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Recently E. H. Spanier [12J has made a detailed investigation 
for the cohon10topy groups which was defined originally by K. 
Borsuk [ll. Spani~r has shown that with the induced hOlTIOmOr­
phisms and the coboundary operator, the cohomotopy groups satisfy 
all the Eilenberg-Steenrod axioms [5J for cohomology theory, and 
emphasized the importance of the cohomotopy groups. His investiga­
tion, however, has been restricted to the case of cOll1pact spaces. 
In view of the fact that fully nonnal spaces are taken up in recent 
researches of algebraic topology, it seems desirable to study the 
cohomotopy groups for the case of fully normal spaces. This is the 
purpose of the present note. 

1. A topological space is called a countably fully normal space 
if every countable open covering has a star refinement. According 
to [9J, a topological space is countably fully normal if and only if 
it is normal and countably paracompact (that is, every countable 
open covering has a locally finite refinement). Recently C. H. 
Dowker [3J has proved the following theorem. 

(1.1) Let X be a countably fully normal space and Y a compact 
metric space. Then the product space X x Y is countably fully 
normal. 

In a previous paper [IIJ we have obtained the following theorem. 
(1.2) Unde?' the san'W assumption as in (1.1) the relation 

dim (Xx Y):::;:dimX +dim Y holds. 
It is to be noted that fully normal spaces, compact Hausdorff 

spaces, perfectly normal spaces and metric spaces are all countably 
fully normal. 

2. The theorems (1.1) and (1.2) admit the following arguments 
(§§ 6-8 in Spanier [12J). 

Let sn be an n-sphere and p its fixed point. Let X be a 
countably fully normal space and A a closed subset of X. 

If dim (X-A) < 2n, then, for any two continuous maps a, 13': 
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(X, A)--+(sn, p), there exist two closed sets M, J.Vof X with X=MVN 
and two homotopies F, G: (Xx I, A x 1)--+ (sn, p) such that 

F(x, O)=a(x) for XEX, F(x, I)=p for xEN, 

G(x,O)=j3(x) for XEX, G(x, I)=p for xEM, 

w here I is the closed line interval consisting of non-negative real 
numbers not greater than unity. Moreover these homotopies F, G 
can be so chosen that F(x, t)=a(x), G(x, t)=j3(x) for each tEl if 
either a(x)=p or j3(x)=p. Let us define r: (X, A)--+(sn, p) by 

r(x) = {F(x, I) for xEM 
G(x, 1) for xEN. 

In case dim (X-A)<2n-I, the homotopy class {r} relative to 
A is uniquely determined by the homotopy classes {a} and {j3} 
(relative to A). Define {a} + {j3} = {r}. Then we have the follow­
ing theorem. 

(2.1) If X is a countably fully normal space with dim (X-A) 
<2n-Il\ the homotopy classes {a} (relative to A) of continuous maps 
a of (X, A) into (S'\ p) form an abelian group with the law of 
addition defined above. 

This group is called the n-th cohomotopy group of X modulo A 
and is denoted by 7r1l(X, A). We write 7rn(x) instead of 7rn(X, 0). 

Let f: (X, A)--+(Y, B) be a continuous map. If a : (Y, B)---')­
(sn, p), then af: (X, A)--+(sn, p), and {a}={p} implies {af}={j3f}. 
Hence f induces a mapping 

f~ : rrn(y, B)--+rr'1(X, A) 

defined by f~{a} = {af} for {a}E7rn(y, B), and ff; is a homomorphism 
of 7rn(y, B) into 7rn(x, A). 

Let a : A--+sn. Then there is an extension a of a which maps 
(X, A) into (E'H\ sn) where ElI+I is an (n+ I)-cell with sn as its 
boundary. Let <PI : (E'Ht, sn)---')-(sn+\ p) be a continuous map which 
takes Ell+l_ sn homeomorphically onto sn+l - p. Then {<PIa} E7rn+I(X,A) 
is uniquely determined by the homotopy class {a}E7rnCA) 'where 
dimA<2n-l, dim(X-A)<2n+1. Define 

LI : 7rn(A)--+7r'HI(X, A) 

by LI{a} = {<Plt:} for {a}E7rn(A). The mappingLlisa homomorphism 
and is called the coboundary operator. 

1) It is sufficient to assume that dim F<2n -1 for any closed F(X - A. Cf. 
(12]. 

