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Recently E. H. Spanier [12] has made a detailed investigation
for the cohomotopy groups which was defined originally by K.
Borsuk [1]. Spanier has shown that with the induced homomor-
phisms and the coboundary operator, the eohomotopy groups satisfy
all the Eilenberg-Steenrod axioms [5] for eohomology theory, and
emphasized the importance of the cohomotopy groups. His investiga-
tion, however, has been restricted to the case of compact spaces.
In view of the fact that fully normal spaces are taken up in recent
researches of algebraic topology, it seems desirable to study the
cohomotopy groups for the case of fully normal spaces. This is the
purpose of the present note.

1. A topological space is called a countably fully normal space
if every countable open covering has a star refinement. According
to [9], a topological space is countably fully normal if and only if
it is normal and countably paracompact (that is, every countable
open covering has a locally finite refinement). Recently C. H.
Dowker [3] has proved the following theorem.

(1.1) Let X be a countably fully normal space and Y a compact
metric space. Then the product space Xx Y is countably fully
normal.

In a previous paper [11] we have obtained the following theorem.

(1.2) Under the same assumption as in (1.1) the wrelation
dim (X x Y)<dim X +dim Y holds.

It is to be noted that fully normal spaces, compact Hausdorff
spaces, perfectly normal spaces and metric spaces are all countably
fully normal.

2. The theorems (1.1) and (1.2) admit the following arguments
(88 6-8 in Spanier [12]).

Let S” be an n-sphere and p its fixed point. Let X be a
countably fully normal space and A a closed subset of X.

If dim (X—A)<2n, then, for any two continuous maps «, B:
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(X, A)—(S", p), there exist two closed sets M, N of X with X=M\/N
and two homotopies F, G: (XxI, AxI)—(S", p) such that
Flz, 0)=a(x) for zeX, F(x, 1)=p for zeN,
Gz, 0)=p4(z) for zeX, G(z, 1)=p for zeM,
where I is the closed line interval consisting of non-negative real
numbers not greater than unity. Moreover these homotopies F, G
can be so chosen that F(z, t)=a(z), Glz,t)=pL(x) for each tel if
either a(x)=p or f(z)=p. Let us define y: (X, A)—(S", p) by
T(m)z{F(x, 1) for zeM
Gz, 1) for oedN.

In case dim (X—A)<2n—1, the homotopy class {y] relative to
A is uniquely determined by the homotopy classes {a} and {8}
(relative to A). Define {a}+ {f}={r}. Then we have the follow-
ing theorem.

(2.1) If X is a countably fully mormal space with dim (X—A)
<2n—17Y, the homotopy classes {a} (relative to A) of continuous maps
a of (X, A) into (S*, p) form an abelian group with the law of
addition defined above.

This group is called the n-th cohomotopy group of X modulo A
and is denoted by =X, A). We write z*(X) instead of z*(X, 0).

Let f:(X, A)—»(Y, B) be a continuous map. If «:(Y,B)—~
(S*, »), then af : (X, A)—(S* p), and {a}={F} implies {af}={Lf}.
Hence f induces a mapping

fHiav(Y, By—»n"(X, 4)
defined by f#{a}={asf} for {a}ex™(Y, B), and f*is a homomorphism
of n(Y, B) into n"(X, A).

Let « : A—S8”. Then there is an extension & of « which maps
(X, A) into (E™*', 8") where E™*' is an (n41)-cell with S™ as its
boundary. Let ¢, : (E"*, S")—(S"*!, p) be a continuous map which
takes E"*'—S™ homeomorphically onto S"*' —p. Then {¢a}ex"*(X,A)
is uniquely determined by the homotopy eclass {a}en™(4) where
dim A<2r—1, dim(X—A4)<2r+1. Define

4:1"(A)-n""(X, A)
by 4d{a}={¢&} for {a}er™(4). The mapping 4 is a homomorphism
and is called the coboundary operator.

