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Abstract

It is unrealistic to formulate the problems arising under uncertain environments as

deterministic optimization problems which assume that their modeling parameters

were given and fixed. Uncertainty should be taken into consideration. Uncertainty

can also invite a risk of incurring a unexpectedly large loss. Risk measure would be

crucial to develop a useful optimization technique to avert the risk. Among most

preferable risk measures in financial risk management are the Value-at-Risk (VaR)

and the Conditional Value-at-Risk (CVaR). We consider three kinds of stochastic

programming problems where the VaR or CVaR is minimized for attaining an opti-

mal decision.

Firstly, we consider the CVaR minimization in the context of the well-known

newsvendor problem, which is originally formulated as the maximization of the

expected profit. Under mild assumptions on the probability distribution of demand

for product, we provide an analytical solution or a linear programming formulation

for the case where the analytical solution is not available. Numerical examples are

also exhibited, clarifying the difference among the models analyzed in this thesis,

and demonstrating the efficiency of the linear programming solutions.

Secondly, we study the VaR minimization with a finite number of scenarios.

The nonconvex feasible set makes the problem intractable, so that we propose to

approximate the feasible set by the difference of two convex sets (D.C. set), a new

conservative approximation. We show that it is formulated as a D.C. optimization

problem whose complexity is independent of the number of scenarios. We propose

a simplicial branch-and-bound algorithm for a solution of the problem, and report

some numerical experiments.

Thirdly, we study the constant rebalancing strategy for a multi-period portfolio

optimization with transaction cost subject to CVaR constraints. In general this
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problem is difficult to solve due to the nonconvexity. Nonlinearity of the transaction

cost and CVaR constraint makes things worse, and a locally optimal solution may

not be reached via a state-of-the-art nonlinear programming solver. As a practical

solution, we propose a local search algorithm where linear approximation problems

and nonlinear equations are iteratively solved. Computational results are presented,

showing that the proposed algorithm attains a good solution in practical time.
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Notations

Throughout this thesis, we use the following notations.

notation definition and explanation

IR set of real numbers

IRn set of n dimensional real column vectors

IR+ set of nonnegative real numbers

a>, A> transposed vector of a, transposed matrix of A

|A| cardinality of set A

min A minimum number of set A

max A maximum number of set A

0 column vector of zeros of an appropriate dimension

1 column vector of ones of an appropriate dimension

E[X̃] expected value of random variable X̃

Prob F probability of event F

1lA indicator function of set A, i.e., 1lA(x) :=





1 if x ∈ A

0 if x 6∈ A

[ ]+ plus function, i.e., [ x ]+ := max{0, x}
exp exponential function

log logarithm function

int A interior of set A

∇f gradient of function f

xi





Chapter 1

Introduction

Mathematical formulation of real world problems invariably includes uncertain pa-

rameters. Only their stochastic properties are available from empirical data or are

anticipated as a mathematical assumption, hence it would pose a risk of making

irrelevant and even wrong decisions to assume inattentively that those parameters

were given and fixed. This fact makes stochastic programming an absolutely vi-

tal approach to optimization in diverse areas. In this chapter, we briefly explain

stochastic programming and discuss several modeling techniques and approaches to

a solution.

1.1 Motivation for Stochastic Programming

The research field of optimization has remarkably developed for decades since Dantzig’s

monumental work [24]. We are now able to solve large scale optimization problems

efficiently owing to the improvement of optimization algorithms and their implemen-

tation techniques as well as the recent progress in computer technologies. Observing

phenomena in the real world, finding problems, formulating as optimization prob-

lems and then solving for an optimal solution is now a very helpful engineering

process for decision makers of central and local governments, companies of various

kinds. Optimization problems thus constructed usually include parameters that are

uncertain by nature, such as demand of inventory, return of financial assets and the

like. However we often neglect the unavoidable uncertainty inherent in those model-

ing parameters and assume that their values are fixed and known in advance. This is
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2 1 Introduction

clearly not a practical method because the optimal solution to be obtained is unlikely

to be an efficient solution. Thus the problems should be solved with uncertainty

of parameters into consideration, i.e., as a stochastic programming problem. There

have been proposed a good many stochastic models and methods (e.g., [41, 76]).

Among them we will survey three stochastic programming problems in the sub-

sequent section: News Vendor Problem, Probabilistically Constrained Problem and

Multi-Period Portfolio Optimization Problem.

1.2 Background, Purpose and Results of the The-

sis

In decision making in the presence of uncertainty, avoiding unacceptably large loss

should be given the first priority. A natural question would be what risk measure

is appropriate to evaluate the large loss. Among various risk measures proposed so

far, the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR) should be

best suited to this purpose. In this thesis we will apply these two risk measures to

three different stochastic programming problems and develop a solution method for

each. We explain the background, purpose and results for the three problems in the

following subsections.

1.2.1 Newsvendor Solutions via Conditional Value-at-Risk

Minimization

Suppose that a manager has to place an order every day for a product that is subject

to uncertain demand and becoming almost worthless on the next day. This situ-

ation is well formulated as the classic newsvendor model. It offers a solution that

maximizes the daily expected profit or minimizes the daily expected cost. However,

looking at the daily expected profit alone is not satisfactory from a practical view-

point because it does not pay attention to the risk of potential and possibly large

loss. An alternative scheme is to attain a predetermined target profit in a some-

what high probability, but this scheme may still result in an unacceptably large

loss. To reduce such a risk, some researchers have proposed to minimize the stan-
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dard deviation of profit (e.g., [50]), which originates from the mean-variance model

of Markowitz [53].

The profit below the target level is a risk to hedge, but that above the target

level is not. Therefore, minimizing a downside risk measure that captures a risk of

the profit going down to some target level is more appealing than minimizing the

standard deviation. For example, Lau [50] and Lau and Lau [49] examine a model

which maximizes the probability of exceeding a predetermined fixed target profit,

whereas Parlar and Weng [67] consider the expected profit in place of the fixed target

profit. These objectives are intuitively comprehensible, but their maximization leads

to a nonconvex optimization problem, and accordingly, their objectives are very

difficult to achieve for general distribution functions.

We propose to adopt the conditional value-at-risk (CVaR), which has been widely

used recently in the area of inventory management (e.g., [1, 9, 21, 60]), as the down-

side risk measure. The CVaR is a risk measure with preferable properties, namely, it

is coherent ([4]) and consistent with the second order stochastic dominance ([69, 65]).

These properties are known to be equivalent to some axiomatization of rational in-

vestors’ behavior under uncertainty. In particular, the consistency with the stochas-

tic dominance implies that minimizing the CVaR never conflicts with maximizing

the expectation of any risk-averse utility function ([65]). Some researchers, e.g.,

Eeckhoudt et al. [28], treat the risk-aversion directly through the newsvendor’s util-

ity function. However, utility function is too conceptual and difficult to identify in

practice, so that the use of risk measures has advantage over that of utility functions.

In financial portfolio management as in [74], the return from an asset portfolio

is usually represented as a linear function of the portfolio. This is why the standard

deviation of the return results in a convex quadratic function. Meanwhile, the profit

function in the newsvendor problem is not linear in the order quantities, so that

minimizing the standard deviation of the profit ends up as a nonconvex optimization.

On the contrary, the CVaR minimization problem has convex structure as long as

the profit function is concave or, equivalently, the cost function is convex. Many

researchers introduce the standard deviation of the profit in order to capture the

profit variation (e.g., [50]) and develop a CAPM by following the modern portfolio

theory (e.g., [2]).



4 1 Introduction

In this thesis, we first show that the downside risk measure preserves the con-

vexity, and the resulting risk minimization problem becomes a convex program. We

introduce two CVaR measures and achieve several analytical results by making use

of this nice structure. More specifically, for the problem of a single product with no

constraints, a closed form solution or a simple numerical solution method is derived.

We also demonstrate interesting properties of the solutions. We show that the prob-

lem is reformulated as a linear program when multiple products under constraints

are dealt with and the demand distribution is given as a finite number of scenarios.

1.2.2 α-Conservative Approximation for Probabilistically Con-

strained Convex Programs

A constraint is said to be a probabilistic constraint when it requires a condition be

met with a certain probability. Since Charnes, Cooper and Symonds [20] introduced

a model involving probabilistic constraints, enormous number of variations have been

studied (e.g., [57, 71]). Among them all, convex minimization with a probabilistic

constraint, which is called probabilistically constrained convex program (PCCP) is the

most important problem. The methods proposed to solve general PCCP problems

can be roughly categorized into three types:

(a) nonlinear programming methods,

(b) scenario approximation based on Monte Carlo sampling techniques, and

(c) conservative approximation (see Section 2.2 for detailed explanation).

Type (a) is a numerical method using nonlinear optimization techniques, and

has been intensively studied for the so-called “random right-hand side” problems

(see [27] and references therein). Convexity of the problem is necessary for most of

the methods to work, and the gradient of the constraint function is indispensable

for some of the methods. Consequently, the methods of this type are not a favorite

to be chosen in solving general PCCP.

Type (b) collects a finite number of realizations of the random variables in the

model, and builds a convex approximation of the problem by replacing the proba-
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bilistic constraint with convex constraints, each of which corresponds to a realization

of the random variables. See for example Calafiore and Campi [16, 17].

Type (c) builds a tractable approximation problem by replacing the feasible set

of PCCP by a smaller set contained in it. In this sense it is a conservative approach.

Among them are Ben-Tal and Nemirovski [7], Bertsimas and Sim [8], Nemirovski

[62], and Nemirovski and Shapiro [63]. This conservative approach often faces a

criticism that the solution is excessively conservative, which is the drawback shared

by type (b) when a large number of realizations are used. This is illustrated by a

numerical example given in Nemirovski and Shapiro [63] where the obtained solution

satisfies the condition in probability 99% while it is required to satisfy in 95%.

One of the most well-known and practically important examples of the PCCP is

the minimization of the Value-at-Risk (VaR) of a financial portfolio. In spite of the

several theoretical drawbacks of VaR as a risk measure (e.g., [3]), much attentions

still have been paid to the VaR minimization. Though the VaR minimization results

in a convex optimization, known as the second-order cone optimization, when the

underlying loss follows a normal distribution, it is in general a nonconvex optimiza-

tion. Typically, the VaR minimization can be formulated as a 0-1 mixed integer

program (MIP) when the underlying loss distribution is given by a finite number of

scenarios.

Various approaches have been proposed for the VaR minimization. Firstly,

heuristic procedures have been proposed in several papers such as the threshold

accepting heuristic by Gilli and Këllezi [35], the SP-A model by Puelz [72], the

smoothing method by Gaivoronski and Pflug [34], the continuation method by

Verma [82], and the CVaR minimization-based algorithms by Larsen, Mausser and

Uryasev [48]. Secondly, computationally tractable approximation based on robust

optimization techniques has been studied by El Ghaoui, Oks and Oustry [29], and

Natarajan, Pachamanova and Sim [61]. Finally, deterministic global optimization

approaches have also been explored. For example, Pang and Leyffer [66] formulate

this problem as a linear program with linear complementarity constraints and de-

velop a branch-and-bound procedure, and Benati and Rizzi [5] use a mixed integer

linear programming formulation for the mean-VaR portfolio program. Furthermore,

various studies on the VaR are collected on the web site GloriaMundi.org [36].
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Motivated by [63], we consider a conservative approximation of the PCCP with

a conservativeness parameter (or approximation accuracy), and apply it to the VaR

minimization problem. The resulting problem has a nonconvex feasible region de-

fined by the difference of two convex constraint functions. This formulation is known

as the D.C. formulation, and several global or local solution algorithms have been

developed (see Tuy [81], for example). A nice feature of the proposed D.C. formu-

lation is that the complexity of the problem is almost independent of the number of

scenarios, which contrasts with the fact that the typical MIP formulation requires

0-1 variables as many as the scenarios. We propose a branch-and-bound algorithm,

and report some comparative computational results, presenting the performance and

characteristics of the proposed algorithm.

1.2.3 Constant Rebalanced Portfolio Optimization under Non-

linear Transaction Costs

Multi-Period Portfolio Optimization. Since the seminal work of Markowitz [53],

optimization methods for portfolio selection have been actively studied and are play-

ing an important role in financial decision makings (see, e.g., [22]). Since the early

stage, the importance of the multi-period model has been recognized for long-term

portfolio management (e.g., [54]). Multi-period portfolio optimization was first in-

troduced as a stochastic control problem (e.g., [55, 75, 56] and [40] for detailed refer-

ences). Closed-form solutions to those problems need very strong assumptions, and

cannot be generalized in the presence of market frictions such as a transaction cost.

Moreover, when it comes to a numerical implementation, heavy computation burden

should be resolved [15, 14]. Therefore, alternative stochastic programming models

have been proposed for multi-period portfolio optimization (e.g., [47, 58, 25, 19]).

Mainly studied models, e.g., in [59, 85], employ a scenario tree for representing the

uncertainty of asset values. However, to improve the discretization accuracy, the

size of the optimization problem grows exponentially as pointed by Ermoliev and

Wets [30]. On the other hand, simulated path model, in which scenarios are rep-

resented by sample paths generated by a Monte Carlo simulation method, yields a

better accuracy in describing uncertainty [38]. Combining the advantages of the two

approaches, Hibiki [38] proposed the hybrid model, which is designed not only to
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describe uncertainty on a simulated path structure but also to enable one to make

conditional decisions in a tree structure. In this thesis, taking the compatibility with

constant rebalancing strategy into account, the simulated path model is adopted.

Constant Rebalancing Strategy Among investment strategies for the long-

term asset management, two extreme policies are buy-and-hold and periodical re-

balancing (see [68] for detailed discussion on various investment strategies). Above

all else constant rebalancing (in other words, fixed mix, constant mix and the like)

is the most popular in the latter. This rebalancing strategy requires purchase and

sale of assets at the beginning of each period so that investment proportion would

be restored to the original one; and the constant rebalancing is a kind of contrarian

investment strategy, which suggests to purchase assets with declining price and to

sell ones with rising price.

Solution to Constant Rebalanced Portfolio Optimization Multi-period port-

folio optimization with constant rebalancing strategy is relatively easy to solve in

case of log-optimal portfolio [23], in which the asymptotically optimal portfolio is

determined by maximizing the expected log return. However, it becomes a non-

convex problem and difficult to attain a globally optimal solution in general when

a risk measure (e.g., variance of returns) is introduced [52]. In addition, even any

locally optimal solutions of large problems may not be reached via state-of-the-art

nonlinear programming solvers. Maranas et al. [52] considered multi-period mean-

variance portfolio optimization with constant rebalancing strategy for long-term

financial planning. They proposed a rectangular branch-and-bound algorithm in

order to globally solve this problem. By enjoying the fact that the number of assets

is only up to nine, their deterministic algorithm attains a globally optimal solution

in practical time. However, they do not consider the transaction costs and cannot

easily deal with it in their framework because introducing cost functions would pre-

vent the problem from having the compact representation they enjoyed. Hibiki [39]

proposed an iterative optimization algorithm by alternately fixing decision variables

for approximately solving the hybrid model with a fixed-proportion strategy. In

this strategy, investment proportions have the same value for all simulated paths

passing the same bundle of states. Although this algorithm works well by starting
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with a good initial solution, it may not work in the constant rebalanced portfolio

optimization due to the excessive reduction of degree of freedom in the problem.

Besides, transaction costs are not considered in [39].

Transaction Costs. Transaction costs have also been a subject of concerns in the

study on portfolio selection, and should be taken into consideration for successful

investing in practice. In particular, a large amount of transactions usually make as-

set price move in an unfavorable direction. Such an effect, known as market impact,

makes nonnegligible cost that institutional investors should incur. In this thesis, we

consider a convex cost function representing market impact. Among recent papers

on multi-period portfolio optimization under transaction costs are the model mini-

mizing one-sided deviation measure [70], the robust optimization approach [11] and

the policy optimization approach [18, 78]. However in those papers, constant rebal-

ancing strategy is not considered, and only linear transaction costs are considered.

Gaivoronski and Stella [34] proposed a log-optimal portfolio with transaction costs

for an adaptive portfolio selection policy. Zhang and Zhang [84] proposed a hybrid

model under linear transaction costs in which CVaR is employed as a risk measure,

and solved the resulting nonconvex program by applying a genetic algorithm.

We propose a local search algorithm for solving the constant rebalanced portfolio

optimization under nonlinear transaction costs. In this algorithm, linear approxi-

mation problems and nonlinear equations are iteratively solved via linear program-

ming solver and Newton’s method, respectively. In contrast to the use of nonlinear

programming solver, the proposed algorithm can provide a solution to the large

problem. Moreover, an incumbent solution can be improved better than the alter-

nating optimization [39]. The effectiveness of the proposed local search algorithm is

examined through computational experiments where the performance is compared

to the buy-and-hold strategy.

1.3 Organization of the Thesis

We discuss the stochastic programming in the next chapter, showing some typical

modeling techniques for treating uncertain quantities. We introduce probabilis-
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tically constrained convex program. Properties of risk measures VaR and CVaR

are also explained. In Chapter 3, CVaR is introduced to the classical newsvendor

problem, and closed form solutions of the unconstrained minimization of the two

different CVaRs are given. Furthermore, the case of multiple products is analyzed,

and when their demand follows a distribution on discrete supports, linear program-

ming formulations are presented. We show differences among the models through

several numerical experiments, and we see that the linear programs can be solved

efficiently on a personal computer. In Chapter 4, a new conservative approxima-

tion for probabilistically constrained convex program is proposed. We propose a

branch-and-bound algorithm for solving the new approximation problem of the VaR

minimization and present computational results, showing the comparative superior-

ity of the proposed approach. In Chapter 5, a mathematical description of a constant

rebalancing model under transaction costs is given, and the portfolio optimization

problems via CVaR are explained. We propose the local search algorithm for solv-

ing them, and present computational results, showing the comparative superiority

of the proposed approach and the constant rebalancing strategy. Several concluding

remarks are given in the last chapter.





Chapter 2

Stochastic Programming

A general form of optimization problem is formulated as follows:

minimize
x∈IRJ

f̂(x)

subject to ĝi(x) ≤ 0, i ∈ I := {1, ..., I}
x ∈ X,

(2.1)

where the function f̂ : IRJ → IR is called the objective function, and the set

{x ∈ IRJ | ĝi(x) ≤ 0, i ∈ I; x ∈ X},

is called the feasible region. In many real-life applications, there might be an uncer-

tainty about parameters involved in the functions f̂ and ĝi. In this case, we consider

the alternative optimization problem by introducing random variables. Let (Ω,F)

be a sample space, equipped with the sigma algebra F . We denote by ξ̃ = ξ(ω)

a d-dimensional real random vector and by Ξ (⊆ IRd) its support. We have the

following optimization problem under uncertain environment:

minimize
x∈IRJ

f(x, ξ̃)

subject to gi(x, ξ̃) ≤ 0, i ∈ I
x ∈ X,

(2.2)

where the functions f : IRJ×Ξ → IR and gi : IRJ×Ξ → IR model random outcomes.

