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We study the equation of state at finite temperature and density in two-flavor QCD with the

renormalization group improved gluon action and the clover-improved Wilson quark action on a 163 �
4 lattice. Along the lines of constant physics at mPS=mV ¼ 0:65 and 0.80, we compute the second and

forth derivatives of the grand canonical partition function with respect to the quark chemical potential

�q ¼ ð�u þ�dÞ=2 and the isospin chemical potential �I ¼ ð�u ��dÞ=2 at vanishing chemical poten-

tials, and study the behaviors of thermodynamic quantities at finite �q using these derivatives for the case

�I ¼ 0. In particular, we study density fluctuations at nonezero temperature and density by calculating the

quark number and isospin susceptibilities and their derivatives with respect to �q. To suppress statistical

fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in

the fluctuation of the quark number when the density increased near the pseudocritical temperature,

suggesting a critical point at finite �q terminating the first order transition line between hadronic and

quark-gluon-plasma phases. This result agrees with the previous results using staggered-type quark

actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at

finite density by measuring the first and second derivatives of these quantities for various color channels of

heavy quark-quark and quark-antiquark pairs. The results suggest that, to the leading order of �q, the

interaction between two quarks becomes stronger at finite densities, while that between quark and

antiquark becomes weaker.
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I. INTRODUCTION

Heavy-ion collision experiments are taking place at
BNL aiming at the experimental studies of a new state of
matter, the quark-gluon plasma [1]. In order to extract
unambiguous signals for the QCD phase transition from
the heavy-ion collision experiments, quantitative calcula-
tions directly from the first principles of QCD are indis-
pensable. At present, the lattice QCD simulation is the only
systematic method to do so. Various computational tech-
niques have been developed to study the nature of quark
matter at finite temperature ðTÞ and at small chemical
potentials �u and �d [2,3]. From intensive studies for
the isosymmetric case �u ¼ �d ¼ �q, it turned out that

accurate zero-temperature simulations are important to set
the scale to achieve high precision results at finite T and
�q.

Most of the lattice QCD studies at finite �q so far have

been performed using staggered-type quark actions with
the fourth-root trick for the quark determinant. However,

the fourth-root trick makes the theory nonlocal and thus the
universality arguments fragile. It should be kept in mind
that the staggered-type quarks for two-favor QCD does not
show the scaling properties at finite T expected from the
three-dimensionalOð4Þ spin model [4,5]. This may suggest
large lattice artifacts to the results of staggered-type quarks
near the transition point. Moreover, problems in the stag-
gered quark formulation at finite density are pointed out in
[6]. Since the theoretical base for the fourth-root trick is not
clear, it is indispensable to carry out simulations adopting
different lattice quark actions to control and estimate sys-
tematic errors due to the lattice discretization.
Several years ago, the CP-PACS Collaboration has

studied finite-temperature QCD using the clover-improved
Wilson quark action coupled with the renormalization
group (RG) improved Iwasaki action for gluons [7,8].
With two flavors of dynamical quarks, the phase structure,
the transition temperature, and the equation of state have
been investigated. In contrast to the case of the staggered-
type quarks, both the standard Wilson quark action [9] and
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the clover-improved Wilson quark action [7] reproduce the
expected universality around the critical point of the chiral
phase transition: the subtracted chiral condensate shows
the scaling behavior with the critical exponents and scaling
function of the three-dimensional Oð4Þ spin model.
Moreover, extensive calculations of major physical quan-
tities such as the light hadron masses have been carried out
at T ¼ 0 using the same action [10,11]. Therefore, it is
worth revisiting this action armed with recent techniques
for finite �q.

In the ðT;�qÞ plane, phenomenological studies suggest

the existence of a critical point at which the first order
phase transition line separating the hadronic phase and the
quark-gluon-plasma phase terminates [12–14]. Because
the critical point has second order characteristics, the
fluctuation of the net quark number will diverge as we
approach the critical point in the ðT;�qÞ plane, while the

fluctuation in the isospin number will remain finite [15,16].
Such hadronic fluctuations may be experimentally exam-
ined in heavy-ion collisions by an event-by-event analysis.
The Bielefeld-Swansea Collaboration reported lattice re-
sults for the quark number susceptibility (the second de-
rivative of the thermodynamic grand canonical potential
!=T4 ¼ �ðVT3Þ�1 lnZ, which is proportional to the pres-
sure of the system) by the Taylor expansion method using a
p4-improved staggered quark action [17–19]: From a cal-
culation of the Taylor expansion coefficients of!=T4 up to
O½ð�q=TÞ6�, they found that the quark number fluctuation

increases rapidly as �q increases in the region near the

transition temperature. This suggests indirectly the exis-
tence of the nearby critical point in the ðT;�qÞ plane.

Moreover, 2þ 1 flavor simulations in staggered quarks
with almost physical quark masses have recently been
performed and the same behaviors in the fluctuations
have been found at finite density [20,21]. Therefore, it is
important to confirm the result using the Wilson-type
quarks.

In this paper, we study thermodynamic properties of
QCD at finite temperature and density with two flavors
of clover-improved Wilson quarks coupled with the RG-
improved Iwasaki gluons. The simulations are performed
along the lines of constant physics corresponding to the
pion and rho meson mass ratio, mPS=mV ¼ 0:65 and 0.80
at T ¼ 0. We calculate the Taylor coefficients for the
pressure in terms of�q=T up to the fourth order, and study

the quark number and isospin susceptibilities at finite �q.

Since the odd derivatives vanish at �q ¼ 0, the fourth

derivative is the leading contribution to the�q dependence

of susceptibilities. We find that Wilson-type quarks require
much more statistics than staggered-type quarks to obtain
the susceptibilities with a comparable quality. To overcome
this problem, we introduce a couple of tricks in the evalu-
ation of the Taylor expansion coefficients. Furthermore, we
adopt a hybrid method of Taylor expansion and spectral
reweighting in which !=T4 for the reweighting is approxi-

mated by a truncated Taylor expansion [18,22]. Since the
applicable range of the reweighting method is narrow due
to the sign problem, we introduce the Gaussian method
proposed in [23]. Using these techniques, we compute the
quark number density and the susceptibility in a relatively
wide range of �q=T, and compare the results with those

with staggered-type quarks.
We also extend our previous study of heavy-quark free

energies in various color channels at �q ¼ 0 [24] to finite

�q. At T > Tpc, where Tpc is the pseudocritical tempera-

ture, we calculate the Taylor expansion coefficients for the
heavy-quark free energies between a static quark (Q) and
an antiquark ( �Q) and those between Q and Q, for all color
channels up to the second order in�q=T. By comparing the

expansion coefficients of the free energies, we find that the
interquark interaction between Q and �Q becomes weaker,
whereas that between Q and Q becomes stronger as �q

increases. The expansion coefficients of the effective run-
ning coupling �effðT;�qÞ and the Debye screening mass

mDðT;�qÞ are also extracted by fitting the numerical re-

sults with a screened Coulomb form; we find that the
heavy-quark free energies are well reproduced by the
channel dependent Casimir factor and the channel inde-
pendent �effðT;�qÞ and mDðT;�qÞ at T * 2Tpc. The mag-

nitude of the second order coefficient of mDðT;�qÞ does
not agree with that of the leading-order calculation in the
thermal perturbation theory.
In Sec. II, we summarize our lattice action and simula-

tion parameters, and determine the pseudocritical tempera-
ture. In Sec. III, we calculate the Taylor expansion
coefficients of the thermodinamic grand canonical poten-
tial in terms of the quark chemical potentials �u and �d

and evaluate them for the isosymmetric case �u ¼ �d ¼
�q at �q ¼ 0 up to Oð�4

qÞ. In Sec. IV, we adopt the hybrid
method combined with the Gaussian method, to improve
the calculation. The static quark free energies and the
Debye screening mass are discussed in Sec. V.
Conclusions and discussions are given in Sec. VI. We
summarize properties of the pressure and the quark number
susceptibility in the free gas limit in Appendix A.
Appendix B is devoted to a description of detailed deriva-
tions of formulas for the Gaussian method. Results of the
fits of heavy-quark free energies are summarized in
Appendix C.

II. PHASE STRUCTURE AND LINES OF
CONSTANT PHYSICS AT �q ¼ 0

A. Lattice action

First, we summarize our simulation details. We adopt the
same lattice actions as in our previous study at �q ¼ 0

[24]. We use the RG-improved Iwasaki gauge action [25]
and the Nf ¼ 2 clover-improved Wilson quark action [26]

defined by
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S ¼ Sg þ Sq; (1)

Sg ¼ ��
X
x

�
c0

X4
�<�;�;�¼1

W1�1
�� ðxÞ

þ c1
X4

���;�;�¼1

W1�2
�� ðxÞ

�
; (2)

Sq ¼
X

f¼u;d

X
x;y

�c f
xMx;yc

f
y ; (3)

where � ¼ 6=g2, c1 ¼ �0:331, c0 ¼ 1� 8c1, and

Mx;y ¼ �xy � K
X3
i¼1

fð1� �iÞUx;i�xþî;y

þ ð1þ �iÞUy
y;i�x;yþîg � Kfe�ð1� �4ÞUx;4�xþ4̂;y

þ e��ð1þ �4ÞUy
y;4�x;yþ4̂g � �xycSWK

X
�<�

���F��:

(4)

Here K is the hopping parameter, � � �qa is the quark

chemical potential in lattice unit, andF�� is the lattice field

strength, F�� ¼ ðf�� � fy��Þ=ð8iÞ, with f�� the standard

clover-shaped combination of gauge links. For the clover
coefficient cSW , we adopt a mean field value using W1�1

calculated in the one-loop perturbation theory [25]: cSW ¼
ðW1�1Þ�3=4 ¼ ð1� 0:8412��1Þ�3=4. We denote the spatial
and temporal lattice size as Ns and Nt, respectively. At
�q ¼ 0, the phase diagram of this action in the ð�;KÞ
plane has been obtained by the CP-PACS Collaboration
[7,8].

For phenomenological applications, we need to inves-
tigate the temperature dependence of thermodynamic ob-
servables in a given physical system. On the lattice, ‘‘a
given physical system’’ corresponds to a given set of values
of dimensionless ratios of physical observables at T ¼ 0
and �q ¼ 0. Assuming the scaling, this forms a line in the

coupling parameter space, called the line of constant phys-
ics (LCP), along which the lattice scale (lattice spacing a)
is varied for a given physical system. On a finite-
temperature lattice with fixed Nt, the temperature, T ¼
1=Nta, is varied along a LCP according to the variation
of a. In this study, we determine LCP bymPS=mV (the ratio
of pseudoscalar and vector meson masses at T ¼ 0 and
�q ¼ 0). The bold solid line denoted as Kc in Fig. 1

represents the chiral limit, i.e. mPS=mV ¼ 0. Above the
Kc line, the parity-flavor symmetry is spontaneously bro-
ken [27]. The region below Kc corresponds to the two-
flavor QCD with finite quark mass. We perform simula-
tions in this region. The lines of constant mPS=mV are
investigated in Refs. [8,24], which is shown as thin solid
lines in Fig. 1, corresponding to mPS=mV ¼ 0:65, 0.70,
0.75, 0.80, 0.85, 0.90, and 0.95.