1) It is sufficient to assume that dim F'<’2rn—1 for any closed F(X— A. Cf.
121
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With the induced homomorphisms f* and the coboundary
operator, the cohomotopy groups of countably fully normal spaces
satisfy the Eilenberg-Steenrod axioms [5] for cohomology theory,
except the exactness axiom.

(2.2) If f:(X, A)—(X, A) 1s the identity, them [f*:7%(X, A)—
(X, A) is the identity. -

2.3) If f: (X, A)—(Y,B) and g:(Y,B)—~(Z, C), then (9f)=
N

(2.4) If f:(X, A)—(Y, B), then fid—A(f|AY : m*(B)—n"* (X, A).

2.5) If f,g:(X, A)—(Y, B) are homotopic, then ft=g*

(2.6) If V is an open set contained n A and 7:(X—V, 4—V)
—~(X, A) is the inclusion map, then 7% : 7(X, A)»a"(X—-V,A-V) is
an 1somorphism onto.

2.7 If P 4s a space consisting of a single point, then
#(P)=0 for nz=1. ‘

Here the suitable dimension restrictions are assumed in each case
and X, Y, Z are countably fully normal spaces.

3. (2.6) is a special case of the following ‘‘map excision
theorem’’ (ef. A. D. Wallace [13]).

B.1) If F:(X, A)—(Y, B) is a closed (continuous) map which
takes X— A homeomorphically onto Y — B, then f%:z"(Y, B)—n"(X, A)
is an isomorphism onto.

Proof. If we denote by X, the space obtained from X by
identifying the closed set 4 to a point ¢, and A : (X, A)—>(X,, q.) is
the associated map, then X, is a countably fully normal space and
we can prove A :7%(X., g )~7"(X, A) similarly as in [12, Theorem
7.5]. The assumption that f is a closed map implies that f induces
a homeomorphism of (X,, g4) onto (Y, ¢s). Thus we have (3.1).

For the unrestricted Cech cohomology theory, the map exeision
theorem holds for fully normal spaces (but whether or not it holds
for countably fully normal spaces is an open question). Thus in case
X is a fully normal space, we have HX, A)~H*(X.,, q,). Further,
if dim(X~A)<n, then X, is a fully normal space of dimension <n.
Because every open covering of X, has a refinement 8= {1V, ..., V,}
such that ¢, is contained in V; but notin any V; with 7>1. Then
{h~Y(VY), ..., k"Y(V)} is an open covering of X. Since ATAYV)),
there is an open set W such that ACWC WA Y V1). Since
dim(X—A4)<n we have dim(X—W)<n and hence {2 YV)—W,
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h“(Vz)-—PV, eee, B°Y(V,)=W} as an open covering of X—W has a
refinement {G,, ..., G} of order <m+1 such that GCA Y (V)—W
and G,Ch Y (V;)—W for j>1. The sets G, for j>1 are open in X
and there is an open set H, of X such that G =HNX-W),
WCH,Ch (V). Hence {h(H), M(G,), ..., h{G,)} is an open covering
of X, which is a refinement of ¥ and has order <n+1. This shows
dim X,<n. Thus we have
HY X, A)=0 for n>dim(X—A4).

The following theorem is the analogue of this fact.

(3.2) If dim (X—A)<n, then =X, A)=0.

Proof. According to Theorem 6.3% of [10], if dim (X—A4)<n,
then for any two maps «, f:(X, A)—(S", p) there is a uniform
homotopy F :(Xx1, AxI)—(S", p) such that F(z, 0)=«a(z), F(z,1)
=f(x). This proves (8.2).

In case X is a normal space, if we denote by »*(X, 4) the set
of the homotopy classes {a} of maps «a of (X, 4) into (S, p), then
(3.2) holds likewise as is seen from the above proof.