(Sc. Rep. T .B.D. Sect. A. 
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Cohomotopy Groups for Fully Normal Spaces 253 

With the induced homomorphisms j~ and the coboundary 
operator, the cOhOlllotopy groups of countably fully normal spaces 
satisfy the Eilenberg-Steenrod axionls [5J for cohonlology theory, 
except the exactness axiom. 

(2.2) If f : (X, A)~(X, A) is the identity, then ffj: rcneX, A)~ 
rc71(X, A) is the identity. 

(2.3) If f: (X, A)~(Y, B) and g: (Y, B)~(Z, C), then (gf)ft= 
+'If ft Jg. 

(2.4) If j : (X, A)~(Y, B), then rL1=L1(fIA)ft : rcn(B)~rcn+I(X,A). 
(2.5) If j, g : (X, A)~(Y, B) aloe homotopic, then r=li. 
(2.6) If V is an open set conta·ined in A and J : (X- V, A- V) 

~(X, A) is the inclusion 1nap, then Jft : rcn(X, A)~rcn(x - V, A - V) is 
an isomorphism onto. 

(2.7) If P is a space consisting of a single point, then 
rc?Z(P)=O for n21. 

Here the suitable dimension restrictions are assumed in each case 
and X, Y, Z are countably fully norlllal spaces. 

3. (2.6) is a special case of the following "map excision 
theorem" (cf. A. D. Wallace [13J). 

(3.1) If f: (X, A)~(Y, B) is a closed (continuous) 1nap which 
takes X-A homeomorphically onto Y -B, then fft: rcn(y, B)-4rcn(X, A) 
is an isomorphism onto. 

Proof. If we denote by X A the space obtained frOlll X by 
identifying the closed set A to a point qA and h : (X, A)-4(XA' qA) is 
the associated map, then X A is a countably f,ully normal space and 
we can prove hft: rc?Z(X:b qA)=rcn(X, A) similarly as in [12, Theorem 
7.5J. The assumption that j is a closed map implies that f induces 
a homeomorphism of (XA' qA) onto (Y13 , q13)' Thus we have (3.1). 

For the unrestricted Cech cohomology theory, the map excision 
theorem holds for fully norl11al spaces (but whether or not it holds 
for countably fully normal spaces is an open question). Thus in case 
X is a fully normal space, we have Hn(X, A)=H"(XA , qA)' Further, 
if dim (X-A) < n, then X A is a fully nornlal space of dimension < n. 
Because every open covering of X A has a refinement [5= {VI' ... , V,,} 
such that qA is contained in VI but not in any V j with J> 1. Then 
{h-I(V1), ••• , h-1(Vs)} is an open covering of X. Since ACh-1(V1), 

there is an open set W such that ACWCWCh-1(V1). Since 
dim(X-A)<n we have dim (X- W)<n and hence {h- 1(V1)-W, 

Vo1. 4, No. 98] 

(231 ) 



254 Kiiti MORITA 

h- 1(VZ)-W, ... ,h-l(Vs)_W} as an open covering of X-W has a 
refinement {G1 , ••• , Gs} of order <n+l such that G1Ch-1(V1)-W 
and GjCh-1(VJ- W for j>1. The sets Gj for j>1 are open in X 
and there is an open set HI of X such that G1 =HJ\ (X - W), 
WCI-I1Ch-1(V1). Hence {h(I-I1), h(GJ, ... , keGs)} is an open covering 
of X~j which is a refinement of ~ and has order < n + 1. This shows 
dim X A < n. Thus we have 

for n>dim (X-A). 

The following theorem is the analogue of this fact. 
(3.2) If dim (X-A)<n, then n:n(x, A)=O. 
Proof. According to Theorem 6.3 2

) of [10J, if dim (X - A) < n, 
then for any two maps a, (J : (X, A)-+(sn, p) there is a uniform 
homotopy F : (Xx I, A x 1)-+ (sn, p) such that F(x,O)=a(x), F(x, 1) 
=(J(x). This proves (3.2). 

In case X is a normal space, if we denote by n:n(x, A) the set 
of the hOlTIOtOpy classes {a} of n1aps a of (X, A) into (sn, p), then 
(3.2) holds likewise as is seen from the above proof. 

