `, width w, and height h in vacuum satisfying ` > λc > w,

where λc ∼ 170 µm is the c-axis penetration depth, the experimentally observed cavity

modes are the TMz
n0 or (n0) modes, which are constant in position along the mesa height

and length, and oscillate in position with integral multiples of half-wavelengths along the

mesa widths[1, 2, 21]. In rectangular source coordinates (x′, y′, z′), the surface currents at

the frequency of the TMz
n,0 mode are

JSn(x′) = ẑ′
JJ

n

4
ηJ(z′)

∑

σ=±
[fσ(x′, y′) + gσ(x′, y′)], (27)

MSn(x′) =
Ẽ0n

4
ηM(z′) sin[n(x′ − xn)π/w]

∑

σ=±
σ[ŷ′fσ(x′, y′)− x̂′gσ(x′, y′)], (28)

fσ(x′, y′) = wδ(x′ + σw/2)Θ[(`/2)2 − (y′)2], (29)

gσ(x′, y′) = `δ(y′ + σ`/2)Θ[(w/2)2 − (x′)2], (30)

where the TMz
n0 cavity mode energy is degenerate for −w/n ≤ xn ≤ w/n.

One may treat the output power obtained from the combination of the JS and MSn

sources in three models. In the first model, one treats the combination as coherent, satisfying

Hy(x
′ = ±w/2) = 0. This leads to one of the solutions xn = 0, w/n for n odd, and one of

the solutions xn = ±w/2n for n even. These cases lead to an asymmetry and kinks in the

angular distribution of the output power. In Models I and II discussed in the Appendix, the

output from the two sources is incoherent.
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The time-averaged dP/dΩ in the radiation zone is

dP

dΩ
→

r/a→∞
Z0(ṽk1)

2

128π2

∞∑

n=1

n2
[∣∣∣sin θJJ

n χn(θ, φ)SJ
n (θ)

∣∣∣
2

+αn(θ)
(
Ci

n + Di
n − sin2 θ[Ci

n cos2 φ + Di
n sin2 φ− Ei

n sin φ cos φ]
)]

, (31)

where i = I, II, αn(θ) = |Ẽ0nS
M
n (θ)|2/(2Z0)

2, and χn(θ, φ) and the C i
n(θ, φ), Di

n(θ, φ), and

Ei
n(θ, φ) are given in the Appendix. The results for the angular dependence of the output

power from rectangular mesas are shown in Figs. 13 - 15. These figures are for rectangular

mesas with the length normal to φ = 0. Although the figure “boxes” appear to have the

short length along φ = 0, that is the direction in which the radiation is largest. Since these

figures correspond to the (n0) modes for n = 1, 2, the radiation is primarily along the length

of the mesa, along or near to φ = 0. In the figures that follow, it is assumed that `/w = 20/3,

as in some of the mesas[1, 2]. Three-dimensional plots of I(θ, φ) ∝ dP (θ, φ)/dΩ in arbitrary

units are then obtained. First, the data are presented for the emission from the primary

source, the ac Josephson current in the form of the surface electric current density JS. In

Fig. 13, the predicted I(θ, φ) is shown for the n = 1 and n = 2 ac Josephson radiation,

respectively for the mesa suspended in vacuum. The corresponding predictions for the

rectangular cavity (10) and (20) modes at the same frequencies as the n = 1, 2 ac Josephson

radiation are shown for Model I in Fig. 14 for the cavity suspended in vacuum. Note that

the output for the rectangular cavity (10) mode pictured in Fig. 14(a) is very similar to

that for the cylindrical cavity (11) pictured in Fig. 4(a) when both mesas are suspended in

vacuum. The angular dependence of the second harmonic emitted from rectangular cavities

should be very interesting to measure, especially as it contains a mixture of the radiation

predicted in Figs. 13(b) and 14(b), and is distinctly different from that from any of the

cylindrical cavity modes calculated without a substrate.

In Fig. 15, the combined output from the primary ac Josephson current and excited

cavity modes for a rectangular mesa atop a superconducting substrate are shown. In Fig.