4. Let X be a countably fully normal space of dimension
<2n—1 and A a closed set of X. Then the sequence of groups and
homomorphisms

4.1) (X, AT LX) B A) S (X, A
ig called the ecohomotopy sequence of a pair (X, 4), where 7: 4—X
and j: (X, 0)—(X, 4) are inclusion maps.

(4.2) If X is o fully normal space of dimension <2n—1 the
cohomotopy sequence of (X, A) is exact.

This theorem will: be proved later. Here we note that

(4.3) %4¥=0, j*4=0, M4%=0, kernel of ©*=1mage of 5*
are proved already for countably fully normal spaces.” Indeed the first
two relations are proved similarly as in [12]. To prove that 4#=0, let
{a}en™(X) and «:X—>S". Then « considered as a map of (X, A)
into (E™*', 8™ is an extension of the map a7 : A—S™, and hence we
have Adt{a}=A{ai}={¢a}=0. '

2) This is an extension of Proposition B) of [6, p. 87] to the case of normal
spaces. Propositions C) and D) of [6, p. 88] can be shown to hold for countably
fully normal spaces by virtue of (1.2). They lead us to the following theorem :
If X=A;w A, and dim (A1~ Apsn —2, then = X)~n"(A)+1"(A,) (direct sum). This
theorem has an analogue in cohomology theory and can also be deduced from the
exactness axiom, (2.8), (2.6) and (3.2) for the case of fully normal spaces.

3) Whether (4.2) holds or not for the case of countably fully normal spaces
is an open question.
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The proof of the relation: kernel of df=image of 4% runs as
follows. Let {a}er™(X), a: X—S" and +#{a}=0. Then ai:A—>S"
is inessential. Hence by Borsuk’s theorem [6, p. 86] which is valid
for countably fully normal spaces, there exists a map B:(X, 4)—
(S™, p) such that 5, «: X—S" are homotopic. Thus we have {a}=
{Bj}=7*{B}. Since %*=0, the kernel of * is the image of 7.

5. Henceforth let X be a fully normal space of dimension less
than 2n—1 and 4 a closed set of X.

The family {%B,} of all the locally finite open coverings of X
whose nerves have dimension less than 2n—1 forms a complete
family of all open coverings. Let K, be the nerve of 9, and L, the
subcomplex of K, which corresponds to the nerve of the covering
{VIVN\A=<0, VeB,} of the subspace A.

An infinite (or finite) complex K determines a topological space
assigned with the Whitehead topology (cf. [14], [4]) which will be
denoted by the same letter K. The complex K with this topology
is a fully normal space and its topological dimension is identical with
the combinatorial dimension (ef. [11]). Hence the cohomotopy groups
="(K,, L,) are defined by (2.1).

A continuous map f: (X, 4)—(X,,L,) is said to be canonical if
S Y star v)CCV holds for each vertex w corresponding to V of 9,.
For each BV, we choose a canonical map 4, : (X, 4)— (K., L»); such
a map exists by [4], [11] and any other canonical map is shown to
be homotopic to #,.

If ¥, is a refinement of B,, then a correspondence

T;w : (K;u L;L)“*(Kv: Lv)
such that T..(v])=v;, implies VIC V] is a simplicial map and is
called a projection. Any other projection 7’“ is homotopic to T,,.
Hence T, and T,W induce the same homomorphism of #"(X,, L) into
(K., L,.)-

The groups ="(K,, L,) and homomorphisms 7%, form a direct
system of groups, whose limit group lim »*(K,, I») will be denoted
by z%(X, A). The element of 7"(X, A) determined by u.er™(K., L)
will be denoted by [u,].

If B, is a refinement of B,, then 7,.k,:(X, 4)—(K,, L,) is
shown to be canonical (cf. [12, Lemma 13.2]) and hence is homotopic
to %#v. Therefore we can define a homomorphism

b7 X, A)—r(X, A)
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by hlu,]=hu, for [u,Jex*(X, A), since wu,e[u,] implies Aiu,=hfu..

