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Abstract

In this paper, we propose a new methodology to deal with PCA in high-dimension, low-

sample-size (HDLSS) data situations. We give an idea of estimating eigenvalues via singular

values of a cross data matrix. We provide consistency properties of the eigenvalue estimation

as well as its limiting distribution when the dimension d and the sample size n both grow

to infinity in such a way that n is much lower than d. We apply the new methodology to

estimating PC directions and PC scores in HDLSS data situations. We give an application

of the findings in this paper to a mixture model to classify a dataset into two clusters. We

demonstrate how the new methodology performs by using HDLSS data from a microarray

study of prostate cancer.

Key words: Consistency; Eigenvalue distribution; HDLSS; Microarray data analysis;

Mixture model; Principal component analysis; Singular value.

1. Introduction

High Dimension, Low Sample Size (HDLSS) data are emerging in various areas of modern

science such as genetic microarrays, medical imaging, text recognition, finance, chemomet-

rics, and so on. The asymptotic studies of this type of data are becoming increasingly

relevant. Principal Component Analysis (PCA) is an important tool of dimension reduction

especially when the dimension is very high. PCA visualizes important underlying structures

Email address: aoshima@math.tsukuba.ac.jp (Makoto Aoshima)
1Phone & Fax: +81-298-53-6501

Preprint submitted to Journal of Multivariate Analysis February 19, 2010



in the data by approximating the data with the first few principal components. Let us see

Fig.1. The data in Fig.1, described in detail in Singh et al. [11] and Pochet et al. [9], are

from a microarray study of prostate cancer. Different symbols correspond to cancer sub-

types. The dataset contains 34 patients with 12600 genes. There are 9 Normal Prostate

(plotted as o) and 25 Prostate Tumors (plotted as ×). Fig.1 shows the projections of the

data onto the subspaces generated by the first three PC directions (PC1, PC2 and PC3).

We carried out PCA using this data to reduce the high dimensionality to a few specified

dimensions so that it could be visualized effectively.

Fig.1. Scatterplots of PC scores by PC1 and PC2 (left panel) or PC1 and PC3 (right panel).
There are 9 Normal Prostate (plotted as o) and 25 Prostate Tumors (plotted as ×).

As observed in Fig.1, the first few PC directions seem to separate the normal and tumor

samples. However, the separation between the two cases is not always clear. One of the

causes of obscurity is in extreme high-dimensional setting in the sense of a small number of

patients and a large number of gene expression levels for each patient. It is very crucial in

studying PCA in HDLSS data situations.

In recent years, substantial work has been done on the asymptotic behavior of eigenvalues

of the sample covariance matrix in the limit as d → ∞, see Johnstone [6], Baik et al. [2]

and Paul [10] for Gaussian assumptions, and Baik and Silverstein [3] for non-Gaussian but

i.i.d. assumptions when d and n increase at the same rate, i.e. n/d → c > 0. On the other

hand, Johnstone and Lu [7] have shown that the estimate of the leading principal component

vector is consistent if and only if d(n)/n → 0. Many of these focus on the spiked covariance
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model introduced by Johnstone [6]. In HDLSS settings, Hall et al. [4] and Ahn et al. [1]

have studied the HDLSS asymptotics in which d → ∞ while n is fixed. They explored

conditions to give a geometric representation of HDLSS data. The HDLSS asymptotics

usually regulate either the population distribution by the normality or the dependency of

the random variables in the sphered data matrix by the ρ-mixing condition as described, for

example, on p.440 in Hall et al. [4]. Those assumptions are somewhat too strict and have

some obvious shortcomings. Yata and Aoshima [13] have developed the HDLSS asymptotics

in more general settings without assuming either the normality or the ρ-mixing condition

and applied to estimating the intrinsic dimension of a HDLSS dataset.

In this paper, suppose we have a d × n data matrix X(d) = [x1(d), ..., xn(d)] with d > n,

where xk(d) = (x1k(d), ..., xdk(d))
T , k = 1, ..., n, are independent and identically distributed

as a d-dimensional multivariate distribution with mean zero and positive definite covariance

matrix Σd. The eigen-decomposition of Σd is Σd = HdΛdH
T
d , where Λd is a diagonal

matrix of eigenvalues λ1(d) ≥ · · · ≥ λd(d)(> 0) and Hd = [h1(d), ..., hd(d)] is a matrix of

corresponding eigenvectors. Then, Z(d) = Λ
−1/2
d HT

d X(d) is a d×n sphered data matrix from

a distribution with the identity covariance matrix. Here, we write Z(d) = [z1(d), ..., zd(d)]
T

and zj(d) = (zj1(d), ..., zjn(d))
T , j = 1, ..., d. Hereafter, the subscript d will be omitted for

the sake of simplicity when it does not cause any confusion. We assume that the fourth

moments of each variable in Z are uniformly bounded and ||zj|| 6= 0 for j = 1, ..., d, where

|| · || denotes the Euclidean norm. The multivariate distribution assumed here does not have

to be Gaussian and the random variables in Z do not have to be regulated by the ρ-mixing

condition. Then, we consider a general setting as follows:

λj = ajd
αj (j = 1, ...,m) and λj = cj (j = m + 1, ..., d). (1)

Here, aj(> 0), cj(> 0) and αj(α1 ≥ · · · ≥ αm > 0) are unknown constants preserving the

ordering that λ1 ≥ · · · ≥ λd, and m is an unknown positive integer.

The sample covariance matrix is S = n−1XXT and its dual matrix is defined by SD =

n−1XT X. Note that SD and S share non-zero eigenvalues. Let λ̂1 ≥ · · · ≥ λ̂n(≥ 0) be the

eigenvalues of SD. Let us write the eigen-decomposition of SD as SD =
∑n

j=1 λ̂jûjû
T
j . Jung
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and Marron [8] found it strongly inconsistent for estimating PC directions of HDLSS data

satisfying (1) along with

d∑
j=1

λ́2
j → 0 as d → ∞, where λ́j = λj/(

∑d
j=1 λj). (2)

We note that the formulation (1), provided that α1 < 1 and cd > 0, includes the case

satisfying (2). Recently, Yata and Aoshima [12] have given the convergence conditions with

respect to d and n to claim the consistency properties for the sample eigenvalues as well as

the PC directions and the PC scores: For j = 1, ...,m, it holds that

λ̂j

λj

= 1 + op(1) (3)

under the conditions:

(YA-i) d → ∞ and n → ∞ for j such that αj > 1;

(YA-ii) d → ∞ and d2−2αj/n → 0 for j such that αj ∈ (0, 1].

If zjk, j = 1, ..., d (k = 1, ..., n) are independent, the above conditions are modified as

(YA-i’) d → ∞ and n → ∞ for j such that αj > 1;

(YA-ii’) d → ∞ and d1−αj/n → 0 for j such that αj ∈ (0, 1].

In addition, they have given the limiting distribution of the sample eigenvalue. It should

be noted that n is free from d in condition (YA-i) or (YA-i’). The condition for αj > 1

is more relaxed than that for αj ∈ (0, 1] given by (YA-ii) or (YA-ii’). The facts described

above draw our attention to the limitations of the capabilities of naive PCA in HDLSS data

situations. Let us see a case, say, that d = 1000, λ1 = d2/3 and λ2 = · · · = λd = 1. Then, we

observe from (YA-ii) that one requires the sample size to be n >> d2−2α1 = d2/3 = 100. It

is somewhat inconvenient for the experimenter to handle HDLSS data situations.

In this paper, we propose a new methodology to deal with PCA in HDLSS data situations.

In Section 2, we give an idea of estimating eigenvalues via singular values of a cross data

matrix. We provide consistency properties of the eigenvalue estimation as well as its limiting

distribution. The new methodology is examined in its performance in Section 3. We apply
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the new methodology to estimating PC directions and PC scores in Sections 4 and 5. In

Section 6, we give an application of the findings in this paper to a mixture model to classify a

dataset into two clusters. In Section 7, we demonstrate how the new methodology performs

in HDLSS data situations with the microarray data used in Fig 1.

2. New estimation methodology

Suppose we have two d × n data matrices, X i = [xi1, ..., xin], i = 1, 2, where xik =

(xi1k, ..., xidk)
T , i = 1, 2; k = 1, ..., n, are independent and identically distributed as a d-

dimensional multivariate distribution as stated before. Note that the size n in X1 and

X2 may be different. We define a cross data matrix by SD(1) = n−1XT
1 X2 or SD(2) =

n−1XT
2 X1 (= ST

D(1)). Let us write that Zi = Λ−1/2HT X i, i = 1, 2, as d × n sphered data

matrices from a distribution with the identity covariance matrix. Note that Z1 and Z2 are

independent. Let Zi = [zi1, ..., zid]
T and zij = (zij1, ..., zijn)T , i = 1, 2; j = 1, ..., d. Then, we

have that SD(1) = n−1
∑d

j=1 λjz1jz
T
2j. When we consider the singular value decomposition

of SD(1), it follows that SD(1) =
∑n

j=1 λ̃jũj(1)ũ
T
j(2), where λ̃1 ≥ · · · ≥ λ̃n(≥ 0) denote

singular values of SD(1), and ũj(1) (or ũj(2)) denotes a unit left- (or right-) singular vector

corresponding to λ̃j (j = 1, ..., n).