However, Problem (2.2) is not clearly defined before knowing the realization of ξ̃

since the meanings of the objective as well as of the constraints are ambiguous.

Therefore, the functions f̂ and ĝi need to be defined as f̂(x) := F [f(x, ξ̃)] and

11
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ĝi(x) := Gi[gi(x, ξ̃)] so that the uncertain optimization problem (2.2) would be

reduced to the form of deterministic optimization problem (2.1). A common recipe

is to use the expectation as F and Gi:

minimize
x∈IRJ

E[f(x, ξ̃)]

subject to E[gi(x, ξ̃)] ≤ 0, i ∈ I
x ∈ X.

(2.3)

As far as the long-term performance is concerned, the expected value of the

objective function is appropriate. However, this approach disregards the risk of

incurring a large loss. In Section 2.4, we show risk-averse optimization approaches

by adopting several risk measures. In addition, we should notice that a feasible

solution of Problem (2.3) may not satisfy the original constraint ĝi(x, ξ̃) ≤ 0, i ∈ I
with high probability. Feasible approaches to the matter are Robust Optimization

(see Section 2.1) which forces the constraints to be satisfied for any realizations of

ξ̃, and Probabilistic Constraint (see Section 2.2) which compels a solution to satisfy

the constraints with certain probability. In Section 2.3, we also explain a Two-

Stage Problem where the penalty for not satisfying the constraints is added to the

objective function.

2.1 Robust Optimization

One remedy for the constraints including random variables in Problem (2.2) is a ro-

bust optimization approach where the constraint functions are defined as sup{gi(x, ξ) |
ξ ∈ Ξ} for i ∈ I.

Robust optimization problem is

minimize
x∈IRJ

f̂(x)

subject to sup{gi(x, ξ) | ξ ∈ Ξ} ≤ 0, i ∈ I
x ∈ X,

(2.4)

or equivalently:

minimize
x∈IRJ

f̂(x)

subject to gi(x, ξ) ≤ 0, ξ ∈ Ξ, i ∈ I
x ∈ X.

(2.5)
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Namely, a feasible solution of the problem should satisfy gi(x, ξ̃) ≤ 0, i ∈ I for any

realizations of ξ̃. We assume without loss of generality that the objective function is

not affected by uncertainty since the robust counterpart of Problem (2.2), which is

the minimization of the supremum of the objective value over Ξ, can be formulated

as:

minimize
(x,t)∈IRJ×IR

t

subject to sup{f(x, ξ)− t | ξ ∈ Ξ} ≤ 0

sup{gi(x, ξ) | ξ ∈ Ξ} ≤ 0, i ∈ I
x ∈ X.

(2.6)

When the functions gi as well as f̂ are convex in x for any fixed ξ ∈ Ξ, the robust

optimization problem is a convex minimization. However, the robust optimization

problem is intractable in general due to infinitely many constraints.

To present a framework of the robust optimization, we consider the following

linear programming problem including random parameters ãi:

minimize
x∈IRJ

c>x

subject to ã>i x ≥ bi, i ∈ I
x ∈ X,

(2.7)

where X is a polyhedron. We assume that any realization of the matrix ãi belongs

to the set Ai and refer to Ai as the uncertainty set.

It is shown in [6] that for any convex uncertainty set, the robust counterpart of

Problem (2.7) can be reformulated as a single convex programming problem. For

instance in the case of ellipsoidal uncertainty set, the robust counterpart of Problem

(2.7) is reduced to a second-order cone problem (e.g., [6]). Although the robust

optimization approach has the drawback of computational complexity, there is still

a case that the robust counterpart of a linear programming problem remains a linear

programming problem (e.g., [8, 10]).

To present the framework proposed by [8], we assume that every coefficient ãij is

subject to uncertainty, and its realization belongs to the interval [āij− âij, āij + âij].

We define the scaled deviation zij of parameter ãij from its nominal value āij as

zij =
ãij − āij

âij

. (2.8)
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The scaled deviation of a parameter always belongs to [−1, 1].

Then, the robust counterpart of Problem (2.7) is formulated as

minimize
x∈IRJ

c>x

subject to ā>i x + min

{
∑
j∈J

âijxjzij

∣∣∣∣∣ zi ∈ Zi

}
≥ bi, i ∈ I

x ∈ X,

(2.9)

where zi is the vector whose j-th element is zij, and Zi is defined as

Zi =

{
z ∈ IRJ

∣∣∣∣∣ |zj| ≤ 1, j ∈ J = {1, ..., J};
∑
j∈J

|zj| ≤ Γi

}
. (2.10)

The parameter Γi ∈ [0, J ] represents the degree of conservatism of the solution. The

degree of conservatism is mitigated when Γi < J , and the uncertain coefficients āi

would be constant vectors if Γi = 0.

Noting that âij ≥ 0, one has

min

{
∑
j∈J

âijxjzij

∣∣∣∣∣ zi ∈ Zi

}

= −max

{
∑
j∈J

âij|xj|zij

∣∣∣∣∣
∑
j∈J

zij ≤ Γi; 0 ≤ zij ≤ 1, j ∈ J
}

.

(2.11)

Applying the strong duality argument (see [8] for details), we then reformulate

Problem (2.9) as the following linear programming problem:

minimize
x,y,u,v

c>x

subject to ā>i x− Γiui −
n∑

j=1

vij ≥ bi, i ∈ I

ui + vij ≥ âijyj, i ∈ I, j ∈ J
−yj ≤ xj ≤ yj, j ∈ J
ui, vij ≥ 0, i ∈ I, j ∈ J
x ∈ X.

(2.12)

2.2 Probabilistic Constraint

In the robust optimization, the solution must satisfy the constraints for any real-

ization of random variables, and it is often too conservative for practical implemen-

tation. Compared to the robust optimization, probabilistic constraint (also called
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chance constraint) is more flexible since it forces the constraints to be satisfied with

certain probability.

Let β ∈ (0, 1) and βi ∈ (0, 1), i ∈ I = {1, ..., I} be parameters representing the

confidence level. In the case where I ≥ 2, the constraint

Prob{gi(x, ξ̃) ≤ 0} ≥ βi, (2.13)

is referred to as the individual probabilistic constraint, while the constraint

Prob{gi(x, ξ̃) ≤ 0, ∀i ∈ I} ≥ β, (2.14)

is referred to as the jointly probabilistic constraint. We here consider the jointly

probabilistic constraint.

Assuming that the objective function includes no uncertainty, probabilistically

constrained problem is formulated as follows:

minimize
x∈IRJ

f̂(x)

subject to Prob{gi(x, ξ̃) ≤ 0, ∀i ∈ I} ≥ β

x ∈ X.

(2.15)

The probabilistic constraint almost coincides with the robust constraint when β

is close to 1. In spite of this, the situation becomes more difficult for probabilistically

constrained problems as demonstrated below. A point x̄ ∈ IRJ is a feasible solution

to Problem (2.15) iff we find at least one event G ∈ F such that Prob G ≥ β and

gi(x̄, ξ(ω)) ≤ 0 for all ω ∈ G and i ∈ I. Therefore, if G ⊆ F is the collection

of all events G of F such that Prob G ≥ β, then the feasible set described by the

probabilistic constraint can be rewritten as

{x ∈ IRJ | Prob{gi(x, ξ̃) ≤ 0, ∀i ∈ I} ≥ β}
=

⋃
G∈G

⋂
ω∈G

{x ∈ IRJ | gi(x, ξ(ω)) ≤ 0, ∀i ∈ I}. (2.16)

Since the union of convex sets need not be convex, (2.16) implies that the feasible

region of Problem (2.15) may not be convex even if {x ∈ IRJ | gi(x, ξ(ω)) ≤ 0, ∀i ∈
I} is convex for every ω ∈ Ω. This is an undesirable property of the probabilistic

constraint compared with the robust constraint.

The following results are well-known.
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Proposition 2.1 (Section 1.5, Kall and Wallace [41])

Let the probability measure Prob have a density function φ. Then {x ∈ IRJ |
Prob{gi(x, ξ̃) ≤ 0, ∀i ∈ I} ≥ β} is convex if

• log φ is a concave function or φ−1/d is a quasi-concave function,

• gi(x, ξ) is convex jointly in both arguments x and ξ for all i ∈ I. ?

Proposition 2.2 (Section 1.5, Kall and Wallace [41])

Let the probability measure Prob have a density function φ. Then the feasible region

described by random right-hand-side probabilistic constraint {x ∈ IRJ | Prob{a>i x ≥
b̃i,

∀i ∈ I} ≥ β} is convex if log φ is a concave function or φ−1/d is a quasi-concave

function. ?

2.2.1 Solution to Random Right-Hand-Side Problem

Despite various computational methods proposed in the literatures, the general prob-

abilistically constrained problem is difficult to solve efficiently. One of the types of

efficiently solved problems is the so-called random right-hand-side probabilistically

constrained linear programming problem:

minimize
x∈IRJ

f̂(x)

subject to Prob{a>i x ≥ b̃i,
∀i ∈ I} ≥ β

x ∈ X,

(2.17)

where ai are constant vectors, and b̃i are uncertain parameters and X is a polytope.

In the following, H(x) is defined as H(x) := Prob{a>i x ≥ b̃i,
∀i ∈ I}.

Numerical techniques especially for solving the random right-hand-side proba-

bilistically constrained linear programming problem (2.17) have been developed. We

review two of the existing methods based on nonlinear programming methods by

following Dentcheva [27].

Cutting Plane Method One of the methods is based on the cutting plane tech-

nique. It is assumed that

• the objective function is linear, i.e., f̂(x) := c>x where c is a constant vector,
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• the constraint function H is quasi-concave,

• the constraint function H has a continuous gradient,

• the following Slater constraint qualification condition is satisfied: there exists

a vector x0 ∈ X such that

H(x0) > β. (2.18)

The underlying principle of the algorithm is to solve a sequence of approximating

linear programming problems and to approximate the feasible region by cutting off

the current solution. Under the above assumptions, algorithm steps are as follows.
¶ ³

Cutting Plane Method for Problem (2.17)

Step 0. [ initialization. ] Set P 1 ← X and k ← 1.

Step 1. [ Solution of LP problem. ] Solve the linear programming prob-

lem:

minimize
x∈IRJ

c>x subject to x ∈ P k.

Let xk be an optimal solution. If xk is a feasible solution to the original

problem, then stop, and xk is an optimal solution. Otherwise, go to Step

2.

Step 2. [ Addition of the cutting plane. ] Let λk be the largest λ ≥ 0

such that x0 + λ(xk − x0) is feasible and set

yk := x0 + λk(xk − x0).

Then define

P k+1 := {x ∈ IRJ | x ∈ P k, ∇H(yk)(x− yk) ≥ 0}.

Set k ← k + 1 and go to Step 1.
µ ´

Logarithmic Barrier Function Method If the logarithm of the constraint func-

tion, i.e., log H(x) is concave, then we can solve Problem (2.17) by utilizing loga-

rithmic penalty functions. Let {`k} be a decreasing sequence of positive numbers
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such that lim
k→∞

`k = 0 and consider the following convex problem:

minimize
x∈IRJ

f̂(x)− `k log(H(x)− β)

subject to x ∈ X.
(2.19)

We solve a sequence of Problems (2.19) in this method. Let xk be an optimal

solution to Problem (2.19). Then the sequence {f(xk)} converges to the optimal

value of Problem (2.17) as k →∞ under the following assumptions:

• the objective function f̂ is continuous and convex.

• the constraint function H is continuous.

• the logarithm of the constraint function, i.e., log H is concave.

• the Slater constraint qualification condition (2.18) is satisfied.

2.2.2 Solution to Probabilistically Constrained Convex Pro-

gram

In this thesis, we focus on a probabilistically constrained convex program (PCCP).

We assume in the problem that

• the function f̂(x) is convex in x,

• the set X is closed convex, and

• the scalar-valued function g(x, ξ) is convex in x for each ξ ∈ Ξ.

PCCP is formulated as follows:

(PCCP)

minimize
x∈IRJ

f̂(x)

subject to Prob
{

g(x, ξ̃) > 0
}
≤ 1− β

x ∈ X,

(2.20)

and the probability

VP(x) := Prob
{

g(x, ξ̃) > 0
}

, (2.21)

is called the violation probability. The function g is assumed to be scalar-valued

without loss of generality. Indeed, the jointly probabilistic constraint (2.14) where
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the functions gi(x, ξ) are convex in x for any fixed ξ can be converted into the

constraint in PCCP (2.20) by putting g(x, ξ) := max{gi(x, ξ) | i ∈ I}.
Despite the convexity of functions f̂ and g, this problem has the nonconvex

feasible region in general, and consequently, is intractable. In particular, it can have

multiple local minima when the support of the associated probabilities is given by

finitely many scenarios.

Scenario Approximation We explain a scenario approximation method for solv-

ing PCCP (2.20). Let us assume that we have a sample { ξs | s ∈ S = {1, ..., S}} of

S realizations of the random vector ξ̃. Then, we consider the following problem:

minimize
x∈IRJ

f̂(x)

subject to g(x, ξs) ≤ 0, s = 1, ..., S

x ∈ X.

(2.22)

When the confidence level β is close to 1, Problem (2.22) can be regarded as

an approximation of Problem (2.15). Furthermore if the number of constraints S is

very large, it is expected to see that a feasible solution of Problem (2.22) becomes

a feasible solution of Problem (2.20) with high probability. Moreover, the feasible

region of Problem (2.22) is convex since the intersection of convex sets is convex.

However, another crucial problem would be how to determine the number S, i.e.,

how many scenarios are needed in order to guarantee that the solution of Problem

(2.22) satisfies the probabilistic constraint of Problem (2.20). Calafiore and Campi

[16, 17] showed the following results on a feasible solution xS of Problem (2.22):

Theorem 2.3 (Calafiore and Campi [17])

E
[
Prob{g(xS, ξ̃) ≤ 0}

]
≥ 1− J

S + 1
.

?

Theorem 2.4 (Calafiore and Campi [16])

For ε ∈ (0, 1), if

S ≥ 2

1− β
log

1

ε
+ 2J +

2J

1− β
log

2

1− β
,

then Prob{g(xS, ξ̃) ≤ 0} ≥ β with probability higher than 1− ε. ?
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The intrinsic drawback of this type of approximation is that the obtained solution

is too conservative in terms of the violation probability VP (2.21), that is, the

violation probability of the obtained solution can be much smaller than 1 − β.

Furthermore Problem (2.22) has many nonlinear constraints, which makes it difficult

to solve.

Convex Conservative Approximation In Nemirovski and Shapiro [63], a con-

vex conservative constraint is adopted in place of the probabilistic constraint of

Problem (2.20). We here describe their approach for PCCP (2.20).

Let ψ : IR → IR be any nonnegative valued, nondecreasing function satisfying

ψ(0) ≥ 1. For a scalar valued random variable Z̃, one then has

E
[
ψ(Z̃)

]
≥ E

[
1l[0,+∞)(Z̃)

]
= Prob{Z̃ ≥ 0} ≥ Prob{Z̃ > 0}. (2.23)

From this relation, by taking Z̃ = g(x, ξ̃), it is clear that

{
x ∈ IRJ

∣∣∣E
[
ψ(g(x, ξ̃))

]
≤ 1− β

}
⊆

{
x ∈ IRJ

∣∣∣ VP(x) ≤ 1− β
}

.

By restricting ψ to a convex function, ψ(g(x, ξ)) is convex in x for any fixed ξ, and

E
[
ψ(g(x, ξ̃))

]
is convex in x due to the property of expectation. Consequently,

by replacing the probabilistic constraint in Problem (2.20) with the constraint

E
[
ψ(g(x, ξ̃))

]
≤ 1 − β, we obtain a convex conservative approximation problem

as

(CCAP)

minimize
x∈IRJ

f̂(x)

subject to E
[
ψ(g(x, ξ̃))

]
≤ 1− β

x ∈ X.

It should be noted that the feasible region is always contained in that of Problem

(2.20), and accordingly, any feasible solution to this problem is feasible to Problem

(2.20).

Nemirovski and Shapiro [63] propose a tighter convex conservative approximation

as follows. From the relation (2.23) we also have

E
[
ψ

(Z̃

t

)]
≥ Prob

{Z̃

t
> 0

}
= Prob

{
Z̃ > 0

}
,
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for any positive scalar value t. Similarly, by taking Z̃ = g(x, ξ̃), we see that the

following condition is also a conservative constraint:

E
[
ψ

(1

t
g(x, ξ̃)

)]
≤ (1− β).

By multiplying the above relation by t > 0 and by exploiting the fact that a perspec-

tive operation preserves convexity (see Section 3.2.6, [13] for instance), we obtain

the following convex conservative constraint for PCCP (2.20):

inf
{

tE
[
ψ

(1

t
g(x, ξ̃)

)]
− t(1− β)

∣∣∣ t > 0
}
≤ 0. (2.24)

Though the left-hand side of the constraint (2.24) is the infimum over t > 0, we

solve the resulting conservative approximation problem via an one-level (nonlinear)

convex optimization:

minimize
(x,t)∈IRn×IR

f̂(x)

subject to tE
[
ψ

(1

t
g(x, ξ̃)

)]
− t(1− β) ≤ 0

t ≥ 0

x ∈ X.

(2.25)

A criticism of this approach is that it often provides too conservative solutions.

In order to overcome this drawback, they propose to replace β iteratively with a

smaller value β− in (2.25) and solve this problem until the violation probability

becomes close to 1 − β. Although this strategy may succeed in finding a feasible

solution to the original problem (2.20) with a higher violation probability, it is highly

probable that the obtained objective value is much worse than the optimal value of

the original problem (2.20). In Chapter 4, we propose a new conservative constraint

and to solve the corresponding conservative approximation problem by applying

global optimization algorithms.

2.3 Two-Stage Problem

As we have stated, it is not appropriate to take only the expected value of the

constraint function in Problem (2.2) into consideration since the solution to be

obtained may not satisfy the original constraints with sufficiently high probability.
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In this section, we will give a brief introduction of the two-stage problem by following

Birge and Louveaux [12].

The problem is the following linear programming problem including random

variables:

minimize
x∈IRJ

c>x

subject to Ax ≥ b

T̃x = h̃

x ≥ 0,

(2.26)

where c and b are constant vectors, and A is a constant matrix, and matrix T̃ and

vector h̃ are subject to uncertainty. We define the recourse problem as follows:

Q̃(x) := min
y
{q>y | Wy = h̃− T̃ x, y ≥ 0}, (2.27)

where q is a constant vector, and W is a constant matrix, and y is a second-stage

decision variable. Q̃(x) is referred to as the recourse cost function which represents

the penalty for not satisfying the constraint T̃ x = h̃.