4. Let X be a countably fully normal space of dimension 
< 2n -1 and A a closed set of X. Then the sequence of groups and 
homomorphisms 

(4.1) n:n(X, A)! . . . l!n:m (X)!n:?n(A)--=!.n:?lHl(X, A)2: . .. 
is called the cohomotopy sequence of a pair (X, A), where i : A-4X 
and j : (X, O)-4(X, A) are inclusion maps. 

(4.2) If X is a fully normal space of dimension < 2n -1 the 
cohomotopy sequence of (X, A) is exact. 

This theorem will· be proved later. Here we note that 
(4.3) i~J'fi=O, PLl=O, Llifi=O, kernel of ifi=image of jii 

are proved already for countably fully normal spaces.3
) Indeed the first 

two relations are proved similarly as in [12]. To prove that L1i fi =O, let 
{a} En:n(x) and a: X-4sn. Then a considered as a map of (X, A) 
into (E1Hr, sn) is an extension of the map ai : A-+sn, and hence we 
have Ai~{a}=A{ai}={¢la}=O. 

2) This is an extension of Proposition B) of [6, p. 87] to the case of normal 
spaces. Propositions C) and D) of [6, p. 88] can be shown to hold for countably 
fully nOl'mal spaces by virtue of (1. 2). They lead us to the following theorem: 
If X =Al\J A2 and dim (AI "A2)~n -2, then n7l(X)=nn(A1 )+n?1CA2 ) (direct sum). This 
theorem has an analogue in cohomology theory and can also be deduced from the 
exactness axiom, (2.3), (2.6) and (3.2) for the case of fully normal spaces. 

3) Whether (4.2) holds or not for the case of countably funy normal spaces 
is an open question. 

[Sc. Rep. T.B.D. Sect. A. 

(232 ) 



Cohomotopy Groups for Fully Normal Spaces 255 

The p:roof of the relation: kernel of i 1i =image of j1i runs as 
follows. Let {a} Ere7l-(X), a : x-+sn, and i1i{a} =0. Then ai : A-+sn 
is inessential. Hence by Borsuk's theorenl [6, p. 86J which is valid 
for countably fully nornlal spaces, there exists a n1ap fJ: (X, A)-+ 
(sn, p) such that fJj, a: x-+sn are hOllIotopic. Thus we have {a} = 

{fJj} =j;!{fJ}. Since i 1ij;!=O, the kernel of i1i is the image of p. 
5. Henceforth let X be a fully nornlal space of dinlension less 

than 2n -1 and A a closed set of X. 
The family {~y} of all the locally finite open coverings of X 

w hose nerves have dilnension less than 2n -1 forms a cOlnplete 
family of all open coverings. Let K y be the nerve of ~y and Lv the 
subcomplex of K)J w hieh corresponds to the nerve of the covering 
{VI Vr\A~O, VE~J of the subspace A. 

An infinite (or finite) conlplex K detennines a topological space 
assigned with the Whitehead topology (cf. [14J, [4]) which will be 
denoted by the sanIe letter E. The complex I{ with this topology 
is a fully normal space and its topological dinlension is identical with 
the combinatorial diInension (cf. [llJ). Hence the cohomotopy groups 
ren(Ev, LJ are defined by (2.1). 

A continuous Dlap f: (X, A)-+ (I{v, Lv) is said to be ca"Il0nical if 
f-l(star v)C V holds for each vertex '1) corresponding to V of ~)J' 

For each [Sy we choose a canonical nIap k,l: (X, A)-+(KY, Lv); such 
a map exists by [4J, [llJ and any other canonical 111ap is S!10Wn to 
be homotopic to ky • 

If ~,.,. is a refinement of ~v, then a correspondence 

T,.,.v : (K,.,., LfL)-+(K'.I' Lv) 

such that TI-'-v(v:)=v~ implies V~CV~ is a simplicial n1ap and is 
called a projection. Any other projection T f1-V is honlotopic to T f1-y. 

Hence T f1-'.I and T f1-V induce the same homomorphism of ren(K'.I' L..,) into 
ren(Kp., L/.I.)' 

The groups ren(K'.I' Lv) and homomorphisms T:v fonn a direct 
system of groups, whose limit group liln ren(K.." Lv) will be denoted 

--+ 

by ;n(X,A). The elenlent of ;?'(X, A) determined by uvEren(Ky, Lv) 
will be denoted by [n y ]. 