Now, we consider an easy example such as λ1 = dα1 , λ2 = · · · = λd = 1, where

α1 ∈ (1/2, 1). Note that it is satisfying (2). Let us write that λ−1
1 SD(1) = n−1z11z

T
21 +

(nλ1)
−1

∑d
j=2 z1jz

T
2j. Here, by using Markov’s inequality for any τ > 0, one has for all

elements of (nλ1)
−1

∑d
j=2 z1jz

T
2j that

P
( ∑

i′,j′

(
(nλ1)

−1

d∑
j=2

z1ji′z2jj′

)2

> τ
)
≤ τ−1d1−2α1 = o(1)

as d → ∞ either when n → ∞ or n is fixed. Thus we have that
∑

i′,j′((nλ1)
−1

∑d
j=2 z1ji′z2jj′)

2

= op(1). Let ein = (ei1, ..., ein)T , i = 1, 2, be arbitrary unit n-vectors. Then, we have that

∣∣∣ ∑
i′,j′

e1i′e2j′

d∑
j=2

(nλ1)
−1z1ji′z2jj′

∣∣∣ ≤ ( ∑
i′,j′

(
(nλ1)

−1

d∑
j=2

z1ji′z2jj′

)2)1/2

= op(1).
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Thus it holds that λ−1
1 eT

1nSD(1)e2n = eT
1nn−1z11z

T
21e2n + op(1). Now, let us consider singular

values of SD(1). Noting that ||n−1/2zij|| = 1 + op(1) as n → ∞, we claim as d → ∞ and

n → ∞ that
λ̃1

λ1

= max
(
eT

1nn−1z11z
T
21e2n + op(1)

)
= 1 + op(1)

with respect to any unit n-vectors e1n and e2n. When we compare that fact with (3), it

is observed that the singular value λ̃1 has consistency with λ1 for α1 ∈ (1/2, 1) under the

condition that d → ∞ and n → ∞. The above convergence condition relaxes (YA-ii) for

(3) in the sense that n is chosen free from d. This is our motivation for the new estimation

methodology to start with singular values of a cross data matrix SD(1).

[New estimation methodology (Cross-data-matrix methodology)]

(Step 1) Define a cross data matrix by SD(1) = n−1XT
1 X2.

(Step 2) Calculate the singular values λ̃j’s of SD(1) for the estimation of λj’s.

Yata and Aoshima [13] considered a dual square matrix defined by S2
D(1)(= SD(1)S

T
D(1))

for the estimation of the intrinsic dimension of a HDLSS dataset. We have the following

theorem.

Theorem 1. For j = 1, ...,m, we have that

λ̃j

λj

= 1 + op(1) (4)

under the conditions:

(i) d → ∞ and n → ∞ for j such that αj > 1/2;

(ii) d → ∞ and d2−2αj/n → 0 for j such that αj ∈ (0, 1/2].

Corollary 1. Assume further in Theorem 1 that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n)

are independent. Then, for j = 1, ...,m, we have (4) under the conditions:

(i) d → ∞ and n → ∞ for j such that αj > 1/2;
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(ii) d → ∞ and there exists a positive constant εj satisfying d1−2αj/n < d−εj for j such

that αj ∈ (0, 1/2].

Corollary 2. When the population mean may not be zero, let us write that SoD(1) =

n−1(X1 −X1)
T (X2 −X2), where X i = [x̄i1, ..., x̄id]

T is having n-vector x̄ij = (x̄ij, ..., x̄ij)
T

with x̄ij =
∑n

k=1 xijk/n (j = 1, ..., d) for each i (= 1, 2). Then, after replacing SD(1) with

SoD(1), the assertion in Theorem 1 (or Corollary 1) is still justified under those conditions.

Theorem 2. Let V (z2
ijk) = Mj (< ∞) for j = 1, ...,m (i = 1, 2; k = 1, ..., n). Assume

that the first m population eigenvalues are distinct. Then, under the conditions (i)-(ii) in

Theorem 1, we have for j = 1, ...,m, that√
2n

Mj

(
λ̃j

λj

− 1

)
⇒ N(0, 1), (5)

where “⇒” denotes the convergence in distribution and N(0, 1) denotes a random variable

distributed as the Standard normal distribution.

Corollary 3. Assume further in Theorem 2 that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n)

are independent. Then, for j = 1, ...,m, we have (5) under the conditions:

(i) d → ∞ and n → ∞ for j such that αj > 1/2;

(ii) d → ∞ and d2−4αj/n → 0 for j such that αj ∈ (0, 1/2].

Remark 1. When the population eigenvalues are not distinct such as λ1 ≥ · · · ≥ λm, we

can still claim both Theorem 2 and Corollary 3 for some j such that λj has multiplicity

one. When the population mean may not be zero, we can still claim both Theorem 2 and

Corollary 3 by using SoD(1) defined in Corollary 2.

Remark 2. Suppose that we have a d×n data matrix, X = [x1, ..., xn] = [x11, ..., x1n1 ,x21,

..., x2n2 ], where n1 + n2 = n with n1 = O(n) and n2 = O(n) for a fixed n. One may define

X1 and X2 by X i = [xi1, ..., xini
], i = 1, 2. Then, one may generally define SD(1) =
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(n1n2)
−1/2XT

1 X2. Then, we can claim both Theorem 1 and Corollary 1. For Theorem 2 and

Corollary 3, the result (5) is modified by

2

√
n1n2

nMj

(
λ̃j

λj

− 1

)
⇒ N(0, 1).

Hence, the variance of λ̃j/λj is approximately given by Mjn/(4n1n2) which has the minimum

Mj/n when n1 = n2 . We suggest that one should divide X into X1 and X2 with equally

balanced n1 = n2 (= n′) when n = 2n′ or n1 = n′ + 1 and n2 = n′ when n = 2n′ + 1. Then,

for Theorem 2 and Corollary 3, the result (5) is modified by√
n

Mj

(
λ̃j

λj

− 1

)
⇒ N(0, 1).

Remark 3. The condition (ii) given by Theorem 1 (or Theorem 2) is a sufficient condition

for the case of αj ∈ (0, 1/2]. If more information is available about the distribution of X i,

the condition (ii) can be relaxed to give consistency under a broader set of (d, n) for the

case of αj ∈ (0, 1/2]. For example, when X i is Gaussian, the asymptotic property is claimed

under a broader set of (d, n) given by the condition (ii) of Corollary 1 (or Corollary 3).

Remark 4. In view of Theorem 1 compared to (3), the cross-data-matrix methodology

successfully relaxes the condition for the case that αj > 1/2. The conditions given by

Theorem 1 are not continuous in αj at αj = 1/2. When X i is Gaussian, the conditions given

by Corollaries 1 and 3 are continuous in αj.

Remark 5. One might recall that the Partial Least Squares Regression (PLSR) deals with

the singular value decomposition of a cross covariance matrix defined by a response variables

matrix and a predictor variables matrix. See, for example, Chapter 3 in Hastie et al. [5].

It should be noted that the cross data matrix used in the new estimation methodology is

defined by two independent data matrices taken from a common dataset. The cross-data-

matrix methodology given in this paper is conceptually different from PLSR.
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3. Performances

We observe naive PCA that the sample size n should be determined depending on d

for αi ∈ (1/2, 1] in (3). On the other hand, the cross-data-matrix methodology allows the

experimenter to choose n free from d for the case that αi > 1/2 as seen in Theorems 1-2.

The cross-data-matrix methodology might make it possible to give feasible estimation of

eigenvalues for HDLSS data with extremely small order of n compared to d. In this section,

we examine its performance with the help of Monte Carlo simulations.

We first consider the Gaussian case. Independent pseudorandom normal observations

were generated from Nd(0,Σ) with d = 1600. We considered λ1 = d2/3, λ2 = d1/3 and

λ3 = · · · = λd = 1 in (1). We used the sample of size n = 20(20)100 to define the data

matrix X : d×n for the calculation of SD, whereas we divided the sample into X1 : d×(n/2)

and X2 : d × (n/2) for the calculation of SD(1) in Theorem 1. The findings were obtained

by averaging the outcomes from 1000 (= R, say) replications. Under a fixed scenario,

suppose that the r-th replication ends with estimates of λj, λ̂jr and λ̃jr (r = 1, ..., R), given

by using (3) and Theorem 1, respectively. Let us simply write λ̂j = R−1
∑R

r=1 λ̂jr and

λ̃j = R−1
∑R

r=1 λ̃jr. We considered two quantities, A: λ̂j/λj and B: λ̃j/λj. Fig. 2 shows the

behaviors of both A and B for the first two eigenvalues. By observing the behavior of A,

(3) seems not to give a feasible estimation within the range of n. The sample size n was not

large enough to use the eigenvalues of SD for such a high-dimensional space. On the other

hand, in view of the behavior of B, Theorem 1 gives a reasonable estimation surprisingly well

for such HDLSS datasets. The cross-data-matrix methodology seems to perform excellently

as expected theoretically.
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Fig. 2. The behaviors of A: λ̂j/λj and B: λ̃j/λj for the first eigenvalue (left panel) and second

eigenvalue (right panel) when the samples, of size n = 20(20)100, were taken from Nd(0,Σ) with

d = 1600.

We also considered the Monte Carlo variability. Let Var(λ̂j/λj) = (R− 1)−1
∑R

r=1(λ̂jr −

λ̂j)
2/λ2

j and Var(λ̃j/λj) = (R − 1)−1
∑R

r=1(λ̃jr − λ̃j)
2/λ2

j . We considered two quantities, A:

Var(λ̂j/λj) and B: Var(λ̃j/λj), in Fig. 3 to show the behaviors of sample variances of both

A and B for the first two eigenvalues.

Fig. 3. The behaviors of A: Var(λ̂j/λj) and B: Var(λ̃j/λj) for the first eigenvalue (left panel) and

second eigenvalue (right panel) when the samples, of size n = 20(20)100, were taken from Nd(0,Σ)

with d = 1600.