Linear two-stage problem is formulated as follows:

minimize
x∈IRJ

c>x + E[Q̃(x)]

subject to Ax ≥ b

x ≥ 0

Q̃(x) = min
y
{q>y | Wy = h̃− T̃ x, y ≥ 0},

(2.28)

where the sum of the original objective function c>x and the expected value of the

recourse cost Q̃(x) is minimized.

Although Problem (2.28) is a sort of two-level optimization problem, Problem

(2.28) becomes a convex problem under a weak condition. L-Shaped Method, which

is a version of the well-known Bender’s decomposition method (see e.g., [12, 41]), is

one of the solution methods under the assumption that the uncertain parameters T̃

and h̃ follow discrete distribution. The classic newsvendor problem we will consider

in Chapter 3 is a special case of Problem (2.28).
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2.4 Risk Averse Optimization via Value-at-Risk

and Conditional Value-at-Risk

In this section, we discuss the two kinds of typical risk measures, the value-at-

risk (VaR) and the conditional value-at-risk (CVaR), which are widely adopted in

stochastic programming problems. We see that the CVaR satisfies various desirable

properties as a risk measure.

2.4.1 Properties of VaR and CVaR

Following Rockafellar and Uryasev [74], we introduce the CVaR.

Let L(x, ξ̃) denote a loss which is a random variable for each x, and let us denote

the distribution function of L by FL(η |x) := Prob
{
L(x, ξ̃) ≤ η

}
. Anything can

be adopted as the loss L if we prefer it to be small.

For β ∈ [0, 1), we define the β-value-at-risk of the distribution by

VaRβ(x) := min {m |FL(m|x) ≥ β } .

By definition, the loss L exceeds VaRβ with only probability lower than 1− β.

Rockafellar and Uryasev [74] introduce the β-tail distribution function to focus

on the upper tail part of the loss distribution as

F β
L (η |x) :=





0 for η < VaRβ(x),

FL(η |x)− β

1− β
for η ≥ VaRβ(x).

Using the expectation operator Eβ[·] under the β-tail distribution F β
L , we define the

β-conditional value-at-risk of the loss L by

CVaRβ(x) := Eβ

[
L(x, ξ̃)

]
.

Denoting the expectation under the original distribution FL by E[·], the following

relation is shown in [74]:

E[L(x, ξ̃) | L(x, ξ̃) ≥ VaRβ(x) ] ≤ CVaRβ(x) ≤ E[L(x, ξ̃) | L(x, ξ̃) > VaRβ(x) ],

(2.29)
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Figure 2.1: Value-at Risk and Conditional Value-at-Risk

which implies that CVaRβ is approximately equal to the conditional expectation of

L which exceeds the threshold VaRβ(x) for fixed x. See Figure 2.1.

In order to minimize CVaRβ(x), Rockafellar and Uryasev [74] introduce an aux-

iliary function Gβ : IRJ+1 → IR defined by

Gβ(x,m) := m +
1

1− β
E

[
[L(x, ξ̃)−m]+

]
. (2.30)

They show that Gβ is convex with respect to m and provide the following charac-

terization of minimizing CVaRβ(x) in terms of the auxiliary function:

minimize
x∈X

CVaRβ(x) = minimize
(x,m)∈X×IR

Gβ(x,m), (2.31)

This relation shows that the minimal value CVaRβ(x∗) can be achieved by mini-

mizing the function Gβ(x,m) with respect to x ∈ X and m ∈ IR, simultaneously.

Furthermore, it is shown in [74] that, with an optimal solution (x∗,m∗) of the right-

hand side optimization problem in (2.31), x∗ is an optimal solution of the left-hand

side one, and m∗ is close (sometimes equal) to VaRβ(x∗).

Proposition 2.5 (Rockafellar and Uryasev [74]) The function (2.30) is convex in

(x,m) if the loss function L(·, ξ) from IRJ to (−∞,∞] is convex. ?

We assume that there is a finite number of realizations of random variable ξ̃ and

denote by ξs a realization and by ps the occurrence probability of s ∈ S. Then,

β-CVaR is evaluated by the optimal value of the following optimization problem
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[74]:

minimize
(x,m,fi )∈X×IR×IRS

m +
1

1− β

∑
s∈S

psτs

subject to τs ≥ L(x, ξs)−m, τs ≥ 0, s ∈ S.

(2.32)

When the loss function L(·, ξ) is linear, Problem (2.32) is a linear programming

problem and can be solved efficiently.

In the following, we will explain stochastic dominance and coherent risk measure,

showing that CVaR has some theoretically desirable properties of risk measure which

VaR doesn’t exhibit (e.g., [69, 74]).

Stochastic Dominance Stochastic dominance refers to the relations that may

hold between a pair of random variables. A random variable X̃ is said to dominate

another random variable Ỹ in the first order, which we denote by X̃ º(1) Ỹ , if

FX̃(η) ≤ FỸ (η) for all η ∈ IR, (2.33)

where FX̃(η) = Prob{X̃ ≤ η} denotes the distribution function of a random variable

X̃. It is known that the first order stochastic dominance relation X̃ º(1) Ỹ is

equivalent to the relation

E[u(X̃)] ≥ E[u(Ỹ )] for all non-decreasing functions u : IR → IR. (2.34)

The second order stochastic dominance relation X̃ º(2) Ỹ is defined as
∫ η

−∞
FX̃(φ) dφ ≤

∫ η

−∞
FỸ (φ) dφ for all η ∈ IR, (2.35)

or equivalently,

E[u(X̃)] ≥ E[u(Ỹ )] for all non-decreasing concave functions u : IR → IR. (2.36)

The risk-averse utility function is non-decreasing and concave, therefore risk-averse

expected-utility maximizers prefer a random return X̃ to Ỹ when X̃ º(2) Ỹ .

Proposition 2.6 (Pflug [69]) Suppose that X̃ º(1) Ỹ for two random variables X̃

and Ỹ . Then the β-VaR of X̃ is no less than the β-VaR of Ỹ , and the β-CVaR of

X̃ is no less than the β-CVaR of Ỹ .

For two random variables X̃ and Ỹ if X̃ º(2) Ỹ then the β-CVaR of X̃ is no

less than the β-CVaR of Ỹ . ?
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Coherent Risk Measure We consider a random loss Z̃ = Z(ω) being an element

of a linear space Z of F -measurable functions defined on the sample space (Ω,F).

A risk measure ρ is said to be coherent risk measure for Z if it satisfies the following

conditions:

Axiom 2.7 (Convexity)

ρ(λZ̃1 + (1− λ)Z̃2) ≤ λρ(Z̃1) + (1− λ)ρ(Z̃2) for all Z̃1, Z̃2 ∈ Z and all λ ∈ [0, 1]. ?

Axiom 2.8 (Monotonicity)

If Z̃1, Z̃2 ∈ Z and Z1(ω) ≥ Z2(ω) for a.e. ω ∈ Ω, then ρ(Z̃1) ≥ ρ(Z̃2). ?

Axiom 2.9 (Translation Equivalence)

If α ∈ IR and Z̃ ∈ Z, then ρ(Z̃ + α) = ρ(Z̃) + α. ?

Axiom 2.10 (Positive Homogeneity)

If λ > 0 and Z̃ ∈ Z, then ρ(λZ̃) = λρ(Z̃). ?

These conditions describe the concept of rational investors under uncertainty,

and therefore desirable risk measures should satisfy them.

Proposition 2.11 (Pflug [69]) β-CVaR is a coherent risk measure. ?

In Chapter 3, we apply the CVaR to the classical newsvendor problem and devise

solution method.

2.4.2 Portfolio Optimization

Portfolio optimization problem is to determine an investment proportion of initial

wealth into financial assets. In general, the return of financial assets includes un-

certainty, and accordingly risk measures are considered for averting a large loss of

portfolio value.

Markowitz [53] is best known for his pioneering work in Modern Portfolio Theory.

Portfolio optimization problem is usually formulated via two-parameter approach as

in the Markowitz’s mean-variance model [53] where the two parameters represent
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expected value and variance of a portfolio return:

minimize
w∈IRJ

w>Σw

subject to r̄>w = R

w ∈ W,

(2.37)

where

w : investment proportion (decision variables), w ∈ IRJ

Σ : covariance matrix of the random return r̃ of financial assets (given), Σ ∈ IRJ×J

r̄ : expected return of financial assets (given), r̄ ∈ IRJ

R : target return (given), R ∈ IR

W : set of feasible investment proportions, W ⊆ {w ∈ IRJ | 1>w = 1}

Although Problem (2.37) is convex quadratic programming problem, it becomes

intractable when the number of investable assets, J grows. Suppose that we have a

sample of S realizations of the random vector r̃, and denote by rs the realizations

and by ps the occurrence probability of s ∈ S. Then compact factorization of the

mean-variance model by Konno and Suzuki [44] is as follows:

minimize
(w,z)∈IRJ×IRS

∑
s∈S

psz
2
s

subject to zs − (rs − r̄)>w = 0, s ∈ S
r̄>w = R

w ∈ W.

(2.38)

Problem (2.38) has quadratic terms as many as S. Therefore it is solved effi-

ciently if the number of scenarios S is not very large.

Konno and Yamazaki [43] also proposed a mean-absolute deviation model:

minimize
(w,y)∈IRJ×IRS

∑
s∈S

ps|ys|

subject to ys − (rs − r̄)>w = 0, s ∈ S
r̄>w = R

w ∈ W,

(2.39)

where the quadratic terms are replaced by absolute values of ys. Although Problem

(2.39) is a non-differentiable optimization problem which seems to be more difficult
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than the mean-variance model, Problem (2.39) is reformulated as the following linear

programming problem:

minimize
(w,y)∈IRJ×IRS

∑
s∈S

psys

subject to ys − (rs − r̄)>w ≥ 0, s ∈ S
ys + (rs − r̄)>w ≥ 0, s ∈ S
r̄>w = R

w ∈ W.

(2.40)

Among various risk measures examined in the literature (see, e.g., [22]), we

employ the VaR and the CVaR in this thesis. The random loss regarding the VaR

and CVaR is defined as −r̄>w. Mean-VaR model is formulated as follows:

minimize
(w,m)∈IRJ×IR

m

subject to Prob{−r̃>w ≤ m} ≥ β

r̄>w = R

w ∈ W,

(2.41)

and mean-CVaR model is formulated as the following linear programming problem:

minimize
(w,m,fi )∈X×IR×IRS

m +
1

1− β

∑
s∈S

psτs

subject to τs ≥ −r>s w −m, τs ≥ 0, s ∈ S.

(2.42)

where m is a decision variable corresponding to the Value-at-Risk. Problem (2.41)

is an optimization problem with a probabilistic constraint (see Section 2.2), which

means this problem is nonconvex and intractable in general.

In Chapter 4, we propose a solution method for VaR minimization problem

of a financial asset portfolio by applying a branch-and-bound procedure, and in

Chapter 5, we solve a multi-period portfolio optimization problem where the CVaR

constraints are taken into account for avoiding a large loss of portfolio value.



Chapter 3

Newsvendor Solutions via

Conditional Value-at-Risk

Minimization

3.1 Newsvendor Problem in Single Period

The classic newsvendor problem is to decide the quantity of the product whose

demand is uncertain by maximizing the expected profit, or equivalently minimizing

the expected cost. In this section, we briefly summarize the classic single-period

newsvendor problem for the comparison with our results.

Notation

First of all, let us introduce notation used in this chapter as follows:

N : index set for products, N := {1, 2, ..., N},
ξ̃i : daily demand for product i (non-negative, scalar-valued random variable)

qi : selling price per unit for product i (given)

ci : cost per unit for product i (given)

ri : salvage value per unit for product i (given)

πi : shortage penalty per unit for product i (given)

xi : daily order quantity for product i (decision variable).

29
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We assume the following condition:

Assumption 3.1 ri < ci < qi, πi ≥ 0 for all i ∈ N . ?

In the following, we omit the subscript for simplicity when only single product is

considered.

Profit Maximization and Cost Minimization

For fixed x, the daily profit gained from each product is a random variable defined

by

P(x, ξ̃) := q min
{

ξ̃, x
}

+ r max
{

x− ξ̃, 0
}
− π max

{
ξ̃ − x, 0

}
− c x, (3.1)

where the third term in the right-hand side represents an artificial penalty for op-

portunity cost, and π is often set to be 0.

Let F (η) denote the distribution function of demand for the product, i.e., F (η) :=

Prob
{

ξ̃ ≤ η
}

. We note that F (0) = 0. The classic newsvendor model then maxi-

mizes the expected profit:

maximize
x

µ(x) := E
[
P(x, ξ̃)

]
=

∫ ∞

0

P(x, ξ) dF (ξ). (3.2)

When the inverse of the distribution function exists, an optimal solution of Problem

(3.2) is obtained by solving ∂µ
∂x

= 0, as

x∗ = F−1

(
U

E + U

)
, (3.3)

where E := c− r, and U := q + π − c. Even when F does not have the inverse, one

can obtain a solution via a simple numerical calculation [77].

We also formulate Problem (3.2) as a two-stage problem as follows:

minimize
x∈IR

cx + E[Q̃(x)], (3.4)

where Q̃(x) is defined by an optimal value of the following optimization problem

minimize
y∈IR3

−q y1 − r y2 + π y3

subject to y1 ≤ ξ̃

y1 + y2 ≤ x

y3 ≥ ξ̃ − x

y ≥ 0.

(3.5)
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On the other hand, the daily total cost is defined by

Q(x, ξ̃) := E [x− ξ̃]+ + U [ξ̃ − x]+. (3.6)

Here, the first term in the right-hand side of (3.6) represents the cost for excess

order, while the second does the opportunity cost. By noting the relation

P(x, ξ̃) = V ξ̃ −Q(x, ξ̃), (3.7)

where V := q − c = U − π, the minimization of the expected cost is proved to be

equivalent to the maximization of the expected profit:

min
x
E

[
Q(x, ξ̃)

]
= V E

[
ξ̃
]
− max

x
E

[
P(x, ξ̃)

]
.

Since E, U > 0 from Assumption 3.1, the expected cost is a convex function in

x, whereas the expected profit is concave one, and therefore, both problems are

so-called convex programs.

In the case where multiple products are considered, we assume that the total

profit (or cost) is just the sum of the ones from each product, i.e., the total profit

P(x, ξ̃) and the total cost Q(x, ξ̃) are given by

Assumption 3.2 P(x, ξ̃) =
∑
i∈N

P(xi, ξ̃i); Q(x, ξ̃) =
∑
i∈N

Q(xi, ξ̃i). ?

3.2 Minimization of CVaR in the Newsvendor Prob-

lem

In this section, we show that the CVaR minimization in the newsvendor situation

leads to a convex problem when the associated loss is a convex function. We will

apply two different functions as the loss and derive closed form solutions in the

succeeding sections. Also, the parameter sensitivity of the solution is examined.

In the following, we consider two different loss functions. One is defined by

−P(x, ξ̃) and called the net loss of the profit, while the other one is the total

cost Q(x, ξ̃). Since both the net loss, −P(·, ξ), and the total cost, Q(·, ξ), are

convex functions for fixed ξ under Assumptions 3.1 and 3.2, the CVaR minimization

problems using these functions are convex from Proposition 2.5. In the following,
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Figure 3.1: Nonconvexity of Standard Deviation of Profit P

we call the CVaR minimization problems using these functions the net loss CVaR

minimization and the total cost CVaR minimization, respectively.

It is worth noting that the convexity-preserving property is also valid for a class

of downside risk measures.

Proposition 3.3 (Theorem 5.1, Rockafellar [73]) Let g be a convex function from

IRn to (−∞,∞], and let γ be a convex function from (−∞,∞] to (−∞,∞] which

is non-decreasing with γ(∞) = ∞. Then, h(x) = γ(g(x)) is convex on IRn. ?

Proof : See [73], for example. ¥

From this proposition, we see that minimization of any non-decreasing convex risk

measure including the below-target return defined by E[[t−P(x, ξ̃)]+] for fixed target

t ∈ IR [31] and the maximal loss, max‰{−R(x, ξ) | ξ ∈ Ξ}, which is defined when ξ̃

has finite support Ξ [83], is formulated as a convex problem, and at the same time,

the lower partiality of the risk measures seems crucial for the convexity in the risk

minimization for the newsvendor problem. In fact, the variance (or equivalently, the

standard deviation) of the net loss or the total cost function can have a non-convex

structure. Figure 3.1 shows an example of the non-convexity with respect to x in

the standard deviation of profit P in the two-product case where the underlying

distribution has finite supports.
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3.2.1 Unconstrained Minimization of CVaR for Single Prod-

uct Case

In this subsection, we present analytical results of the CVaR minimization problems

for the case of single product without constraint. Let us assume for simplicity that

there exists the inverse F−1 of the distribution function F of demand ξ̃, and denote

its density by f .

a) The Net Loss CVaR Minimization First, we adopt the net loss −P as the

loss function L so that a manager can consider the profit lower than −VaRβ.

The minimization of (2.30) with L = −P is represented as the following convex

program:

minimize
x∈IR,m∈IR

p(x,m) := m +
1

1− β

∫ ∞

0

[−P(x, ξ)−m ]+ f(ξ) dξ. (3.8)

This problem can be solved in a closed form under mild assumption as shown in the

following proposition, whose proof is given in Appendix A.

Proposition 3.4 The problem (3.8) with β ∈ [0, 1) has an optimal solution (x∗,m∗)

defined by





x∗ =
E + V

E + U
F−1

(
U( 1− β )

E + U

)
+

U − V

E + U
F−1

(
Eβ + U

E + U

)
,

m∗ =
E ( U − V )

E + U
F−1

(
Eβ + U

E + U

)
− U ( E + V )

E + U
F−1

(
U( 1− β )

E + U

)
.

(3.9)

When β = 0, any m∗ with m∗ ≤ −V x∗ satisfies the optimality. ?

In particular, when the shortage penalty π is set to be 0, i.e., V = U , we have the

following simpler result:

Corollary 3.5 Under the same assumption as in Proposition 3.4 with π = 0, we

have an optimal solution (x∗,m∗) defined by

x∗ = F−1

(
U

E + U
( 1− β )

)
; m∗ = −Ux∗. (3.10)

When β = 0, any m∗ with m∗ ≤ −Ux∗ satisfies the optimality.
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From these proposition and corollary, we see that the difference between the solution

x∗ given by (3.9) or (3.10) and the classic one (3.3) depends on two parameters π and

β. In particular, we see from Corollary 3.5 that when π = 0, they differ only in the

coefficient of the argument of F−1, whereas when π > 0, it is much more complex.

This CVaR minimization gives a simple generalization of the classic problem since

the solutions with β = 0 is equal to the classic one (3.3). Moreover, the availability

of the closed form solution plays a role in sensitivity analysis.

b) The Total Cost CVaR Minimization Next, we consider the total cost Q
as the loss L. By minimizing the β-CVaR defined for the total cost, a manager may

avoid an unduly large cost which made of the excess order cost and the opportunity

cost.