If ~f1- is a refinement of ~y, then TfJ.'.Ikp.: (X, A)-+(Ky, Ly) is 
shown to be canonical (cf. [12, Lemma 13.2J) and hence is homotopic 
to ky. Therefore we can define a homomorphism 

h : ;ll(X, A)-+rell(X, A) 

Vol. 4; No. 98] 

(233 ) 



256 Kiiti MORITA 

by h[u~,]=h~uv for [UvJE;:?~(X, A), since UJLE[UJ implies h!uJL=h~uv. 

(5.1) The homomorphis1n h : ;:n(x, A)-4/Tn(X, A) is an isomor­
phism onto. 

Proof. Let a : (X, A)-4(sn, p). As in [12, p. 206J there can be 
found a (locally) finite open covering mv and a simplicial map 
13 : (Kv, LV)-4(K, p) (where K is a simplicial subdivision of sn with p 
as a vertex) such that f3hv is homotopic to a. Then {f3} E/Tn(Kv, Lv) 
and h~{P}= {a}. Hence Ii is onto. 

To prove the ison1orphism of Ii, let li[ulIJ=O and let aE{a}=ulI . 
Then alh is homotopic to a constant map e: (X, A)-4(Sn, p) with 
e(x)=p for every point x of X. 

According to J. H. C. Whitehead [14, Theorem 36J there is a 
simplicial map 

a' : (K~, L~)-4(K, p) 

for a suitable simplicial subdivision (K~, L~) of (KlI, LlI) such that a' 
is homotopic to a. 

Let 
F : (Xx 1, A X 1)-4(Sn, p) 

be a homotopy between ah ll and e such that F(x,O)=ahv(x), 
F(x, l)=p for XEX. Let us put 

u= {h;l(star v') Iv' extending over al1 vertices of K~}, 
m3 , {F-I(star v) Iv extending over al1 vertices of K}, 

where "star" means "open star". Then 11 and ms are open cover­
ings of X and Xx I respectively. 

Since X is fully normal) there exist a locally finite open cover­
ing ~JL= {V~laEn} of X and finite open coverings 9J1.,. of I (oEn) such 
that 

(a) ~JL is a refinen1ent of 11, 
(b) {V~ x MloEn, MEWC cT } is a refinement of ~~, 
(c) the dimension of the nerve EJL of mJL is less than 2n-1. 

Each covering W1cT has a refinement of the form: {(tj-I, tj+l)I}=O, 
1, "', k.,.}, where O=t~<tr<··· <t'fc.,. =1 and (t~I' tn, (tk.,.-v t kcT +1) 

means respectively [0, tn, (t'fccT- 1' 1J. 

Let v~ be the vertex of ]{JL corresponding to V~. By the 
property (b) there is a vertex v.,., j of K such that 

V~ x (tj-I, tj+l)CF- I(star v.,.' J) • 

We choose such a vertex v.,., j and put 

[Sc. Rep. T.B.D. Sect. A. 
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Since 

V~ X (t'J-l' t'J+l)f\ V; x (ty, t'J+2)=:> V~ x (ty, t'J+l)i=O, 

the vertices vrr, j and vrr, j+l are vertices of a simplex of K. 

For tj<t<t'J+l' let SO(V/~,t) be the point of K which divides the 
segment fron1 vrr, j to vrr, j+l in the ratio (t - tf) : (t'J+l - t). 

If vao,' .. , vap is a simplex of Kp.., then we have V~i x tC 
jJ. p.. 

F-l(star vai,j) or V~i x tCF-1(star va1,j) (\F-1(star vai,j+l) according as 

t=t':i or ta.i<t<t':i. Hence SO(v~, t) for 0=00, •• ', Op are vertices 
) J )+1 

or points on the I-faces of a simplex of K. Therefore the mapping 
SO can be extended linearly over the simpexes of Kp.. with t fixed, 
and we have (denoting by the same letter) 

SO : KjJ.xI~K. 

SO is clearly a continuous map by the property of the Whitehead 
topology. 

Since F(A x I)=p, A x ICF-1(star p). Hence, if we take V~ so 
that V~(\Ai=O in1plies V~ x ICF-1(star p) (this is possible; see [6, 
p. 86J), we have SO(v~, t) =p for v~ such that V~(\A~O and for any 
tEl. Thus w~ have 

SO : (Kp.. x I, LjJ. x I)~(K, p). 