15(a), the fundamental n = 1 mode is locked onto the rectangular cavity (10) mode, and the

figure assumes α1(0) = 0.2 using Model I for the cavity. This figure is very similar to that

observed experimentally[21]. In Fig. 15(b), the predicted output power is shown for the

second harmonic, again using Model I with α2(0) = 0.2 for a mesa atop a superconducting

substrate. The total output power is P =
∫ 2π
0 dφ

∫ π/2
0 sin θdθ[dP (θ, φ)/dΩ], leading to an

expression of the form A′ + α(0)B′, where A′ and B′ depend upon w, `, and ε and n. With
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FIG. 13: (Color online) Three-dimensional plots of the radiation intensity in arbitrary units for

rectangular mesas with `/w = 20/3 from the uniform ac Josephson current alone, when the mesa

is suspended in vacuum. (a) At the fundamental n = 1 frequency with k1w = π/nr. (b) At the

second harmonic n = 2 with k2w = 2π/nr.
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FIG. 14: (Color online) Three-dimensional plots of the radiation intensity in arbitrary units for

rectangular mesas with `/w = 20/3 from the cavity source alone, when the mesa is suspended in

vacuum. (a) The fundamental (10) cavity mode with k10w = π/nr. (b) The second harmonic (20)

cavity mode with k20w = 2π/nr.
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FIG. 15: (Color online) Plots of the intensity in arbitrary units for rectangular mesas with `/w =

20/3 of the combined radiation from Model I with α1(0) = 0.2 from the uniform ac Josephson

current and the rectangular cavity modes when the mesa sits atop a superconducting substrate.

(a) The fundamental n = 1 ac Josephson mode and the cavity (10) mode with kw = k10w = π/nr.

(b) The second harmonic with k2w = k20w = 2π/nr and α2(0) = 0.2.
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FIG. 16: (Color online) Plots of the intensity in arbitrary units for rectangular mesas with `/w =

20/3 of the coherently combined radiation when the mesa sits atop a superconducting substrate.

(a) The fundamental n = 1 ac Josephson mode and the cavity (10) mode with kw = k10w = π/nr,

x1 = 0 and r1 = 0.05 (b) The second harmonic with k2w = k20w = 2π/nr, x2 = w/4 and r2 = 0.6.

superconducting substrates, both SJ
n (θ) and αn(θ) are proportional to cos θ, as shown in Sec.

VI. The fraction of the radiation arising from the uniform ac Josephson current source at

the fundamental frequency is then [1 + (B′
1/A

′
1)α1(0)]−1, as was used in fits to experiments

on rectangular mesas[21].

As for cylindrical mesas, the output from rectangular mesas is linearly polarized. Because

the angular distribution of the output intensity at the fundamental frequency is very similar

in both rectangular and cylindrical mesas, only minor differences in the angular distribution

of the tilt angles for the two types of mesas are expected.

Let us now consider the case when the combination of the radiation sources is coherent.

In this case, dPn/dΩ of the nth harmonic is given by

dPn

dΩ
∝ |SJ

n (θ)|2
(
| − sin θχn + rn(Mx

n sin φ−My
n cos φ)|2 + |rn|2 cos2 θ|Mx

n cos φ + My
n sin φ|2

)
,

(32)

where rn = Ẽ0nS
M
n (θ)/[2µ0J

J
n cSJ

n (θ)]. For n = 1, Mx
1 and My

1 , given in the Appendix, when

evaluated at either x1 = 0 or w are real, and a coherent combination is strongly asymmetric.

For n = 2, however, both Mx
2 and My

2 are pure imaginary for x2 = ±w/4. Hence, the

resulting coherent combination in dP/dΩ is the sum of that from the two sources. This

is pictured in Fig. 16. In Fig. 16(a), the combined coherent output when r1 = 0.05 is

shown, computed when x1 = 0. This figure shows a strong intensity asymmetry even for

this small ratio of the outputs from the two sources, with the pattern exhibiting C1 point

group symmetry. In Fig. 16(b), the combined output for n = 2 is shown for the case

r2 = 0.6, computed with x2 = w/4. In this case, the pattern has C2v symmetry.
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VIII. DISCUSSION AND SUMMARY

The first correct prescription of the incorporation of the Ampère boundary condition

into the superconducting stack of Josephson junctions under the application of a dc voltage

V0, which itself generates THz radiation, was presented here. This prescription relied upon

both of the Love equivalence principles. By the Love equivalence principle for a magnetic

conductor, to calculate the radiation outside the mesa, the magnetic field inside the mesa

generated by the ac Josephson current is effectively set equal to zero inside the cavity, and

replaced by the equivalent surface electric current JS, which is the primary radiation source.