The temperature T is estimated by the zero-temperature
vector meson mass mVað�;KÞ using

T

mV

ð�;KÞ ¼ 1

Nt �mVað�;KÞ : (5)

The lines of constant T=Tpc is determined by the ratio of

T=mV to Tpc=mV where Tpc=mV is obtained by T=mV at Kt

on the same LCP. We use an interpolation function,
Tpc=mV ¼ Að1þ BðmPS=mVÞ2Þ=ð1þ CðmPS=mVÞ2Þ with

A ¼ 0:2253ð71Þ, B ¼ �0:933ð17Þ, and C ¼ �0:820ð39Þ,
obtained in Ref. [8] to evaluate Tpc=mV for each mPS=mV.

The bold dashed line denoted as KtðNt ¼ 4Þ in Fig. 1
represents the pseudocritical line T=Tpc ¼ 1. The thin

dashed lines represent the results for T=Tpc ¼ 0:8, 1.2,

1.4, 1.6, 1.8, 2.0 at Nt ¼ 4.
We perform finite-temperature simulations on a lattice

with a temporal extentNt ¼ 4 and a spatial extentNs ¼ 16
along the LCPs at mPS=mV ¼ 0:65 and 0.80. The standard
hybrid Monte Carlo algorithm is employed to generate full
QCD configurations with two flavors of dynamical quarks.
The length of one trajectory is unity and the step size of the
molecular dynamics is tuned to achieve an acceptance rate
greater than 70%. Runs are carried out in the range � ¼
1:50–2:40 at 13 values of T=Tpc � 0:82–4:0 formPS=mV ¼
0:65 and 12 values of T=Tpc � 0:76–3:0 for mPS=mV ¼
0:80. Our simulation parameters and the corresponding
temperatures are summarized in Table I. Because the de-
termination of the pseudocritical line is more difficult than
the calculation of T=mV, the dominant source for the error
of T=Tpc in Table I is the overall factor Tpc=mV. The

number of trajectories for each run after thermalization is
5000–6000. We measure physical quantities at every 10
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FIG. 1 (color online). Solid lines represent lines of constant
physics determined by mPS=mV at T ¼ 0 for mPS=mV ¼ 0:65,
0.70, 0.75, 0.80, 0.85, 0.90, and 0.95. Kc is the chiral limit, i.e.,
mPS=mV ¼ 0. Dashed lines represent lines of constant T=Tpc on

Nt ¼ 4 lattices, where Tpc is the pseudocritical temperature

corresponding to KtðNt ¼ 4Þ shown by the thick dashed line.
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trajectories. The study of heavy-quark free energies at
�q ¼ 0 using the same configurations have been already

published in Ref. [24].

B. Critical temperature

We update the analysis of the pseudocritical temperature
done in Refs. [7,8], performing additional simulations at
� ¼ 6=g2 ¼ 1:7 and 1:8 on an N3

s � Nt ¼ 16� 4 lattice
and at 1.9 and 1.95 on N3

s � Nt ¼ 163 � 6. The number of
trajectories for each new run is 1050–4200 after thermal-
ization. We add the new data to the data in Refs. [7,8] and
determine the pseudocritical hopping parameters Kt de-
fined from the peak of the Polyakov-loop susceptibility on
163 � 4 and 163 � 6 lattices, as a function of�. Figs. 2 and
3 are the results of the Polyakov loop hLi and Polyakov-
loop susceptibility �L, respectively. We find a pronounced
peak in the Polyakov-loop susceptibility except for � ¼

1:90 at Nt ¼ 6. The peak position of the susceptibility ðKtÞ
is determined by fitting three or four data near the peak
with the Gaussian form. The results are summarized in
Table II together with the values of some quantities at Kt to
set a physical scale.
We use the data of the pseudoscalar and vector meson

masses at T ¼ 0, mPS, and mV, summarized in Table IVof
Ref. [8], and interpolate them following the method dis-
cussed in Refs. [7,8]. We also calculate the current quark
mass defined through an axial vector Ward-Takahashi
identity (AWI), r�A� ¼ 2mAWI

q PþOðaÞ, where P is

the pseudoscalar density and A� the �-th component of

the local axial vector current [28,29]. Because the T de-
pendence in mAWI

q is small, we use the data of mAWI
q

obtained in finite-temperature simulations at Nt ¼ 4 and
6 [7,8]. In Table II,mAWI

q on theKt line are obtained using a

cubic spline interpolation for each �. A straight line inter-

TABLE I. Simulation parameters for mPS=mV ¼ 0:65 (left) and mPS=mV ¼ 0:80 (right) on a
163 � 4 lattice.

� K T=Tpc Traj. � K T=Tpc Traj.

1.50 0.150 290 0.82(3) 5000 1.50 0.143 480 0.76(4) 5500

1.60 0.150 030 0.86(3) 5000 1.60 0.143 749 0.80(4) 6000

1.70 0.148 086 0.94(3) 5000 1.70 0.142 871 0.84(4) 6000

1.75 0.146 763 1.00(4) 5000 1.80 0.141 139 0.93(5) 6000

1.80 0.145 127 1.07(4) 5000 1.85 0.140 070 0.99(5) 6000

1.85 0.143 502 1.18(4) 5000 1.90 0.138 817 1.08(5) 6000

1.90 0.141 849 1.32(5) 5000 1.95 0.137 716 1.20(6) 6000

1.95 0.140 472 1.48(5) 5000 2.00 0.136 931 1.35(7) 5000

2.00 0.139 411 1.67(6) 5000 2.10 0.135 860 1.69(8) 5000

2.10 0.137 833 2.09(7) 5000 2.20 0.135 010 2.07(10) 5000

2.20 0.136 596 2.59(9) 5000 2.30 0.134 194 2.51(13) 5000

2.30 0.135 492 3.22(12) 5000 2.40 0.133 395 3.01(15) 5000

2.40 0.134 453 4.02(15) 5000

0.120 0.130 0.140 0.150

K

0.00

0.05

0.10

0.15

0.20

0.25

<
L

>

β=1.70
β=1.80
β=1.85
β=1.90
β=1.925
β=1.95
β=2.00

0.120 0.125 0.130 0.135 0.140 0.145

K

0.00

0.02

0.04

0.06

0.08

<
L

>

β=1.90
β=1.95
β=2.00
β=2.10

FIG. 2. K dependence of the Polyakov loop for Nt ¼ 4 (left) and 6 (right). Data at � ¼ 1:7 and 1.8 for Nt ¼ 4 and 1.9 and 1.95 for
Nt ¼ 6 are renewed from Refs. [7,8].
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polation leads to almost identical results within statistical
errors. The values of the string tension � and the Sommer
scale r0 [30] are estimated by interpolating or extrapolating
the data at � ¼ 1:80, 1.95, 2.10, and 2.20 [11] in the
ð�; 1=K � 1=KcÞ parameter plane.

The results of the pseudocritical temperature are also
shown in Table II. We plot Tpc=mV as a function of

ðmPS=mVÞ2 in Fig. 4, and find that the results of Nt ¼ 4
and 6 agree with each other. Note that Tpc=mV vanishes in

the heavy-quark limit mPS=mV ¼ 1. Figure 4 suggests
Tpc=mV � 0:22 (Tpc � 170 MeV) in the chiral limit.

We denote the critical temperature in the chiral limit as
Tc. As discussed in [7,9], the subtracted chiral condensate
[29] satisfies the scaling behavior with the critical expo-
nents and scaling function of the 3-dimensional Oð4Þ spin
model. For the reduced temperature t and external mag-

netic field h, we adopt t� �� �ct and h�mq, where �ct

is the critical transition point in the chiral limit. For a
precise determination of Tc, we need to deduce �ct from
the data. In this study, we perform critical scaling fits
assuming that the pseudocritical temperature tpc from the

Polyakov-loop susceptibility, as well as that from the chiral

condensate, follows the scaling law tpc � h1=y with the

Oð4Þ critical exponent 1=y � 1=ð��Þ ¼ 0:537ð7Þ. In prac-
tice, we fit the data of �pcðKÞ, i.e. the inverse function of

Ktð�Þ in Table II, by

�pc ¼ �ct þ Ah1=y (6)

with two free parameters, �ct and A.
For the quark mass mq � h in the scaling fits, we test

three variants. The first ismqa� 1=K � 1=Kc, whereKc is

0.120 0.130 0.140 0.150

K
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0.20
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0.60
χ L

β=1.70
β=1.80
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β=1.90
β=1.925
β=1.95
β=2.00

0.120 0.125 0.130 0.135 0.140 0.145

K

0.00

0.10

0.20

0.30

0.40

0.50

χ L

β=1.90
β=1.95
β=2.00
β=2.10

FIG. 3. K dependence of the Polyakov-loop susceptibility for Nt ¼ 4 (left) and 6 (right).

TABLE II. Finite-temperature transition/crossover point Kt for Nt ¼ 4 and 6. Results for mPSðT ¼ 0Þ=mVðT ¼ 0Þ, mPSaðT ¼ 0Þ,
mAWI

q aðT > 0Þ, Tpc=mVðT ¼ 0Þ, Tpc=
ffiffiffiffi
�

p
, Tpcr0, and mPSr0, are interpolated to the Kt line.

� Kt Kc mPS=mV mPSa mAWI
q a Tpc=mV Tpc=

ffiffiffiffi
�

p
Tpcr0 mPSr0

Nt ¼ 4
1.700 0.150 14(33) 0.151 987(22) 0.509(35) 0.579(51) 0.2197(47)

1.800 0.144 25(16) 0.147 678(15) 0.7070(79) 0.849(18) 0.1107(77) 0.2083(21) 0.4204(29) 0.4716(42) 1.601(37)

1.850 0.140 19(18) 0.145 526(58) 0.7905(60) 1.031(15) 0.1864(72) 0.1917(20) 0.4359(60) 0.484(11) 1.994(55)

1.900 0.136 21(15) 0.143 737(48) 0.8525(39) 1.183(11) 0.2464(49) 0.1801(12) 0.4382(70) 0.484(16) 2.290(79)

1.925 0.134 17(23) 0.2725(67)

1.950 0.130 40(97) 0.142 072(14) 0.9051(64) 1.440(66) 0.363(25) 0.1572(62)

2.000 0.123 71(73) 0.140 811(55) 0.9450(36) 1.689(39) 0.500(18) 0.1398(29)

2.100 0.109 21(43) 0.139 020(21) 0.9790(13) 2.196(18) 0.1114(9)

Nt ¼ 6
1.950 0.140 90(13) 0.142 072(14) 0.591(21) 0.448(24) 0.0451(51) 0.2202(44) 0.4336(40) 0.4973(58) 1.336(73)

2.000 0.138 61(21) 0.140 811(55) 0.725(16) 0.580(27) 0.080(10) 0.2086(53) 0.4639(77) 0.530(13) 1.842(98)

2.100 0.133 65(40) 0.139 020(21) 0.8635(78) 0.821(34) 0.175(13) 0.1753(58) 0.491(12) 0.570(13) 2.81(13)

2.200 0.125 39(25) 0.137 658(53) 0.9481(19) 1.240(16) 0.3607(67) 0.1275(15)

2.300 0.119 63(15) 0.136 513(85) 0.9724(12) 1.454(8) 0.4813(39) 0.1114(6)
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the chiral point at which the pion mass vanishes at T ¼ 0
for each �. The second is mqa� ðmPSaÞ2. The third is

mAWI
q a, i.e. the quark mass defined by the axial vector

Ward-Takahashi identity. We plot �pc as a function of

1=K � 1=Kc (left), ðmPSaÞ2 (center), and mAWI
q a (right)

in Fig. 5. The results of �ct and Tc are summarized in
Table III, where Tc in MeV is calculated by Tc ¼
1=½Ntað�ctÞ� with a from the vector meson mass mVðT ¼
0Þ ¼ m	 ¼ 770 MeV at �ct on Kc. We test two fit ranges

of� for each extrapolation, which is denoted in Table III as
‘‘� range.’’ We note that these Oð4Þ fits reproduce the data
of �pc much better than a naive linear fit �pc ¼ �ct þ Ah.