Since F(Xx I)=p and V~ x (tkrr-l' IJCF- 1(star va, krr), we have pE 

star va,krr and hence Va,krr=p for every oED. This shows that a map 

'Po : (KjJ., LjJ.)~(K, p) 

defined by SOo(x)=SO(x, 0) for xEKjJ. is homotopic to a constant map. 
Here we note that 

V~C(ahjJ)-I(star SOo(v~)) , 

since F(x, 0) = ahp..(x) , and V~ x [0, tf)CF-1(star SOo(v~)). 
By the property (a) there is a simplicial map 

T : (KjJ., LjJ.)~(K~, L~) 

such that V~Ch;l(star T(v~)) holds for any vertex v~ of Kp... On the 
other hand, the simplicial approximation a' of a may be so chosen 
that star v'Ca- 1(star a'(v')) for each vertex v' of K~. Hence we 
have 

V~Ch;l(star T(v~))Ch;la-l(star a'T(v~)). 

Therefore afT is homotopic to SOo. 
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Since K~ is a simplicial subdivision of K", there is a simplicial 
map Tf of (K~, L~) into (K", L,,) such that each vertex v' of K~ is 
mapped into a vertex of the open simplex of K" containing v'. 
Therefore 

V~Ch;l(star T(v~»Ch;l(star T'T(vn). 

Since h" is canonical, if T'T(v~)=v~ we have V~C V~. Thus T'T is 
a projection of (KJL' LJL) into (KlI, LlI) and hence (T'T)~=T!lI' 

Since Tf is homotopic to the identity, we have 

T!,,{a} = {aT'T} = {aT} = {afT} = {CPo} =0, 

which shows that [U lI ] = [T!"ulIJ = 0. Hence h is an isomorphisn1. 
This completes the proof of (5.1). 

6. In view of the theorem (5.1) and a theorem of Kelley and 
Pitcher [7] that the direct limit of exact sequences is exact, for the 
proof of the exactness axiom (4.2) it is sufficient to verify this 
axiom for simplicial con1plexes. Since infinite simplicial conlplexes 
have also the homotopy extension property [14, Theorem 37J, it is 
seen that Spanier's arguments remain valid for infinite simplicial 
complexes with slight modifications. Thus (4.2) is proved. Sa) 

As another application of (5.1) we note that the reduction and 
extension theorems of A. D. Wallace [13] hold also for the 
co homotopy groups of fully normal spaces. -i) 

7. Under the san1e assumption as in § 5 we can define a 
homomorphism 

<P : 7rn(x, A) 4-Hn(x, A; 7rn(sn» 

as in Spanier [12]. Here Hn(X, A) denotes the unrestricted Cech 
cohon1ology group of X lTIodulo A as before. Then the Hopf classifica­
tion theorem [2] is stated as follows. 

(7.1) If diIn (X -A)sn, the h01nomorrphism -;p : rrn(x, A)4-Hn(x, 
A; 7rn(sn» is an isomorphis1n onto for n>1. 

Indeed, by the -results of § 3 this theorem can be reduced to 
the case of a pair (XA' qA) with dim XAsn and hence (7.1) follows. 

3 a) Added in proof. Mr. H. Miyazaki has obtained the same result 
independently. 

4) They are proved by using the following theorem, for the cohomotopy 
groups as well as for the unrestricted Cech cohomology groups: If A, Xo are 
closed sets of a funy normal space X and {V>J is a locally finite open covering of 
A, then there are an open set lV containing A and a locally finite system {W>-.} of 
open sets of X such that A ( YWA.> WAr--A ( VA for each A and the systems of sets 
{WA' Xor--N} , {W~r--A, Xo'\A} are similar. Cf. also S. Sakai's paper in this issue 
of our Science Reports. 

[Sc. Rep. T.B.D. Sect. A. 
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The following theorem is deduced fron1 the Hopf extension 
theoren1 [2] as is shown in [12J. 

(7.2) If diln(X-A)sn+1, the hO?nomorphisl1~ ~:7Tn(X,A)-+ 
Hn(X, A; 7TnCsn» is onto for n>2. 

8. C. H. Dowker [2J has introduced the notion of uniforlTI 
homotopy. The spaces considered in this section will be normal. 
We define that f, g : (X, A)-+(Y, B) are un1jor1nly homotopic if there 
is a homotopy h : (Xx I, A x I)-+(Y, B) such that for any finite open 
covering ~ of Y there exists a 0>0 so that It-t'l<o implies 
hex, t')ES(h(x, t), ~5) for every XEX. Our definition is equivalent to 
that of Dowker in case Y is a compactun1. Let (i(X), (i(Y) be the 
Cech conlpactifications of X, Y; the bar indicates the closure opera­
tions in (3(X), (3(Y). 