Effectively setting H|| = 0 inside the mesa also sets the boundary condition for the cylin-

drical cavity. With this boundary condition, the cylindrical cavity modes are immediately

found, and when the ac Josephson current effectively placed on the edge as JS radiates at a

frequency that matches one of the cavity modes, the inhomogeneous part of the ac Josephson

current has a mode which resonates with a cavity mode of the same (or perhaps similar, in

an extension of the model) spatial form, and the amplitude for that cavity mode then grows

linearly in time, until it saturates, and then the cavity mode radiates in conjunction with

the primary ac Josephson radiation at that frequency.

The form of the cavity radiation is obtained from Love’s electric conductor equivalence

principle, in which the equivalent of the cavity electric field is placed on the surface as a

magnetic surface current density MS, which radiates in conjunction with the ac Josephson

radiation equivalent electric surface current density JS. From the experiments on three

cylindrical mesas, it is evident that the lowest energy cavity (11) mode has been excited.

In addition, radiation at the second ac Josephson harmonic frequency was seen in all three

cylindrical mesas[26]. Since the mismatch between these second harmonic frequencies and

the nearest cavity mode frequency is 4%, about 5-6 standard deviations away from matching,

this second harmonic radiation arises almost entirely from the primary radiation source, the

ac Josephson radiation acting as a surface electric current density. In addition, the fact that

the BSSCO mesa acts both as an electric conductor and as a magnetic conductor provides a

mechanism to understand the role of a superconducting BSCCO substrate. Such substrates

cause the emitted radiation to vanish along the direction parallel to it, greatly reducing the

output power of the radiation.

While the main function of the inhomogeneous part of the ac Josephson current is that
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it couples to a cavity mode, provided that the conditions are properly met, if the inho-

mogeneities are sufficiently strong, they can significantly alter the azimuthal and axial

anisotropy of the combined radiation at the fundamental frequency, and especially that

of the higher harmonics. In addition, it remains an open question as to whether the angular

constants φ0n are fixed or random during the time of the measurement. To the extent that

the cylindrical cavity itself is perfectly homogeneous, one might expect no preferred angle for

each mode of inhomogeneity. On the other hand, some feature involved in the experimental

situation might lead to a fixed inhomogeneity direction. Only experiments measuring the

angular distribution of the radiation and its polarization can distinguish these two situations.

Although no figures to illustrate this point were displayed, if one were to assume the phase

of the cavity mode for a fixed φ0n could have either sign with equal probability, then the

situation would be analogous to that of Model I for a rectangular mesa. For a cylindrical

cavity, this model would preserve the point kink of the output radiation and restore C2v

point group symmetry, but the position of the kink would be at θ = 0◦, and the value of the

output power would not vanish there.

For rectangular mesas, setting H|| = 0 on each of the edges leads to singularities in the

analytic properties of the electromagnetic fields at the corners, greatly complicating the

situation. Hence, most previous workers studied infinite strips, where the corners could

be neglected. For the case of finite length rectangular mesas, the question of whether the

combined radiation is skewed to one side of the mesa or the other is also relevant. If the mesa

were symmetric, as in a cylinder with no preferred angle, one would average over the two

configurations, resulting in a symmetric radiation pattern, and an incoherent combination

of the radiation from the two sources, each of which is separately coherent. That was the

purpose for the study of Models I and II.