By observing the behaviors of the sample variances, both the behaviors seem not to make

much difference between A and B. From Theorem 2 of Yata and Aoshima [12], the limiting

10



distribution of (n/2)1/2(λ̂j/λj−1) is N(0, 1), so that the variance of A is approximately given

by Var(λ̂j/λj) = 2/n. On the other hand, in view of Theorem 2, noting that the sample is

divided into two pieces of size n/2 for each in B, the limiting distribution of (n/2)1/2(λ̃j/λj−1)

is N(0, 1). Hence, the variance of B is approximately given by Var(λ̃j/λj) = 2/n; that is

approximately equal to the variance of A.

Next, we considered a non-Gaussian case. Independent pseudorandom observations were

generated from a d-variate t-distribution, td(0,Σ, ν), with mean zero, covariance matrix Σ

and degree of freedom ν = 15. We considered the case that λ1 = d2/3, λ2 = d1/3 and

λ3 = · · · = λd = 1 in (1) as before. We fixed the sample size as n = 60. We set the dimen-

sion as d = 1000(200)2000. Similarly to Fig. 2, the findings were obtained by averaging the

outcomes from 1000 replications. Fig. 4 shows the behaviors of two quantities, A: λ̂j/λj and

B: λ̃j/λj, for the first two eigenvalues.

Fig. 4. The behaviors of A: λ̂j/λj and B: λ̃j/λj for the first eigenvalue (left panel) and second

eigenvalue (right panel) when the samples, of size n = 60, were taken from td(0,Σ, ν) with ν = 15

and d = 1000(200)2000.

Again, the cross-data-matrix methodology seems to perform much better than naive PCA.

One can observe the consistency of λ̃j for all d = 1000(200)2000. We conducted simula-

tion studies for other settings as well and verified the superiority of the cross-data-matrix

methodology to naive PCA in HDLSS data situations.
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4. PC directions with the cross-data-matrix methodology

In this section, we apply the cross-data-matrix methodology to PC direction vectors.

Jung and Marron [8], and Yata and Aoshima [12] studied consistency properties of PC

direction vectors in the context of naive PCA. Let Ĥ = [ĥ1, · · · , ĥd] such that Ĥ
T
SĤ = Λ̂

and Λ̂ = diag(λ̂1, · · · , λ̂d). Then, Yata and Aoshima [12] gave consistency properties of the

sample eigenvectors with their population counterparts: Assume that the first m population

eigenvalues are distinct such as λ1 > · · · > λm. Then, the first m sample eigenvectors are

consistent in the sense that

Angle(ĥj, hj)
p−→ 0 (6)

under the conditions (YA-i)-(YA-ii) appeared in Section 1. If zjk, j = 1, ..., d (k = 1, ..., n)

are independent, those conditions are modified as (YA-i’)-(YA-ii’).

Now, we consider applying the cross-data-matrix methodology to the PC direction vec-

tors. Recall that S2
D(i) = SD(i)S

T
D(i) (i = 1, 2). We have the eigen-decomposition of S2

D(i)

as S2
D(i) =

∑n
j=1 λ̃2

j ũj(i)ũ
T
j(i). Let us define h̃j(i) = (nλ̃j)

−1/2X iũj(i), i = 1, 2. Since

the sign of each eigenvector does not match the other, we adjust the sign of h̃j(2) as

h̃j(2) = Sign(h̃
T

j(1)h̃j(2))h̃j(2). After the modification, we consider h̃j = (h̃j(1) + h̃j(2))/2 as an

estimate of the PC direction vector, hj. Here, we also consider a unit vector, h̃j∗ = h̃j/||h̃j||.

Theorem 3. Assume that the first m population eigenvalues are distinct such as λ1 > · · · >

λm. Then, the first m sample eigenvectors are consistent in the sense that

Angle(h̃j∗, hj)
p−→ 0 (7)

under the conditions:

(i) d → ∞ and n → ∞ for j such that αj > 1;

(ii) d → ∞ and d1−αj/n → 0 for j such that αj ∈ (1/2, 1];

(iii) d → ∞ and d2−2αj/n → 0 for j such that αj ∈ (0, 1/2].
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Corollary 4. Assume further in Theorem 3 that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n) are

independent. Then, the first m sample eigenvectors are consistent in the sense of (7) under

the conditions:

(i) d → ∞ and n → ∞ for j such that αj > 1;

(ii) d → ∞ and d1−αj/n → 0 for j such that αj ∈ (0, 1].

Remark 6. Suppose the assumption in Theorem 3. Then, we claim that

h̃
T

j hj = 1 + op(1)

under the conditions (i)-(ii) of Theorem 1. Suppose the assumption in Corollary 4. Then,

the above assertion is justified under the conditions (i)-(ii) of Corollary 1.

Remark 7. When the population eigenvalues are not distinct such as λ1 ≥ · · · ≥ λm, we

can still claim a set of the results described above for some j such that λj has multiplicity

one. When the population mean may not be zero, we still have the above results by using

SoD(1) defined in Corollary 2.

5. PC scores with the cross-data-matrix methodology

The estimation of principal component scores (Pcs) is an important issue in PCA. The

j-th Pcs of xk is given by hT
j xk = zjk

√
λj (= sjk, say). However, since hj is unknown, one

calculates hT
j xk by using an estimate of hj. In HDLSS data situations, it is very crucial

for the experimenter to choose some reasonable estimate of hj. Yata and Aoshima [12] gave

a sample eigenvector by ĥj = (nλ̂j)
−1/2Xûj, so that the j-th Pcs of xk was estimated by

ĥ
T

j xk = ûjk

√
nλ̂j (= ŝjk, say), where ûT

j = (ûj1, ..., ûjn). Note that ĥj can be calculated

by using a unit-norm eigenvector, ûj, of SD whose size is much smaller than S especially

for a HDLSS data matrix. They studied the Pcs of naive PCA in terms of the sample mean

square error, MSE(ŝj) = n−1
∑n

k=1(ŝjk − sjk)
2, of the j-th Pcs: Assume that the first m
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population eigenvalues are distinct such that λ1 > · · · > λm. Then, for j = 1, ...,m, it holds

that
MSE(ŝj)

λj

= op(1) (8)

under the conditions (YA-i)-(YA-ii) appeared in Section 1. If zjk, j = 1, ..., d (k = 1, ..., n) are

independent, those conditions are modified as (YA-i’)-(YA-ii’). By noting that V (sjk) = λj,

one may observe from (8) that the average of the normalized square error, λ−1
j (ŝjk − sjk)

2,

tends to zero under the convergence conditions.

Now, we consider applying the cross-data-matrix methodology to principal component

scores. Suppose we have d × n data matrices, X = [x1, ..., xn] = [x11, ..., x1n1 , x21, ..., x2n2 ],

where n1 + n2 = n with n1 = O(n) and n2 = O(n). See Remark 2 about how to handle

the general case that n1 and n2 may not be equal. Let X i = [xi1, ..., xini
], i = 1, 2. Let

zT
1j = (zj1, ...., zjn1) and zT

2j = (zjn1+1, ...., zjn), j = 1, ..., d. Recall that ũj(1) (or ũj(2)) is

a unit left- (or right-) singular vector corresponding to the singular value λ̃j (j = 1, ..., n)

of SD(1) = n−1XT
1 X2. Note that ũj(i) is available as an eigenvector of S2

D(i) = SD(i)S
T
D(i)

for each i (= 1, 2). Since the sign of each eigenvector does not match the other, we ad-

just the sign of ũj(2) as ũj(2) = Sign(ũT
j(1)X

T
1 X2ũj(2))ũj(2). After the modification, let

us write that ũT
j(i) = (ũj1(i), ..., ũjni(i)), i = 1, 2. Then, the j-th Pcs of xik is estimated

by ũjk(i)

√
niλ̃j (= s̃jk(i), say). Here, we write that s̃jk(1) = s̃jk and s̃jk(2) = s̃jk+n1 . Let

MSE(s̃j) = n−1
∑n

k=1(s̃jk − sjk)
2. Then, we obtain the following result on the Pcs given by

the cross-data-matrix methodology.

Theorem 4. Assume that the first m population eigenvalues are distinct such that λ1 >

· · · > λm. Then, for j = 1, ...,m, we have that

MSE(s̃j)

λj

= op(1) (9)

under the conditions (i)-(ii) in Theorem 1.

Corollary 5. Assume further that zjk, j = 1, ..., d (k = 1, ..., n) are independent. Then, we

have (9) under the conditions (i)-(ii) in Corollary 1.
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Remark 8. Assume that the first m population eigenvalues are distinct such that λ1 >

· · · > λm. Then, for any k (= 1, ..., n), it holds that

λ̃
−1/2
j s̃jk = λ

−1/2
j sjk + op(1) = zjk + op(1) (10)

under the conditions (i)-(ii) of Theorem 1. If the assumption in Corollary 5 is supposed, we

claim (10) under the conditions (i)-(ii) of Corollary 3.

For a singular vector ũj(i) (i = 1, 2), we claim the following result.

Corollary 6. Suppose the assumption in Theorem 4. Then, the first m eigenvectors of SD

are consistent in the sense that

Angle(ũj(i), n
−1/2zij)

p−→ 0 (11)

for j = 1, ...,m (i = 1, 2), under the conditions (i)-(ii) in Theorem 1. If the assumption in

Corollary 5 is supposed, we claim (11) under the conditions (i)-(ii) in Corollary 1.

From Corollary 6, we have that a singular vector ũj(i) is consistent with a vector of Pcs,

n−1/2zij.

Remark 9. When the population eigenvalues are not distinct such as λ1 ≥ · · · ≥ λm, we

can still claim a set of the results described above for some j such that λj has multiplicity

one. When the population mean may not be zero, we still have the above results by using

SoD(1) defined in Corollary 2.