The corresponding problem is

minimize
x∈IR,m∈IR

q(x,m) := m +
1

1− β

∫ ∞

0

[Q(x, ξ)−m ]+ f(ξ) dξ. (3.11)

Since the total cost Q can be treated mathematically as a special case of the net

loss −P with V = 0, we obtain a solution of (3.11) from Proposition 3.4 by setting

V = 0.

Corollary 3.6 The problem (3.11) with β ∈ [0, 1) has an optimal solution (x∗,m∗)

defined by





x∗ =
E

E + U
F−1

(
U( 1− β )

E + U

)
+

U

E + U
F−1

(
Eβ + U

E + U

)
,

m∗ =
EU

E + U

(
F−1

(
Eβ + U

E + U

)
− F−1

(
U( 1− β )

E + U

))
.

(3.12)

When β = 0, any m∗ with m∗ ≤ 0 satisfies the optimality.

By comparing solutions (3.9) and (3.12) of the two CVaR minimizations, we

observe that the solution of the total cost CVaR minimization (3.11) can be far

different from that of the net loss CVaR minimization (3.8), whereas maximizing

the profit and minimizing the cost are equivalent in the classic problem (see the

results in Section 3.1). However, the CVaR minimization (3.11) also provides a

generalization of the classic maximizing profit model because the solution (3.12)

with β = 0 is the same as the solution (3.3).
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Figure 3.2: Optimal Solutions of Two CVaR Minimizations with Different Loss

Functions

Figures 3.2 (a) to (d) illustrate the differences among the three optima (3.3),

(3.9) and (3.12) when π is set to be 10, i.e., V = U − 10, and ξ follows a normal

distribution with different parameter settings. Though the normal distribution is

not adequate for describing the product demand since F (0) > 0, we here apply it in

order to roughly grasp the dependency of the solutions on the shape of distribution.

Noting that the solution with β = 0 is equal to the classic expected profit maximizer

(3.3), we see from the figures that the net loss CVaR minimization implies smaller

order quantity than the classic solution and the difference becomes larger as β gets

higher. The optimal solution of the total cost CVaR depends on parameters E and

U . In particular, when E < U holds as in (a), (c) and (d), the two CVaR minimizers

with different loss functions show reverse trends with β. Also, from Figures 3.2 (c)

and (d), we see that the difference between the two solutions becomes smaller as
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the variance of normal distribution decreases. Especially, the paces of decrease of

the order quantity based on the net loss CVaR minimization and increase of that

on the total cost CVaR minimization are more than linear with respect to β. This

suggests that the value of β and the loss function should be cautiously chosen.

3.2.2 Sensitivity Analysis

As illustrated in Figure 3.2, the solutions (3.9) and (3.12) depend on the parameters

β and π. In order to clarify how the CVaR minimizers and the classic expected

profit maximizer (3.3) disagree, we here analyze the parameter sensitivity of the

solutions.

The signs of ∂x∗
∂β

for the net loss and the total cost CVaR minimizers depend on

the underlying distribution because we have for the net loss CVaR minimizer (3.9)

with π = U − V > 0,

∂x∗

∂β
=

1

( E + U )2

(
E(U − V )

f ( F−1(G2))
− U(E + V )

f ( F−1(G1) )

)
, (3.13)

where G1 = U( 1−β )
E+U

and G2 = Eβ+U
E+U

, and for the total cost CVaR minimizer (3.12),

∂x∗

∂β
=

E U

( E + U )2

(
1

f ( F−1(G2 ))
− 1

f ( F−1(G1) )

)
.

The sign of ∂x∗
∂q

for the the net loss CVaR minimizer depends also on the distribution

when π > 0 since

∂x∗

∂q
=

U − V

(E + U)2

(
F−1(G1)− F−1(G2)

)
+

(1− β)E

(E + U)3

(
E + V

f(F−1(G1))
+

U − V

f(F−1(G2))

)
.

To illustrate how the shape of distribution affects the derivatives, let us consider

the S-D distribution which has been used to analyze the newsvendor problem because

of its tractability (e.g., [46, 50]). The distribution function and density function of

S-D distribution are defined, respectively, by

F (η) =





d− { ( a− η )/b } 1
l , for η ∈ [H1, a),

d + { ( η − a )/b } 1
l , for η ∈ [a,H2],

and

f(η) =
1

b l

∣∣∣∣
a− η

b

∣∣∣∣
1−l

l

, for H1 ≤ η ≤ H2,
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Table 3.1: Sign of Partial Derivative of Each Minimizer

∂x∗

∂q

∂x∗

∂c

∂x∗

∂r

∂x∗

∂π

∂x∗

∂β

net loss CVaR (π = 0) (3.10) + − + 0 −
net loss CVaR (π > 0) (3.9) case-by-case − + + case-by-case

total cost CVaR (3.12) + − + + case-by-case

Classical (3.3) + − + + 0

where a, b, d, l, H1 and H2 are constant with b > 0, l > 0 and

d ∈
[
{(a−H1)/b}1/l , 1− {(H2 − a)/b}1/l

]
. To focus on the difference between the

two CVaR minimizers, we consider the case of l ∈ (0, 1). For the net loss CVaR

minimizer, we have




∂x∗

∂β
≥ 0 if d ∈ [(1− θ)G1 + θG2, (1− ν)G1 + νG2),

∂x∗

∂β
≤ 0 if d < (1− θ)G1 + θG2 or d ≥ (1− ν)G1 + νG2,

where ν := B1/(1−l)/(B1/(1−l)−1), θ := B1/(1−l)/(B1/(1−l) +1) and B := U(E+V )
E(U−V )

. On

the other hand, for the total cost CVaR solution, we then have

∂x∗

∂β
≥ 0 if d ≥ G1 + G2

2
;

∂x∗

∂β
< 0 if d <

G1 + G2

2
.

From the above results, we see that the sensitivity with respect to β depends on

the parameters of the S-D distribution. In particular, the skewness parameter d

is crucial for the solutions above. Moreover, we see that these two derivatives can

show different signs for the same parameter setting.

Table 3.1 summarizes the sign of the partial derivative of each optimal solution

x∗ with respect to parameters q, c, r, π and β. All the signs of the sensitivity to c, r

and π remain the same as that of the classic expected profit maximization model,

whereas those to β and q can differ from model to model. In particular, when π ≥ 0

is sufficiently small, we see from the table and Equation (3.13) that the net loss

CVaR minimizer provides smaller order quantity than the classic expected profit

maximizer (3.3) for β > 0. This implies that a risk-averse manager who cares about

large loss via the β-CVaR is likely to order smaller quantity than the risk neutral

solution (3.3).
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3.3 Mean-CVaR Models and LP Formulation

Since the Markowitz’s seminal work, the trade-off between risk and return has been

considered and optimized in various situations. This trade-off model is known as the

mean-risk model (see [64], for example), which is formulated as the optimization of

a composite objective consisting of the expected return and a certain risk measure

ρ:

maximize
x

E
[
P(x, ξ̃)

]
− λ ρ(L(x, ξ̃))

subject to x ∈ X,
(3.14)

where X a convex set representing some constraints on the portfolio x, and λ ≥ 0

a trade-off parameter, or formulated as the minimization of the risk, keeping the

return at least as large as a predetermined target:

minimize
x

ρ(L(x, ξ̃))

subject to E
[
P(x, ξ̃)

]
≥ µ,

x ∈ X,

(3.15)

where µ is the minimum level of the expected profit. It is known that the both

formulations give the same convex efficient frontier, which is a graph of Pareto

efficient pairs of expected return and some risk measure ρ, when the expected return

is a concave function of x and the risk is a convex one. Exploiting the results in the

previous section and applying the CVaR measures as the risk ρ, the corresponding

mean-risk models (3.14) and (3.15) are convex programs, and result in the same

efficient frontier.

3.3.1 Unconstrained Mean-CVaR Models for Single Prod-

uct Case

The unconstrained mean-risk model using the net loss CVaR is formulated as

maximize
x,m

∫ ∞

0

P(x, ξ) f(ξ) dξ − λ

(
m +

1

1− β

∫ ∞

0

[−P(x, ξ)−m ]+ f(ξ) dξ

)
.

(3.16)

By the same reasoning as in the net loss CVaR minimization developed in Section

3.2.1, we consider the following three cases in order to evaluate the integral part of
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the CVaR measure (see the proof of Proposition 3.4 in Appendix A for details).

Throughout the following analysis (except for proposition), we omit the case of

λ = 0, since the mean-risk model is then equal to the profit maximization (3.2).

〈〈 case 1. m ≤ −V x 〉〉 Let us denote the objective function of (3.16) by h(x) :=

µ(x)−λ p(x,m) from (3.2) and (3.8). When β = 0 holds, we have the following

first-order condition:




∂h

∂x
= −

(
1 +

λ

1− β

)
{( E + U ) F (x)− U} = 0,

∂h

∂m
= −λ

(
1− 1

1− β

)
= 0;

(3.17)

we then achieve a solution (x∗,m∗) satisfying (3.3) and m∗ ≤ −V x∗.

〈〈 case 2. m ∈ (−V x, Ex) 〉〉 When π > 0, we have the first-order condition as




E

{
F (x) +

λ

1− β
F

(
Ex−m

E + V

)}

+ U

{
F (x) +

λ

1− β
F

(
Ux + m

U − V

)}
= U

(
1 +

λ

1− β

)
,

F

(
Ux + m

U − V

)
= F

(
Ex−m

E + V

)
+ β.

The term F
(

Ux+m
U−V

)
can be eliminated from the first equation by substituting

the second one. Thus, an optimal m should satisfy

m = Ex− ( E + V )F−1( A(x) ), (3.18)

where A(x) := 1−β
λ

{
U

E+U
( 1 + λ )− F (x)

}
. By substituting m defined by

(3.18) into the second equation of the optimality condition, we see that optimal

x should satisfy

( E + V ) F−1(A(x)) + ( U − V ) F−1(A(x) + β)− ( E + U )x = 0. (3.19)

Note that the left-hand side of (3.19) is decreasing with respect to x, so it is

not hard to compute an optimal order quantity satisfying the equality.

〈〈 case 3. m ≥ Ex 〉〉 By solving the first-order condition, we have a solution (x∗,m∗)

defined by

x∗ = F−1

(
U

E + U
(1 + λ)

)
; m∗ = ( U − V ) F−1(β)− U x∗. (3.20)
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Considering the condition m ≥ Ex, β and λ should satisfy the relation

F−1

(
U

E + U
(1 + λ)

)
≤ U − V

E + U
F−1(β). (3.21)

Therefore, for λ > 0 and π > 0, an optimal solution can be found through the

following steps:
¶ ³

Numerical Procedure for Mean-Net Loss CVaR Model (λ > 0, π > 0)

1. If β = 0, then (x∗,m∗) satisfying (3.3) and m∗ ≤ −V x∗ is a solution.

2. If β and λ satisfy the relation (3.21), then (x∗,m∗) satisfying (3.20) is an

optimal solution.

3. Otherwise, search x satisfying (3.19), and m defined by (3.18).
µ ´

In particular when π = 0 is assumed, a closed form solution of Problem (3.16)

can be obtained by a similar discussion. The proof of the following proposition is

given in Appendix B.

Proposition 3.7 For π = 0, β ∈ [0, 1) and λ ≥ 0, the mean-CVaR model (3.16) has

an optimal solution (x∗,m∗) defined by

x∗ = F−1

(
U

E + U
· 1 + λ

1 + λ ( 1− β )−1

)
; m∗ = −Ux∗.

In particular, when λ = 0 or β = 0 holds, any m∗ with m∗ ≤ −U x∗ satisfies the

optimality. Moreover, for λ ∈ [
0, E+U

E
β − 1

)
, a solution (x∗∗,m∗∗) defined by

x∗∗ = F−1

(
U − λE

E + U

)
; m∗∗ = E x∗∗ − ( E + U ) F−1( 1− β ),

also achieves the optimal value. In this case, so does a solution (x̂, m̂) satisfying

x̂ = (1− t)x∗ + t x∗∗ and m̂ = (1− t)m∗ + tm∗∗ for t ∈ (0, 1). ?

As for the mean-risk solution based on the total cost CVaR, we can achieve a solution

scheme by setting V = 0 in the above three-step procedure and the associated

equations referred to therein.
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3.3.2 Constrained Mean-CVaR Models for Multiple Prod-

ucts Case

In this subsection, we address how to compute an optimal solution when multiple

products are considered under a system of linear inequalities.

Suppose that the demand distribution is given by a finite number of scenarios.

Let S = {1, ..., S} denote a finite index set of scenarios, and let Prob{ξ̃ = ξs} = ps

for s ∈ S where ξs := (ξs,1, ξs,2, ..., ξs,n)>. Moreover, X is supposed to be a polytope

given by X := {x |Cx ≤ b } where C ∈ IRm×n and b ∈ IRm. Then, using the net

loss CVaR, the mean-risk model (3.14) with ρ(L(x, ξ̃)) = CVaRβ(x) is formulated

as

maximize
x,m

∑
s∈S

psP(x, ξs)− λ

(
m +

1

1− β

∑
s∈S

ps [−P(x, ξs)−m ]+
)

subject to x ∈ X,

(3.22)

which is equivalent to the linear program (LP):

maximize
x,m,v,w,z

∑
s∈S

ps

∑
i∈N

Vi ξs,i −
∑
s∈S

ps

∑
i∈N

Ei ws,i −
∑
s∈S

ps

∑
i∈N

Ui zs,i − λm− λ

1− β

∑
s∈S

ps vs

subject to vs ≥ −
∑
i∈N

Vi ξs,i +
∑
i∈N

Ei ws,i +
∑
i∈N

Ui zs,i −m, vs ≥ 0, s ∈ S,

ws,i ≥ xi − ξs,i, ws,i ≥ 0, s ∈ S, i ∈ N ,

zs,i ≥ ξs,i − xi, zs,i ≥ 0, s ∈ S, i ∈ N ,

x ∈ X.

(3.23)

Proposition 3.8 Let (x∗,m∗,v∗,w∗, z∗) be an optimal solution of (3.23). Then,

(x∗,m∗) is also optimal to (3.22), and the optimal objective values of both problems

coincide. ?

The minimization of the net loss CVaR with an expected profit constraint, i.e.,
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(3.15) with ρ(L(x, ξ̃)) = CVaRβ(x), is

minimize
x,m

m +
1

1− β

∑
s∈S

ps [−P(x, ξs)−m ]+

subject to
∑
s∈S

psP(x, ξs) ≥ µ,

x ∈ X,

(3.24)

which is transformed to the following LP:

minimize
x,m,v,w,z

m +
1

1− β

∑
s∈S

ps vs

subject to
∑
s∈S

ps

∑
i∈N

Vi ξs,i −
∑
s∈S

ps

∑
i∈N

Ei ws,i −
∑
s∈S

ps

∑
i∈N

Ui zs,i ≥ µ,

vs ≥ −
∑
i∈N

Vi ξs,i +
∑
i∈N

Ei ws,i +
∑
i∈N

Ui zs,i −m, vs ≥ 0, s ∈ S,

ws,i ≥ xi − ξs,i, ws,i ≥ 0, s ∈ S, i ∈ N ,

zs,i ≥ ξs,i − xi, zs,i ≥ 0, s ∈ S, i ∈ N ,

x ∈ X.

(3.25)

As readily seen, other variants using the total cost CVaR can also be transformed

into equivalent LPs. In fact, only getting rid of the constant term, − ∑
i∈N

Vi ξs,i, from

the constraint:

vs ≥ −
∑
i∈N

Vi ξs,i +
∑
i∈N

Ei ws,i +
∑
i∈N

Ui zs,i −m, vs ≥ 0, s ∈ S, (3.26)

which is the first constraint of Problem (3.23) and the second constraint of Prob-

lem (3.25), we obtain two kinds of mean-risk models associated with the total cost

CVaR. Such LP formulations have an overwhelming advantage especially when many

constraints on multiple products need to be imposed. Besides, even when we can-

not achieve any closed form solution, we can compute an (approximating) optimal

solution.

In order to clarify the difference among the models discussed above and show

the computational advantages of the LP formulations, several numerical results are
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presented below. We here consider the case of three products, i.e., N = 3, and

X = IR3
+. Scenarios of the demands for the products are generated from a multi-

dimensional normal distribution, and ps is set to be 1/S for every s ∈ S. In the

following experiments, we confirm that all the generated values ξs,i become posi-

tive. We used Xpress-MP (ver.2005A) for Windows on a personal computer with

Pentium4 processor (3.4GHz) and 2GB memory.

Figures 3.3 (a1) to (e2) show histograms and statistics of distributions of the

profit P and the total cost Q via five models discussed above when ten thousand

scenarios of their demand (ξ̃1, ξ̃2, ξ̃3)
> are drawn from a three-dimensional normal

distribution N(µ,Σ) where µ ∈ IR3 with µi = 100 for i = 1, ..., 3, and Σ := [σ2
ij] ∈

IR3×3 with σ2
ij = 202 (i = j) and 0.5 · 202 (i 6= j). In spite of the normality of the

demand distribution, every distribution of the profit or the total cost is much skewed

and, accordingly, far different from the normal one because of the nonlinearity of

the profit function and the total cost functions.

We also observe some interesting differences among the proposed and classic mod-

els. From Figures 3.3 (a1) to (c2), we see that the resulting distributions through

the classic profit maximization and the total cost CVaR minimization show rela-

tively similar shapes, while the net loss CVaR minimization shows quite different

distributions from those of the other two. In fact, the standard deviation of the

profit P of the net loss CVaR minimizer is less than one third of that of the classic

profit maximizer. In addition, the minimum value of the profit P of the net loss

CVaR minimizer is positive, while those of the other two are negative. These facts

encourage the use of the net loss CVaR measure as an alternative capturing the

dispersion of the profit P . In contrast to the profit P , the distribution of the total

cost Q by the net loss CVaR minimizer exhibits larger dispersion than the other

two. From this fact, we should recognize that the definition of the loss function for

the CVaR measure is crucial because the total cost CVaR minimizer and the net

loss CVaR minimizer may result in having the totally different distributions of the

profit P and the total cost Q, as shown in these figures.

As for the mean-CVaR models, they can be used in tailoring a distribution to

meet manager’s demand. Indeed, as shown in Figures (d1) to (e2), it can be observed

that each mean-CVaR model achieves a mixture of distributions via the mean profit
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maximization and a CVaR minimization of interest.

Figure 3.4 shows two kinds of convex efficient frontiers of the mean-net loss CVaR

model with β = 0.99. Each line corresponds to an underlying normal distribution

with different covariance matrix. One has uncorrelated covariance matrix, i.e., σij =

0.0 for all i 6= j, while the other has positive covariance given by σ2
ij = 0.5 · 202

for i 6= j. We here draw the efficient frontiers in an unusual manner so as to

emphasize the change of the minimal CVaR with respect to that of the target return

µ. Similarly to the mean-variance model [53], lower risk (i.e., lower CVaR) is attained

in the case of lower correlation. Besides, the trade-off between the expected profit

µ and the minimal net loss CVaR is clearer in the case of higher correlation.