Except in the calculation of the superconducting substrate factor, the cylindrical mesa

was treated essentially as an infinitely thin disk, completely neglecting any spatial vari-

ation normal to the layers. While this is not a good approximation for treating heating

inhomogeneities[22], it suffices for impurity inhomogeneities and the important lateral inho-

mogeneities in the ac Josephson current, which may be assumed to be the critical part of the

microscopic mechanism that excites the cavity modes. Hence, exotic features such as inho-

mogeneous kinks along the z axis are omitted entirely, as they are completely unnecessary

for the excitation of the cavity modes[27].
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Cylindrical mesas are much simpler to understand theoretically than are rectangular

mesas. There are several aspects to this simplicity. Most important, the von Neumann

boundary condition is elementary in this geometry, whereas for a rectangle, it is treatable at

the corners only by numerical techniques. In addition, the fact that none of the cylindrical

cavity modes are harmonics of one another is an extremely important point, which is why

cylindrical mesas were studied in the first place. Since rectangular cavities have higher

energy modes that are also harmonics of a lower mode, such as the (10) or the (01) mode,

the observation of harmonics in the output of rectangular mesas did not allow for a precise

determination of the primary radiation source, which has now been clearly identified as

the ac Josephson current, and not the cavity mode radiation. The primary role of the

cavity mode is to lock the frequency of an ac Josephson mode (usually, if not always, the

fundamental) onto that of a cavity mode, fixing ωJ to ωm0p0 (evidently ω11). Then, the

displacement current arising from the laterally inhomogeneous ac Josephson current excites

the (m0p0) cavity mode, allowing it also to radiate. From fits to experimental data on both

rectangular and cylindrical cavities, it appears that at least half of the total output power

arises from the primary source. The amplitudes relative to that of the fundamental of the

higher harmonics are comparable to those in rectangular mesas, for which amplification by

the excitation of higher cavity modes could occur[21]. Hence, such cavity mode amplification

is rather weak.

The cavity modes of a cylindrical mesa are similar in form to those of a drum, and one

or more of them can be amplified when a drummer strikes a particular region on the drum

surface. The surface region of the drum struck does not need to have the precise shape of

that of the main cylinder (drum) mode excited. By analogy, a modification of this theory

of the cylindrical cavity mode amplification could occur without implementation of the von

Neumann boundary condition, which provided a precise matching in spatial form of the

cavity mode with that of the inhomogeneities. In a rectangular mesa, a subset of the cavity

mode frequencies are harmonics of one another, and can be excited as by a player of a

stringed instrument in lightly touching a finger at the midpoint or quarter point at either

end of the string, for example, in order to make it sound one or two octaves higher than the

fundamental, respectively.

This is the first treatment of the dramatic effect of superconducting substrates upon

the output power of radiating BSCCO mesas. Using the same Love principle that was the
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basis for the correct implementation of Ampère’s law, the magnetic equivalence principle,

it follows that superconducting substrates cause a drastic reduction in the output power of

the radiation, especially for the power emitted near to θ = 90◦. Note that in predictions for

the far-field intensity of both the primary ac Josephson current and the secondary cavity

radiation sources, the intensity at the fundamental frequency and at θ = 90◦ is predicted to

be at least comparable to that of its maximum output. The fact that in both rectangular

and cylindrical mesas, the experimental intensity at θ = 90◦ is consistent with zero is a very

strong indication that the perfect magnetic conductor model of superconducting substrates

is correct. This model is also consistent with the experiments of Barbara et al., in which

the output of a conventional Josephson junction array with the currents parallel to the

superconducting substrate was enhanced by the substrate (or ground plane) prior to its entry

into the waveguide[33–35]. Hence, removal of the superconducting substrate from BSCCO

mesas could enhance the output by at least two orders of magnitude, and by replacing the

substrate with a perfect electric conductor such as Cu, one could further enhance the output

by a factor of four. This could allow for output as high as 5mW, which would be more than

sufficient for many practical applications.

In summary, the primary microscopic source of the coherent radiation from the intrinsic

Josephson junctions in mesas of BSCCO has been identified as the non-linear ac Josephson

current. Its uniform part acts as an electric current density source and its non-uniform part

excites one of the linear cavity modes, which sets the wavelength of the fundamental ac