A tentative conclusion is that the critical temperature in the
chiral limit is in the range 171–180 MeV for Nt ¼ 4 and
160–184 MeV for Nt ¼ 6. There is still a large uncertainty
from the choice of the fit ansatz and the fit range. To
remove this, further simulations at lighter quark masses
are necessary.
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(m
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/m
V

)
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0.10
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0.20

0.25
T

pc
/m

V

Nt=4
Nt=6

FIG. 4 (color online). Tpc=mV vs mPS=mV for Nt ¼ 4 (circle)
and 6 (triangle). The lightest two points for Nt ¼ 4 and the
lightest one point for Nt ¼ 6 are updated from Ref. [8].
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FIG. 5 (color online). The pseudocritical point �pc as a function of ðmqaÞ1=y with mqa� 1=K � 1=Kc (left), ðm2
PSaÞ2 (center), and

mAWI
q a (right) for Nt ¼ 4 (circle) and Nt ¼ 6 (square). We fit the data in two fit ranges. The solid and dashed lines are the fit results

with the long and short fit ranges, respectively.

TABLE III. The critical point ð�ctÞ and critical temperature ðTcÞ in the chiral limit obtained by various fitting procedures. The fit
range for � is written in ‘‘� range.’’ Tc in a physical unit is estimated from the vector meson mass mV ¼ m	 ¼ 770 MeV.

Nt h�mqa � range �ct Tc (mV-input) Tcr0

4 1=Kt � 1=Kc 1.70–1.95 1.619(10) 180(3) MeV

4 1=Kt � 1=Kc 1.70–1.90 1.611(12) 179(3) MeV

4 ðmPSaÞ2 1.70–1.95 1.559(16) 172(3) MeV

4 ðmPSaÞ2 1.70–1.90 1.552(16) 171(3) MeV

4 mAWI
q a 1.80–1.90 1.601(20) 177(4) MeV

4 mAWI
q a 1.80–1.95 1.596(18) 176(3) MeV

6 1=Kt � 1=Kc 1.95–2.20 1.870(6) 184(5) MeV 0.434(9)

6 1=Kt � 1=Kc 1.95–2.10 1.840(14) 171(4) MeV 0.401(16)

6 ðmPSaÞ2 1.95–2.20 1.835(9) 170(4) MeV 0.396(12)

6 ðmPSaÞ2 1.95–2.10 1.786(25) 160(9) MeV 0.350(23)

6 mAWI
q a 1.95–2.20 1.835(10) 170(4) MeV 0.396(12)

6 mAWI
q a 1.95–2.10 1.810(19) 167(4) MeV 0.372(20)
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For a comparison with other groups, we estimate Tc in
units of the Sommer scale r0 [30] at �ct in the chiral limit
forNt ¼ 6. Using the data of r0=a in the chiral limit at� ¼
1:80, 1.95, and 2.10 [11], we interpolate a=r0 by a qua-
dratic function and calculate Tcr0 ¼ ðNta=r0Þ�1. The esti-
mates are about Tcr0 � 0:40, as listed in Table III. These
values are close to Tcr0 ¼ 0:402ð29Þ obtained by theMILC
Collaboration using the asqtad quark action in 2þ 1 flavor
QCD [31].1 On the other hand, the RBC-Bielefeld
Collaboration obtained Tcr0 ¼ 0:444ð6Þþ12

�3 using a 2þ 1
flavor p4fat3 improved staggered quark action [32]. From a
simulation of 2 flavor QCD using a clover-improved
Wilson action and the standard one-plaquette gauge action,
the DIK Collaboration obtained Tcr0 ¼ 0:438ð6Þþ13

�7 at the
physical pion mass point, and the value in the chiral limit is
2% smaller than this value [33]. Our result is somewhat
smaller than these values. Finally, the Budapest-Wuppertal
group used a stout-link improved staggered fermion action
and fixed the scale by the pion decay constant f
. They
found that Tc determined by the chiral susceptibility is
Tc ¼ 151ð3Þð3Þ MeV and that by the renormalized
Polyakov loop is Tc ¼ 176ð3Þð4Þ MeV in the continuum
limit at the physical point [34]. Our result is close to their
result defined by the Polyakov loop. For further discus-
sions, see Refs. [35–37].

III. EQUATION OF STATE AT FINITE DENSITIES
BY THE TAYLOR EXPANSION METHOD

The main difficulty in a study of QCD at finite density is
that the Boltzmann weight is complex for nonzero�q. The

quark matrix at zero density have the �5 HermiticityMy ¼
�5M�5 which guarantees that the quark determinant is
real. However, at �q � 0, we have only

Myð�qÞ ¼ �5Mð��qÞ�5; (7)

from Eq. (4). Therefore, the quark determinant is complex
for �q � 0.

Because configurations cannot be generated with a com-
plex probability, the conventional Monte Carlo method is
not applicable at �q � 0. At present, there are three meth-

ods to study finite density QCD, all of which are applicable
for small�q regions. The simplest is the method based on a

Taylor expansion in terms of �q=T around �q ¼ 0

[17,22,38,39]. Because the simulations at �q ¼ 0 are

free from the complex weight problem, the expansion
coefficients, i.e., derivatives of physical quantities with
respect to �q=T, can be evaluated by a conventional

Monte Carlo simulation. The second approach is the re-
weighting method [40–43]. Performing simulations at
�q ¼ 0, expectation values at finite �q are computed

adopting a corrected Boltzmann weight. For the correction,

the quark determinant at finite�q is estimated numerically.

Because fluctuations in the complex phase of the determi-
nant are large at large �q and/or large lattice volume, a

reliable calculation of the expectation value becomes
gradually difficult off the small �q and small lattice vol-

ume region due to the sign problem [44,45]. The third
approach is the analytic continuation from simulations
with imaginary chemical potentials [46,47]. Since Eq. (7)
is generalized to Myð�qÞ ¼ �5Mð���

qÞ�5 for complex

�q, the Boltzmann weight is real and simulations are

possible when the chemical potential is purely imaginary.
Using results by the imaginary chemical potential simula-
tions, information at a real chemical potential can be
obtained by an analytic continuation. The analytic continu-
ation is usually based on a Taylor expansion in terms of�q

around �q ¼ 0 for the study in the low density region, and

improvements of the analytic continuation have been also
discussed in [48–50] to obtain reliable results in a wide
range of real �q.

In this section, we adopt the Taylor expansion method to
study the effects of �q in the equation of state. Most of

thermodynamic quantities, such as energy density, quark
number, order parameters, and various susceptibilities, are
given by derivatives of the thermodynamic grand canonical
potential !=T4 � �ðlnZÞ=ðVT3Þ. Also, pressure, which is
given by! itself, is evaluated by integrating a derivative of
! in current studies of the equation of state. Therefore, the
calculations of the derivative of! are basic for the study of
QCD thermodynamics by lattice simulations, and the
Taylor expansion method calculating higher order deriva-
tives in �q is the most natural extension from the study at

�q ¼ 0 to finite �q.

A. Taylor expansion of the grand canonical potential

We study pressure p and quark number densities nu and
nd defined by derivatives of the partition function
ZðT;�u;�dÞ:

p

T4
¼ 1

VT3
lnZ � � !

T4
;

nf

T3
¼ 1

VT3

@ lnZ
@ð�f=TÞ ¼

@ðp=T4Þ
@ð�f=TÞ ; ðf ¼ u; dÞ;

(8)

where �u and �d are the chemical potentials for the u and
d quarks. Let us define the quark chemical potential �q ¼
ð�u þ�dÞ=2 and the isospin chemical potential �I ¼
ð�u ��dÞ=2. Taylor expansion coefficients of physical
quantities are given by derivatives of them in terms of
�u and �d, or equivalently �q and �I. We evaluate these

coefficients at �u ¼ �d ¼ 0 and study the physical quan-
tities as functions of T and �q in the isosymmetric case

�u ¼ �d ¼ �q (i.e. �I ¼ 0).

1Originally, Tc is given in units of r1 in Ref. [31]. The scale of
Tc has been converted to r0 using r0=r1 ¼ 1:4795 [32].
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We define the susceptibility of quark number by

�q

T2 ¼
�

@

@ð�u=TÞ þ
@

@ð�d=TÞ
�
nu þ nd

T3
; (9)

and the susceptibility of isospin number by

�I

T2 ¼
�

@

@ð�u=TÞ �
@

@ð�d=TÞ
�
nu � nd

T3
: (10)

These susceptibilities correspond to the fluctuations of the
baryon number and isospin number in the medium, respec-
tively [51]. They are expected to behave quite differently
near the critical point in the ðT;�qÞ plane.

We define the Taylor expansion coefficients of the pres-
sure pðT;�qÞ for the case �u ¼ �d ¼ �q as

p

T4
¼ X1

n¼0

cnðTÞ
�
�q

T

�
n
;

cnðTÞ ¼ 1

n!

N3
t

N3
s

@n lnZ
@ð�q=TÞn

���������q¼0
:

(11)

Here, c0ðTÞ is the pressure at �q ¼ 0 and has been com-

puted by the CP-PACS Collaboration with the same action
on 163 � 4 and 163 � 6 lattices [7,8]. Its value in the
quenched limit is given in [52].

We also expand the quark number and isospin suscepti-
bilities for the case �u ¼ �d ¼ �q:

�qðT;�qÞ
T2

¼ 2c2 þ 12c4

�
�q

T

�
2 þ . . . ;

�IðT;�qÞ
T2

¼ 2cI2 þ 12cI4

�
�q

T

�
2 þ . . . ;

(12)

where

cIn ¼ 1

n!

N3
t

N3
s

@n lnZðT;�q þ�I;�q ��IÞ
@ð�I=TÞ2@ð�q=TÞn�2

���������q¼0;�I¼0
:

(13)

1. Free quark-gluon gas at high temperature

We expect QCD in the high temperature limit is de-
scribed as free gas of quark and gluon. The pressure of the
free gas in the continuum theory is given by

p

T4 ¼ 8
2

45
þ X

f¼u;d

�
7
2

60
þ 1

2

�
�f

T

�
2 þ 1

4
2

�
�f

T

�
4
�
: (14)

Note that the�q dependence appears only through terms of

�2
q and �4

q. The quark number density is a cubic function

of �q too. The quark number and isospin susceptibilities

are the same for the free quark-gluon gas and are given by a
quadratic function

�q

T2 ¼ �I

T2
¼ Nf

�
1þ 3


2

�
�q

T

�
2
�
: (15)

Therefore, the Taylor expansion will converge well in the
high temperature region.

2. Hadron resonace gas at low temperature

On the other hand, QCD at low temperature may be
modeled by free gas of hadron resonances [53]. The par-
tition function of the hadron resonance gas consists of
mesonic and baryonic contributions,

lnZðT; V;�qÞ ¼
X

i2mesons

lnZM
mi
ðT; V;�qÞ

þ X
i2baryons

lnZB
mi
ðT; V;�qÞ; (16)

where

lnZM=B
mi

ðT; V;�qÞ ¼ � V

2
2

Z 1

0
dkk2 lnð1� zie

�"i=TÞ ;

(17)

with energies "2i ¼ k2 þm2
i and fugacities

zi ¼ expðð3Bi�qÞ=TÞ : (18)

Here Bi is the baryon number: Bi ¼ 1, �1 and 0 for
baryons, antibaryons, and mesons, respectively. The upper
sign in Eq. (17) is for bosons, while the lower sign for
fermions. Note that ZM

mi
is actually independent of �q.