Finally, Figures 3.5 shows the average CPU time spent in solving the net loss

CVaR minimization in LP form which is obtained from (3.25) by removing the first

constraint. The average is taken over five sets of scenarios of size S = 10,000, 7,500

and 5,000. Although the computation time increases as β grows, all the problems

are solved in reasonable time.
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Figure 3.3: Histograms of Profit and Total Cost via Each Optimal Solution (x∗,m∗)
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Chapter 4

α-Conservative Approximation for

Probabilistically Constrained

Convex Programs

4.1 α-Conservative Approximation for PCCP

In order to tame a difficulty arising from the nonconvexity of PCCP (2.20), Ne-

mirovski and Shapiro [63] introduce a convex conservative constraint (2.24), pre-

senting a convex optimization problem which provides a feasible solution of the

original problem (2.20). Although their approach enjoys the convex structure, the

discrepancy from the original problem (2.20) is not clear. In this chapter, we extend

the conservative approach by partly relinquishing convexity.

For a parameter α > 0, let us define Ψα : IR → IR by

Ψα(z) := Φα,1(z)− Φα,2(z), (4.1)

where

Φα,1(z) := max
{

0, 1 +
1

α
z
}

, Φα,2(z) := max
{

0,
1

α
z
}

. (4.2)

Similarly to the discussion about Nemirovski and Shapiro’s convex conservative ap-

47
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Figure 4.1: Graphs of Ψα, Φα,1 and Φα,2.

proximation in Section 2.2.2, we obtain a new conservative approximation problem:

(CAP(α))

minimize
x∈IRJ

f̂(x)

subject to E
[
Ψα(g(x, ξ̃))

]
≤ 1− β

x ∈ X.

(4.3)

We refer to this problem as α-conservative approximation problem of (2.20), and

the new constraint as α-conservative approximation constraint. Note that both

E
[
Φα,1(g(x, ξ̃))

]
and E

[
Φα,2(g(x, ξ̃))

]
are convex in x since both Φα,1 and Φα,2 are

nondecreasing convex functions. Accordingly,

E
[
Ψα(g(x, ξ̃))

]
= E

[
Φα,1(g(x, ξ̃))

]
− E

[
Φα,2(g(x, ξ̃))

]

is a D.C. function and Problem (4.3) is a D.C. optimization problem, for which

several global optimization algorithms have been developed (e.g. Tuy [81]).

It is easy to show that the new constraint approaches the original probabilistic

constraint as α decreases to 0 in the following sense.

Proposition 4.1 E
[
Ψα(g(x, ξ̃))

]
− VP(x) → Prob

{
g(x, ξ̃) = 0

}
for each x, as

α → +0. Especially, if g(x, ξ̃) has a continuous cumulative distribution function,

one then has E
[
Ψα(g(x, ξ̃))

]
→ VP(x) for each x, as α → +0. ¥

From this proposition, solving CAP(α) for a small α yields a good approximate

solution of the original problem (2.20).
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In general, E
[
Ψα(g(x, ξ̃))

]
is nondifferentiable at some points because of the

nondifferentiability of Φα,1 and Φα,2. By employing differentiable functions in place

of Φα,1 and Φα,2 in Problem (4.3), one can construct differentiable α-conservative

approximations even for discrete distribution.

Example of Differentiable α-Conservative Constraint The α-conservative

approximation of the probabilistic constraint can be constructed in other ways. The

key of the construction is approximating the max function in (4.2) by a smoothing

function with a parameter δ > 0 ([66]). Two examples of such a smoothing function

are

ρδ,1(z) :=

√
z2 + 4δ2 + z

2
, ρδ,2(z) := δ log(1 + exp(z/δ)).

Proposition 4.2 If φ is a convex, nondecreasing function, then ψα(z) := φ(1 +

z/α) − φ(z/α) is a D.C. function which is nonnegative valued, nondecreasing and

satisfies

ψα(0)1l[0,+∞)(z) ≤ ψα(z) for all z ∈ IR. (4.4)

?

Proof : It is clear that ψα is nonnegative valued and nondecreasing. Then, (4.4)

holds because ψα is nonnegative valued for z < 0, and because ψα is nondecreasing

for z ≥ 0. ¥

Substituting g(x, ξ̃) for z and taking mathematical expectation in (4.4), we have

E
[
ψα(g(x, ξ̃))

]
≤ ψα(0)(1− β) ⇒ VP(x) ≤ 1− β.

By adopting the above smoothing functions ρδ,1, ρδ,2 as a function φ in Proposition

4.2, different α-conservative approximations are derived. The D.C. functions thus

obtained are differentiable, and the basic framework of the algorithms which we

will describe in Section 4.3 can be applied to those formulations. In the following

sections, our discussion focuses on the D.C. inequality composed of the piecewise

linear function (4.1).
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4.2 Portfolio Selection via Value-at-Risk Minimiza-

tion

In this section, we formulate the minimization of the Value-at-Risk (VaR) of a

financial asset portfolio as an example of the PCCP.

The VaR minimization of a financial asset portfolio is to determine the amount of

investment (or investment ratio) to N kinds of financial assets so that it achieves the

minimum β-VaR. Formally, it is formulated as the following optimization problem:

minimize
(w,m)∈IRN×IR

m

subject to Prob
{

w>ỹ −m > 0
}
≤ 1− β

w ∈ W,

(4.5)

where

w : investment ratio to N kinds of financial assets (decision variable), w ∈ IRN

m : VaR (decision variable), m ∈ IR

W : set of feasible portfolio w, W ⊆ IRN

ỹ : N dimensional random vector representing the loss associated with the

financial assets

β : confidence level, β ∈ (0, 1).

The feasible set W is defined by several constraints such as the minimal expected

return constraint r̄>w ≥ R where r̄ is the N dimensional expected return vector of

the financial assets, and R is the the minimal expected return of the portfolio. The

random loss ỹ is sometimes defined as “(−1)×(rate of return)”.

In the rest of this section, we denote by S = {1, ..., S} a index set of scenarios

and assume that

Assumption 4.3 We have a finite set of scenarios {ys | s ∈ S} of the random loss

ỹ. ?

We denote by ps the occurrence probability of scenario ys and assume that
∑
s∈S

ps = 1

and ps > 0 for all s ∈ S.

Furthermore, we assume the following:
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Assumption 4.4 The feasible region W of w is a polytope. ?

This assumption seems reasonable since the constraints 1>w = 1 and w ≥ 0 are

included in many practical situations. In addition, the minimum return constraint,

upper limit of investment ratio and the like are representable by linear inequalities.

The most typical way to an exact solution of Problem (4.5) is reformulating it

as a 0-1 mixed integer program:

minimize
(w,m,u)∈IRN×IR×IRS

m

subject to
∑
s∈S

psus ≤ 1− β

w>ys −m ≤ Uus, us ∈ {0, 1}, s ∈ S

w ∈ W,

(4.6)

where U is a sufficiently large number satisfying

U > max{w>ys |w ∈ W, s ∈ S} − min{w>ys |w ∈ W, s ∈ S}.

Note that Problem (4.6) has 0-1 variables as many as scenarios. This would be a

disadvantage of this formulation when we consider a large number of scenarios to

enhance the reliability of the solution to be obtained.

In the following sections, we consider the α-conservative approximation of Prob-

lem (4.5) under Assumptions 4.3 and 4.4, as follows:

minimize
(w,m)∈IRN×IR

m

subject to
∑
s∈S

psΦα,1(w
>ys −m)− ∑

s∈S
psΦα,2(w

>ys −m) ≤ 1− β

w ∈ W.

(4.7)

4.3 Global Optimization Algorithm

In this section, a simplicial branch-and-bound algorithm is presented for computing

a globally optimal solution of Problem (4.7). Some remarks on the application of

an outer approximation algorithm for Problem (4.7) will be provided.
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4.3.1 Simplicial Branch-and-Bound Algorithm

By denoting

hD(w,m) :=
∑
s∈S

psΦα,1(w
>ys −m), hC(w,m) :=

∑
s∈S

psΦα,2(w
>ys −m),

Problem (4.7) is rewritten as

minimize
(w,m)∈IRN×IR

m

subject to hD(w,m)− hC(w,m) ≤ 1− β

w ∈ W.

(4.8)

Let M ⊂ IRN+1 be the simplex being the convex hull of affinely independent

vertices vM,1,vM,2, ..., vM,N+2. For M , we define the relaxed subproblem, RSP(M)

of Problem (4.8):

(RSP(M))

minimize
–∈IRN+2

N+2∑
i=1

λiv
M,i
N+1

subject to hD
(N+2∑

i=1

λiv
M,i

)
−

N+2∑
i=1

λih
C(vM,i) ≤ 1− β

N+2∑
i=1

λiv
M,i ∈ W × [mL, mU ], λ ≥ 0, 1>λ = 1,

(4.9)

where mL and mU are, respectively, lower and upper bounds on the optimal objective

value of Problem (4.8).

It is easy to see that RSP(M) provides a lower bound of the objective value

of Problem (4.8) over M . Technically, mL can be computed via an algorithm of

Pang and Leyffer [66], for example, and m of any feasible solution (w,m) can be

employed as mU , whereas, we used sufficiently small and large numbers as mL and

mU , respectively in the experiments reported in Section 4.4.

The initial simplex M0 contains W × [mL, mU ] so that an optimal solution of

Problem (4.8) is contained in M0. For such M0, we solve RSP(M0), obtaining a

lower bound on the optimal value of Problem (4.8). Note that one can easily find a

feasible solution of Problem (4.8) if w ∈ W is available because a sufficiently large

m satisfies the D.C. inequality. In addition, due to the monotonicity of the left-hand
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side of the D.C. inequality with respect to m, we can find m satisfying the inequality

by equality. Such an m serves as the incumbent value (i.e., the best known upper

bound on the optimal value).

In the algorithm we propose, as long as any simplex remains to be considered,

we choose a simplex M with the lowest lower bound. We first bisect the simplex

M i.e., split M at the middle point of the longest edge into two simplices M ′ and

M ′′, and replace M with two simplices M ′ and M ′′ (branching procedure). Although

other simplex splitting rules such as ω-subdivision are also suggested, we use the

exact bisection rule because it is the simplest one and guarantees that the sequence

of simplices shrinks to a single point. We then compute lower bounds over M ′

and M ′′ by solving RSP(M ′) and RSP(M ′′), respectively. If we find a feasible

solution of Problem (4.8) with objective value smaller than the incumbent in the

solution process of RSP(M ′) and RSP(M ′′), the incumbent is updated with the

better solution. Let γ be the incumbent objective value, i.e., the best objective

value obtained so far. If the lower bound on a simplex M is no less than γ, we

discard it from further consideration (bounding procedure). If there is no simplex to

be considered, the algorithm terminates and the global optimality is guaranteed.

A Procedure for Searching Good Incumbents In order to improve the in-

cumbent solution, it is better to obtain a feasible solution of Problem (4.8) whenever

RSP(M) returns a solution (w(M),m(M)). However, (w(M),m(M)) is rarely fea-

sible to Problem (4.8). Since w(M) belongs to W at all times, and the left-hand

side of the D.C. constraint of Problem (4.8) is nonincreasing with respect to m, we

can construct a procedure for finding a feasible solution to Problem (4.8) from an

infeasible solution (w(M),m(M)) and replacing the incumbent with the solution if

it achieves lower objective value.
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¶ ³
Subroutine for searching a feasible solution from an infeasible solution

Let (w(M),m(M)) be infeasible to Problem (4.8) and w(M) ∈ W , and let γ

be the incumbent objective value. Check if (w(M), γ) satisfies hD(w(M), γ)−
hC(w(M), γ) ≤ 1− β.

(a) If it holds true, search m̂ satisfying hD(w(M), m̂)−hC(w(M), m̂) = 1−β.

(In this case, m̂ is no more than γ and can be a new incumbent.)

(b) Otherwise, quit this subroutine.
µ ´

By applying this procedure to each solution of RSP(M), we anticipate obtaining

a good incumbent solution at an early stage of the branch-and-bound algorithm.

This procedure reduces the size of branch-and-bound tree, and improves the per-

formance of the algorithm. As already mentioned, an initial incumbent solution in

the following algorithm is easily obtained since this subroutine can be used for any

w ∈ W .

We are now in a position to describe the simplicial branch-and-bound algorithm.

Algorithm SBB: Simplicial Branch-and-Bound Algorithm

Step 0. [Initialization] : Let (w̄1, m̄1) be an incumbent solution, M0 be the initial

simplex and ε (≥ 0) be a tolerance for optimality. Set P1 ← {M0}, Q1 ←
{M0}, γ1 ← m̄1 and k ← 1．

Step 1. [Lower Bound Computation] : For each M ∈ Pk, let (w(M),m(M))

be an optimal solution of RSP(M), where m(M) ← +∞ if it is infeasible.

Step 2. [Incumbent Solution Update] : Let (w̄, m̄) ← (w̄k, m̄k), γ ← γk.

for all M ∈ Pk

if m(M) < γ

if (w(M),m(M)) is feasible to Problem (4.8)

(w̄, m̄) ← (w(M),m(M)), γ ← m(M)

else

find a feasible solution (w(M), m̂(M)) to Problem (4.8)

via the subroutine above
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if a feasible solution (w(M), m̂(M)) such that m̂(M) < γ is found

(w̄, m̄) ← (w(M), m̂(M)), γ ← m̂(M)

end if

end if

end if

end for

Set (w̄k+1, m̄k+1) ← (w̄, m̄), γk+1 ← γ.

Step 3. [Bounding] : Set Rk ← {M ∈ Qk |m(M) < γk+1 − ε}.

Step 4. [Optimality Check] : IfRk = ∅, terminate the algorithm with (w̄k+1, m̄k+1)

as an ε-optimal solution of Problem (4.8).

Step 5. [Branching] : Select M∗ ∈ arg min{m(M) |M ∈ Rk} and bisect M∗ into

two simplices. Let Pk+1 be the simplices then obtained.

Step 6. [Simplex Set Update] : Set Qk+1 ← (Rk \ {M∗}) ∪ Pk+1, k ← k + 1

and return to Step 1.

Proposition 4.5 If ε > 0, the above algorithm terminates after finitely many iter-

ations. If ε = 0, the above algorithm can repeat infinitely, and in this case, every

accumulation point of the sequence of incumbent solutions {(w̄k, m̄k)} is a globally

optimal solution to Problem (4.8). ?

Proof : This proposition follows Proposition 5.6 in Tuy [81]. ¥

4.3.2 Computation of the Relaxed Problems

In the above branch-and-bound algorithm, each relaxed problem RSP(M) on a

simplex M is a convex program with a single nonlinear constraint hD(
∑N+2

i=1 λiv
M,i)−

∑N+2
i=1 λih

C(vM,i) ≤ 1− β. Since hD(
∑N+2

i=1 λiv
M,i) is a convex and piecewise linear

function in λ, RSP(M) could be formulated as a linear program by introducing

additional decision variables and constraints. However, this LP formulation is not

appropriate for VaR minimization problem because the numbers of decision variables

and constraints would be heavily dependent on the number of scenarios, which is
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usually enormous. We here consider the following three different implementation

strategies for solving the relaxed problem:

1) Direct application of a nonlinear optimization solver to the problem

2) Relaxation of the convex function hD by selecting a part of linear functions

which constitute hD, and obtaining a linear programming formulation.

3) Application of Kelley’s cutting plane method in which a sequence of LPs is

iteratively solved.

The first strategy makes the number of variables and constraints independent of

the number of scenarios, and therefore, it seems to exploit the preferable character-

istics of RSP(M). However, in applying a nonlinear optimization solver to solving

RSP(M), we should develop a subroutine for the infeasibility check, which reduces

the computational efficiency.

To overcome this drawback, we employ LP based subroutines for computing the

lower bound. The first alternative strategy uses a part of linear functions which

coincides with hD at extreme points and the center of each simplex. We solve a

relaxed problem of RSP(M) in this strategy while the size of the resulting LP is still

independent of the number of scenarios.

Another alternative is a straightforward application of the well-known Kelley’s

cutting plane method. The relaxed problem RSP(M) is solved in an exact manner

in this strategy, and accordingly, it may deal with a number of constraints as many

as scenarios. However, this strategy is expected to work efficiently because it brings

in the constraints effectively when needed, and the efficient dual simplex algorithm

can be applied.

The details of the second and third strategies are described as follows:

Linear relaxation for the relaxed subproblem In building a linear relaxation

LR(M) for the relaxed subproblem RSP(M), we use a linear approximation of the

function hD at the extreme points and the center of M . In the branch-and-bound

algorithm, we solve LR(M) on a simplex M in place of RSP(M).
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(LR(M))

minimize
–∈IRN+2

N+2∑
i=1

λiv
M,i
N+1

subject to hD
(N+2∑

i=1

vM,i

N + 2

)
+

(
VMhD

sg

(N+2∑
i=1

vM,i

N + 2

))>(
λ− 1

N + 2

)

−
N+2∑
i=1

λih
C(vM,i) ≤ 1− β

hD(vM,j) +
(
VMhD

sg(v
M,j)

)>
(λ− ej)

−
N+2∑
i=1

λih
C(vM,i) ≤ 1− β, j = 1, ..., N + 2

N+2∑
i=1

λiv
M,i ∈ W × [mL, mU ], λ ≥ 0, 1>λ = 1,

(4.10)

where ej is the j-th unit vector for j = 1, ..., N + 2,

VM :=
(
vM,1 vM,2 · · · vM,N+2

)>
,

and hD
sg(v̄) is a subgradient of hD(v) at v = v̄.

Remark 4.6 When the number of scenarios is very large, it is heavy to calculate the

function values of hD, hD
sg and hC . However, we can reduce such a computational

burden in the above strategy by reusing calculated function values. ?

Kelley’s cutting plane method for the relaxed subproblem Let λ̂1 be a

solution of LR(M). Note that if LR(M) is infeasible, so is RSP(M). Let κ (> 0) be

a sufficiently small number. If hD
(∑N+2

i=1 λ̂1
i v

M,i
)
−∑N+2

i=1 λ̂1
i h

C(vM,i) ≤ 1 − β + κ

is not satisfied, we add a constraint

hD
(N+2∑

i=1

λ̂1
i v

M,i
)

+
(
(VM)>hD

sg

(N+2∑
i=1

λ̂1
i v

M,i
))>

(λ− λ̂1)−
N+2∑
i=1

λ̂1
i h

C(vM,i) ≤ 1− β,

to LR(M), and let λ̂2 be a solution of the augmented problem. If hD
(∑N+2

i=1 λ̂2
i v

M,i
)
−

∑N+2
i=1 λ̂2

i h
C(vM,i) ≤ 1−β +κ is not satisfied, add the constraint on λ̂2 and solve the

new problem. Since hD and hC are piecewise linear functions, this procedure will

end up with an optimal solution of RSP(M) within a finite number of iterations.