(56.1) The homomorphism b 7(X, A)—»n(X, A) is an  isomor-
phism onto.

Proof. Let a: (X, A)—(S™, p). As in [12, p. 206] there can be
found a (locally) finite open covering %8B, and a simplicial map
B : (Kv, Lv)—(K, p) (where K is a simplicial subdivision of S* with p
as a vertex) such that S4» is homotopic to «. Then {f}er™(K, Ls)
and %i{f}={a}. Hence 7 is onto.

To prove the isomorphism of 7, let Z[us]=0 and let ae{a}=u,.
Then ah. is homotopic to a constant map e: (X, A)—(S", p) with
e(x)=p for every point x of X.

According to J. H. C. Whitehead [14, Theorem 36] there is a
simplicial map

a’ (K, Ly)—~(K, p)
for a suitable simplicial subdivision (K;, L]) of (K., L») such that «’
is homotopic to «.

Let

F:(XxI, AxI)—(S", p)
be a homotopy between «h, and e such that F(z, 0)=ah.(x),
F(x,l)=p for zeX. Let us put
U= {A; (star v') |’ extending over all vertices of K},
W= {F(star v)|v extending over all vertices of K},
where ‘‘star’’ means ““open star’>. Then 1l and 2 are open cover-
ings of X and X x I respectively.

Since X is fully normal, there exist a locally finite open cover-
ing Bu={V7loeQ} of X and finite open coverings M, of I (c€Q) such
that ‘

(a) B, is a refinement of 11,

(b) {Vix Ml|oeQ, MeM,} is a refinement of 2,

(¢) the dimension of the nerve K, of 8B, is less than 2n—1.
Each covering 9, has a refinement of the form : {(¢J.,, t5.1)]7=0,
1, .-, k,}, where 0=t5<ty<+-- <tk.,=1 and (24, &), (t‘,’%_ 1 f}’;,+1)
means respectively [0, t7), (¢7 _1> 11

Let »7 be the vertex of K. corresponding to V. By the
property (b) there is a vertex v»/ of K such that

Vo x (89, t9,) CF ~*(star v™7) .
We choose such a vertex v’ and put

[Se. Rep. T.B.D. Sect. A.
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pvg, t)=v"7 .
Since
Vﬁ X (t?—h t}{rl)/-\ Vz X (t,liyy t?-w)) V/(I X (t?: t?—kl)#oy
the vertices %7 and »*7*' are vertices of a simplex of K.

For #5<t<tJ.., let ¢(vg, t) be the point of K which divides the
segment from v’ to »*/*! in the ratio (¢t—¢9) : (£, —¢).

If CHORRRPRCAE is a simplex of K., then we have VXt
F~(star vou7) or Vo x tCF ~(star voi J)\F~}(star vos7+1) according as
t=to: or IS ARH R Hence ¢(vg, t) for o=o,, ---, 0, are vertices
or points on the 1-faces of a simplex of K. Therefore the mapping
¢ can be extended linearly over the simpexes of K. with ¢ fixed,
and we have (denoting by the same letter)

¢ KexI—>K.
¢ is clearly a continuous map by the property of the Whitehead
topology.

Since F(AxI)=p, AxICF(star p). Hence, if we take V¢ so
that VN A#0 implies Vgx ICF-(star p) (this is possible ; see [6,
p. 86]), we have ¢(v7, t)=p for »3 such that Vg A=<0 and for any
tel. Thus we have

¢ (Kux I, Ly x I)—>(XK, p)-

Since F(Xx1)=p and V,ix(t;gg_l, 1] F-(star vo: k), we have pe
star vo, k- and hence vo ko=p for every o€Q. This shows that a map
@0 2 (K, L) — (K, p)
defined by ¢(x)=¢(x, 0) for xeK. is homotopic to a constant map.