Expanding the logarithms in powers of fugacity, the inte-
gration over momenta, k, can be carried out:

lnZM=B
mi

¼ VTm2
i

2
2

X1
l¼1

f 1
ð�1Þlþ1 gl�2K2

�
lmi

T

�
zli; (19)

where K2 is a modified Bessel function. For mi 	 T, the

Bessel function can be approximated by K2ðxÞ �ffiffiffiffiffiffiffiffiffiffiffiffi

=2x

p
e�xð1þ 15=8xþOðx�2ÞÞ. Terms with ‘ 
 2 in

the series given in Eq. (19) thus are exponentially
suppressed.
Let us study the�q dependence of the partition function.

The mesonic sector has no �q dependence because Bi ¼ 0

for mesons. On the other hand, the baryonic sector can be
approximated by the leading term in the expansion of zi,
since all baryons are heavier than a typical temperature
scale. We obtain

pðT;�qÞ
T4

� pðT; 0Þ
T4

¼ 1

VT3
½lnZðT;�qÞ � lnZðT; 0Þ�

’ FðTÞ
�
cosh

�
3�q

T

�
� 1

�
; (20)

with

FðTÞ ¼ 1


2

X
i2baryons

�
mi

T

�
2
K2

�
mi

T

�
: (21)

Note that each term in the sum for F now counts both
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baryons and antibaryons. The quark number susceptibility
is then given by

�q

T2 ¼ 9FðTÞ cosh
�
3�q

T

�
: (22)

From Eq. (20), the ratios of the expansion coefficients of
p=T4 in �q=T are derived,

c2nþ2

c2n
¼ 9

ð2nþ 2Þð2nþ 1Þ : (23)

The ratio decreases as the order becomes higher. This
means that the contribution from the higher order terms
of �q=T is small in the region of �q=T & Oð1Þ.

3. Numerical study near the transition temperature

The behavior near the transition temperature is nontri-
vial. We expect a critical point at finite �q. The Taylor

expansion must break down at that point. We perform
numerical simulations to study the expansion coefficients

near the transition point. Using � � �qa, the explicit

forms of the Taylor expansion coefficients are

c2 ¼ Nt

2N3
s

A2; c4 ¼ 1

4!N3
sNt

ðA4 � 3A2
2Þ;

cI2 ¼
Nt

2N3
s

B2; cI4 ¼
1

4!N3
sNt

ðB4 �B2A2Þ;
(24)

A2 ¼ hD2i þ hD2
1i;

A4 ¼ hD4i þ 4hD3D1i þ 3hD2
2i þ 6hD2D2

1i þ hD4
1i;

B2 ¼ hD2i;
B4 ¼ hD4i þ 2hD3D1i þ hD2

2i þ hD2D2
1i; (25)

with

D n ¼ Nf

@n lndetM

@�n ; (26)

i.e.,

D1 ¼ Nftr

�
M�1 @M

@�

�
;

D2 ¼ Nf

�
tr

�
M�1 @

2M

@�2

�
� tr

�
M�1 @M

@�
M�1 @M

@�

��
;

D3 ¼ Nf

�
tr

�
M�1 @

3M

@�3

�
� 3 tr

�
M�1 @M

@�
M�1 @

2M

@�2

�
þ 2 tr

�
M�1 @M

@�
M�1 @M

@�
M�1 @M

@�

��
;

D4 ¼ Nf

�
tr

�
M�1 @

4M

@�4

�
� 4 tr

�
M�1 @M

@�
M�1 @

3M

@�3

�
� 3 tr

�
M�1 @

2M

@�2
M�1 @

2M

@�2

�
þ 12 tr

�
M�1 @M

@�
M�1 @M

@�
M�1 @

2M

@�2

�

� 6 tr

�
M�1 @M

@�
M�1 @M

@�
M�1 @M

@�
M�1 @M

@�

��
: (27)

The derivative of the fermion matrix M at � ¼ 0 is�
@nM

@�n

�
x;y

¼
��Kðð1� �4ÞU4ðxÞ�xþ4̂;y � ð1þ �4ÞUy

4 ðx� 4̂Þ�x�4̂;yÞ for n: odd

�Kðð1� �4ÞU4ðxÞ�xþ4̂;y þ ð1þ �4ÞUy
4 ðx� 4̂Þ�x�4̂;yÞ for n: even

: (28)

B. Random noise method

We apply a random noise method to evaluate the traces
in Eq. (27). As we will see later, this method is effective
when off-diagonal elements of the matrix are small.
Therefore, the method works well for traces over spatial
indices: Because the inverse of the quark matrixM�1ðx; yÞ
decreases as a function of jx� yj, the off-diagonal ele-
ments in the spatial coordinate will be smaller than the
diagonal ones. The random noise method will work well to
suppress these small contaminations of off-diagonal ele-
ments. On the other hand, the off-diagonal elements in the
color and spinor indices at the same spatial point are not
suppressed by jx� yj, and will have the same magnitude
as the diagonal elements. Because a staggered-type quark
does not have the spinor index at a spatial point, the
number of off-diagonal elements is only 6 in the 3� 3

matrix, the contamination of off-diagonal elements may
not be so serious. However, for Wilson-type quarks, be-
cause the number of the color-spinor index is 3� 4, the
number of the off-diagonal elements in the quark matrix is
11 times larger than the diagonal one, so that the color-
spinor index should be treated more carefully with Wilson-
type quarks. In this study, we apply the random noise
method for the spatial coordinates only, repeating the
calculation for each of the color and spinor indices.
We generate noise vectors ð�i;�Þx;� � �ði; xÞ��;�,

which satisfy

1

Nnoise

XNnoise

i¼1

�ði; xÞ��ði; yÞ � �x;y (29)

for large Nnoise. We adopt U(1) random numbers as �,
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which are complex random numbers with j�j ¼ 1 and are
generated from uniform random numbers � 2 ½0; 2
Þ with
� ¼ ei�. For each color-spinor index (� ¼ 1; . . . ; 12), we
generate Nnoise noise vectors (i ¼ 1� Nnoise).

Then limNnoise!1ð1=NnoiseÞ
PNnoise

i¼1

P
12
�¼1ð�i;�Þx;�ð��

i;�Þy;� ¼
�x;y��;�, hence

tr

�
@n1M

@�n1
M�1 @

n2M

@�n2
. . .M�1

�

� 1

Nnoise

XNnoise

i¼1

X12
�¼1

�y
i;�

@n1M

@�n1
Xi;�; ðn ¼ 1; 2; . . .Þ; (30)

where Xi;� ¼ M�1ð@n2M=@�n2Þ . . .M�1�i;�. To obtain X,
we solve equations MXn ¼ Yn recursively with Y1 ¼ �,
Y2 ¼ ð@nM=@�nÞM�1� ¼ ð@nM=@�nÞX1, etc.

Because N�1
noise

P
i�ði; xÞ��ði; yÞ is Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=Nnoise

p Þ for x �

y, errors due to finite Nnoise decrease as Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Nnoise

p Þ.
However, these errors are produced from all off-diagonal
elements of the matrix in Eq. (30), hence these are propor-
tional to the magnitude and number of the off-diagonal
elements. Therefore, when the off-diagonal elements are
not smaller than the diagonal elements, a number of noise
vectors are needed to remove the error. This is the reason
why we do not use the random noise method for the color-
spinor index.

For a product of traces, the random noise vectors for
each trace must be independent. We compute such product
by subtracting the contribution of the same noise vector
from the naive product of two noise averages for each
trace. This effectively increases the number of noises to
NnoiseðNnoise � 1Þ for the products and thus suppresses their
errors due to the noise method.

We then average over configurations to evaluate the
expectation values in Eq. (25). In addition to the errors
due to the noise method, the statistical fluctuation of con-
figurations contributes to the final error. To check the
relative amount of the errors from the noise method, we
calculate the operators Dn (n ¼ 1–4) using two indepen-
dent sets of noise vectors with Nnoise ¼ 10 on the same
configurations. Figure 6 shows the time history of the
imaginary part of D1 and the real part of D2 computed
using these two sets of noise vectors. The operator Dn is
real for even n and purely imaginary for odd n [22].
Therefore, the average of D1 is zero because the expecta-
tion value is always real at�q ¼ 0. We find that two results

of D2 obtained by different noise sets are consistent with
each other on each configuration, while two results of D1

are sensibly different. This means that, in the evaluation of
D1 with Nnoise ¼ 10, the error from the noise method is
larger than the error from the statistical fluctuation of
configurations. We can reduce the error from the noise
method by increasing Nnoise. We plot the time history
with Nnoise ¼ 200 in Fig. 7. Two results of Im½D1� using
different noise sets are almost consistent, i.e., the error in

D1 is now dominated by the statistical fluctuation of
configurations with this Nnoise.
The required number of noise vectors depends on each

operator. Here, we note that, in the evaluation of c4 and cI4
through Eq. (25), the errors due to the error of D1 is
dominant. In order to efficiently reduce the total errors of
c4 and c

I
4, we adopt largeNnoise only forD1, keepingNnoise

for other operators small. The values of Nnoise we adopt are
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FIG. 6 (color online). Time history ofD1 � ðNfN
3
sNtÞ�1 (top)

and D2 � ðNfN
3
sNtÞ�1 (bottom) obtained by different noise sets

at T=Tpc ¼ 0:925, mPS=mV ¼ 0:8.
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FIG. 7 (color online). Time history of the imaginary part (top)
and real part (bottom) of D1 � ðNfN

3
sNtÞ�1 obtained by differ-

ent noise sets at T=Tpc ¼ 0:925, mPS=mV ¼ 0:8.

S. EJIRI et al. PHYSICAL REVIEW D 82, 014508 (2010)

014508-10



summarized in Table IV. We choose Nnoise ¼ 10 for the
calculations of the operators in Eq. (25) except for the
operators tr½ð@nM=@�nÞM�1�, where n ¼ 1� 4, for
which we adopt Nnoise ¼ 100–400 (the first number in
the column of Nnoise in Table IV).

Finally, we take advantage of the knowledge that the odd
derivatives are purely imaginary and the even derivatives
are real. In the lower panel of Fig. 7, we plot Re½D1�which
should vanish when Nnoise is large enough. We find that,
unlike the case of Im½D1� shown in the upper panel of the
same figure, Re½D1� data from two sets of random noises
show no correlations in the time history even with small
Nnoise. Therefore, to further reduce errors from the random
noise method, we can put the real and imaginary parts of
the odd and even derivatives to zero, respectively.

C. Quark number density, quark number susceptibility,
and isospin susceptibility

We perform a series of simulations along LCPs for two
quark masses corresponding to mPS=mV ¼ 0:65 and 0.80
to calculate the expansion coefficients c2, c4, c

I
2, and cI4

defined in Eq. (24). The results are summarized in
Table IV.