Josephson frequency to the appropriate sample dimension and acts as a magnetic surface

current density source. The two sources radiate together at the fundamental ac Josephson

frequency. For rectangular mesas, such matching can also occur for higher harmonics, but

for cylindrical mesas, only one of the harmonic frequencies present in the ac Josephson

current can be amplified by the linear electromagnetic cavity. The combination of these two

coherent sources can be either coherent or incoherent. It suffices to treat all of the junctions

as acting in unison. For radiation at the fundamental ac Josephson frequency locked onto

the cylindrical cavity (11) mode, the combined output radiation pattern has a linear electric

field polarization that is usually but not always along θ̂. Radiation at the second harmonic

frequency in cylindrical mesas arises almost exclusively from the ac Josephson current, is

also linearly polarized, and is purely coherent. The output from rectangular mesas should

also be linearly polarized. It is emphatically noted that removal of the superconducting
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substrate, or better yet, replacement of it by a perfect electric conductor such as Au or Cu,

could lead to an enhancement of the output power of the mesas from the highest observed

power of 5µ W up to 5 mW, suitable for many applications. An appropriate name for this

device is Josephson STAR emitter, for Josephson stimulated terahertz amplified radiation

emitter.
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APPENDIX

A. Spatial fluctuations of the ac Josephson current

If the ac Josephson current were spatially uniform within the mesa, it could only couple to

a uniform electric field, which cannot radiate. Hence, the non-uniform part δJn(x′) of the ac

Josephson current must provide the coupling to the electric field. There may be a number

of sources for this non-uniformity, such as defects and thermal fluctuations, which may

be enhanced by inhomogeneous heating effects[22]. Here it is assumed that the primary

source of the inhomogeneities is thermodynamic fluctuations, but the model can also be

employed to approximate smooth stoichiometry variations[29, 30]. In the samples used in the

experiments[26], the BSCCO crystals were prepared slowly over a very limited central region

in gold-plated elliptical heating ovens, with highly controlled heating, producing samples

that are probably much more uniform chemically (although still highly non-stoichiometric)

than in those studies[31, 32].

Assuming [〈(δJn)2〉]1/2 ¿ JJ
n , the Helmholtz free energy of these fluctuations may be
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written as

Ff ∝
∞∑

n=1

∫
d2r′[(δJn)2 + (ξ′n)2(∇′δJn)2], (33)

where ξ′n(T ) is a temperature-dependent characteristic length over which the spatial fluctu-

ations in δJn occur, and n describes the intralayer spatial variations associated with the nth

harmonic of the ac Josephson frequency, as presented in Eq. (7). Ff is a minimum when

−(ξ′n)2(∇′)2δJn + δJn = 0, (34)

which is written in cylindrical coordinates. The full solution to this equation may be written

as

δJn(ρ′, φ′) =
∞∑

m=0

C(n)
m Jm(ρ′/ξ′n) cos[m(φ′ − φ0n)], (35)

where the φ0n and C(n)
m are free parameters and the general m dependence of φ0n is neglected

for simplicity[5]. The ac Josephson current vanishes outside the mesa (ρ′ > a), but since its

uniform part JJ
n is discontinuous with a vanishing derivative at the mesa edge, δJn may also

be discontinuous at ρ′ = a. Here it is assumed that thermodynamic fluctuations are weak

near the mesa edge, so that one may take

∂δJn

∂ρ′
∣∣∣
ρ′=a

= 0. (36)

With this von Neumann boundary condition, δJn(x′) may be written as

δJn(x′) =
∞∑

p=1,m=0

C(n)
mpJm(k′mpρ

′) cos[m(φ′ − φ0n)], (37)

where χmp = k′mpa is the pth non-vanishing value of dJm(x)/dx = 0, and k′mp = 1/ξ′mp. The

χmp values for m = 0, . . . , 10 and p = 1, . . . , 6 are given in Table I. Since
∫ a
0 ρ′dρ′J0(k

′
0pρ

′) =

(a/k′0p)J1(k
′
0pa) = 0 for p ≥ 1, the spatial average of δJn(x′) vanishes, as required. Note

that k′mp represents the set of 1/ξ′n values that satisfy the assumed boundary condition. In

addition, since JJ
n and δJn(x′) are real, all of the C(n)

mp are real.