Here we note that
Vi(ahy,)(star ¢o(v)) ,
since F'(x, 0)=ah,(x), and Vgx [0, &) F(star ¢i(v3)).
By the property (a) there is a simplicial map
T : (Kl*y LI—L)__)(K;’ L\,/)

such that VoA, (star T'(»%)) holds for any vertex v of K.. On the
other hand, the simplicial approximation «’ of «¢ may be so chosen
that star o' Ca'(star a’(v')) for each vertex »' of K,. Hence we
have

Ve hy (star T(ve))Ch; a~(star a’'T'(vg)).
Therefore «’T is homotopic to ¢
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Since K, is a simplicial subdivision of K,, there is a simplicial
map 1" of (K}, L}) into (K,, L,) such that each vertex » of K, is
mapped into a vertex of the open simplex of K, containing v'.
Therefore

Ve hy (star T(vp))Thy'(star TV T (vg)).
Since A, is canonical, if 7"T(v5)=v] we have Ve Vi, Thus T'T is
a projection of (K., L) into (Kv, Lv) and hence (T"T)¢=T¢,.
Since 7" is homotopic to the identity, we have
Ti{a}={aT'T}={al}={a'T} ={¢,} =0,
which shows that [u,]=[T%u,]=0. Hence % is an isomorphism.
This completes the proof of (5.1).

6. In view of the theorem (5.1) and a theorem of Kelley and
Pitcher [7] that the direct limit of exact sequences is exact, for the
proof of the exactness axiom (4.2) it is sufficient to verify this
axiom for simplicial complexes. Since infinite simplicial complexes
have also the homotopy extension property [14, Theorem 37], it is
seen that Spanier’s arguments remain valid for infinite simplicial
complexes with slight modifications. Thus (4.2) is proved.*

As another application of (5.1) we note that the reduction and
extension theorems of A. D. Wallace [13] hold also for the
cohomotopy groups of fully normal spaces.?

7. Under the same assumption as in §5 we can define a
homomorphism

¢ oYX, A)—H"(X, A; 7,(S™)
as in Spanier [12]. Here H™(X, A) denotes the unrestricted Cech
cohomology group of X modulo A as before. Then the Hopf classifica-
tion theorem [2] is stated as follows.

(7.1) If dim(X—A)<n, the homomorphism ¢ : 7YX, 4)—»H"(X,
A; 7,(SY) 18 an isomorphism onto for n>1.

Indeed, by the results of § 3 this theorem can be reduced to
the case of a pair (X, ¢.) with dim X.=<n and hence (7.1) follows.

8a) Added in proof. Mr. H. Miyazaki has obtained the same result
independently.

4) They are proved by using the following theorem, for the cohomotopy
groups as well ag for the unrestricted Cech cohomology groups: If A4, X, are
closed sets of a fully normal space X and {V,} is a locally finite open covering of
A, then there are an open set N containing 4 and a locally finite system {W,} of
open sets of X sueh that A (XYW, WanA ( Vi for each 4 and the systems of sets
{Wx, XonN}, {Wx~A, Xo~A} are similar. Cf. also S. Sakai’s paper in this issue
of our Science Reports.
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The following theorem is deduced from the Hopf extension
theorem [2] as is shown in [12].

(7.2) If dim(X—A)<n+1, the homomorphism ¢ :7*(X, A)—
HY(X, A;7,(S") is onto for n>2.

8. C. H. Dowker [2] has introduced the notion of uniform
homotopy. The spaces considered in this section will be normal.
We define that f, g :(X, 4)— (Y, B) are uniformly homotopic if there
is a homotopy % : (X x I, AxI)—(Y, B) such that for any finite open
covering ¥ of Y there exists a 6>0 so that |[t—¢'|<d implies
Mz, t')eS(h(x, t), B) for every xeX. Our definition is equivalent to
that of Dowker in case Y is a compactum. Let S(X), f(Y) be the
Cech compactifications of X, Y; the bar indicates the closure opera-
tions in A(X), B(Y).