The results for �q=T
2 and �I=T

2 at �q ¼ 0 are plotted

in Fig. 8. The circle and square symbols are for �q=T
2 and

�I=T
2, respectively. The short lines on the right-hand side

denote the values in the free quark-gluon gas [Stefan-
Boltzmann (SB)] limit, both for Nt ¼ 4 and in the contin-
uum (cf. Appendix A).
At �q ¼ 0, �q=T

2 ¼ 2c2 and �I=T
2 ¼ 2cI2. Because

D1 is a pure imaginary number, D2
1 is negative in

Eq. (25) and thus �I=T
2 will be larger than �q=T

2, while

the difference should vanish in the high temperature limit
according to Eq. (14) for the free quark-gluon gas. In the
low temperature phase, �q=T

2 and �I=T
2 correspond to the

fluctuations of baryon and isospin numbers, respectively.
Since the fluctuation of isospin number is mainly caused by
pions, the fluctuation should be larger than that of the
baryon number. Moreover, because the pion mass is more
sensitive to the quark mass than baryon masses, �I=T

2 will
show more sensitivity to the quark mass than �q=T

2.

As seen from Fig. 8, both �q=T
2 and �I=T

2 increase

sharply at Tpc, in accordance with an expectation that the

fluctuations in the quark-gluon plasma phase are much
larger than those in the hadronic phase. We find that
�I=T

2 is larger than �q=T
2 at low temperatures and the

TABLE IV. Results of the Taylor expansion coefficients formPS=mV ¼ 0:65 and 0.80. The first
number in the column of Nnoise is Nnoise for the calculations of tr½ð@nM=@�nÞM�1�, and the
second number for other traces. See text for details.

T=Tpc c2 � 2 c4 � 4! cI2 � 2 cI4 � 4! Nnoise

mPS=mV ¼ 0:65
0.82(3) 0.352(59) 6.3(108) 1.189(6) 1.41(49) 400,10

0.86(3) 0.420(71) 2.6(154) 1.392(6) 1.81(46) 400,10

0.94(3) 0.963(64) 10.5(103) 1.857(10) 2.88(64) 400,10

1.00(4) 2.134(53) 24.4(107) 2.780(21) 7.83(111) 200,10

1.07(4) 4.140(27) 8.7(21) 4.396(16) 5.58(34) 200,10

1.18(4) 4.732(21) 7.8(11) 4.910(8) 4.82(19) 200,10

1.32(5) 4.938(20) 7.1(14) 5.052(6) 4.65(13) 100,10

1.48(5) 5.042(17) 5.6(12) 5.143(6) 4.72(14) 100,10

1.67(6) 5.133(15) 4.0(11) 5.229(5) 4.67(13) 100,10

2.09(7) 5.314(11) 5.0(6) 5.368(4) 4.65(8) 100,10

2.59(9) 5.447(13) 4.8(6) 5.482(4) 4.72(5) 100,10

3.22(12) 5.517(12) 6.4(7) 5.562(4) 5.05(8) 100,10

4.02(15) 5.593(12) 5.8(6) 5.618(4) 5.03(7) 100,10

mPS=mV ¼ 0:80
0.76(4) 0.066(34) 3.8(51) 0.549(4) 0.37(19) 400,10

0.80(4) 0.134(33) 1.9(39) 0.637(5) 0.35(23) 400,10

0.84(4) 0.251(35) 0.0(37) 0.776(6) 0.80(27) 400,10

0.93(5) 0.713(40) 2.0(48) 1.313(9) 1.94(34) 400,10

0.99(5) 2.071(34) 17.4(47) 2.498(17) 5.13(53) 400,10

1.08(5) 3.877(19) 8.0(10) 4.036(10) 4.92(18) 200,10

1.20(6) 4.403(14) 7.8(9) 4.508(7) 4.63(14) 200,10

1.35(7) 4.682(11) 5.8(5) 4.767(5) 4.50(7) 200,10

1.69(8) 4.970(10) 5.9(4) 5.048(5) 4.62(7) 200,10

2.07(10) 5.184(9) 5.8(3) 5.234(5) 4.71(5) 200,10

2.51(13) 5.315(8) 5.9(3) 5.357(4) 4.72(4) 200,10

3.01(15) 5.424(9) 6.0(3) 5.451(4) 4.83(3) 200,10
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difference vanishes in the high temperature region. Also,
the isospin susceptibility increases as mPS=mV decreases
at low temperatures, while �q=T

2 does not change

very much. These results agree qualitatively with
previous results obtained with staggered-type quarks
[17,18,20,21,51].

The quark number and isospin susceptibilities are ex-
pected to show quite different behaviors near the critical
point at finite density. When the quark mass is nonzero,
isotriplet mesons are massive and thus are irrelevant to the

critical behavior. Therefore, the isotriplet susceptibility �I

will not show singularity. On the other hand, if there is a
critical point in the ðT;�qÞ plane, scalar sectors, �c c and
�c�0c , may become massless at the critical point. We then
expect divergence in the fluctuations of the chiral conden-
sate and quark number towards the critical point.
Figure 9 shows our results for @2ð�q=T

2Þ=
@ð�q=TÞ2j�q¼0 ¼ 24c4 (circles) and @2ð�I=T

2Þ=
@ð�q=TÞ2j�q¼0 ¼ 24cI4 (squares). We also plot 9�q=T

2

as a dashed line in this figure to compare with the predic-
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FIG. 8 (color online). Quark number (black circles) and isospin (red squares) susceptibilities at �q ¼ 0 for mPS=mV ¼ 0:65 (left)
and 0.80 (right).
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tion from the hadron resonance gas model in Eq. (22), i.e.,
@2�q=@�

2
q � 9�q=T

2. These results are consistent within

the error at T < Tpc.

Although the statistical errors are not quite small yet, the
two susceptibilities show quite different behaviors near
Tpc. @

2ð�q=T
2Þ=@ð�q=TÞ2 near Tpc is more than 3 times

larger than that at high temperatures, suggesting the large
enhancement in the quark number fluctuations as the den-
sity is increased. Moreover, the peak height is larger for
smaller mPS=mV. On the other hand, no such sharp peak
appears for @2ð�I=T

2Þ=@ð�q=TÞ2, in accordance with the

expectation that �I is analytic at the critical point. These
observations suggest the existence of the critical point.
Similar results were obtained by p4-improved staggered
fermions [17,18,20,21].
Finally, we evaluate the equation of state at finite �q

combining the results of derivatives. Figure 10 shows the
�q-dependent contribution of the pressure, �p=T4 �
pð�qÞ=T4 � pð0Þ=T4 ¼ c2ð�q=TÞ2 þ c4ð�q=TÞ4, at

mPS=mV ¼ 0:65 (left) and 0.80 (right). The truncation
error is Oð�6

qÞ. T0 is Tpc at �q ¼ 0. The finite density

correction for p=T4 becomes the same size as p=T4 at
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FIG. 10 (color online). T dependence of the �q-dependent contribution to the pressure, �p=T4 � pð�qÞ=T4 � pð0Þ=T4, at
mPS=mV ¼ 0:65 (left) and 0.80 (right). T0 is Tpc at �q ¼ 0.
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�q ¼ 0 around �q=T �Oð1Þ, and the correction �p=T4

increases rapidly around Tpc in comparison with the be-

havior of p=T4 at �q ¼ 0. This suggests that the pressure

changes more sharply as �q is increased. The quark num-

ber density, nq=T
3 � ðnu þ ndÞ=T3 ¼ 2c2ð�q=TÞ þ

4c4ð�q=TÞ3 þOð�5
qÞ, is shown in Fig. 11. The quark

number susceptibility and isospin susceptibility are shown
in Fig. 12 and 13, respectively. As discussed above, we find
large quark number fluctuations near Tpc when �q is

increased. On the other hand, such an enhancement around
Tpc is not visible in the isospin fluctuations. These results

are consistent with the observations with staggered-type
quarks and suggest a critical point at finite �q.

IV. EQUATION OF STATE FROM THE GAUSSIAN
APPROXIMATION

In the previous section, we have studied the equation of
state at finite density by computing the Taylor expansion
coefficients cn up to the fourth order, based on the calcu-
lation of Dn ¼ Nf½@n lndetM=@�n� for n � 4. We found,

however, that the statistical errors in nq=T
3 and �q=T

2 are

not small. Furthermore, the statistical errors will be larger
when we include higher order terms, c6, c8, etc.
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FIG. 12 (color online). Quark number susceptibility at finite �q for mPS=mV ¼ 0:65 (left) and 0.80 (right).
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FIG. 13 (color online). Isospin susceptibility at finite �q for mPS=mV ¼ 0:65 (left) and 0.80 (right).
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In this connection, we recall that in a previous study,
with staggered-type quarks [23], a hybrid method of the
reweighting technique and Taylor expansion [22], com-
bined with a Gaussian approximation for the complex
phase distribution of quark determinant, has efficiently
suppressed statistical fluctuations at finite densities. We
call the method simply the Gaussian approximation. In
this section, we apply the Gaussian approximation to the
calculation of EOS with improved Wilson quarks.

In the evaluation of higher order Taylor coefficients cn
with n > 4, the calculation of Dn at large n is quite
demanding. However, the free quark-gluon gas leads to
Dn ¼ 0 for n > 4 in the continuum limit. Therefore, we
may approximately evaluate higher order coefficients by
keeping Dn for n � 4 only. The approximation should
work at least at high temperatures. Therefore, we consider
the following approximate grand canonical potential,

�!ðT;�qÞ
T4

¼ 1

VT3
ln

�Z
DUðdetMð�ÞÞNfe�Sg

�

¼ 1

VT3
lnZðT; 0Þ þ 1

VT3

� ln

��
detMð�Þ
detMð0Þ

�
Nf
	
ð�¼0Þ

� 1

VT3
lnZðT; 0Þ þ 1

VT3

� ln

�
exp

�XNmax

n¼1

1

n!
Dn�

n

�	
ð�¼0Þ

; (31)

where � � �qa ¼ �q=ðTNtÞ and Nmax ¼ 4. Here,

h. . .ið�¼0Þ is the average over configurations at � ¼ 0.

This approximate grand canonical potential is equal to
the exact potential up to Oð�NmaxÞ, and most of higher
order contributions are contained except for terms includ-
ingDn for n > Nmax. In this context, the method would be
better than the truncated Taylor expansion method dis-
cussed in the previous section.