We, however, set the upper limit on the number of iterations for the sake of overall

efficiency.
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4.3.3 Storage of VaR Best Solutions

Let VaR(w) denote the VaR of a portfolio w. VaR(w) is evaluated as follows:

1. Sort {w>ys}s∈S in descending order as w>ys1 ≥ ... ≥ w>ysS .

2. For ĵ := min{ θ :
θ∑

j=1

psj
> 1− β }, VaR(w) = w>ysĵ .

We should notice that VaR(w̄k) is not always equal to m̄k for an incumbent

solution (w̄k, m̄k). Therefore, it may occur that (w̄k, m̄k) is updated by (w̄k+1, m̄k+1)

whereas VaR(w̄k) is no more than VaR(w̄k+1). We refer to the solution selected

according to VaR(w) in place of m as VaR best solution. In order to obtain a better

estimation of the minimal VaR, we employ the following strategy.

Add “ set (w̄1
VaR, m̄1

VaR) ← (w̄1, m̄1) ” in Step 0 of the algorithm SBB and

“ if VaR(w̄) < VaR(w̄k
VaR)

(w̄k+1
VaR, m̄k+1

VaR) ← (w̄, m̄)

else

(w̄k+1
VaR, m̄k+1

VaR) ← (w̄k
VaR, m̄k

VaR)

end if ”

at the end of Step 2, and replace

“ terminate the algorithm with (w̄k+1, m̄k+1) as an ε-optimal solution of Problem

(4.8). ”

with

“ terminate the algorithm with (w̄k+1
VaR, m̄k+1

VaR) as a VaR best solution of Problem

(4.8). ”

in Step 4.

Note that the behavior of the algorithm remains the same as the original version

except the solution provided when the algorithm terminates. Though the sequence

of VaR best solutions {(w̄k
VaR, m̄k

VaR)} may not converge to an optimal solution of

Problem (4.8), the VaR best solution is expected to have smaller VaR than that

without the strategy. Moreover, the VaR best solution is more effective when the

algorithm quits before satisfying the optimality.
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Remark 4.7 (On the Application of the Outer Approximation Method) The second

approach to solve the D.C. problem (4.7) is an outer approximation algorithm. By

introducing a new variable π, Problem (4.7) is rewritten as follows:

minimize
(w,m,π)∈IRN×IR×IR

m

subject to
∑
s∈S

psΦα,1(w
>ys −m)− π ≤ 1− β

∑
s∈S

psΦα,2(w
>ys −m)− π ≥ 0

w ∈ W.

(4.11)

By introducing two sets in IRN+2 defined by

D :=
{

(w,m, π)
∣∣∣ gD(w,m, π) ≤ 0, w ∈ W

}
, C :=

{
(w,m, π)

∣∣∣ gC(w,m, π) ≤ 0
}

,

where gD(w,m, π) := hD(w,m) − π − (1 − β) and gC(w,m, π) := hC(w,m) − π,

Problem (4.11) is reformulated as the following D.C. program:

∣∣∣∣ minimize
(w,m,π)∈IRN×IR×IR

m subject to (w,m, π) ∈ D \ intC. (4.12)

We apply the outer approximation method in [81] to (4.12). Through some prelimi-

nary computational experiment, this method is found to be inferior to the simplicial

branch-and-bound method combined with several strategies, and therefore, experi-

mental result of this method will be omitted in this article. ?

4.4 Computational Experiments

In this section, we report some numerical results of the VaR minimization algorithms.

We consider the minimization of the VaR of a portfolio consisting of five or ten assets,

i.e., N = 5 or 10. The loss ỹi of asset i is given as an independent random variable.
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The problem is

minimize
(w,m)∈IRN×IR

m

subject to Prob
{ N∑

i=1

wiỹi −m > 0
}
≤ 0.1

0 ≤ wi ≤ 0.49, i = 1, ..., N

N∑
i=1

wi = 1,
N∑

i=1

r̄iwi ≥ 1.2.

(4.13)

We set r̄i = 1.25 when i is odd and r̄i = 1.1 when i is even. The loss scenarios of

assets 1, 2, 6 and 7 are drawn from a Cauchy distribution where the location of the

peak of the density is 0, and the half-width at half-maximum is 2. The loss scenarios

of assets 3, 4, 5, 8, 9 and 10 are drawn from a uniform distribution on the interval

[−12.5, 12.5]. We consider three different number of scenarios 100，1,000，10,000,

and set ps := 1
S

for all s ∈ S.

We implemented five approaches to a solution of Problem (4.13): (a) the pro-

posed branch-and-bound algorithm with linear relaxation, (b) the proposed branch-

and-bound algorithm with Kelley’s method, (c) the convex approximation (2.25) by

Nemirovski and Shapiro [63] using ψ(z) = max{0, 1 + z}, (d) the CVaR minimiza-

tion, (e) the typical MIP formulation (4.6), and we compared these in terms of the re-

sulting VaR(w∗) and the violation probability VP(w∗,m∗) := Prob{(w∗)>ỹ−m∗ >

0} of the obtained solution (w∗,m∗). (a) and (b) are the proposed simplicial branch-

and-bound algorithms with the storage of VaR best solution, and solve the relaxed

subproblem by the two relaxation strategies, and we set ε = 0.5 as the tolerance for

optimality. (d) is the Conditional Value-at-Risk (CVaR) minimization formulated

as the following LP ([74]):

minimize
(w,m,fi )∈IRN×IR×IRS

m +
1

1− β

∑
s∈S

psτs

subject to τs ≥ 0, τs ≥ w>ys −m, s ∈ S

w ∈ W.

(4.14)

According to [74], the β-CVaR approximates the conditional expectation of the loss

exceeding the β-VaR, and for β close to one, the solution to Problem (4.14) is
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expected to be similar to that to Problem (4.13).

All computations were conducted on a personal computer with Pentium4 proces-

sor (3.4 GHz) and 2 GB memory. MATLAB R2006b with optimization toolbox was

used to implement the proposed algorithms and the convex approximation, while

Xpress-MP release 2006B was used for the LP (4.14) for the CVaR minimization

and the MIP formulation.

Tables 4.1 (i) to (iii) show the computational results for five-asset problems.

Each table corresponds to different number of scenarios S=100, 1,000 and 10,000.

All the figures show the average of five experiments, each using different scenario

set, but generated from the identical distribution mentioned above. When S=100,

the MIP formulation quickly achieves the VaR in an exact manner. However, when

S=1,000 and 10,000, the MIP formulation cannot be solved within 10 hours or results

in memory shortage. On the other hand, the proposed algorithms attain better

solutions than those of the convex approximation (c) and the CVaR minimization

(d). Moreover, if approximation accuracy α is relaxed from 2 to 5, CPU time

decreases sharply whereas the difference of the achieved VaRs is small. CPU time of

the proposed algorithms does not increase so much even when S grows from 1,000 to

10,000. It may be worth mentioning that when approximation accuracy α is small or

the number of assets is larger, the Kelley’s method (b) is expected to be superior to

the linear relaxation (a). This is because the size of branch-and-bound tree becomes

larger owing to the excessively relaxed linear relaxation. It is also observed that

the resulting VaR of the convex approximation is no less than that of the CVaR

minimization in all the results.

Figure 4.2 plots how VaRs for the incumbent solutions are updated, where the

proposed algorithm with the Kelley’s cutting plane method and α=2, and the MIP

formulation are compared through five experiments with S = 10,000 and N = 5.

The vertical axis shows VaR(w̄k
VaR) for the VaR best solution (w̄k

VaR, m̄k
VaR) of the

proposed algorithm and VaR for the incumbent solution of the MIP formulation. In

all tests, incumbent VaRs of the proposed algorithm fall sharply at an early stage,

and therefore, we see that the proposed algorithm works efficiently as a heuristics by

quitting computation before satisfying optimality. For example, in the scenario set

No.2, although the proposed algorithm spent 16,000 seconds to meet the optimality,
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Table 4.1: The VaR, the Violation Probability, and the Computation Time (N = 5)

The column “VaR” displays the value of VaR(w∗) for the obtained solution (w∗,m∗) via

each approach, while the column “VP” displays the violation probability VP(w∗,m∗) :=

Prob{(w∗)>ỹ −m∗ > 0}.

(i) S=100

VaR VP CPU time (sec)

(a) SBB with linear relaxation, α = 2 3.53 0.076 408.1

(a) SBB with linear relaxation, α = 5 3.57 0.044 57.3

(b) SBB with Kelley’s method, α = 2 3.45 0.074 573.1

(b) SBB with Kelley’s method, α = 5 3.58 0.040 80.8

(c) Convex Approximation 5.18 0.038 0.3

(d) CVaR minimization 4.89 - 0.1

(e) MIP formulation 3.24 0.100 2.1

(ii) S=1,000

VaR VP CPU time (sec)

(a) SBB with linear relaxation, α = 2 4.04 0.070 6816.3

(a) SBB with linear relaxation, α = 5 4.08 0.050 239.4

(b) SBB with Kelley’s method, α = 2 4.03 0.071 6332.6

(b) SBB with Kelley’s method, α = 5 4.10 0.047 386.9

(c) Convex Approximation 5.26 0.037 0.3

(d) CVaR minimization 5.22 - 0.1

(e) MIP formulation - - over 10 hours

(iii) S=10,000

VaR VP CPU time (sec)

(a) SBB with linear relaxation, α = 2 4.38 0.073 4730.9

(a) SBB with linear relaxation, α = 5 4.40 0.048 331.7

(b) SBB with Kelley’s method, α = 2 4.38 0.073 6539.1

(b) SBB with Kelley’s method, α = 5 4.39 0.050 618.5

(c) Convex Approximation 5.45 0.039 0.5

(d) CVaR minimization 5.45 - 0.9

(e) MIP formulation - - memory shortage
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the optimal solution was obtained within 2,000 seconds. Furthermore, an incumbent

solution which has the nearly optimal objective value is obtained within only 10

seconds. MIP formulation results in memory shortage, and incumbent VaRs are

much larger than those of the proposed algorithm.Scenario set No.1
44.555.566.5

0 200 400 600 800 1000CPU time (sec)incumben
t VaR Scenario set No.2

44.555.566.5
0 5000 10000 15000CPU time (sec)incumben

t VaR

Scenario set No.3
44.555.566.5

0 500 1000 1500CPU time (sec)incumben
t VaR

Scenario set No.4
44.555.566.5

0 200 400 600 800 1000CPU time (sec)incumben
t VaR

Scenario set No.5
44.555.566.5

0 500 1000 1500 2000CPU time (sec)incumben
t VaR

3 : SBB with Kelley’s method, α = 2

¤ : MIP formulation

Figure 4.2: Updated Value-at-Risk for Incumbent Solutions with respect to CPU

Time

Table 4.2 shows the results of N = 10 and S = 10,000. The proposed algorithm

uses Kelley’s cutting plane method for computing a lower bound on a simplex. We

set α = 10. In Table 4.2, the proposed algorithm is used as a heuristics by stopping

the computation in 100 seconds. As a result, the resulting VaR of the proposed

algorithm is rather smaller than that of the other approximation methods in all the

tests.

Figures 4.3 (a) to (c) show the portfolios w∗ obtained via the α-conservative
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Table 4.2: The VaR and the Violation Probability via the Three Approaches (N = 10

and S = 10,000)

The columns corresponding to “SBB (α = 10)” shows the results of the proposed

branch-and-bound algorithm with α = 10 where Kelley’s cutting plane method is used

for solving convex subproblems and the algorithm terminates in 100 seconds. The

columns corresponding to “Convex App.” shows the results via the convex conservative

approach (c), while “CVaR min.” shows those via the CVaR minimization approach (d).

SBB (α = 10) Convex App. CVaR min.

Scenario set VaR VP VaR VP VaR VP

No. 1 3.86 0.027 3.95 0.039 3.95 -

No. 2 3.68 0.028 4.02 0.040 4.02 -

No. 3 3.79 0.029 4.03 0.041 4.03 -

No. 4 3.65 0.020 4.04 0.041 4.03 -

No. 5 3.73 0.029 4.13 0.041 4.12 -

Average 3.74 0.027 4.03 0.040 4.03 -
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approach with α = 2 for the five-scenario sets. From these figures, we see that

the solutions for 100 scenarios are so scattered that they are not reliable, while the

solution for 10,000 scenarios are rather stable. This fact explains the motivation for

increasing the scenario size S so as to ensure the reliability of the obtained portfolio.

00.10.20.30.40.5
0 1 2 3 4 5assets(a) S=100 00.10.20.30.40.5

0 1 2 3 4 5assets(b) S=1,000

00.10.20.30.40.5

0 1 2 3 4 5assets(c) S=10,000

3 : Sol. to Scenario set No.1

¤ : Sol. to Scenario set No.2

4 : Sol. to Scenario set No.3

× : Sol. to Scenario set No.4

∗ : Sol. to Scenario set No.5

Figure 4.3: Optimal investment ratio to five-scenario sets when five assets are con-

sidered





Chapter 5

Constant Rebalanced Portfolio

Optimization under Nonlinear

Transaction Costs

5.1 Constant Rebalancing under Transaction Costs

We start with giving a mathematical description of a constant rebalancing model

under transaction costs.

Let us define the index sets as follows:

N := {1, ..., N} : index set of investable financial assets

T := {1, ..., T} : index set of time periods in the future

S := {1, ..., S} : index set of given scenarios, or in other words,

index set of simulated paths (see Figure 5.2).

Let γi : IR → IR be a function representing the transaction cost of asset i ∈ N
for the amount of transaction η. We assume that γi is the following convex function

representing a market impact cost:

γi(η) := ai [−η ]+ exp (−biη) + ci [ η ]+ exp (diη) , (5.1)

where ai, bi, ci and di are non-negative parameters to be estimated. The value of

γi is almost zero in case of small amount of transaction and grows exponentially as

67
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the amount of transaction increases. The widely used linear transaction cost e.g.,

[11, 18, 70, 78] can be represented by (5.1) with bi = di = 0.

Figure 5.1 illustrates an example of constant rebalancing. Let us assume that

4.0, 3.0 and 3.0 billion Japanese yen are invested in Stock A, Stock B and Bond C

respectively at the beginning of the planning horizon. At the end of the first period,

investment proportion will differ from the initial proportion due to the change of

asset prices. Then, the constant rebalancing strategy compels to purchase assets

whose price has decreased and to sell assets whose price has increased so that the

proportion is restored to be 40%, 30% and 30% at the beginning of the next period.

Let

ȳi : initial investment unit in asset i (given parameters, i ∈ N )

p0,i : initial price of asset i per unit (given parameters, i ∈ N )

ps
t,i : price of asset i per unit at the end of period t under the scenario s

(given parameters, t ∈ T , s ∈ S, i ∈ N )

ds
t,i : dividend of asset i per unit held at the end of period t

under the scenario s (given parameters, t ∈ T , s ∈ S, i ∈ N )

v0 : initial wealth (given parameter)

vs
t : portfolio value before rebalancing at the end of period t

under the scenario s (decision variables, t ∈ T , s ∈ S)

u0 : portfolio value after the initial rebalancing (decision variable)

us
t : portfolio value after rebalancing at the end of period t

under the scenario s (decision variables, t ∈ T \ {T}, s ∈ S)

wi : investment proportion in asset i (decision variables, i ∈ N ).

We assume that the investor has an initial portfolio ȳ at the beginning of the

investment. The constant rebalancing strategy enforces the rebalancing to the pro-

portion w at the beginning of each discrete investment period. In case of initial

rebalancing, the invested amount p0,iȳi is adjusted to u0wi, and at the same time,

portfolio value u0 is calculated by subtracting the transaction cost from initial wealth
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Stock A￥4.0
Stock B￥3.0Bond C￥3.0

Stock A￥5.0
Stock B￥2.7Bond C￥3.3

Stock A￥4.4

Bond C￥3.3
Stock B￥3.330%

40%

30%

45.5%
24.5%

30%
30%
40%

30%

Changes inasset prices Rebalancing

Up

Up
Down Buy

Hold

Sell

Beginning of period  End of period  Beginning of period        
Figure 5.1: Example of Constant Rebalancing

v0. The relation between initial wealth v0 and portfolio value u0 is given by

v0 = u0 +
∑
i∈N

γi(u0wi − p0,iȳi). (5.2)

Due to the asset price changes and receipt of dividends, the portfolio value

changes over the first period. Accordingly, portfolio value before rebalancing at the

end of the first period under the scenario s is given by

vs
1 = u0

∑
i∈N

(1 + rs
1,i)wi, (5.3)

where rs
t,i is

rs
1,i :=

ps
1,i − p0,i + ds

1,i

p0,i

, (5.4)

and represents the return of asset i at the period t under the scenario s. In general,

rs
t,i is given by

rs
t,i :=

ps
t,i − ps

t−1,i + ds
t,i

ps
t−1,i

, t ∈ T \ {1}. (5.5)

Taking it into consideration that the investment unit in asset i right before the

rebalancing is (u0wi)/p0,i, in the same way as Equation (5.2), the relation between

portfolio values vs
1 and us

1 under the scenario s is given by

vs
1 = us

1 +
∑
i∈N

γi

(
us

1wi −
ps

1,iu0wi

p0,i

)
. (5.6)

Similarly, portfolio value before rebalancing at the end of period t ∈ T \ {1}
under the scenario s is given by

vs
t = us

t−1

∑
i∈N

(1 + rs
t,i)wi, (5.7)
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Period

Figure 5.2: Simulated Paths of Portfolio Value

and the relation between portfolio values vs
t and us

t at the end of period t ∈ T \{1, T}
under the scenario s is given by

vs
t = us

t +
∑
i∈N

γi

(
us

twi −
ps

t,iu
s
t−1wi

ps
t−1,i

)
. (5.8)

In Figure 5.2, an example of changes in portfolio value is illustrated. The port-

folio value falls at the beginning of each period due to transaction costs associated

with the rebalancing (see Equations (5.2), (5.6) and (5.8)).

5.2 Portfolio Optimization Problem

In this section, we formulate a constant rebalanced portfolio optimization problem

in which expected return is maximized subject to CVaR constraints.

5.2.1 Formulation

In the rest of this section, we assume that occurrence probability of scenario s ∈
S = {1, ..., S} is 1/S. We consider the following constraints:
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Portfolio Dynamics Equations




v0 = u0 +
∑
i∈N

γi(u0wi − p0,iȳi), · · · (5.9. a)

vs
1 = us

1 +
∑
i∈N

γi

(
us

1wi −
ps

1,iu0wi

p0,i

)
, s ∈ S · · · (5.9. b)

vs
t = us

t +
∑
i∈N

γi

(
us

twi −
ps

t,iu
s
t−1wi

ps
t−1,i

)
, t ∈ T \ {1, T}, s ∈ S · · · (5.9. c)

vs
1 = u0

∑
i∈N

(1 + rs
1,i)wi, s ∈ S · · · (5.9. d)

vs
t = us

t−1

∑
i∈N

(1 + rs
t,i)wi, t ∈ T \ {1}, s ∈ S · · · (5.9. e)

(5.9)

Investment Proportion Constraints




wL
i ≤ wi ≤ wU

i , i ∈ I · · · (5.10. a)

∑
i∈N

wi = 1, · · · (5.10. b)
(5.10)

where wL
i (wU

i ) is a lower (upper) limit of investment proportion in asset i ∈ N .