It should be noted that the cross-data-matrix methodology successfully relaxes the con-

vergence condition to hold the consistency properties for the case that αj > 1/2.

6. Application

In this section, we give an application of the findings in this paper to a mixture model

to classify a dataset into two clusters. We assume that the observation is sampled with
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mixing proportions wj’s from two populations, Π1 and Π2, and the label of the population

is missing. We consider a mixture model whose p.d.f. (or p.f.) is given by

f(x) = w1π1(x; µ1,Σ1) + w1π2(x; µ2,Σ2), (12)

where wj’s are positive constants such that w1 + w2 = 1 and πi(x; µi,Σi)’s are d-variate

p.d.f. (or p.f.) of Πi having mean vector µi and covariance matrix Σi. Let µ be the

mean vector and let Σ be the covariance matrix of the mixture model. Then, we have that

µ = w1µ1 +w2µ2 and Σ = w1w2(µ1 −µ2)(µ1 −µ2)
T +w1Σ1 +w2Σ2. We assume (1) about

Σ.

Suppose we have a d × n data matrix X = [x1, ..., xn], where xk, k = 1, ..., n, are

independent and identically distributed as (12). Let ∆ = ||µ1 − µ2||2. Let λ(1) and λ(2)

be the largest eigenvalues of Σ1 and Σ2. We assume that λ(1)/∆ → 0 and λ(2)/∆ → 0 as

d → ∞. Then, one claims that

λ1

w1w2∆
= 1 + o(1) and Angle(h1, (µ1 − µ2)/∆

1/2) → 0.

Hence, for s1k (the first Pcs of xk − µ), we have as d → ∞ that

s1k√
λ1

=
hT

1 (xk − µ)√
λ1

=
(µ1 − µ2)

T (xk − µ)
√

w1w2∆
(1 + o(1)).

When xk ∈ Πi (i = 1, 2), we have for any τ > 0 as d → ∞ that

P (|∆−1(µ1 − µ2)
T (xk − µi)| > τ) ≤ τ−2∆−2(µ1 − µ2)

TΣi(µ1 − µ2) ≤ τ−2∆−1λ(i) → 0

by using Chebyshev’s inequality. Then, by noting that µ1 −µ = w2(µ1 −µ2) and µ2 −µ =

−w1(µ1 − µ2), we have as d → ∞ that

s1k√
λ1

=


√

w2/w1 + op(1) (xk ∈ Π1),

−
√

w1/w2 + op(1) (xk ∈ Π2).

Thus, from the first Pcs s1k, one can classify the dataset {x1, ..., xn} into two clusters. From

Theorem 4 (or Remark 8) in Section 5, the first Pcs s1k can be estimated by s̃1k effectively.

16



7. Demonstration

In this section, we demonstrate how to apply the cross-data-matrix methodology to a

real dataset. We make use of gene expression data, introduced in Section 1, that are from a

microarray study of prostate cancer. Refer to Singh et al. [11] and Pochet et al. [9] for details

of the dataset. The dataset consisted of 12600 (= d) genes and 34 (= n) microarrays in which

there were 9 Normal Prostate and 25 Prostate Tumors. We assume the mixture model (12)

for the dataset. We started with data matrix X : 12600 × 34 = [X1, X2]. Here, we set

(n1, n2) = (17, 17) to divide the whole sample into X1 : 12600 × 17 and X2 : 12600 × 17.

We put 4 Normal Prostate and 13 Prostate Tumor samples in X1 and the others (that is,

5 Normal Prostate and 12 Prostate Tumor samples) in X2 so as to balance one thing with

another. We focused on a three dimensional (3D) sub-space. Refer to Yata and Aoshima

[13] for the intrinsic dimensionality estimation. Let us define SoD(1) = (n1n2)
−1/2(X1 −

X1)
T (X2 − X2) and SoD(2) = ST

oD(1) according to Corollary 2. We calculated eigenvalues

of S2
oD(1) = SoD(1)S

T
oD(1) as (λ̃2

1, λ̃
2
2, λ̃

2
3, ...) = (3.292 × 1016, 1.392 × 1016, 8.482 × 1014, ...).

With the help of Theorem 1, we obtained the estimates of the first three eigenvalues as

(3.29 × 108, 1.39 × 108, 8.48 × 107). Next, we considered the Pcs along the lines of Section

5. Let S2
oD(2) = SoD(2)S

T
oD(2). Then, we calculated the first three eigenvectors of S2

oD(1)

and S2
oD(2) as (ũ1(1), ũ2(1), ũ3(1)) and (ũ1(2), ũ2(2), ũ3(2)), respectively. For every j (= 1, 2, 3),

we adjusted the sign of ũj(2) by multiplying sj = Sign(ũT
j(1)(X1 − X1)

T (X2 − X2)ũj(2)) as

sjũj(2). Let ũT
j(1) = (ũj1, ..., ũj17) and ũT

j(2) = (ũj18, ..., ũj34) after the modification described

above. Then, the j-th Pcs of k-th sample was given by s̃jk = ũjk

√
λ̃jn1 (k = 1, ..., 17) and

s̃jk = ũjk

√
λ̃jn2 (k = 18, ..., 34). Fig. 5 gives the scatterplots of the first three PC scores.

As observed, Normal Prostate (plotted as o) and Prostate Tumor (plotted as ×) samples

seem to be separated clearer than in Fig. 1 that was plotted by using naive PCA. It is

obvious specially on the first Pcs (PC1) line. This observation is theoretically supported by

the arguments in Section 6. We observed that the superiority of new PCA, given by using

the cross-data-matrix methodology, to naive PCA was remarkable in many other HDLSS

situations.
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Fig. 5. Scatterplots of PC scores by PC1 and PC2 (left panel) or PC1 and PC3 (right panel)

by using the cross-data-matrix methodology. There are 9 Normal Prostate (plotted as o) and 25

Prostate Tumors (plotted as ×).

A. Appendix

Throughout this section, let Rn = {en ∈ Rn : ||en|| = 1} and let ein, i = 1, 2, be

arbitrary elements of Rn. Let V 1 = n−1
∑m

s=1 λsz1sz
T
2s, V 2(1) = n−1

∑d
s=m+1 λsz1sz

T
2s and

V 2(2) = V T
2(1). Let us write V 2(1) = (vij), where vij = n−1

∑d
s=m+1 λsz1siz2sj. Let U 2 =

n−1
∑d

s=m+1 λszsz
T
s . Let U 21 = (uij) be an n × n matrix such that

uij =

 n−1
∑d

s=m+1 λszsizsj (i 6= j),

0 (i = j).

Suppose that α1 = · · · = αs1 > αs1+1 = · · · = αs2 > · · · > αsl−1+1 = · · · = αsl
(= αm), where

l ≤ m. For every i (= 1, ..., l), let V 1i = n−1
∑si

j=1 λjz1jz
T
2j. Let λ̃i1 ≥ · · · ≥ λ̃isi

(≥ 0) be

singular values of V 1i. Let ũij(1) ∈ Rn be a left-singular vector and let ũij(2) ∈ Rn be a

right-singular vector corresponding to λ̃ij (j = 1, ..., si). Then, we have the singular value

decomposition as V 1i =
∑si

j=1 λ̃ijũij(1)ũ
T
ij(2). Let z̃ij = (||n−1/2zij||)−1n−1/2zij (i = 1, 2; j =

1, ...,m).

The following three lemmas were obtained by Yata and Aoshima [12].

Lemma 1. It holds for j = 1, ...,m, that ||d−αjeT
1nU 21||2 = op(1) under the conditions:

(i) d → ∞ either when n → ∞ or n is fixed for j such that αj > 1/2;
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(ii) d → ∞ and d2−2αj/n → 0 for j such that αj ∈ (0, 1/2].

Lemma 2. Assume that zjk, j = 1, ..., d (k = 1, ..., n) are independent. It holds for

αj ∈ (0, 1/2] that ||d−αjeT
1nU 21||2 = op(1) under the conditions that d → ∞ and there exists

a positive constant εj satisfying d1−2αj/n < d−εj .

Lemma 3. It holds for j = 1, ...,m, that d−αjeT
1nU 2e2n = op(1) and d−αjn−1zT

i′U 2zj′ =

op(n
−1/2) (i′ = 1, ...,m; j′ = 1, ...,m) under the conditions:

(i) d → ∞ either when n → ∞ or n is fixed for j such that αj > 1;

(ii) d → ∞ and d2−2αj/n → 0 for j such that αj ∈ (0, 1].

We will refer to the above three lemmas in the proofs of the followings.

Lemma 4. It holds for j = 1, ...,m, that d−αjeT
1nV 2(1)e2n = op(1) under either (i)-(ii) of

Theorem 1 or (i)-(ii) of Corollary 1 for the case that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n)

are independent.

Proof. Let us write that V 2 = V 2(1) − diag(v11, ..., vnn). By using Chebyshev’s inequality,

for any τ > 0, one has under either (i)-(ii) of Theorem 1 or (i)-(ii) of Corollary 1 that

n∑
k=1

P
(
d−αjvkk > τ

)
=

n∑
k=1

P
(
(ndαj)−1

d∑
s=m+1

λsz1skz2sk > τ
)

≤ (τn1/2dαj)−2
( d∑

s=m+1

λ2
s

)
≤ (τn1/2dαj)−2dλ2

m+1 = O(d1−2αj/n) = o(1).