(8.1) f, g : (X, A)-+(Y, B) are un1junnly hO?notopic if and o'nly 

if their extensions j, g : (/3(X), A)-+((3(Y), B) are homotopic.f» 
Proof. It is sufficient to prove the "only if" part. Let f, g be' 

unifonTIly hon10topic and let hex, t) be a hOlTIotopy wit11 the property 
mentioned in the above definition. If t is fixed, hex, t) defines a map 

h t : X-+ Y and h t has the unique extension l~t : ,8(X)-+(i(y). We put 

hex, t)=ht(x). We prove that h : ((i(X) x I, Ax I)-+((i(Y), Ii) is con­

tinuous. Let (xu, to)E(iCX) x I and Wo any neighbourhood of h(xo, to) in., 

(i(Y). Then there are open sets WI' W 2 of Y such that h(xu, to)E(3(Y) 

- Y - W z, W::(\,YCW1 , W1CWC' Since ht,o is continuous, there is an 

open set V of X such that we have xuE(i(X) -X - V and hto(x)EjJ(Y) 

- Y - Wz for every XEjJ(X) - X-V. Since?l13 = {WI' Y - Wz} is an open 
covering of Y, there is a 0>0 such that It-tul <0 implies' hex, t)E 
S(h(x, to),~) for every XEX. Since hex, to)EW2 for XE V, we have 
hex, t)EWl for XE V and any t satisfying It-tol <0. Consequently, if 

XEjJ(X)-X- V and It-tol <0, we have hex, t)EW1CWO' Thus (8.1) 
is proved. 

(8.2) If dim (X-A)<2n-1, then we have dimF<2n-1 for any 

closed set F of f3(X) such that FC/3(X) - A. 
Proof. Since (3(X) is normal, there is an open set G of jJ(X) 

such that FCGCGCjJ(X)-A. Then we have FCGC/3(X)-X-G 

CG(\XCG and dim Fsdim G(\X=dilTI Gr\Xsdim (X -A) .. 
Now let dim (X-A) <2n-1. By (8.1), (8.2) and (2.1) we see 

5) Cf. [2J, p. 229, where Dowker proved (8.1) for a compactum Y. 
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that the set of the uniform homotopy classes { a} u of maps 
a : (X, A)-)-(sn, p) forms an abelian group with the addition defined 
similarly as in § 2. This goup is called the n-th uniform cohomotopy 
group of X modulo A and is denoted by 7r~(X, A). Clearly we have 

(8.3) 7r~(X, A)~7rn(fi(X), A) where X is a no?~mal space and A 
is a closed set of X. 

If we replace homotopy by uniform homotopy, the results of 
§§ 2-4 hold for the uniform cohomotopy groups of normal spaces; 
in particular all the Eilenberg-Steenrod axioms for cohomology 
theory are satisfied. The analogous results of §§ 5 and 6 are also 
obtained; in this case we must replace locally finite coverings by 
finite open coverings. Thus we have 

(8.4) If dimX<2n-1 and {Q.5,,} is a family of all finite open 
coverings of X of orderS:2n-1, then 7r~(X, A) is isomorphic to the 
"limit group of the di?~ect system {7rn(Kv, Lv); T!,,}, where Kv, Lv, T M" are 
defined similarly as in § 5. 

As is seen from (8.4) the uniform cohomotopy groups 7r~(X, A) 
correspond in some sense to the Cech cohomology groups H;(X, A) 
based on finite coverings; the latter satisfy also the uniform homotopy 
axiom. In fact, the Hopf classification theorem proved in Dowker 
[2] for normal spaces (cf. also [8J where homotopy is used in the 
sense of uniform homotopy) is stated as the analogue of (7.1) : 

(8.5) If dim(X-A)S:n and n>l, then 7r~(X, A)~H;(X, A; 
7rn(S7!)). 

Similarly we have the analogue of (7.2) for the uniform 
co homotopy groups. 

Finally it is to be noted that in case X is a countably fully 
normal space there is a natural homomorphism of 7r~(X, A) onto 
7rn(x, A). 
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