8.1) f,g:(X, A)—=(Y, B) are uniformly homotopic if and only
if their extensions f, g : (A(X), A)—(B(Y), B) are homotopic.”

Proof. It is sufficient to prove the “‘only if*’ part. Let f, g be’
uniformly homotopic and let A(z, ¢) be a homotopy with the property
mentioned in the above definition. If ¢is fixed, h(x, ) defines a map
h, : X—Y and A, has the unique extension %, :A(X)->H(Y). We put
ﬁ(a;, t)=h,(x). We prove that B (BX) <1, Ax D—(B(Y), B) is con-
tinuous. Let (2, t,)€f(X) x I and. W, any neighbourhood of A(z,, t,) in.
A(Y). Then there are open sets W,, W, of Y such that e t)eB(Y)

—-Y=W,, W.N\YCW, W.CW, Since 15,,0 is continuous, there is an
open set ¥V of X such that we have @,ef(X)—X— 1 and %, (z)ef(Y)
— Y —W, for every zef(X)—X— V. Since W= {W,, Y —W,} is an open
covering of Y, there is a >0 such that [¢—¢,|<¢é implies A(z, t)e
Sh(z, ty), TW) for every azeX. Since ilz, t))eW, for xeV, we have
h(z, t)eW, for zeV and any ¢ satisfying |t —¢,|<d. Consequently, if
xeﬂ(X)——X— V and |t—¢, <0, we have fa(x, HeW,CW,. Thus (8.1)
is proved.

8.2) If dim (X—A)<2n-—1, then we have dim F'<2n—1 for any
closed set F' of B(X) such that FCPR(X)—A.

Proof. Sinee #(X) is normal, there is an open set G of ﬁ(X)

such that FCGCTGTA(X)—A. Then we have FCGTR(X)—

CGNXCG and dim F<dim G\ X=dim G/ X<dim (X — A). - A
Now let dim(X—A4)<2r—1. By (8.1), (8.2) and (2.1) we see
5)‘ Cf. [2], p. 229, where Dowker proved (8.1) for a compactum Y. o
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that the set of the uniform homotopy classes {a}, of maps
a: (X, A)—(S? p) forms an abelian group with the addition defined
similarly as in §2. This goup is called the n-th uniform cohomotopy
group of X modulo A and is denoted by n%(X, A). Clearly we have

(8.3) #p(X, A)~n"(R(X), A) where X is a normal space and A
is o closed set of X.

If we replace homotopy by uniform homotopy, the results of
§§ 24 hold for the uniform cohomotopy groups of normal spaces;
in particular all the Eilenberg-Steenrod axioms for cohomology
theory are satisfied. The analogous results of 8§85 and 6 are also
obtained ; in this case we must replace locally finite coverings by
finite open coverings. Thus we have

(8.4) If dim X<2n—1 and {U-} 4s a family of all finite open
coverings of X of order<2n—1, then ni(X, A) is isomorphic to the
limit group of the direct system {n"(K, L.); T4}, where Ky, Ly, T, are
defined similarly as in § 5.

As is seen from (8.4) the uniform cohomotopy groups »3(X, A)
correspond in some sense to the Cech cohomology groups Hi(X, 4)
based on finite coverings; the latter satisfy also the uniform homotopy
axiom. In fact, the Hopf classification theorem proved in Dowker
[2] for normal spaces (cf. also [8] where homotopy is used in the
sense of uniform homotopy) is stated as the analogue of (7.1):

8.5) If dim(X—A)=n and n>1, then =X, A)~H2:X, 4;
7,(S™).

Similarly we have the analogue of (7.2) for the uniform
cohomotopy groups.

Finally it is to be noted that in case X is a countably fully
normal space there is a natural homomorphism of #2(X, A) onto
(X, 4).
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