Thus it holds that d−αjvkk = op(1) for every k (= 1, ..., n). From Lemmas 1-2, similarly

to U 21, we have that ||d−αjeT
1nV 2||2 = op(1), j = 1, ...,m, under either (i)-(ii) of Theorem

1 or (i)-(ii) of Corollary 1 for the case that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n) are

independent. Hence, we obtain that

d−αjeT
1nV 2(1)e2n = d−αj

(
eT

1nV 2e2n + eT
1ndiag(v11, ..., vnn)e2n

)
= op(1) (j = 1, ...,m).

It concludes the result. 2
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Lemma 5. It holds for j = 1, ...,m, that

d−αjn−1zT
1i′V 2(1)z2j′ = op(n

−1/2) (i′ = 1, ...,m; j′ = 1, ...,m)

under either (i)-(ii) of Theorem 1 or (i)-(ii) of Corollary 1 for the case that zijk, j =

1, ..., d (i = 1, 2; k = 1, ..., n) are independent.

Proof. Let us write that d−αjn−1zT
1i′V 2(1)z2j′ = d−αj

∑
k1,k2

n−1z1i′k1z2j′k2vk1k2 . We first

consider the case of αj > 1/2. Note that E{(
∑n

k2=1 z2j′k2vk1k2)
2} ≤ Mn−1

∑d
s=m+1 λ2

s with

the uniform bound M for the fourth moments condition. Then, by using Markov’s inequality

and Schwarz’s inequality, for any τ > 0, one has under (i) of Theorem 1 (or Corollary 1)

that

P
(
|d−αj

∑
k1,k2

n−1z1i′k1z2j′k2vk1k2 | > n−1/2τ
)

≤ P
(
d−αjn−1

n∑
k1=1

|z1i′k1 |
∣∣∣ n∑

k2=1

z2j′k2vk1k2

∣∣∣ > n−1/2τ
)

≤ τ−1d−αjn−1/2

n∑
k1=1

E
(
|z1i′k1 |

∣∣∣ n∑
k2=1

z2j′k2vk1k2

∣∣∣)

≤ τ−1d−αjn−1/2

n∑
k1=1

(
E(z2

1i′k1
)E

{( n∑
k2=1

z2j′k2vk1k2

)2})1/2

= O(d1/2−αj) = o(1).

It concludes the result for the case of αj > 1/2.

Next, we consider the case of αj ∈ (0, 1/2]. Note that E(z2
1i′k1

z1s1k1z1s2k1) ≤ M for

s1, s2 = m + 1, ..., d. By using Chebyshev’s inequality, for any τ > 0, one has under (ii) of

Theorem 1 that

P
(
|d−αj

∑
k1,k2

n−1z1i′k1z2j′k2vk1k2 | > n−1/2τ
)

≤ τ−2d−2αjn−1E(|
∑
k1,k2

z1i′k1z2j′k2vk1k2 |2)

≤ τ−2d−2αjn−1M2

d∑
s1,s2(≥m+1)

λs1λs2 = O(d2−2αj/n) = o(1).
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It concludes the result for the case of αj ∈ (0, 1/2] under (ii) of Theorem 1.

Finally, we consider the case when zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n) are independent.

Note that E(z2
1i′k1

z1s1k1z1s2k1) = 0 for s1 6= s2. By using Chebyshev’s inequality, for any

τ > 0, one has under (ii) of Corollary 1 that

P
(
|d−αj

∑
k1,k2

n−1z1i′k1z2j′k2vk1k2| > n−1/2τ
)

≤ τ−2d−2αjn−1

d∑
s1=m+1

λ2
s1

= O(d1−2αj/n) = o(1).

It concludes the result for the case of αj ∈ (0, 1/2] under (ii) of Corollary 1. In conclusion,

we obtain the results. 2

Lemma 6. It holds for j = 1, ...,m, that

||d−αjn−1/2zT
ii′V 2(i)|| = op(n

−1/4) (i = 1, 2; i′ = 1, ...,m)

under either (i)-(ii) of Theorem 1 or (i)-(ii) of Corollary 3 for the case that zijk, j =

1, ..., d (i = 1, 2; k = 1, ..., n) are independent.

Proof. When i = 1, we have that

||d−αjn−1/2zT
1i′V 2(1)||2 = d−2αj

(
n∑

k1=1

n−1z2
1i′k1

n∑
k2=1

v2
k1k2

+
∑

k1 6=k2

n−1z1i′k1z1i′k2

n∑
k3=1

vk1k3vk2k3

)
.

(13)

We first consider the first term in (13). By using Markov’s inequality, for any τ > 0 and the

uniform bound M for the fourth moments condition, one has under either (i)-(ii) of Theorem

1 or (i)-(ii) of Corollary 3 that

P (d−2αj

n∑
k1=1

n∑
k2=1

n−1z2
1i′k1

v2
k1k2

> n−1/2τ) ≤ τ−1d−2αj

n∑
k1=1

n∑
k2=1

n−1/2E(z2
1i′k1

v2
k1k2

)

= O(d1−2αj/n1/2) = o(1). (14)
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Next, we consider the second term in (13). Let us write that ψijk = n−2
∑d

s=m+1 λ2
sz1siz1sjz

2
2sk

and ωijk = n−2
∑d

s1 6=s2(≥m+1) λs1λs2z1s1iz1s2jz2s1kz2s2k. Then, by using Chebyshev’s inequal-

ity, for any τ > 0, one has under either (i)-(ii) of Theorem 1 or (i)-(ii) of Corollary 3 that

P
(
d−2αj |

∑
k1 6=k2

n−1z1i′k1z1i′k2

n∑
k3=1

ψk1k2k3 | > n−1/2τ
)

≤ 2τ−2n−1d−4αjM3

d∑
s1,s2(≥m+1)

λ2
s1

λ2
s2

= O(d2−4αj/n) = o(1).

Next, we consider ωijk for the case of αj > 1/2. By using Markov’s inequality and Schwarz’s

inequality, for any τ > 0, one has under (i) of Theorem 1 (or Corollary 3) that

P
(
d−2αj |

∑
k1 6=k2

n−1z1i′k1z1i′k2

n∑
k3=1

ωk1k2k3 | > n−1/2τ
)

≤ (τn1/2d2αj)−1
∑

k1 6=k2

(
E(z2

1i′k1
z2
1j′k2

)E
{( n∑

k3=1

ωk1k2k3

)2})1/2

= O(d1−2αj) = o(1).

Finally, we consider ωijk for the case of αj ∈ (0, 1/2]. We have under (ii) of Theorem 1 that

P
(
d−2αj |

∑
k1 6=k2

n−1z1i′k1z1i′k2

n∑
k3=1

ωk1k2k3| > n−1/2τ
)

= O(d4−4αj/n2) = o(1).

On the other hand, we have that

P
(
d−2αj |

∑
k1 6=k2

n−1z1i′k1z1i′k2

n∑
k3=1

ωk1k2k3 | > n−1/2τ
)

= O(d2−4αj/n2) = o(1)

under (ii) of Corollary 3 for the case that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n) are

independent. Thus we claim that

d−2αj

∑
k1 6=k2

n−1z1i′k1z1i′k2

n∑
k3=1

vk1k3vk2k3 = d−2αj

∑
k1 6=k2

n−1z1i′k1z1i′k2

n∑
k3=1

(ψk1k2k3 + ωk1k2k3)

= op(n
−1/2). (15)

By combining (14)-(15) with (13), we conclude the result. 2

Lemma 7. Assume that the first s1 population eigenvalues are distinct as λ1 > · · · > λs1.
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Then, it holds under (i)-(ii) of Theorem 1 that

λ̃j

λj

=
(
||n−1/2z1j||

) (
||n−1/2z2j||

)
+ op(n

−1/2) = 1 + op(1), ũT
j(i)z̃ij = 1 + op(n

−1/2)

(i = 1, 2; j = 1, ..., s1).

Proof. By using Chebyshev’s inequality, for any τ (> 0) and the uniform bound M for the

fourth moments condition, one has as n → ∞ that

P (|n−1zT
ijzij′ | > n−1/4τ) = P

(∣∣∣n−1

n∑
k=1

zijkzij′k

∣∣∣ > n−1/4τ
)
≤ τ−2Mn−1/2 = o(1)

(i = 1, 2; j 6= j′).

Thus we claim as n → ∞ that n−1zT
ijzij′ = op(n

−1/4) (i = 1, 2; j 6= j′). Note that

||n−1/2zij||2 = 1 + op(1) (i = 1, 2) as n → ∞. Here, we have that

max(eT
1nSD(1)e2n) = ũT

1(1)SD(1)ũ1(2) = λ̃1

with respect to any e1n and e2n. Next, we have that

max(eT
1nSD(1)e2n) = ũT

2(1)SD(1)ũ2(2) = λ̃2

with respect to any e1n and e2n, provided that ũT
1(1)e1n = 0 and ũT

1(2)e2n = 0. Similarly, we

have λ̃j, j = 1, ...,m.

For λj (j = 1, ..., s1) that holds power αs1 , we have from Lemma 4 that λ−1
j eT

1nV 2(1)e2n =

op(1) under (i)-(ii) of Theorem 1. Then, it holds that λ1

(
||n−1/2z11||

) (
||n−1/2z21||

)
> · · · >

λm

(
||n−1/2z1m||

) (
||n−1/2z2m||

)
and λs1

(
||n−1/2z1s1 ||

) (
||n−1/2z2s1 ||

)
> eT

1nV 2(1)e2n w.p.1.