A. Gaussian approximation for the � distribution

We calculate the grand canonical potential (31) follow-
ing the method of Ref. [23]. We first rewrite the grand
canonical partition function as follows:

Z ðT;�qÞ ¼ ZðT; 0Þ
��

detMð�Þ
detMð0Þ

�
Nf
	
ð�q¼0Þ

� ZðT; 0ÞheFð�Þei�ð�Þið�q¼0Þ; (32)

where Fð�Þ and �ð�Þ are the real and imaginary parts of
Nf lnðdetMð�Þ= detMð0ÞÞ, respectively, and they can be

calculated by the Taylor expansion in �. Since odd
(even) derivatives of lnðdetMð�Þ= detMð0ÞÞ are purely
imaginary (real), we have

Fð�Þ � NfRe

�
ln

�
detMð�Þ
detMð0Þ

��

¼ Nf

X1
n¼1

1

ð2nÞ! Re
�
@2nðlndetMÞ

@�2n

�
ð�¼0Þ

�2n

¼ X1
n¼1

1

ð2nÞ! ReD2n�
2n: (33)

In this paper, we study terms up to �4. For the complex
phase �, we have

�ð�Þ ¼Nf Im½lndetMð�Þ�

¼Nf

X1
n¼0

1

ð2nþ 1Þ! Im
�
@2nþ1ðlndetMð�ÞÞ

@�2nþ1

�
ð�¼0Þ

�2nþ1

¼ X1
n¼0

1

ð2nþ 1Þ! ImD2nþ1�
2nþ1: (34)

We note that lndetMð�Þ is not uniquely defined for com-
plex detMð�Þ. On the other hand, the � derivatives of
lndetMð�Þ are unique. We regard the Taylor expansion in
Eq. (34) as our definition of �. Note that the � thus defined
is not restricted to be in the range �
 to 
, and the
maximum value of j�j is infinite in the large volume limit.
The principal value of Nf lndetMð�Þ is recovered by iden-

tifying �þ 2n
 with � in the range �
 to 
.
Histograms of � are shown in Fig. 14 for �q=T ¼ 0:5

and 1.0 at ðmPS=mV; T=TpcÞ ¼ ð0:65; 0:94Þ (top left),

(0.65,1.32) (top right), (0.80,0.93) (bottom left), and
(0.80,1.35) (bottom right). We find that the fluctuations in
� become larger as�q increases. Note that the width of the

distribution is larger than 2
 at T < Tpc. A large fluctua-

tion in � makes the calculation of lnZðT;�qÞ difficult due
to a rapid change of the factor ei�. This is the origin of the
sign problem. On the other hand, these figures suggest that
the distribution of � defined in this way is almost Gaussian.
In Sec. IVB, we discuss that the Gaussian approximation
corresponds to the leading-order approximation of the
cumulant expansion and confirm the validity of the
Gaussian approximation. This is a key observation to avoid
the sign problem: In a previous study with staggered
quarks, using the fact that the � distribution is well de-
scribed by a Gaussian form, the � averaging has been
carried out. The resulting errors for observables turn out
to be smaller than those with the naive averaging, and thus
the method may enable us to perform a reliable evaluation
at a wider range of �q [23].

To implement this assumption, we define the distribution
function wðF; �Þ as
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wð �F; ��Þ �
Z

DU�ð �F� Fð�ÞÞ�ð ��� �ð�ÞÞ
� ½detMð0Þ�Nfe�Sg

¼ ZðT; 0Þh�ð �F� Fð�ÞÞ�ð ��� �ð�ÞÞið�¼0Þ; (35)

where �ð�Þ andFð�Þ are defined in Eq. (34) and (33). Note
that wðF; �Þ depend implicitly on �. Figure 15 shows a
typical distribution of ðF; �Þ at ðmPS=mV; T=TpcÞ ¼
ð0:80; 0:93Þ. The Gaussian � distribution means that

wðF; �Þ �
ffiffiffiffiffiffiffiffiffiffiffiffi
a2ðFÞ



s
w0ðFÞe�a2ðFÞ�2 : (36)

With this form, it is easy to carry out the � integration as
follows:

ZðT;�Þ ¼
Z

dF
Z

d�wðF; �ÞeFei�

�
Z

dF
Z

d�eFw0ðFÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
a2ðFÞ



s
ei�e�a2ðFÞ�2 ;

¼
Z

dFeFw0ðFÞe�1=ð4a2ðFÞÞ

¼ ZðT; 0ÞheFð�Þe�1=ð4a2ðFð�ÞÞið�¼0Þ: (37)

In the last line we use the fact that

w0ð �FÞ ¼
Z

DU�ð �F� Fð�ÞÞ½detMð0Þ�Nfe�Sg

¼ ZðT; 0Þh�ð �F� Fð�ÞÞið�¼0Þ (38)

holds within this assumption. Note that the problematic
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FIG. 14 (color online). The histogram of � for simulations at ðmPS=mV; T=TpcÞ ¼ ð0:65; 0:94Þ (top left), (0.65, 1.32) (top right),
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factor ei� in Eq. (32) is now replaced by a positive definite

factor e�1=ð4a2Þ. Thus the statistical error of Eq. (37) is
always smaller than its expectation value, i.e,. there is no
sign problem.

Of course, one may replace the Gaussian distribution
functionwðF; �Þwith a periodic distribution function given
by

lim
N!1

1

2N þ 1

XN
n¼�N

wðF; �þ 2
nÞ: (39)

However, the integral of ei� does not change simply be-
cause

R
ei�wðF; �þ 2
nÞd� gives the same answer asR

ei�wðF; �Þd�. Hence, the absence of the periodicity of

2
 in wðF; �Þ is not a problem for the integral of ei�.
The validity of this method can be discussed more

precisely based on the Taylor expansion of the partition
function at least in the low density region. In Appendix B
we compare the derivatives of lnZ in the Gaussian ap-
proximation with the exact calculations up to Oð�4

qÞ. We

find that the Gaussian approximation does not affect up to
Oð�2

qÞ. At the fourth order in �q, hD4
1i of Eq. (27) is

replaced by 3hD2
1i2 in the Gaussian case. In Ref. [54],

the effects caused by deviations from the Gaussian distri-
bution in wðF; �Þ are estimated assuming wðF; �Þ �
exp½�a2�

2 � a4�
4�. It turned out that the additional term

a4 does not affect the terms up to �4
q as far as a4=a2 �

Oð1Þ.
Now the problem is reduced to a determination of the

coefficient a2ðFÞ:
1

2a2ð �FÞ ¼ h�2i �F � h�2ð�Þ�ð �F� Fð�ÞÞið�¼0Þ
h�ð �F� Fð�ÞÞið�¼0Þ

¼
R
DU�2ð�Þ�ð �F� Fð�ÞÞðdetMð0ÞÞNfe�SgR

DU�ð �F� Fð�ÞÞðdetMð0ÞÞNfe�Sg
:

(40)

The distribution shown in Fig. 15 suggests that the F
dependence in h�2iF is mild. Unfortunately, the limitation
of the statistics makes a precise evaluation of h�2iF for each
thin slices of F difficult. However, when we restrict our-
selves to calculate the equation of state up to Oð�4

qÞ, we
only need to evaluate the first derivative of h�2iF in terms
of F: Because D1 and D2 represent the leading
�q-dependence of � and F, respectively, consulting

Eq. (25), we note that the F dependence of h�2iF affects
only in the hD2D2

1i term for the Oð�4
qÞ coefficients c4 and

cI4. (See Appendix B too.) This quantity, i.e., the Oð�4
qÞ

contribution of hF�2i, corresponds to the first derivative of
h�2iF because

h�2ð�ÞðFð�Þ � hFiÞið�¼0Þ

¼
Z �

h�2ihFiðF� hFiÞþ
�
dh�2iF
dF

�
hFi
ðF� hFiÞ2 þ � � �

�

� w0ðFÞ
ZðT; 0ÞdF

�
�
dh�2iF
dF

�
hFi
hðF� hFiÞ2ið�¼0Þ; (41)

when the F dependence in h�2iF is mild. Using this rela-
tion, we then estimate the first derivative of h�2iF with
respect to F as�

dh�2iF
dF

�
hFi

� h�2ðF� hFiÞi
hðF� hFiÞ2i ; (42)

which is shown in Fig. 16. We find that ½dh�2iF=dF�hFi is
actually smaller than statistical errors, so that h�2iF ’
h�2ihFi is a good approximation. This point is also sug-

gested in chiral perturbation theory [55]. To include the
small F dependence of a2ðFÞ, we assume a simple ansatz
function:
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FIG. 15 (color online). The distribution in the ðF; �Þ plane for �q=T ¼ 0:5 (left) and 1.0 (right) at ðmPS=mV; T=TpcÞ ¼ ð0:80; 0:93Þ.
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1

2a2ðFÞ ¼ h�2iF ¼ fðFÞ ¼ exp½x1 þ x2F�; (43)

where we take into account the fact that �2 is positive for
all F. The two parameters are sufficient for the exact
calculation up to Oð�4Þ. We thus determine fit parameters
x1 and x2, by minimizing �2 � P

i½�2i � fðFiÞ�2, where the
summation is taken over configurations.

Finally, we integrate over F. The factor eF in Eq. (37) is
a potential danger in the integration because it can easily
shift the central contribution for the average to a statisti-
cally poor region of F. This will be the case when�q is not

small (hFi is not small). At small �, this problem can be
removed in part by a reweighting in the � direction of the

coupling parameter space such that the fluctuation in eFð�Þ
is compensated by that in the gauge action. This is possible
since F is strongly correlated with P ¼ �Sg=ð6Nsite�Þ,
where the gauge action Sg is defined in Eq. (3), and Nsite ¼
N3

s � Nt. By reweighting, the expectation value of an
operator O at � is evaluated from a simulation at �0 as

hOið�;�¼0Þ ¼
hOðPÞe6Nsiteð���0ÞPi�0

he6Nsiteð���0ÞPi�0

: (44)

To calculate heFð�Þe�1=ð4a2ðFÞÞi, we adjust � such that the

value of eFe�1=ð4a2Þe6Nsiteð���0ÞP is stabilized during the

Monte Carlo steps. In practice, since eFð�Þe�1=ð4a2ðFÞÞ ¼ 1
at �q ¼ 0, we start with � ¼ �0 at �q ¼ 0 and find

� for finite �q at which the fluctuation of

eFe�1=ð4a2Þe6Nsiteð���0ÞP � X,

hðX � hXið�¼0ÞÞ2ið�¼0Þ=hXi2ð�¼0Þ; (45)

is minimized. Since F becomes larger for larger P, �<

�0. The resulting shift in � is translated to the temperature
scale using a cubic spline interpolation of the temperature
data. Because we do not shift the hopping parameter, a shift
in � leads to a slight deviation from the original LCP. In
our study, however, the shifts in � turn out to be smaller
than 0.03. Since these shifts are negligible in Fig. 1, we
disregard the resulting small deviation from the LCP, and
simply translate the shifts in � to shifts in T for the final
plots.
To conclude we summarize the final formulas:

ZðT;�Þ
ZðT; 0Þ ¼

heFð�Þe�h�2iF=2e6Nsiteð���0ÞPi�0

he6Nsiteð���0ÞPi�0

;

h�2iF ¼ expðx1 þ x2FÞ:
(46)

B. Gaussian approximation as the lowest order
approximation of cumulant expansion

The only difference between the Gaussian approxima-
tion (46) and its exact formula is the replacement of
hexpði�ÞiF by exp½�h�2iF=2�. The meaning of the replace-
ment can be understood in the context of the cumulant
expansion,

hexpði�ÞiF ¼ exp

�
ih�ic � 1

2
h�2ic � i

3!
h�3ic þ 1

4!
h�4ic

þ i

5!
h�5ic � 1

6!
h�6ic þ � � �

�
; (47)

where h�nic is the n-th order cumulant, e.g.,

h�2ic ¼ h�2iF; h�4ic ¼ h�4iF � 3h�2i2F;
h�6ic ¼ h�6iF � 15h�4iFh�2iF þ 30h�2i3F:

(48)

Note that h�nic ¼ 0 for odd n due to the symmetry under
� ! ��. Because only the odd-order cumulants are the
source of the complex phase in hexpði�ÞiF, the value of
hexpði�ÞiF is guaranteed to be real and positive from this
symmetry if the cumulant expansion converges. There is
thus no source of the sign problem once we eliminate the
odd terms.
When the distribution of � is of Gaussian, the Oð�nÞ

terms vanish for n > 2 in Eq. (47). Hence, the Gaussian
approximation is equivalent to the approximation that the
higher order cumulants are neglected except for the first
nonzero term. If one wants to improve the Gaussian ap-
proximation, it is achieved by adding higher order terms.
Moreover, the cumulant expansion can be regarded as a

power expansion in terms of �q because ��Oð�qÞ.
Therefore, if we take into account the cumulants up to
the nth order, the truncation error does not affect the Taylor
expansion up to Oð�n

qÞ. The Gaussian approximation cor-

responds to the leading nontrivial order approximation of
the Taylor expansion in �q.