B. Excitation of a cavity mode

Let us next consider the cavity model of a very thin cylindrical mesa. The magnetic

vector potential A(x′, t) = Az(x
′, t)ẑ′ satisfies

∇′2Az − µε
∂2Az

∂t2
= −µJz(x

′, t) (38)
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inside the mesa, where µ and ε are the magnetic permeability and dielectric constant inside

it, nr =
√

µε ≈ √
ε, and J(x′, t) = ẑ′Jz(x

′, t) is given by the spatially inhomogeneous part

of Eq. (7). As part of Love’s magnetic equivalence principle, Eq. (38) is subject to the

condition − ∂Az

µ∂ρ′

∣∣∣
ρ′=a

= Hφ

∣∣∣
ρ′=a

= 0, and the spatially uniform part of J(x′, t) cannot excite

any cavity modes, but should be placed on the surface as a surface electric current density

JS from the Ampère boundary condition[3, 4], as in Sec. II. Hence, this boundary condition

is precise, unlike the assumption made for δJn(x′). This boundary condition then leads to

the same set of discrete wave vector amplitudes k′mp = χmp/a as were assumed to be present

in δJn(x′). Hence,

∇′2Az − µε
∂2Az

∂t2
= −µ

∞∑

m=0;p,n=1

e−inωJ tC(n)
mpJm(k′mpρ

′) cos[m(φ′ − φ0n)], (39)

which is satisfied by the particular solution

A(p)
z (x′, t) =

∞∑

m=0;n,p=1

e−inωJ t[A(n)
mp(t)δm,m0δp,p0

+A(n)
mp(1− δm,m0δp,p0)]Jm(k′mpρ

′) cos[m(φ′ − φ0n)], (40)

provided that

A(n)
m0p0

(t) = t
iC(n)

m0p0

2nεωJ

for (mp) = (m0p0), (41)

ω2
m0p0

= n2ω2
J for (mp) = (m0p0), (42)

A(n)
mp =

C(n)
mp

ε(ω2
mp − n2ω2

J)
for (mp) 6= (m0p0), (43)

where k′m0p0
= ωm0p0nr/c. Although Eq. (41) could apply to general (mp), Eq. (42) can

at most apply to a single value of (mp), which is denoted (m0p0). The other modes are far

from resonance with negligible amplitudes and Lorentzian lineshapes as suggested by Eq.

(43). Of course, effects such as a built-in z-dependence to the cylinder radius a during mesa

fabrication will give finite widths ∝ 1/Qmp to the cavity modes.

Note that the t in the solution for the excited (m0p0) mode causes the amplitude A(n)
m0p0

(t)

of that mode to grow linearly in time, which continues until saturation is achieved, and

radiation occurs. During radiation, the amplitude of the resonant frequency is approximately

constant in time, which may be taken to have the finite value A(n)
m0p0

(∞) ≡ limt→∞ A(n)
m0p0

(t).

From Eq. (41), the resonant amplitude A(n)
m0p0

(t) for small t is purely imaginary for a real ε
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in the frequency range of interest, so it may be assumed that it stays purely imaginary after

saturation, and one may write

A(n)
m0p0

(∞) = iteff
C(n)

m0p0

2nεωJ

, (44)

where teff is the effective time to reach saturation.

D. Resonant cavity radiation

The electric vector potential Fr resulting from the resonant cavity mode in the radiation

zone is

Fr(x, t) →
r/aÀ1

ivε0

4πr
ωmpA

(n)
mp(∞)SM

mp(θ)e
i(kmpr−ωmpt)

×Jm(k′mpa)
∫ 2π

0

dφ′

2π
φ̂′ cos[m(φ′ − φ0n)]e−ikmpa sin θ cos(φ−φ′)

∣∣∣ p=p0
m=m0

, (45)

where ωm0p0 = nωJ and km0p0 = ωm0p0/c outside the mesa, and SM
mp(θ) = 1 when the mesa is

suspended in vacuum. After setting φ̂′ = θ̂ cos θ sin(φ− φ′) + φ̂ cos(φ− φ′), and evaluating

the integral over φ′, one obtains

Fr(x, t) →
r/aÀ1

−(−i)m−1G(n)
mpε0

kmp

ei(kmpr−ωmpt)

4πr

×
[
θ̂ cos θ sin[m(φ− φ0n)]J+

m(kθ
mp)− φ̂ cos[m(φ− φ0n)]J−m(kθ

mp)
]∣∣∣∣ p=p0

m=m0

,(46)

where G(n)
mp is given by Eq. (17), kθ

mp = kmpa sin θ, and J±m(z) = [Jm+1(z)± Jm−1(z)]/2. It is

then straightforward to obtain EFr(x, t), which is given by Eq. (16).