Then, it holds that

λ̃1

λ1

= ũT
1(1)

SD(1)

λ1

ũ1(2) = ũT
1(1)

(
m∑

j=1

λj

λ1n
z1jz

T
2j

)
ũ1(2) + λ−1

1 ũT
1(1)V 2(1)ũ1(2)

= ũT
1(1)

(
m∑

j=1

λj

λ1

(
||n−1/2z1j||

) (
||n−1/2z2j||

)
z̃1jz̃

T
2j

)
ũ1(2) + op(1)

=
(
||n−1/2z11||

) (
||n−1/2z21||

)
+ op(1) = 1 + op(1). (16)
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Then, it holds that ũT
1(i)z̃i1 = 1 + op(1) (i = 1, 2). For i (= 1, 2) there exists a random

variable εi ∈ [0, 1] and yi1 ∈ Rn such that ũ1(i) = z̃i1

√
1 − ε2

i + εiyi1 and z̃T
i1yi1 = 0. Here,

from Lemmas 5-6, we have under (i)-(ii) of Theorem 1 that

λ−1
j z̃T

11V 2(1)z̃21 = op(n
−1/2), λ−1

j z̃T
i1V 2(i)yi1 = op(n

−1/4) (i = 1, 2).

Noting that εi = op(1), i = 1, 2, it holds that
√

1 − ε2
1

√
1 − ε2

2 = 1− ε2
1/2− ε2

2/2 + op(ε
2
1) +

op(ε
2
2). Then, we have that

λ̃1

λ1

=ũT
1(1)

(
m∑

j=1

λj

λ1

(
||n−1/2z1j||

) (
||n−1/2z2j||

)
z̃1jz̃

T
2j + λ−1

1 V 2(1)

)
ũ1(2)

=
(
||n−1/2z11||

) (
||n−1/2z21||

)
+ max

ε1,ε2

{
(−ε2

1/2 − ε2
2/2)

(
||n−1/2z11||

) (
||n−1/2z21||

)
+ op(ε1n

−1/4) + op(ε2n
−1/4) + ε1ε2y

T
11

(
m∑

j=2

λj

λ1

(
||n−1/2z1j||

) (
||n−1/2z2j||

)
z̃1jz̃

T
2j

)
y21

+ op(ε1ε2) + op(ε
2
1) + op(ε

2
2)

}
+ op(n

−1/2).

Noting that εi ∈ [0, 1], i = 1, 2, it holds that ε1ε2 ≤ ε2
1/2 + ε2

2/2. From the fact that(
||n−1/2z11||

) (
||n−1/2z21||

)
> λ−1

1 λ2

(
||n−1/2z12||

) (
||n−1/2z22||

)
w.p.1, we have under (i)-(ii)

of Theorem 1 that

max
ε1,ε2

{
(−ε2

1/2 − ε2
2/2)

(
||n−1/2z11||

) (
||n−1/2z21||

)
+ op(ε1n

−1/4) + op(ε2n
−1/4) + ε1ε2y

T
11

(
m∑

j=2

λj

λ1

(
||n−1/2z1j||

) (
||n−1/2z2j||

)
z̃1jz̃

T
2j

)
y21

+ op(ε1ε2) + op(ε
2
1) + op(ε

2
2)

}

≤max
ε1,ε2

{
(−ε2

1/2 − ε2
2/2)

(
||n−1/2z11||

) (
||n−1/2z21||

)
+ op(ε1n

−1/4) + op(ε2n
−1/4)

+ (ε2
1/2 + ε2

2/2)
λ2

λ1

(
||n−1/2z12||

) (
||n−1/2z22||

)
+ op(ε

2
1) + op(ε

2
2)

}
= op(n

−1/2),
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so that ε1 = op(n
−1/4) and ε2 = op(n

−1/4). Thus we have under (i)-(ii) of Theorem 1 that

λ̃1

λ1

=
(
||n−1/2z11||

) (
||n−1/2z21||

)
+ op(n

−1/2) (17)

together with that ũT
1(i)z̃i1 = 1 + op(n

−1/2), ũT
2(i)z̃i1 = op(n

−1/4) and ũT
1(i)z̃i2 = op(n

−1/4) for

i = 1, 2. Now, similarly to (16)-(17), we have under (i)-(ii) of Theorem 1 that

λ̃2

λ2

= ũT
2(1)

(
m∑

j=2

λj

λ2

(
||n−1/2z1j||

) (
||n−1/2z2j||

)
z̃1jz̃

T
2j

)
ũ2(2) + λ−1

2 ũT
2(1)V 2(1)ũ2(2) + op(n

−1/2)

=
(
||n−1/2z12||

) (
||n−1/2z22||

)
+ op(n

−1/2) = 1 + op(1)

together with that ũT
2(i)z̃i2 = 1 + op(n

−1/2), i = 1, 2. Similarly, we claim until s1 to obtain

under (i)-(ii) of Theorem 1 that

λ̃j

λj

=
(
||n−1/2z1j||

) (
||n−1/2z2j||

)
+ op(n

−1/2) = 1 + op(1), ũT
j(i)z̃ij = 1 + op(n

−1/2)

(i = 1, 2; j = 1, ..., s1). (18)

It concludes the results. 2

Lemma 8. Assume that the first m population eigenvalues are distinct as λ1 > · · · > λm.

Then, it holds under (i)-(ii) of Theorem 1 that

λ̃j

λj

=
(
||n−1/2z1j||

) (
||n−1/2z2j||

)
+ op(n

−1/2) = 1 + op(1), ũT
j(i)z̃ij = 1 + op(n

−1/2)

(i = 1, 2; j = 1, ...,m).

Proof. First, we consider V 11 =
∑s1

j=1 λ̃1jũ1j(1)ũ
T
1j(2). Similarly to Lemma 7, we obtain as

n → ∞ that

λ̃1j

λj

= 1 + op(1), ũT
1j(i)z̃ij = 1 + op(n

−1/2) (i = 1, 2; j = 1, ..., s1). (19)

Next, we consider the case that λj (j = s1 + 1, ..., s2) holds power αs2 . Let us denote

ηij = λ−1
j ũT

1i(1)V 2(1)ũj(2), i = 1, ..., s1. Then, from Lemmas 4, 6 and (19), it holds under

(i)-(ii) of Theorem 1 that

ηij = λ−1
j z̃T

1iV 2(1)ũj(2) + op(n
−1/4) = op(n

−1/4) (i = 1, ..., s1; j = s1 + 1, ..., s2).
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Note that ũT
1i(1)z̃1j = op(n

−1/4) (i = 1, ..., s1; j = s1 +1, ..., s2) in view of (19). Thus we have

under (i)-(ii) of Theorem 1 that

ũT
1i(1)

SD(1)

dαs1
ũj(2) = ũT

1i(1)

V 11

dαs1
ũj(2) + ũT

1i(1)

V 1 − V 11

dαs1
ũj(2) + ηijO(dαs2−αs1 )

= ũT
1i(1)

V 11

dαs1
ũj(2) + ũT

1i(1)

(
m∑

s=s1+1

λs

ndαs1
z1sz

T
2s

)
ũj(2) + op(n

−1/4dαs2−αs1 )

= ũT
1i(1)

V 11

dαs1
ũj(2) + op(n

−1/4dαs2−αs1 ) (i = 1, ..., s1; j = s1 + 1, ..., s2).

(20)

Hence, from (19) and (20), we obtain under (i)-(ii) of Theorem 1 that

ũT
1i(1)

SD(1)

dαs1
ũj(2) =

λ̃j

dαs1
ũT

1i(1)ũj(1),

ũT
1i(1)

SD(1)

dαs1
ũj(2) = ũT

1i(1)

V 11

dαs1
ũj(2) + op(n

−1/4dαs2−αs1 ) =
λ̃1i

dαs1
ũT

1i(2)ũj(2) + op(n
−1/4dαs2−αs1 )

(i = 1, ..., s1; j = s1 + 1, ..., s2).

Similarly, we obtain under (i)-(ii) of Theorem 1 that

ũT
1i(2)

SD(2)

dαs1
ũj(1) =

λ̃j

dαs1
ũT

1i(2)ũj(2),

ũT
1i(2)

SD(2)

dαs1
ũj(1) =

λ̃1i

dαs1
ũT

1i(1)ũj(1) + op(n
−1/4dαs2−αs1 ) (i = 1, ..., s1; j = s1 + 1, ..., s2).

Thus we have for every i (= 1, ..., s1) and j (= s1 + 1, ..., s2) that

λ̃j

dαs1
ũT

1i(1)ũj(1) =
λ̃1i

dαs1
ũT

1i(2)ũj(2) + op(n
−1/4dαs2−αs1 ), (21)

λ̃j

dαs1
ũT

1i(2)ũj(2) =
λ̃1i

dαs1
ũT

1i(1)ũj(1) + op(n
−1/4dαs2−αs1 ). (22)

From (18), we claim under (i)-(ii) of Theorem 1 that ũT
j(i′)z̃i′i = op(1) (i = 1, ..., s1; j =

s1 + 1, ..., s2; i′ = 1, 2). Thus it holds that d−αs1 λ̃j = d−αs1 ũT
j(1)SD(1)ũj(2) = op(1) for

j = s1 + 1, ..., s2. Then, one has from (21)-(22) that(
λ̃j

dαs1
+ op(1)

)
ũT

1i(i′)ũj(i′) = op(n
−1/4dαs2−αs1 ), i.e. ũT

1i(i′)ũj(i′) = op(n
−1/4dαs2−αs1 )

(i = 1, ..., s1; j = s1 + 1, ..., s2; i′ = 1, 2).
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So, we have under (i)-(ii) of Theorem 1 that

ũT
j(1)

V 11

dαs2
ũj(2) =

s1∑
s=1

λ̃1s

dαs2
ũT

j(1)ũ1s(1)ũ
T
1s(2)ũj(2) = op(n

−1/2dαs2−αs1 ) (j = s1 + 1, ..., s2).