On the other hand, a careful discussion about the infinite
volume ðVÞ limit is required. Because the operator � is
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FIG. 16 (color online). h�2ðF� hFiÞi=hðF� hFiÞ2i for
�q=T ¼ 0:5 and 1.0.
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roughly proportional to V, the n-th order cumulant h�nic
may increase as OðVnÞ naively. In such a case, the cumu-
lant expansion does not converge at large V. However, the
following argument suggests that the convergence property
of the cumulant expansion is independent of the volume
when the correlation length of the system is finite. Note
that, since no critical point is expected to exist in two-
flavor QCD at mq > 0 and �q ¼ 0, the correlation length

between quarks is finite.
The expansion coefficients of � in Eq. (34) are given

by combinations of traces of products of M�1,
@nM=@ð�q=TÞn, and so on. For example, D1 is given by

the trace of Nf½M�1ð@M=@ð�q=TÞÞ� and the diagonal

element of this matrix is the local quark number density
operator ð� �c�0c ðxÞÞ at �q ¼ 0. If the correlation length

of the local number density operator is much shorter than
the system size, we may decompose D1 into independent
contributions from spatially separated regions. The same
discussion can be applied to higher order coefficients Dn

too.
In this case, one can write the phase as � ¼ P

x�x, where
�x is the contribution from a spatial region labeled by x and
these contributions are independent. The average of
expði�Þ is thus

hei�i � Y
x

hei�xi ¼ exp

�X
x

X
n

in

n!
h�nxic

�
: (49)

This equation suggests that all cumulants h�nic �
P

xh�nxic
increase in proportion to the volume as the volume in-
creases. Therefore, while the width of the distribution,
i.e., the phase fluctuation, increases in proportion to the
volume, the ratios of the cumulants are independent of the
volume. The higher order terms in the cumulant expansion
are well under control in the large volume limit.

Because � is Oð�qÞ and h�nic is Oð�n
qÞ, the Gaussian

approximation is valid at small �q and the higher order

cumulants will become visible at large�q. The application

range of the Gaussian approximation in terms of �q must

be checked for each analysis by calculating the ratio of
cumulants. However, the volume-dependence of the ratios
of cumulants suggests that the application range does not
change once the system size becomes larger than the
correlation length. This means that the qualification of
the Gaussian distribution on a small lattice is enough to
verify the Gaussian approximation.

We study the validity of the Gaussian approximation by
examining the relative magnitude of the fourth order cu-
mulant contribution to the leading-order contribution in
Eq. (47):

R �
�
1

4!
h�4ic

�
�
1

2
h�2ic

�
¼ h�4ic

12h�2ic
: (50)

The Gaussian approximation is valid if R 
 Oð1Þ is sat-
isfied. In this paper, we will check whether R is consistent

with zero, which is a less stringent condition when the
statistical error is large.
Here, we note a caveat in the evaluation of h�2i from the

histogram. Because we calculate � using the random noise
method, the fluctuation of � contains a contribution due to
the finite number of noise vectors ðNnoiseÞ. This makes the
width of the � histogram wider than that of the true

distribution. True width is given by
ffiffiffiffiffiffiffiffiffih�2ip

in the limit of
large Nnoise. To reduce the errors in h�2i due to finite Nnoise,
we adopt the subtraction method discussed in Sec. III B for
the calculation of products of traces. The expectation value
of �2 is summarized in Fig. 17. Filled symbols in Fig. 17
are the results of the subtraction method. We have checked
that the Nnoise dependence in h�2i is negligible with our
choices of Nnoise. We find that h�2i becomes larger than
Oð
2Þ from �q=T � 0:5 in the low temperature phase

while, in the high temperature phase, the complex phase
fluctuations decrease as T increases, in accordance with
our expectation that the quark determinant is real in the
high temperature limit. On the other hand, the width of the

histogram shown in Fig. 14 corresponds to
ffiffiffiffiffiffiffiffiffih�2ip

obtained
by the naive calculation without subtraction, which is
plotted with open symbols in Fig. 17. The difference
between the results by the subtraction and naive methods
decreases as Nnoise increases but is almost the same size for
all temperatures, and the error due to finite Nnoise is larger
than the expectation value of h�2i at high temperature.
Therefore, the subtraction is indispensable for a calculation
of the width of the � distribution.
We summarize the results for R in Fig. 18. The circle and

square symbols are the results for �q=T ¼ 0:5 and 1.0,

respectively. Filled symbols are the results of the subtrac-
tion method, while open symbols are the results of naive
calculations without the subtraction. Although errors be-
come gradually larger as�q=T increases and are as large as

Oð1Þ for�q=T ¼ 1:0, the central values of R are consistent

with zero for all temperatures and �q=T.
2 However, we

need higher statistics to identify the actual magnitude of R
and to check the validity range of the Gaussian approxi-
mation in terms of �q=T, which is left for future

investigations.

C. Results for the equation of state and quark number
susceptibility

In Fig. 19, we show the results for the �q dependent

contribution to the pressure, �p=T4 ¼ pð�qÞ=T4 �
pð0Þ=T4, obtained by the Gaussian approximation.

2Because the complex phase vanishes in the high temperature
limit, h�2i becomes smaller as T increases. The small h�2i causes
the large statistical error of R at large T for the subtraction
method. Where h�2i is small, however, the correction due to the
phase fluctuation itself is small, and thus a deviation from the
Gaussian approximation does not affect the results.
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Comparing with Fig. 10, improvement towards larger�q is

clearly seen.
We calculate the quark number density nq and its sus-

ceptibility �q by the following numerical differentiations:

nq

T3 ¼ N3
t

N3
s

@ðlnZÞ
@ð�q=TÞ ;

�q

T2
¼ N3

t

N3
s

@2ðlnZÞ
@ð�q=TÞ2

: (51)

Results of ln½ZðT;�qÞ=ZðT; 0Þ� around representative

points ~�q=T ¼ 0:2; 0:4; . . . , 1.2 are shown in Fig. 20 where

� is optimized at each ~�q=T. The value of

ln½ZðT;�qÞ=ZðT; 0Þ� increases as T=T0 increases for

each �q=T, where T0 is Tpc at �q=T ¼ 0. In Fig. 20,

results at the optimized values of T=T0ð�Þ for simulations
listed in Table I are shown. We then fit the data in the range
~�q=T � 0:05 � �q=T � ~�q=T þ 0:05 by a quadratic

function of �q=T,

N3
t

N3
s

ln

�ZðT;�qÞ
ZðT;0Þ

�
¼ nqð ~�qÞ

T3

�q

T
þ�qð ~�qÞ

2T2

�
�q

T

�
2 þCð ~�qÞ;

(52)
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with the fit parameters nqð ~�qÞ; �qð ~�qÞ and Cð ~�qÞ, for each
value of ~�q=T and T=T0.

The results of nqð�qÞ and �qð�qÞ are plotted in Figs. 21
and 22. As is similar to the case of p=T4, the statistical
errors in these figures are much smaller than the results
given in Sec. III. Moreover, although simulations at differ-
ent temperature are independent, the temperature depen-
dence in these figures is smooth and natural. The reduced
statistical fluctuations over the results of Sec. III C are

mainly due to the Gaussian method for the � averaging
and the � reweighting for the F averaging.
At mPS=mV ¼ 0:65, we find a sharp peak in �q=T

2 near

Tpc. The peak becomes higher as �q increases. These

observations are consistent with the findings in Sec. III,
and suggests a critical point at finite�q. On the other hand,

the peak is much milder at mPS=mV ¼ 0:80. This may be
explained in part by the expectation that the critical point is
located at larger �q because the quark mass is larger than
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that for mPS=mV ¼ 0:65. Further studies with increased
statistics around T0 are needed for a more definite con-
clusion. A scaling analysis increasing the volume is also
important.

V. HEAVY-QUARK FREE ENERGYAND DEBYE
SCREENING MASS AT FINITE TEMPERATURE

AND DENSITY

In this section, we investigate the heavy-quark free
energies between the static quark (Q) and antiquark ( �Q),
and between Q and Q. These free energies are important
inputs in phenomenologial studies of color-singlet quarko-

niums such as charmoniums and bottomoniums in QGP
[56,57] and of color nonsinglet quark-quark states in QGP
[58]. Lattice simulations for Q �Q and QQ free energies in
different color channels at �q ¼ 0 have been performed in

Nf ¼ 2 QCD with the staggered fermion [59,60] and with

the Wilson fermion [24,61]. In these works, Coulomb
gauge fixing is employed to define the Polyakov-loop
correlations in different color channels. Furthermore, the
Q �Q free energy at finite �q has been studied with the

staggered fermion by the reweighting method in the �-�
parameter plane [62] and by the Taylor expansion method
[63]. Screening masses at finite �q have also been studied
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in dimensionally reduced effective field theory at high
temperature [64].

Here, we extend our previous study with two flavors of
improved Wilson quarks at �q ¼ 0 [24] to finite �q using

the Taylor expansion method. Under Coulomb gauge fix-
ing, we calculate the expansion coefficients of the heavy-
quark free energies up to the second order with respect to
�q=T for the color-singlet Q �Q channel, color-octet Q �Q

channel, color-sextet QQ channel, and color-antitriplet
QQ channel. The effective running coupling and Debye
screening mass are also extracted by fitting the screened
Coulomb form expanded as a power series of �q=T, and

compared with a prediction of the thermal perturbation
theory.

A. Taylor expansion of heavy-quark free energy

The expectation value of an observable O for �u ¼
�d ¼ �q is defined as

hOi�q
¼ 1

ZðT;�qÞ
Z

DUO½detMð�Þ�Nfe�Sg ; (53)

where � ¼ �qa. For O which does not depend on �q

explicitly, hOi�q
can be expanded as a power series of� ¼

�qa as follows [63]: The quark determinant is expanded as

½detMð�Þ�Nf ¼ ½detMð0Þ�Nf ð1þM1�þM2�
2

þOð�3ÞÞ; (54)

with the expansion coefficients M1 ¼ D1, M2 ¼ 1
2 ðD2

1 þ
D2Þ, etc. using Dn defined by (26). Then, using the fact
that the system is symmetric under �q ! ��q, hOi�q

can

be expanded as

hOi�q
¼ hOi0 þ hOM1i0�þ hOM2i0�2

1þ hM2i0�2
þOð�3Þ

¼ hOi0½1þO1�þ ð�hM2i0 þO2Þ�2 þOð�3Þ�;
(55)

where hOi0 ¼ hOi�q¼0 and Oi is defined by

O i ¼ hOMii0
hOi0 : (56)

The heavy-quark free energies are defined by cor-

relation functions between Polyakov loops, �ðxÞ ¼QNt


¼1 U4ð
;xÞ. At a fixed gauge, the Q �Q correlation func-

tion can be decomposed into color-singlet (1) and color-
octet (8) channels, while the QQ correlation function can
be decomposed into color-antitriplet (3�) and color-sextet
(6) channels as follows [65,66]:

� 1ðrÞ ¼ 1
3 tr�

yðxÞ�ðyÞ; (57)