In the following formulation, the random loss regarding the definition of CVaR

is defined as “(−1)×(portfolio value at the end of period T ),” that is, −vs
T , and

both the maximization of the expected portfolio value at the end of period T and

the minimization of CVaR are considered at the same time by taking the weighted

sum of two objectives:

maximize
u,v,τ,w

λ

(
1

S

∑
s∈S

vs
T

)
− (1− λ)

(
τ +

1

(1− β)S

∑
s∈S

[−vs
T − τ ]+

)

subject to Portfolio Dynamics Equations (5.9),

Investment Proportion Constraints (5.10),

(5.11)

where λ ∈ [0, 1] is the trade-off parameter between the expected return and the

CVaR.

A large number of bilinear terms of decision variables (u0wi, us
twi and the like)

appear in Constraint (5.9). Therefore, Problem (5.11) is nonconvex and difficult to
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Feasible Region1.
2. 1. 2. 1. 2.

1. Solving a linear approximation problem, 2. Solving nonlinear equations

Figure 5.3: Geometric Interpretation of the Local Search Algorithm

attain a globally optimal solution in general [45, 81]. Moreover, when the number of

scenarios is very large, the problem size becomes so huge that even a state-of-the-art

NLP solver such as NUOPT may not provide any solutions. Thus in this thesis, we

propose an iterative local search algorithm repeating the following two steps (Figure

5.3):

1. Solving a linear approximation problem for problem (5.11)

2. Solving nonlinear equations (5.9) via Newton’s method

Fleten, Høyland and Wallace [32] stated that for their data sets, constant rebal-

anced portfolio optimization problems are virtually convex since their local search

method using many different starting values for each instance always converged to

the same solution. Although risk is measured by the expected accumulated quadratic

shortfalls and transaction costs are not considered in their problem, their statement

motivates us to apply a local search approach to Problem (5.11). Since we only

solve an “approximation” problem for Problem (5.11), the obtained solution does

not necessarily satisfy Constraint (5.9). Therefore, we need to find a feasible solution

via Newton’s method starting from a solution to the approximation problem.

In addition, our local search algorithm is suited to more general formulation

such as the following problem with CVaR constraints. The random loss regarding

the CVaR at each period is defined as “decrease in portfolio value during the period
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t,” that is, vs
t−1 − vs

t , in the problem:

maximize
u,v,fi ,w

1

S

∑
s∈S

vs
T

subject to τ1 +
1

(1− β)S

∑
s∈S

[v0 − vs
1 − τ1]

+ ≤ χ1,

τt +
1

(1− β)S

∑
s∈S

[
vs

t−1 − vs
t − τt

]+ ≤ χt, t ∈ T \ {1}

Portfolio Dynamics Equations (5.9),

Investment Proportion Constraints (5.10),

(5.12)

where χt are user-defined parameters for representing upper bounds of CVaR value

at the end of each period t ∈ T . Considering portfolio value only at the end of

the planning horizon is not enough since it is frequently uncertain when long-term

investment will be discontinued. Imposing CVaR constraints on each rebalancing is,

hence, meaningful in practice

5.2.2 Other Algorithms in the Literature

Maranas et al. [52] proposed a rectangular branch-and-bound algorithm for the con-

stant rebalanced mean-variance portfolio optimization under no transaction costs.

They enjoy the fact that their problem can be formulated as the simple one by elim-

inating the decision variables. (see Section 5.4.1 for detailed explanation). However,

such a variable elimination is impossible under transaction costs, and therefore their

algorithm cannot be applied to Problem (5.11). In addition, even if there are no

transaction costs, the performance of the branch-and-bound procedure for Prob-

lem (5.12) deteriorates. This is because the number of variables and constraints of

subproblems becomes large due to CVaR constraints.

A typical heuristic algorithm for the problem is an iterative optimization by

alternately fixing decision variables, w and u, which compose the bilinear terms.

For instance, given w̄, Problem (5.11) is solved subject to w = w̄, which is a

convex program. Then, for the obtained solution ū, Problem (5.11) is solved subject

to u = ū, resulting in a new w̄. By repeating this procedure, the sequence of

the obtained solutions is expected to improve. However, if decision variable u is
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fixed, degree of freedom of the other variables is excessively reduced as well. As

a result, local search of Problem (5.11) subject to u = ū provides a solution w

which is almost the same as in the former iteration, and therefore the sequence of

the obtained solutions is not improved enough. Hibiki [39] proposed an alternating

optimization for approximately solving his model. His algorithm works well if a

good initial solution is obtained. For the problem in hand, however, this alternating

strategy fails to improve the incumbent solutions due to the excessive reduction of

the feasibility of the subproblems. In addition, transaction costs are not considered

in [39].

5.3 Local Search Algorithm

In this section, we explain a local search algorithm for solving Problem (5.11) in

detail. The algorithm consists of two procedures: (i) solving a linear approximation

problem, and (ii) finding a feasible solution.

5.3.1 Linear Approximation Problem for Problem (5.11)

The linear approximation problem for Problem (5.11), denoted by LAP(ū,w̄), is

formulated as follows. First, the objective function is linearized by introducing

auxiliary variables zs
t . Next, the nonlinear terms of decision variables in Constraint

(5.9) are linearly approximated at (ū, w̄) with respect to u, w (see (6.2) in Appendix

C). As a result, LAP(ū,w̄) is the following problem:

LAP(ū, w̄)

maximize
u,v,τ,w,z

λ

(
1

S

∑
s∈S

vs
t

)
− (1− λ)

(
τ +

1

(1− β)S

∑
s∈S

zs
t

)

subject to zs
t ≥ −vs

t − τ, zs
t ≥ 0, s ∈ S

Linearly Approximated Portfolio Dynamics Equations (6.2),

Investment Proportion Constraints (5.10),

w ∈ W(w̄),

(5.13)
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where W(w̄) is a neighborhood of w̄, given by

W(w̄) := {w | w̄i − κi ≤ wi ≤ w̄i + κi, i ∈ N}, (5.14)

where κi > 0 are step size parameters regarding investment proportion of asset

i ∈ N . The constraint w ∈ W(w̄) is imposed so that the solution to the linearly

approximated problem will not be far from the incumbent point (ū,w̄).

5.3.2 Finding a Feasible Solution via Newton’s Method

In order to linearly approximate Problem (5.11), we need a feasible (ū,w̄) at each

iteration. However, a solution to LAP(ū,w̄) does not necessarily satisfy Constraint

(5.9). In the following, we explain the procedure for finding a feasible (ū,w̄) by

starting from a (possibly infeasible) solution of LAP(ū,w̄).

Let (uLAP, vLAP, τLAP, wLAP, zLAP) be a solution to LAP(ū,w̄). Obviously,

wLAP is feasible to Problem (5.11) since Constraint (5.10) is included in LAP(ū,w̄).

In the procedure explained below, we find a feasible solution (wLAP, ū, v̄) to Problem

(5.11) by substituting wLAP into Constraint (5.9) and solving the nonlinear equations

for u and v.

1. Finding feasible u0 via Constraint (5.9. a). In Constraint (5.9. a), if we

substitute wLAP, only u0 is unknown. Considering that the right-hand side is convex

in u0, we can find ū0 which satisfies Constraint (5.9. a) by applying Newton’s method

in u0.

2. Finding feasible vs
1 (s ∈ S) via Constraint (5.9. d). By substituting wLAP

and ū0 in Constraint (5.9. d), v̄s
1 (s ∈ S) are determined.

3. Finding feasible us
1 (s ∈ S) via Constraint (5.9. b). Now in Constraint

(5.9. b), only us
1 (s ∈ S) are unknowns. In the same manner as in case of Constraint

(5.9. a), we find us
1 (s ∈ S) by applying Newton’s method S times.

4. Finding feasible vs
t (t ∈ T \ {1}, s ∈ S) and us

t (t ∈ T \ {1, T}, s ∈ S)

via Constraints (5.9. e) and (5.9. c). In the same way as described above,

by repeating the following procedures until t = T is satisfied, we obtain a feasible

solution (wLAP,ū,v̄) to Problem (5.11).
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• By substituting wLAP and ūs
t−1 (s ∈ S) in Constraint (5.9. e), v̄s

t (s ∈ S) are

determined.

• In Constraint (5.9. c), if we substitute wLAP, ūs
t−1 (s ∈ S) and v̄s

t (s ∈ S), we

find ūs
t (s ∈ S) by applying Newton’s method S times.

5. Evaluation of objective value. The objective value of Problem (5.11) is

calculated from v̄s
t (s ∈ S) obtained in the above procedures.

5.3.3 Outline of the Local Search Algorithm

We are now in a position to describe the local search algorithm.
¶ ³

Local Search Algorithm for Problem (5.11)

Step 0. [ Initialization. ] Let w̄ be a feasible solution to Problem (5.11) and

set the maximum number of iterations.

Step 1. [ Newton’s method. ] Substitute w̄ in Equations (5.9), and find a

feasible solution to Problem (5.11) by solving Equations (5.9) via Newton’s

method. Set the obtained solution as (ū, v̄).

Step 2. [ Termination check. ] If the objective value is not improved or the

maximum number of iterations is reached, terminate the algorithm with

the best solution obtained so far. Otherwise, go to Step 3.

Step 3. [ Linear approximation problem. ] Solve the linear approxima-

tion problem LAP(ū,w̄), and let (uLAP,vLAP, τLAP, wLAP,zLAP) be a so-

lution to it. Set w̄ ← wLAP, and go to Step 1.
µ ´

5.4 Computational Results

In this section, we report computational results, evaluating the effectiveness of

the proposed algorithm and the performance of the constant rebalancing strategy.

All computations was conducted on a Windows XP personal computer with AMD

Athlon 64 Processor (2.41GHz) and 2GB memory, and NUOPT (ver.10.1.4), a math-

ematical programming software package developed by Mathematical System, Inc.,

was used.
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Figure 5.4: Mean and Standard Deviation of Asset Return

Problem Setting. Ten financial assets are considered over the planning horizon

of five periods, and the number of scenarios (simulated paths) is 1,000, i.e., N := 10,

T := 5 and S := 1,000. Asset i = 1 is cash with no transaction cost, and Assets

i = 2, 3, 4, 8, 10 are low-risk assets with low transaction costs (e.g., bond), and

Assets i = 5, 6, 7, 9 are high-risk assets with high transaction costs (e.g., stock)

Figure 5.4 shows the Mean and Standard deviation of their returns. On the advice

of Mizuho-DL Financial Technology Co., Ltd., the parameters of the transaction cost

function γi are estimated using historical data, and the value of price and dividend

in each scenario are generated via a bootstrap method. Lower limits of investment

proportion are all zero (i.e., wL := 0), and the initial investment unit ȳ is set as

ȳ := 0, and the initial wealth v0 is 1.0 trillion Japanese yen.

Parameter Setting of the Local Search Algorithm. Step size parameters κi

are set as κ1 := 1, κi := 0.1 (i ∈ N \{1}), and let the maximum number of iterations

be eleven, i.e., the linear approximation problem is solved ten times.
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5.4.1 Comparison with the Rectangular Branch-and-Bound

Algorithm

Maranas et al. [52] proposed a rectangular branch-and-bound algorithm for glob-

ally solving the constant rebalanced mean-variance portfolio optimization. In this

subsection, we revise their algorithm so that it solves mean-CVaR portfolio opti-

mization, and compare the performance of the proposed local search algorithm with

that of the revised version of the branch-and-bound algorithm.

Rectangular Branch-and-Bound Algorithm in [52]

When no transaction cost is considered, one has u = v in Constraints (5.9. a),

(5.9. b) and (5.9. c), and accordingly, decision variable u can be eliminated. Then,

by substituting v into the objective function, Problem (5.11) is reduced to the

following formulation with N + 1 variables and simple linear constraints:

maximize
(τ,w)∈IR×IRN

λ

(
1

S

∑
s∈S

v0

∏
t∈T

{∑
i∈N

(1 + rs
t,i)wi

})

−(1− λ)

(
τ +

1

(1− β)S

∑
s∈S

φ

(
−v0

∏
t∈T

{∑
i∈N

(1 + rs
t,i)wi

}
− τ

))

subject to Investment Proportion Constraints (5.10),

(5.15)

where φ : IR → IR is a smoothing function of nondifferentiable plus function [ η ]+.

In this thesis, we adopt

φ(η) :=

√
η2 + 4δ2 + η

2
, (5.16)

proposed in [66], where δ > 0 is a parameter representing approximation accuracy.

The rectangular branch-and-bound algorithm proposed in [52] is a solution method

for the constant rebalanced mean-variance portfolio optimization under no transac-

tion costs. See Appendix D for the revised version of convex subproblem over the

subrectangle. The algorithm works well for problems of small number of assets N ,

but it starts deteriorating as N grows.
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(a) Under no transaction costs (b) Under transaction costs

Figure 5.5: Efficient Frontier by Applying the Local Search Algorithm and the

Rectangular Branch-and-Bound Algorithm

Discussion on Results

Efficient Frontier. Figure 5.5 shows the efficient frontier of the solutions obtained

by the two algorithms. The horizontal axis is the expected portfolio value at the end

of period T , that is 1
S

∑
s∈S vs

T , and the vertical axis is the CVaR representing a risk of

decrease in portfolio value at the end of period T , that is min{ τ + 1
(1−β)S

∑
s∈S [−vs

T−
τ ]+ | τ ∈ IR}. Each plot corresponds to different value of λ chosen from {0.01, 0.5,

0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.99}.
Figure 5.5 (a) depicts two kinds of efficient frontiers under no transaction costs.

We see that the two kinds of frontiers almost coincide, which indicates that the

local search algorithm attains almost optimal solutions since the branch-and-bound

algorithm achieves the global optimality1. Figure 5.5 (b) shows the results under

transaction costs. The efficient frontier of the branch-and-bound algorithm is drawn

with the same solutions as those in Figure 5.5 (a), i.e., the solutions under no

transaction costs. We see that the branch-and-bound algorithm can provide highly

1In Appendix D, the subproblems are proved to be convex when a parameter Θ is sufficiently

large. It is, however, difficult to ascertain whether the parameter value is properly set (see [51] for

the details), and accordingly, it is possible that a globally optimal solution may not be reached by

the branch-and-bound algorithm in experimental results.
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Figure 5.6: Optimal Investment Proportion Provided by the Local Search Algorithm

inefficient solutions. This is due to the large transaction costs incurred. This result

implies that neglecting transaction costs results in an insufficient investment in the

presence of transaction costs.

Optimal Investment Proportion. Figure 5.6 shows the optimal investment pro-

portion provided by the local search algorithm. Comparing the results under no

transaction costs (Figure 5.6 (a)) with those under transaction costs (Figure 5.6

(b)), we observe that Asset 1 (cash) has the largest proportion when λ is small (i.e.,

low-risk investment) in both results. On the other hand, when λ is large (i.e., high-

return investment), Asset 7 monopolizes the whole investments under no transaction

costs, while investments are diversified among four or five assets under transaction

costs.

5.4.2 Comparison with the Buy-and-Hold Strategy

Buy-and-hold strategy is a popular and simple investment strategy in which investor

buys financial assets at the beginning and holds them until the end of planning

horizon without trading. In this subsection, we compare the performance of this

strategy with that of the constant rebalancing strategy, both of which take the

transaction costs into account.
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Buy-and-Hold Strategy

Portfolio optimization problem with buy-and-hold strategy under transaction costs

is formulated as the following problem:

maximize
fi ,v,y

1

S

∑
s∈S

vs
T

subject to τ1 +
1

(1− β)S

∑
s∈S

[v0 − vs
1 − τ1]

+ ≤ χ1,

τt +
1

(1− β)S

∑
s∈S

[
vs

t−1 − vs
t − τt

]+ ≤ χt, t ∈ T \ {1}

∑
i∈N

p0,i yi +
∑
i∈N

γi(p0,iyi − p0,iȳi) ≤ v0,

vs
t =

∑
i∈N

(
ps

t,iyi +
t∑

θ=1

ds
θ,iyi

)
, t ∈ T , s ∈ S

yL
i ≤ yi ≤ yU

i , i ∈ N ,

(5.17)

where yi denotes investment unit in asset i ∈ N , and yL
i (yU

i ) is a lower (upper)

limit of investment unit in asset i ∈ N . In this subsection, lower limits of investment

unit are all zero (i.e., yL := 0). Since the transaction cost γi is the convex function

(5.1), we apply NUOPT to Problem (5.17). In this problem, the decision variables

for representing portfolio are not investment proportion w, but investment unit y,

and portfolio value vs
t (t ∈ T , s ∈ S) is defined as the sum of asset values in market

at the end of period t and dividends obtained by the end of period t.

Discussion on Results

Efficient Frontier. Figure 5.7 shows the efficient frontier of the two strategies.

Upper bounds χt of CVaR are fixed to χ for all t ∈ T , and we choose χ from {0.05,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1} in case of no transaction costs and from {0.05, 0.1,

0.15, 0.2, 0.25, 0.3, 0.35, 1} in case of transaction costs. Each plot in Figure 5.7

corresponds to the solutions of Problem (5.12) via our local search algorithm2 and

Problem (5.17) via the NLP solver, respectively. Then, the horizontal axis is the

2Although the proposed algorithm does not necessarily provide a solution satisfying the CVaR

constraints, the provided solution in this computational results almost satisfied them.
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(a) Under no transaction costs (b) Under transaction costs

Figure 5.7: Efficient Frontier of the Constant Rebalancing Strategy and the Buy-

and-Hold Strategy

expected portfolio value at the end of period T , and the vertical axis is the maximum

value of CVaR with respect to period t ∈ T .

Comparing the results under no transaction costs (Figure 5.7 (a)), the two kinds

of frontiers are almost the same when low-risk investment is made. On the other

hand when high-return investment is made, the constant rebalancing strategy dom-

inates the buy-and-hold strategy. One reason for this is that the obtained dividends

can be invested in high-return assets in case of constant rebalancing. When trans-

action costs are incurred (Figure 5.7 (b)), the frontier provided by the constant

rebalancing strategy dominates that by the buy-and-hold strategy on the right half

of the figure (i.e., high-return investment); however, the difference is smaller than

that under no transaction costs. This is because of the transaction costs that the

investor should pay to rebalance the portfolio.