(23)

Then, we obtain for j = s1 + 1, ..., s2, that

ũT
j(1)

SD(1)

λj

ũj(2) = ũT
j(1)

V 1 − V 11

λj

ũj(2) + ũT
j(1)

V 2(1)

λj

ũj(2) + op(n
−1/2)

= ũT
j(1)

(
m∑

s=s1+1

λs

λj

(
||n−1/2z1s||

)(
||n−1/2z2s||

)
z̃1sz̃

T
2s

)
ũj(2) + ũT

j(1)

V 2(1)

λj

ũj(2)

+ op(n
−1/2). (24)

Similarly to (16)-(17), for j = s1 + 1, ..., s2, it holds (18) under (i)-(ii) of Theorem 1. Then,

for V 12 =
∑s2

j=1 λ̃2jũ2j(1)ũ
T
2j(2), we obtain as d → ∞ and n → ∞ that

λ̃2j

λj

= 1 + op(1), ũT
2j(i)z̃ij = 1 + op(n

−1/2) (i = 1, 2; j = 1, ..., s2). (25)

As for λj (j = s2 + 1, ..., s3) that holds power αs3 , note that ũT
2i(i′)z̃i′j′ = op(n

−1/4) (i =

1, ..., s2; j′ = s2 + 1, ...,m; i′ = 1, 2) in view of (25). Thus we have that

ũT
2i(1)

SD(1)

dαs2
ũj(2) = ũT

2i(1)

V 12

dαs2
ũj(2) + op(n

−1/4dαs3−αs2 ),

ũT
2i(2)

SD(2)

dαs2
ũj(1) = ũT

2i(2)

V T
12

dαs2
ũj(1) + op(n

−1/4dαs3−αs2 ) (i = 1, ..., s2).

Similarly to (21)-(22), we have for every i (= 1, ..., s2) and j (= s2 + 1, ..., s3) under (i)-(ii)

of Theorem 1 that

λ̃j

dαs2
ũT

2i(1)ũj(1) =
λ̃2i

dαs2
ũT

2i(2)ũj(2) + op(n
−1/4dαs3−αs2 ),

λ̃j

dαs2
ũT

2i(2)ũj(2) =
λ̃2i

dαs2
ũT

2i(1)ũj(1) + op(n
−1/4dαs3−αs2 ).

Since it holds for j = s2 + 1, ..., s3 (i′ = 1, 2) that

ũT
2i(i′)ũj(i′) =

 op(n
−1/4dαs3−αs1 ) (i = 1, ...., s1),

op(n
−1/4dαs3−αs2 ) (i = s1 + 1, ...., s2),
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we obtain (18) for j = s2 + 1, ..., s3, in a way similar to (23)-(24).

As for λj (j = sl−1 + 1, ..., sl) that holds power αsl
(l ≥ 4) as well, we can obtain (18).

Therefore, for every j (= 1, ...,m) and i (= 1, 2), we claim under (i)-(ii) of Theorem 1 that

λ̃j

λj

=
(
||n−1/2z1j||

) (
||n−1/2z2j||

)
+ op(n

−1/2) = 1 + op(1), ũT
j(i)z̃ij = 1 + op(n

−1/2). (26)

It concludes the results. 2

Lemma 9. Assume that the first m population eigenvalues are distinct as λ1 > · · · > λm.

Then, it holds that

λ̃j

λj

=
(
||n−1/2z1j||

) (
||n−1/2z2j||

)
+ op(1) = 1 + op(1), ũT

j(i)z̃ij = 1 + op(1)

(i = 1, 2; j = 1, ...,m)

under (ii) of Corollary 1 for the case that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n) are

independent.

Proof. It should be noted that Lemma 6 cannot be claimed under (ii) of Corollary 1. Hence,

similarly to the proof of Lemma 8, it concludes the results. 2

Lemma 10. Assume that the first m population eigenvalues are distinct as λ1 > · · · > λm.

Then, it holds that

λ̃j

λj

=
(
||n−1/2z1j||

) (
||n−1/2z2j||

)
+ op(n

−1/2) = 1 + op(1), ũT
j(i)z̃ij = 1 + op(n

−1/2)

(i = 1, 2; j = 1, ...,m)

under (i)-(ii) of Corollary 3 for the case that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n) are

independent.

Proof. Similarly to the proof of Lemma 8, it concludes the result. 2

Remark 10. Assume that the first m population eigenvalues are distinct as λ1 > · · · > λm.

For λ̃i′j (i′ = 1, ..., l; j = 1, ..., si′) it holds as d → ∞ and n → ∞ that λ−1
j λ̃i′j = 1 + op(1).

For ũi′j′(i) and ũj(i) (i = 1, 2; i′ = 1, ..., l − 1; j ∈ [si′ + 1, si′+1]; j′ = 1, ..., si′) it holds that
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ũT
i′j′(i)ũj(i) = op(d

αj−αj′ ) under either (i)-(ii) of Theorem 1 or (i)-(ii) of Corollary 1 for the

case that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n) are independent.

Remark 11. When the population eigenvalues are not distinct such as λ1 ≥ · · · ≥ λm,

we consider the case as follows: Suppose that λ1 = · · · = λt1 > λt1+1 = · · · = λt2 > · · · >

λtr−1+1 = · · · = λtr (= λm), where r ≤ m. We can claim that

λ̃ti′−1+j

λti′−1+j

= 1 + op(1), ũti′−1+j(i) ∈


ti′−ti′−1∑

s=1

bsz̃iti′−1+s :

ti′−ti′−1∑
s=1

b2
s = 1


(i = 1, 2; i′ = 1, ..., r; j = 1, ..., ti′ − ti′−1),

where t0 = 0, under either (i)-(ii) of Theorem 1 or (i)-(ii) of Corollary 1 for the case that

zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n) are independent. Then, it holds that

Angle(ũti′−1+j(i), span{z̃iti′−1+1, ..., z̃iti′})
p−→ 0

(i = 1, 2; i′ = 1, ..., r; j = 1, ..., ti′ − ti′−1).

Proof of Theorem 1. The result is obtained straightforwardly by combining Lemma 8 with

Remark 11. 2

Proof of Theorem 2. We use the Taylor expansion to claim that

||n−1/2zij|| = 1 +
1

2

(
||n−1/2zij||2 − 1

)
− 1

8
ε
−3/2
ij

(
||n−1/2zij||2 − 1

)2
(27)

with suitable random variable εij between 1 and ||n−1/2zij||2. Noting that ||n−1/2zij||2 =

1 + op(1) as n → ∞, one has εij = 1 + op(1). By using Markov’s inequality, for any τ (> 0)

and the uniform bound M for the fourth moments condition, one has as n → ∞ that

P
(
(||n−1/2zij||2 − 1)2 > n−1/2τ

)
= O(n−1/2) = o(1) (i = 1, 2). (28)

By combining (27) with (28), we have as n → ∞ that

||n−1/2zij|| = 1 +
1

2

(
||n−1/2zij||2 − 1

)
+ op(n

−1/2).
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Noting that (||n−1/2z1j||2 − 1)(||n−1/2z2j||2 − 1) = op(n
−1/2) as n → ∞, we claim that

(
||n−1/2z1j||

) (
||n−1/2z2j||

)
− 1 =

1

2

(
||n−1/2z1j||2 − 1 + ||n−1/2z2j||2 − 1

)
+ op(n

−1/2). (29)

Recall that V (z2
ijk) = Mj (j = 1, ...,m). For each i, by using the central limiting theorem,

one has as n → ∞ that (nMj)
−1/2(

∑n
k=1 z2

ijk − n) ⇒ N(0, 1). Note that ||n−1/2z1j|| and

||n−1/2z2j|| are independent. Thus by combining (26) with (29), we have under (i)-(ii) of

Theorem 1 that √
2n

Mj

(
λ̃j

λj

− 1

)
⇒ N(0, 1) (j = 1, ...,m). (30)

It concludes the result. 2

Proof of Corollary 1. The result is obtained from Lemmas 9-10 and Remark 11 straightfor-

wardly. 2

Proof of Corollary 2. Let us write that Λ−1/2HT (X i − X i) = [źi1, ..., źid]
T and źij =

(źij1, ..., źijn)T for i = 1, 2 and j = 1, ..., d. Then, we have that źijk = zijk− z̄ij for k = 1, ..., n,

where z̄ij =
∑n

k=1 zijk/n. Let E(zijk) = µj for j = 1, ..., d. We write that źijk = z̈ijk + zoij,

where z̈ijk = zijk−µj and zoij = µj− z̄ij (i = 1, 2; j = 1, ..., d; k = 1, ..., n). Now, let us write

that n-vectors z̈ij = (z̈ij1, ..., z̈ijn)T and zoij = (zoij, ..., zoij)
T for i = 1, 2 and j = 1, ..., d.

Then, we can write that (X1 − X1)
T (X2 − X2) =

∑d
j=1 λj(z̈1j + zo1j)(z̈2j + zo2j)

T .

Let V o = n−1
∑d

s=m+1 λs(z̈1s + zo1s)(z̈2s + zo2s)
T . Let V o1 = n−1

∑d
s=m+1 λsz̈1sz

T
o2s,

V o2 = n−1
∑d

s=m+1 λszo1sz
T
o2s and V o3 = n−1

∑d
s=m+1 λsz̈1sz̈

T
2s. We first consider V o1.