D. Vector potentials and surface currents for rectangular mesas

For the rectangular mesas studied in Sec. VII, A(x, t) and F (x, t) in spherical coordinates

are given in the radiation zone by

A(x, t) → µ0ẑṽ

8πr

∞∑

n=1

JJ
n ein(kJr−ωJ t)SJ

n (θ)χn, (47)

χn(θ, φ) = cos Xn
sin Yn

Yn

+ cos Yn
sin Xn

Xn

, (48)

F (x, t) → − ε0ṽ

16πr

∞∑

n=1

Ẽ0ne
in(kJr−ωJ t)SM

n (θ)(x̂Mx
n + ŷMy

n), (49)
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Mx
n = − sin Yn

∑

σ=±
σeiσnπxn/w sin(Xn,σ)

Xn,σ

, (50)

My
n =

sin Yn

Yn

∑

σ=±
eiσXn sin

(nπ

2
+

σnπxn

w

)
, (51)

where Xn = (knw/2) sin θ cos φ, Yn = (kn`/2) sin θ sin φ, knw = nπ/nr, Xn,σ = nπ/2 + σXn,

ṽ = w`h, SM
n (θ) = SJ

n (θ) = 1 for no substrate, x̂ = r̂ sin θ cos φ + θ̂ cos θ cos φ − φ̂ sin φ,

ŷ = r̂ sin θ sin φ + θ̂ cos θ sin φ + φ̂ cos φ, and xn appears in Eq. (28).

The quantities present in the expression for the output power intensity from the combined

electric and magnetic surface current density sources follow. For the portion of the output

power resulting from the uniform portion of JS, Eqs. (47) and (48) are sufficient. The

part of the combined output arising from MS is more complicated, and the combination

can be either coherent or incoherent, as for the output from cylindrical mesas. When the

combination is coherent, we assume that Hy(x
′ = ±w/2) = 0 is maintained along both

lengths of the mesa, but the output power P (xn) is evaluated when xn is either 0 or w/n

for n odd, or when xn = ±w/2n for n even. When the output from the two sources is

incoherent with respect to one another, one may average P (xn) in two models. In Model I,

it is assumed that Hy(x
′ = ±w/2) = 0 is maintained along both lengths of the mesa, so that

〈P (xn)〉I = 1
2
[P (0)+P (w/n)] for n odd, and 〈P (xn)〉I = 1

2
[P (w/2n)+P (−w/2n)] for n even.

In Model II, the boundary condition upon Hy is relaxed, and one averages P (x, n) over all xn

values that preserve the wave vector within the mesa, 〈P (xn)〉II = (n/2w)
∫ w/n
−w/n P (xn)dxn.

In both models, the average output power is characterized by three functions C i
n(θ, φ),

Di
n(θ, φ), and Ei

n(θ, φ) for i = I and II. For Model I, CI
n = A2

n, DI
n = B2

n, and EI
n = 2AnBn,

where for n either odd or even,

An = sin Yn

∑

σ=±

σn sin(Xn,σ)

Xn,σ

, (52)

Bn = 2
sin Yn

Yn

sin
(nπ

2
+ Xn

)
. (53)

For Model II,

CII
n = sin2 Yn

∑

σ=±

(sin(Xn,σ)

Xn,σ

)2
, (54)

DII
n =

sin2 Yn

Y 2
n

(
1− (−1)n cos(2Xn)

)
, (55)

EII
n = 2

sin2 Yn

Yn

∑

σ=±

σ sin2(Xn,σ)

Xn,σ

, (56)
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where Xn, Yn, and Xn,σ are given following Eq. (51).
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[31] T. Mochiku and K. Kadowaki, Physica C 235-240, 523 (1994).

[32] T. Mochiku, K. Hirata and K. Kadowaki, Physica C 282-287, 475 (1997).

[33] P. Barbara, A. B. Cawthorne, S. V. Shitov, and C. J. Lobb, Phys. Rev. Lett. 82, 1963 (1999).

[34] P. Barbara, A. B. Cawthorne, S. V. Shitov, and C. J. Lobb, Phys. Rev. B 60, 7575 (1999).

[35] B. Vasilic̀, S. V. Shitov, C. J. Lobb, and P. Barbara, Appl. Phys. Lett. 78, 1137 (2001).

35