Optimal Investment Proportion. Figure 5.8 shows the optimal investment pro-

portion of the constant rebalancing strategy and the buy-and-hold strategy. The two

strategies provide similar investment proportion under no transaction costs (Figure

5.8 (a) and (c)) and also under transaction costs (Figure 5.8 (b) and (d)). The

smaller the upper bound of CVaR is, the larger the investment proportion in cash

becomes, and the larger the upper bound of CVaR is, the larger the investment pro-
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portions in high-risk assets become. In addition, whereas investment proportion in

Asset 7 is very large under no transaction costs, investments are diversified among

four to six assets under transaction costs.

Computational Time. To draw the efficient frontier in Figure 5.7 (a) or (b),

eight problems are solved with different parameter values. For drawing the efficient

frontier of the constant rebalancing strategy, we sequentially solve the problems by

gradually increasing the parameter of the upper bound of CVaR, χ. The obtained

solution under the previous χ is employed as the initial solution to the problem for

the next χ. First, starting value of investment proportion, w̄, is set as w̄1 := 1, w̄i :=

0 (i ∈ N\{1}), and the lowest risk investment problem (say, χ = 0.05) is solved. This

investment proportion w̄ satisfies Constraint (5.10) and probably CVaR constraints

of Problem (5.12) since Asset 1 is cash which is the lowest risk asset. Next, the

obtained solution is employed as a starting value, w̄, and the second lowest risk

investment problem (say, χ = 0.1) is solved. Repeating this procedure to the highest

return investment problem (say, χ = 1), an efficient frontier is drawn with the small

number of iterations of the algorithm. In the experiments, the algorithm for constant

rebalancing terminates with three iterations, i.e., the linear approximation problem

is solved only twice for all the problems under transaction costs; the average CPU

time is 287.6 seconds, whereas the average CPU time of the buy-and-hold strategy

is 18.5 seconds.

5.4.3 Out-of-Sample Performance

In this subsection, we conduct experiments for evaluating the out-of-sample perfor-

mance of the constant rebalancing strategy under transaction costs. Scenario sets

A and B, each containing 1,000 scenarios, are generated via a bootstrap method

using the same historical data. Figure 5.9 shows two kinds of efficient frontiers

where the setting is the same as that in Figure 5.7 (b). In the results using the

scenario set B (Figure 5.9 (b)), the frontier of out-of-sample solutions differs from

that of in-sample solutions at high-return points, however the two frontiers are al-

most the same. Then, although it has been shown in recent papers (e.g., [26]) that

equally weighted portfolio performs well in out-of-sample tests, the performance of



84 5 Constant Rebalanced Portfolio under Nonlinear Costs

equally weighted portfolio is dominated by that of the optimal proportions. This is

common in the observation reported in [32] that the constant rebalancing approach

performs better in the out-of-sample result than in the in-sample result compared

to the stochastic dynamic approach.
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Figure 5.8: Optimal Investment Proportion of the Constant Rebalancing Strategy

and the Buy-and-Hold Strategy
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1/N 1/N
(a) Results of scenario set A (b) Results of scenario set B

[ out-of-sample ] an optimal investment proportion of Problem (5.12) using the scenario

set which is different from what we use for evaluating the performance; [ in-sample ] an

optimal investment proportions of Problem (5.12) using the same scenario set with what

we use for evaluating the performance; [ 1/N ] an equally weighted portfolio, that is w =

(1/N, 1/N, ..., 1/N).

Figure 5.9: Out-of-Sample Performance of the Constant Rebalancing Strategy under

Transaction Costs



Chapter 6

Concluding Remarks

In this thesis, we have considered three types of stochastic programming prob-

lems: “Newsvendor Solutions via Conditional Value-at-Risk Minimization”, “α-

Conservative Approximation for Probabilistically Constrained Convex Programs”

and “Constant Rebalanced Portfolio Optimization under Nonlinear Transaction

Costs”. Under uncertainty, we have to take into consideration the risk of incurring a

large loss. One of the our contributions has been to build risk averse models via risk

measure VaR/CVaR for the typical stochastic programming problems i.e., newsven-

dor problem and (single/multi-period) portfolio optimization problem. Moreover,

we have proposed solution methods for these problems. It has been found from the

experimental results that our methods work efficiently at some settings, however we

need to improve the performance of solution algorithms for utilizing these models in

a practical situation. Further research would clarify the effectiveness of stochastic

programming approach to decision making problems under uncertain environments.

6.1 Newsvendor Solutions via Conditional Value-

at-Risk Minimization

In this thesis, we apply the two different CVaR measures to the classic single-period

newsvendor problem by introducing two loss functions called as the net loss and

the total cost. Each of these measures captures a risk of the profit going down or

the cost going up, respectively, to a certain level in a predetermined significance,
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and both are found to be convex functions with respect to the order quantities of

products.

We demonstrate in this thesis that their convex structure plays an important

role in seeking optimal solutions of the problems which contain the CVaR measure

in objective and constraints as in the mean-CVaR models. Actually, one can achieve

closed form solutions of the two CVaR minimizations and some mean-CVaR model

in single product case where no constraint is imposed. Through some analysis, we

see that the two CVaR minimizers show some differences in the order quantities and

the solution sensitivity to associated parameters when β > 0, while both of them

provide the same solution as the classic expected profit maximizer when β = 0.

More specifically, the net loss CVaR minimizer leads to less order quantity than the

classic solution when a shortage penalty parameter is set to be sufficiently small.

Even in the case of multiple products under linear constraints, one can compute

a solution by solving a linear program if their demand distribution is given by

a finite number of scenarios. This scenario based approach can be exploited for

approximating an optimal solution under a certain distribution. Analysis of its

statistical properties including the confidence intervals of the obtained values is

yet to be explored. Furthermore, preliminary computational experiments show the

efficiency of the LP solutions.

As Khouja [42] reviewed, the newsvendor problem has many directions for ex-

tension. Instead of the profit maximization, wide range of applications of the CVaR

minimization to such advanced settings where risk attitude should be incorporated

are expected.

6.2 α-Conservative Approximation for Probabilis-

tically Constrained Convex Programs

In this thesis, we construct the α-conservative approximation problem of the proba-

bilistically constrained convex program (PCCP), and show that it can be formulated

as a D.C optimization problem. It is advantageous that the number of (sampled)

scenarios does not affect the number of variables or constraints while it does not

hold in the MIP formulation which requires a number of 0-1 variables, each corre-
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sponding to one scenario. Recalling the fact that more than ten thousands scenarios

are required for sufficient accuracy of a solution even when the dimension of the

solution is five, this property of the D.C. formulation is very preferable.

Although solving a genuine D.C. problem in a deterministic manner is known to

be very hard, several algorithms are shown to have a potential to solve the problem

especially when the number of variables concerned with the nonconvexity is up to

ten (see, e.g., [45]).

In this thesis, the simplicial branch-and-bound method which is a famous deter-

ministic algorithms for achieving a globally optimal solution is mainly investigated,

and is applied to the VaR minimization of a financial portfolio.

Through the numerical experiments, we show that

• When the number of investable assets is up to five, a good (approximate)

solution can be achieved in a practical amount of time for all cases by setting

the parameter α to be two or five. It contrasts with the fact that the MIP

formulation cannot solve the problem within ten hours or results in memory

shortage when the number of scenarios is more than thousand. In addition,

the convergence of the upper bound is much slower than the presented branch-

and-bound algorithm for the D.C. optimization.

• By quiting computation before satisfying optimality, the proposed algorithm

can be used as a heuristics. Although the solution quality deteriorates in terms

of the original problem because of the abort, the resulting VaR is still smaller

than that of the convex approximation and the CVaR optimization when the

number of assets is ten.

• Convex approximation approach proposed by Nemirovski and Shapiro [63]

provides a bit too conservative solution in terms of the VaR minimization (i.e.,

small violation probability), and the VaR at optimality is larger than that of

CVaR minimization. Comparing to those convex approaches, the proposed

nonconvex approach improves the quality of the solution in a practical time

when the number of assets is five to ten.

Although, when the number of assets is hundred or more, the problem clearly

becomes (prohibitively) hard and this nonconvex approach may not look appealing,
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it is worth noting that the number of scenarios is critical for the accuracy of the

solution, and the number of scenarios required for sufficient accuracy drastically

increases as the number of assets grows. Furthermore, in a practical situation which

institutional investors face, such a portfolio selection is usually carried out in two (or

more) steps, which is known as the asset allocation strategy. Typically, this strategy

first allocates the fund into several asset classes, e.g., domestic stock, domestic bond,

international stock, real estate, cash and so on. After the first allocation, the money

allocated to each class is further allocated into individual assets within the class.

In such a practical case, the number of classes or assets in each class is usually

small and the proposed approach is expected to play a role in minimizing the VaR,

ensuring high reliability.

6.3 Constant Rebalanced Portfolio Optimization

under Nonlinear Transaction Costs

In this thesis, we formulate the constant rebalanced portfolio optimization problem

under nonlinear transaction costs, and propose a solution method based on a local

search approach. This problem is a nonconvex optimization including a large number

of bilinear terms of decision variables in a number of constraints and difficult to

attain a globally optimal solution in general. When a huge number of scenarios

are considered, it becomes further difficult to attain a locally optimal solution via

a state-of-the-art NLP solver. Then, we propose an iterative local search algorithm

based on LP solution, which is easily attained even if the problem size is large, and on

Newton’s method for solving nonlinear equations. In the computational results, the

proposed local search algorithm attains as good solution as the global optimization

approach. Then, we show that the problem under transaction costs needs to be

solved so as to obtain an efficient solution. Moreover, we see that the constant

rebalancing strategy outperforms the buy-and-hold strategy when high return is

sought. Furthermore in the out-of-sample performance, the constant rebalancing

strategy is superior to the equally weighted portfolio. In addition, it should be noted

that the proposed local search algorithm can deal with general nonlinear transaction

costs.
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Future tasks include improving the efficiency of the solution method and com-

paring the out-of-sample performance of the constant rebalancing strategy with

that of the other various strategies. In a practical situation, the problem with a

large number of scenarios (e.g., 10,000 or 100,000 scenarios) is desired to be solved.

Therefore, we need to improve the algorithm for solving the problem with a large

number of scenarios. On the other hand, dynamic stochastic approach e.g., [40],

hybrid model [38, 39] and the like are not tested for comparing with the constant

rebalancing strategy in this thesis. Although these are partly conducted in [32, 39],

more detailed and inclusive comparison is essential for showing the effectiveness of

the constant rebalancing strategy especially in out-of-sample performance.
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A Proof of Proposition 3.4

From (3.6) and (3.7), we note that the net loss −P(x, ξ) is represented as V ξ −
E ( x− ξ ) for ξ ∈ [0, x], and V ξ −U ( ξ− x ) for ξ ∈ [x,∞). Thus, the integral part

of the objective in (3.8) can be expanded as

∫ x

0

[−{V ξ − E ( x− ξ ) } −m ]+ f(ξ) dξ+

∫ ∞

x

[−{V ξ − U ( ξ − x ) } −m ]+ f(ξ) dξ.

(6.1)

Then, we consider three cases so as to evaluate the two integrals in (6.1).

〈〈 case 1. m < −V x 〉〉 Since the net loss −P is greater than m for any demand ξ

in this case (see Figure 6.1), the integral part (6.1) becomes

∫ x

0

[−{V ξ − E ( x− ξ ) } −m ] f(ξ) dξ+

∫ ∞

x

[−{V ξ − U ( ξ − x ) } −m ] f(ξ) dξ.

From the first-order condition of Problem (3.8) , i.e., ∂p
∂x

= 0 and ∂p
∂m

= 0, we

have a solution (x∗,m∗) satisfying x∗ = F−1
(

U
E+U

)
and m∗ < −V x∗, only

when we set β = 0.

〈〈 case 2. m ∈ [−V x, Ex) 〉〉 When π > 0, the integral part (6.1) becomes

∫ Ex−m
E+V

0

[−{V ξ − E ( x− ξ ) } −m ] f(ξ) dξ

+

∫ ∞

Ux+m
U−V

[−{V ξ − U ( ξ − x ) } −m ] f(ξ) dξ,

while the second integral vanishes when π = 0. From the first-order condition,
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Figure 6.1: Three Cases in Minimization of Net Loss CVaR

we have a solution (x∗,m∗) defined by





x∗ =
E + V

E + U
F−1

(
U( 1− β )

E + U

)
+

U − V

E + U
F−1

(
Eβ + U

E + U

)
,

m∗ =
E ( U − V )

E + U
F−1

(
Eβ + U

E + U

)
− U ( E + V )

E + U
F−1

(
U( 1− β )

E + U

)
.

It is easy to see that this solution (x∗,m∗) satisfies m∗ ∈ [−V x∗, Ex∗) under

Assumption 3.1. Also, we note that this x∗ includes the solution in the previous

case when β = 0.

〈〈 case 3. m ≥ Ex〉〉 When π = 0, the integral part (6.1) is shown to be 0, and the

problem thus has no solution since any (x,m) does not satisfy the first-order

condition. As for the case of π > 0, the integral (6.1) becomes

∫ ∞

Ux+m
U−V

[−{V ξ − U ( ξ − x )} −m ] f(ξ) dξ.

By differentiating this equation, we observe that this case also has no optimal

solution. ¥
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B Proof of Proposition 3.7

As in the proof of Proposition 3.4, we consider the following three cases.

〈〈 case 1. m < −Ux 〉〉 Noting that π = 0 is equivalent to U = V , we have the same

result as the case 1 of the discussion for deriving the numerical procedure in

Section 3.3.1 where π > 0 is assumed.

〈〈 case 2. m = −Ux 〉〉 From the first-order condition, we have a solution (x∗,m∗)

defined by

x∗ = F−1

(
U

E + U
· 1 + λ

1 + λ(1− β)−1

)
; m∗ = −U x∗.

〈〈 case 3. m > −Ux 〉〉 By exploiting Proposition 3.4, we have a solution defined

by





x∗ = F−1
(

U−λE
E+U

)
,

m∗ = E x∗ − ( E + U ) F−1(1− β).

Combining with the condition m∗ > −Ux∗, this is valid only for λ < E+U
U

β−1.

Since the optimal solution set is convex when a problem is convex, the result

follows. ¥

C Linearly Approximated Portfolio Dynamics Equa-

tions

In order to formulate LAP(ū,w̄) which is a linear approximation problem for Prob-

lem (5.11), the nonlinear terms of decision variables in Constraint (5.9) are linearly
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approximated at (ū, w̄) with respect to u, w as follows:





v0 = u0 +
∑
i∈N

γi(ū0w̄i − p0,iȳi) + (u0 − ū0)
∑
i∈N

γ′i(ū0w̄i − p0,iȳi)w̄i

+ ū0

∑
i∈N

γ′i(ū0w̄i − p0,iȳi)(wi − w̄i),

vs
1 = us

1 +
∑
i∈N

γi

(
ūs

1w̄i −
ps

1,iū0w̄i

p0,i

)
+ (us

1 − ūs
1)

∑
i∈N

γ′i

(
ūs

1w̄i −
ps

1,iū0w̄i

p0,i

)
w̄i

− (u0 − ū0)
∑
i∈N

γ′i

(
ūs

1w̄i −
ps

1,iū0w̄i

p0,i

)
ps

1,iw̄i

p0,i

+
∑
i∈N

γ′i

(
ūs

1w̄i −
ps

1,iū0w̄i

p0,i

)(
ūs

1 −
ps

1,iū0

p0,i

)
(wi − w̄i), s ∈ S

vs
t = us

t +
∑
i∈N

γi

(
ūs

t w̄i −
ps

t,iū
s
t−1w̄i

ps
t−1,i

)
+ (us

t − ūs
t)

∑
i∈N

γ′i

(
ūs

t w̄i −
ps

t,iū
s
t−1w̄i

ps
t−1,i

)
w̄i

− (us
t−1 − ūs

t−1)
∑
i∈N

γ′i

(
ūs

t w̄i −
ps

t,iū
s
t−1w̄i

ps
t−1,i

)
ps

t,iw̄i

ps
t−1,i

+
∑
i∈N

γ′i

(
ūs

t w̄i −
ps

t,iū
s
t−1w̄i

ps
t−1,i

)(
ūs

t −
ps

t,iū
s
t−1

ps
t−1,i

)
(wi − w̄i), t ∈ T \ {1, T}, s ∈ S

vs
1 = ū0

∑
i∈N

(1 + rs
1,i)w̄i + (u0 − ū0)

∑
i∈N

(1 + rs
1,i)w̄i + ū0

∑
i∈N

(1 + rs
1,i)(wi − w̄i), s ∈ S

vs
t = ūs

t−1

∑
i∈N

(1 + rs
t,i)w̄i + (us

t−1 − ūs
t−1)

∑
i∈N

(1 + rs
t,i)w̄i

+ ūs
t−1

∑
i∈N

(1 + rs
t,i)(wi − w̄i), t ∈ T \ {1}, s ∈ S,

(6.2)

where γ′i : IR → IR (i ∈ N ) represents a subgradient of γi, that is

γ′i(η) :=





(diη + 1)ci exp(diη) if η > 0

0 if η = 0

(biη − 1)ai exp(−biη) if η < 0.

(6.3)

D Convex Subproblem over the Subrectangle

In the rectangular branch-and-bound algorithm for Problem (5.15), the problem

over a subrectangle [wL, wU ] is relaxed by adding the extra quadratic term to the
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objective function:

maximize
(τ,w)∈IR×IRN

λ

(
1

S

∑
s∈S

v0

∏
t∈T

{∑
i∈N

(1 + rs
t,i)wi

})

−(1− λ)

(
τ +

1

(1− β)S

∑
s∈S

φ

(
−v0

∏
t∈T

{∑
i∈N

(1 + rs
t,i)wi

}
− τ

))

−Θ
∑
i∈N

(wL
i − wi)(w

U
i − wi) · · · (6.4. a)

subject to Investment Proportion Constraints (5.10),

wL
i ≤ wi ≤ wU

i , i ∈ N ,

(6.4)

where Θ > 0 is a scalar parameter.

Proposition 6.1 Function (6.4. a) is concave in (τ, w) for a sufficiently large Θ. ?

Proof : Let H = (hij) ∈ IR(1+N)×(1+N) be a Hessian matrix of “(−1)×(Function

(6.4. a))” with respect to (τ, w). To complete the proof it is only necessary to show

that H is positive semidefinite. Because φ′′( · ) > 0 due to a property of smoothing

function [66], we have

h11 =
∂2

∂τ∂τ

(
(−1)×(Function (6.4. a))

)

=
(1− λ)

(1− β)S

∑
s∈S

φ′′
(
−v0

∏
t∈T

{∑
i∈N

(1 + rs
t,i)wi

}
− τ

)
≥ 0.

We show that (τ, w)>H(τ, w) ≥ 0 for all (τ, w). If w 6= 0,

(τ, w)>H(τ, w) = 2Θ
N∑

i=1

w2
i + · · · · · ·︸ ︷︷ ︸

Θ does not appear

,

is nonnegative for a sufficiently large Θ. Otherwise w = 0, and then we have

(τ, w)>H(τ, w) = τ 2h11 ≥ 0. ¥
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