Let us write that vij(1) = n−1
∑d

s=m+1 λsz̈1sizo2s as (i, j) element of V o1. Then, we have as

d1−2αj/n → 0 that E{n2(d−αjvi′j′(1))
2} = O(d1−2αj/n) = o(1). Hence, for any τ (> 0) and

the uniform bound M for the fourth moments condition, it holds that

P
( ∑

i′,j′

|d−αjvi′j′(1)|2 > τ
)

= o(1)

by using Markov’s inequality. Thus we have that d−2αj
∑

i′,j′ v
2
i′j′(1) = op(1). Let ein =
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(ei1, ..., ein)T (i = 1, 2), where
∑n

k=1 e2
ik = 1. Then, we obtain as d1−2αj/n → 0 that

d−αjeT
1nV o1e2n = d−αj

∑
i′,j′

e1i′e2j′vi′j′(1) = op(1)

for any e1n, e2n ∈ Rn. Similarly, we claim as d1−2αj/n → 0 that d−αjeT
1nV o2e2n = op(1).

Thus we have as d1−2αj/n → 0 that d−αjeT
1nV oe2n = d−αjeT

1nV o3e2n + op(1). Then, note

that V o3 is essentially equal to V 2(1). Hence, we can claim the assertion in Lemma 4 by

replacing V 2(1) with V o. Note that n−1źT
ijźij′ = op(n

−1/4) (j 6= j′) and ||n−1/2źij|| =

||n−1/2z̈ij||+ op(n
−1/2) = 1+ op(1) for i = 1, 2. Then, by replacing SD(1) with SoD(1), we can

claim the assertions in Theorem 1 and Corollary 1. 2

Proof of Corollary 3. With the help of Lemma 10, similarly to the proof of Theorem 2, it

concludes the result. 2

Proof of Theorem 3. We first consider hT
j h̃j(1). We claim for j (= 1, ..., n) that

hT
j h̃j(1) = (nλ̃j)

−1/2hT
j X1ũj(1) =

√
λj

λ̃j

zT
1j√
n

ũj(1).

Then, we have (26) under (i)-(ii) of Theorem 1. Thus we have under (i)-(iii) of Theorem 3

that

hT
j h̃j(1) = 1 + op(1). (31)

Next, we consider ||h̃j(1)||. Now, we can write that

||h̃j(1)||2 = (nλ̃j)
−1ũT

j(1)X
T
1 X1ũj(1) = (nλ̃j)

−1ũT
j(1)

m∑
s=1

λsz1sz
T
1sũj(1) + λ̃−1

j ũT
j(1)U 2(1)ũj(1),

(32)

where U 2(1) = n−1
∑d

s=m+1 λsz1sz
T
1s. First, we consider the second term in (32). From

Lemma 3, we have for i = 1, ...,m, that

n−1/2d−αjeT
1nU 2(1)e2n = op(1), (33)

d−αjn−1zT
1j′U 2(1)z1j′ = op(1) (j′ = 1, ...,m) (34)

under the conditions:
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(i’) d → ∞ and n → ∞ for j such that αj > 1;

(ii’) d → ∞ and d1−αj/n → 0 for j such that αj ∈ (0, 1].

Let us write that uij(1) = n−1
∑d

s=m+1 λsz1siz1sj as (i, j) element of U 2(1). From Lemma 1,

we can claim under (i)-(ii) of Theorem 1 that

||d−αjn−1/2zT
1j′(U 2(1) − diag(u11(1), ..., unn(1)))|| = op(1) (j′ = 1, ...,m). (35)

We have that ||d−αjηn−1/2zT
1j′diag(u11(1), ...., unn(1))||2 = d−2αjn−1η2

∑n
k=1 z2

1j′ku
2
kk(1), where

η = o(n−1/4). Here, by using Chebyshev’s inequality, for any τ (> 0) and the uniform bound

M for the fourth moments condition, one has as n → ∞ that

n∑
k=1

P (z2
1j′kη

2 > τ) ≤ nτ−2η4M = o(1). (36)

Thus it holds that z2
1j′kη

2 = op(1) for every k (= 1, ..., n). Here, by using Markov’s inequality,

one has under (i’)-(ii’) that

P
( n∑

k=1

d−2αjn−1u2
kk(1) > τ

)
= P

( n∑
k=1

d−2αjn−3
( d∑

s=m+1

λsz
2
1sk

)2
> τ

)
= O(d2−2αj/n2) = o(1).

(37)

Thus it holds that
∑n

k=1 d−2αjn−1u2
kk(1) = op(1). By combining (36) with (37), we claim

under (i’)-(ii’) that d−2αjn−1
∑n

k=1 z2
1j′kη

2u2
kk(1) = op(1). Thus we claim that

||d−αjηn−1/2zT
1j′diag(u11(1), ...., unn(1))|| = op(1).

Then, from (35), we claim under (i’)-(ii’) that

d−αjηn−1/2zT
1j′U 2(1)e1n = op(1). (38)

From (26), under (i)-(ii) of Theorem 1, there exists a random variable εj ∈ [0, 1] and y1j ∈ Rn

such that ũj(1) = z̃1j

√
1 − ε2

j + εjy1j and z̃T
1jy1j = 0, where εj = op(n

−1/4). Thus it holds

from (33), (34) and (38) that

d−αj ũT
j(1)U 2(1)ũj(1) = d−αj z̃T

1jU 2(1)z̃1j + op(1) = op(1) (39)
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under the conditions given by combining (i’)-(ii’) with (i)-(ii) of Theorem 1 (that is, (i), (ii)

and (iii) of the present theorem).

Next, we consider the first term in (32). With the help of Remark 10, we have under

(i)-(ii) of Theorem 1 that

ũT
j(1)

V 1iV
T
1i

λ2
j

ũj(1) = ũT
j(1)

∑si

s=1 λ̃2
isũis(1)ũ

T
is(1)

λ2
j

ũj(1) = op(1)

for i (= 1, ..., l − 1) and j (= si + 1, ..., si+1). Thus we have that

ũT
j(1)

V 1iV
T
1i

λ2
j

ũj(1) =ũT
j(1)

(
n−1

si∑
s=1

λ−1
j λsz1sz

T
2s

)(
n−1

si∑
s=1

λ−1
j λsz2sz

T
1s

)
ũj(1)

=

si∑
s=1

(
λ−1

j λsũ
T
j(1)z1s/n

1/2
)2

+ op(1)
∑
s,s′

(
λ−1

j λsũ
T
j(1)z1s/n

1/2
)(

λ−1
i λs′ũ

T
j(1)z1s′/n

1/2
)

= op(1).

Note that if it holds that λ−1
j λsũ

T
j(1)z1s/n

1/2 6= op(1) for some s (= 1, ..., si), we can claim

that

ũT
j(1)

V 1iV
T
1i

λ2
j

ũj(1) 6= op(1).

Hence, we have under (i)-(ii) of Theorem 1 that

λ−1
j λsũ

T
j(1)z1s/n

1/2 = op(1) (j = si + 1, ..., si+1; s = 1, ..., si; i = 1, ..., l − 1).

Thus from (26), it holds under (i)-(iii) of Theorem 3 that

λ−1
j n−1ũT

j(1)

m∑
s=1

λsz1sz
T
1sũj(1) = 1 + op(1). (40)

Note that λ−1
j λ̃j = 1 + op(1). By combining (39) and (40) with (32), we have under (i)-(iii)

of Theorem 3 that

||h̃j(1)||2 = 1 + op(1) (j = 1, ...,m). (41)

Thus from (31) and (41), we claim under (i)-(iii) of Theorem 3 that Angle(hj, h̃j(1)) = op(1)

for j = 1, ...,m. Similarly, we claim that Angle(hj, h̃j(2)) = op(1) for j = 1, ...,m. Note that
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h̃
T

j(1)h̃j(2) = 1+ op(1) for j = 1, ...,m. Hence, it holds that Angle(hj, (h̃j(1) + h̃j(2))/(||h̃j(1) +

h̃j(2)||)) =Angle(hj, h̃j∗) = op(1) for i = 1, ...,m. It concludes the result. 2

Proof of Corollary 4. In view of the proof of Corollary 1 given by Yata and Aoshima [12],

one can claim that d−αjeT
1nU 2(1)e2n = op(1) (j = 1, ...,m) under (i)-(ii) of Corollary 4 for

the case that zijk, j = 1, ..., d (i = 1, 2; k = 1, ..., n) are independent. Then, we claim (39)

under (i)-(ii) of Corollary 4. Hence, similarly to the proof of Theorem 3, it concludes the

result. 2

Proof of Theorem 4. For each j (= 1, ..., n), let us write that

MSE(s̃j) =λjn
−1

n1∑
k=1

zjk −

√
n1

λ̃j

λj

ũjk(1)

2

+ λjn
−1

n∑
k=n1+1

zjk −

√
n2

λ̃j

λj

ũjk−n1(2)

2

=λj
n1

n

n−1
1

n1∑
k=1

z2
jk +

λ̃j

λj

n1∑
k=1

ũ2
jk(1) − 2

√
λ̃j

λj

(n
−1/2
1 zT

1juj(1))


+ λj

n2

n

n−1
2

n∑
k=n1+1

z2
jk +

λ̃j

λj

n∑
k=n1+1

ũ2
jk−n1(2) − 2

√
λ̃j

λj

(n
−1/2
2 zT

2juj(2))

 .

We have (26) under (i)-(ii) of Theorem 1. The result is obtained by noting that n−1
1

∑n1

k=1 z2
jk

= 1 + op(1) and n−1
2

∑n
k=n1+1 z2

jk = 1 + op(1) as n → ∞ for each j (= 1, ...,m). 2

Proof of Corollary 5. With the help of Lemma 9, similarly to the proof of Theorem 4, it

concludes the result. 2

Proof of Corollary 6. From (26) and Lemma 9, it concludes the result. 2
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