� 8ðrÞ ¼ 1
8 tr�

yðxÞtr�ðyÞ � 1
24 tr�

yðxÞ�ðyÞ; (58)

� 6ðrÞ ¼ 1
12 tr�ðxÞtr�ðyÞ þ 1

12 tr�ðxÞ�ðyÞ; (59)

� 3� ðrÞ ¼ 1
6 tr�ðxÞtr�ðyÞ � 1

6 tr�ðxÞ�ðyÞ; (60)

where r ¼ jx� yj. The free energy F R for color-channel
R (R ¼ 1, 8, 6, 3�) is defined as

e�F Rðr;T;�qÞ=T ¼ h�Ri�q
: (61)

Above Tpc, we introduce normalized free energies

ðV1; V8; V6; V3� Þ by dividing the right-hand side of (61)
by hLi�q

hLi��q
for Q �Q free energies and hLi2�q

for QQ free

energies, where L ¼ tr�. VR vanishes at r ! 1. The
Taylor expansion of VR with respect to �q=T is given by

VRðr; T;�qÞ ¼ vR
0 þ vR

1

�
�q

T

�
þ vR

2

�
�q

T

�
2 þOð�3Þ;

(62)

where

vR
0 ðr; TÞ
T

¼ � ln

�h�Ri0
‘20

�
; (63)

vR
1 ðr; TÞ
T

¼ 0; (64)

vR
2 ðr; TÞ
T

¼ 1

N2
t

ðhM2i0 ��R
2 Þ þ

4‘0‘2 � ð‘21 þ ‘�21 Þ
2‘20

;

(65)

for color-singlet and octet Q �Q channels, and

vR
0 ðr; TÞ
T

¼ � ln

�h�Ri0
‘20

�
; (66)

vR
1 ðr; TÞ
T

¼ � 1

Nt

�R
1 þ 2

‘1
‘0

; (67)

vR
2 ðr; TÞ
T

¼ 1

N2
t

�
hM2i0 þ 1

2
ð�R

1 Þ ��R
2

�
2 þ 2

‘2
‘0

� ‘21
‘20

;

(68)

for color-sextet and antitriplet QQ channels. Here �R
n ¼

h�RMni0=h�Ri0, and the ‘n is an n-th order coefficient of
the Taylor expansion of the Polyakov loop:

hLi�q
¼ ‘0 þ ‘1

�
�q

T

�
þ ‘2

�
�q

T

�
2 þOð�3Þ: (69)

Note that the color-singlet and octet channels do not have
the odd orders in the Taylor expansion since the free
energies for both channels are symmetric under �q !
��q, i.e., the Q �Q free energies are invariant under the

charge conjugation.
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B. Results for expansion coefficients of normalized free
energies

Heavy-quark free energies are calculated in the high
temperature phase on the lines of constant physics at
mPS=mV ¼ 0:65 and 0.80 (see Table I). Observables are
measured every ten trajectories at each quark mass and
temperature, and the statistical errors are estimated by a
jackknife method with the bin size of 100 trajectories.

The results for the expansion coefficients of the normal-
ized free energies at mPS=mV ¼ 0:65 are shown in Fig. 23
for the color-singlet and octetQ �Q channels, and in Figs. 24
and 25 for the color-sextet and antitriplet QQ channels.
Those obtained at mPS=mV ¼ 0:80 are shown in Figs. 26–
28.

The vR
0 ’s shown in Figs. 23, 24, 26, and 27 are the

normalized free energies at �q ¼ 0. The fact that, increas-

ing the distance r, v1
0 and v3�

0 increase while v8
0 and v6

0

decrease, which represents the finding of our previous

study [24] that, at �q ¼ 0, the interquark interaction is

‘‘attractive’’ in the color-singlet and antitriplet channels
and is ‘‘repulsive’’ in the color-octet and sextet channels.
From these figures, we note that, both around Tpc and at

higher temperatures, the sign of vR
1 is the same with that of

vR
0 , whereas the sign of a vR

2 is the opposite of that of vR
0 :

vR
1 � vR

0 > 0 ðonly forQQ free energiesÞ; (70)

vR
2 � vR

0 < 0: (71)

Because vR
1 is absent forQ �Q free energies, this means that,

in the leading order of �q, the interquark interaction

between Q and �Q becomes weak at finite �q, while that

between Q and Q becomes strong. In other words, Q �Q
(QQ) free energies are screened (antiscreened) by the
internal quarks induced at finite �q.
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FIG. 23 (color online). vR
0 (left) and vR

2 (right) for color-singlet and octet Q �Q channels above Tpc at mPS=mV ¼ 0:65.
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0 (left) and vR

1 (right) for color-sextet and antitriplet QQ channels above Tpc at mPS=mV ¼ 0:65.
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C. Screening properties at finite T and �q

At �q ¼ 0, the color-channel dependence in the free

energies was shown to be well absorbed in the kinematical
Casimir factor at high temperatures [24], as first noticed in
quenched studies [67,68]. Therefore, we fit the normalized
free energies by a screened Coulomb form,

VRðr; T;�qÞ ¼ CR
�effðT;�qÞ

r
e�mDðT;�qÞr; (72)

where the Casimir factors CR � hP8
a¼1 t

a
1 � ta2iR for various

color channels are given by

C1 ¼ �4
3; C8 ¼ 1

6; C6 ¼ 1
3; C3� ¼ �2

3:

(73)

At small�q, the effective running coupling�effðT;�qÞ and
the Debye screening mass mDðT;�qÞ are expanded by

powers of �q=T:
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FIG. 25 (color online). vR
2 for color-sextet and antitriplet QQ

channels above Tpc at mPS=mV ¼ 0:65.
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FIG. 26 (color online). The same figures as Fig. 23 at mPS=mV ¼ 0:80.
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�eff ¼ �0 þ �1

�
�q

T

�
þ �2

�
�q

T

�
2 þOð�3Þ; (74)

mD ¼ mD;0 þmD;2

�
�q

T

�
2 þOð�4Þ; (75)

where we use the fact that the Debye screening mass does
not have the odd powers in the Taylor expansion because it
corresponds to the self-energy of the two-point correlation
of the gauge field which is symmetric under �q ! ��q.

Properties of �0ðTÞ and mD;0ðTÞ are discussed in [24].

Expanding (72) with respect to �q=T using (74) and

(75), and comparing with the expansion (62) of the nor-
malized free energies, we obtain the following relations:

v0ðr; TÞ ¼ CR �0ðTÞ
r

e�mD;0ðTÞr; (76)

v1ðr; TÞ
v0ðr; TÞ

¼ �1ðTÞ
�0ðTÞ ðonly forQQ free energiesÞ; (77)

v2ðr; TÞ
v0ðr; TÞ

¼ �2ðTÞ
�0ðTÞ �mD;2ðTÞr: (78)

Therefore, the expansion coefficients of �eff and mD for
each T can be calculated by fitting the normalized free
energies for appropriate ranges of r. We chose the fit ranges
to be 0:5 � rT � 1:0 for Eq. (77) and 0:25 � rT � 1:0 for
Eq. (78). In Appendix C, we study the fit range dependence
of the fits, and find that the magnitude of systematic errors
in the expansion coefficients due to the fit range are at most
comparable with that of the statistical errors at T * 1:2Tpc.

The results for the first order coefficients �1ðTÞ, which
appear only for the color-sextet and antitriplet QQ chan-
nels, are shown in Fig. 29 for mPS=mV ¼ 0:65 (left) and
0.80 (right). The second order coefficients �2ðTÞ and
mD;2ðTÞ are shown in Figs. 30 and 31 at mPS=mV ¼ 0:65
(left) and 0.80 (right), respectively. Numerical values of
these coefficients are summarized in Appendix C.
From these figures, we find that there is no significant

channel dependence in these coefficients at high tempera-
tures (T * 2Tpc), similar to the case of �0ðTÞ and mD;0ðTÞ
studied in [24]. We note that mD;2ðTÞ is positive at T *

1:5Tpc which means that the magnitude of the Debye mass

becomes larger at finite densities in the leading-order of
�q. This is qualitatively consistent with results calculated

with an improved staggered quark action for the color-
singlet channel [63]. We also find that, although �1ðTÞ
remains finite even at T ’ 4Tpc, the magnitude of �2ðTÞ
is almost zero for all color channels at T * 1:5Tpc.

Therefore, to reduce statistical fluctuations in mD;2ðTÞ,
we may assume �2ðTÞ ¼ 0 in the fit (78). The results are
shown in Fig. 32. Smallness of the color-channel depen-
dence became clearer. Numerical values for �1ðTÞ, �2ðTÞ,
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FIG. 28 (color online). The same figures as Fig. 25 at
mPS=mV ¼ 0:80.
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mD;2ðTÞ, andmD;2ðT;�2 ¼ 0Þ are summarized in Tables V,

VI, VII, VIII, and IX together with �2=NDF for each fit,
where NDF is the number of degree of freedom.

D. Comparison with the thermal perturbation theory

The 2-loop running coupling is given by

g�2
2l ð�Þ ¼ �0 lnð��Þ2 þ �1

�0

lnðlnð�
�
Þ2Þ; (79)

where � and � are the renormalization point and the QCD
scale parameter, respectively. In the thermal perturbation
theory the argument in the logarithms can be decomposed

as �=� ¼ ð�=TÞðT=TpcÞðTpc=�Þ where we adopt � ¼
�

Nf¼2

MS
’ 261 MeV [69] and Tpc ’ 171 MeV [7]. We as-

sume that the renormalization point � is in the range � ¼

T to 3
T. Therefore, g2l can be viewed as a function of
T=Tpc. In the leading order of the thermal perturbation

theory, the Debye screening mass with g2l is given by

mLO
D ðT;�qÞ ¼ g2lð�Þ

��
1þ Nf

6

�
T2 þ Nf

2
2
�2

q

�
1=2

: (80)

Thus, the leading-order expansion coefficients are given by

mLO
D;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Nf

6

s
g2lð�ÞT;

mLO
D;2 ¼

1

4
2

Nfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Nf=6

q g2lð�ÞT:
(81)

Taking the ratio of these coefficients we find for Nf ¼ 2

mLO
D;2

mLO
D;0

¼ 3

8
2
: (82)

In Ref. [24], we found that, at�q ¼ 0, the leading-order

thermal perturbation theory predicts much smaller values
for mD;0ðTÞ than the lattice results. In the left panel of

Fig. 33, we compare our results of mD;2ðTÞ for the color-

singlet channel with that of the leading-order thermal
perturbation theory. Similar to the case of mD;0ðTÞ, we
find that the lattice results of mD;2ðTÞ are much larger

than the prediction of the thermal perturbation theory at
the leading order.
In Fig. 33 (right), we plot the lattice results for the ratio

mD;2=mD;0 and compare them with (82). We find that this

ratio also deviates from the prediction of the leading-order
thermal perturbation theory. We note that, with the p4-
improved staggered quark action, the ratio mD;2=mD;0

was reported to agree with 3=8
2 at T * 1:5Tpc [63]. A

similar discrepancy between Wilson and staggered-type
quark actions has been already reported for Debye screen-
ing masses at �q ¼ 0 [24]. Further investigations at

smaller lattice spacings etc. are required to clarify the
origin of the discrepancy. At �q ¼ 0, it was shown that

the discrepancy with the thermal perturbation theory is
largely removed for mD;0ðTÞ with the improved Wilson

quark action when we include the next-to-leading-order
contributions [24]. Thus, a higher order calculation of the
thermal perturbation theory at finite �q will also be im-

portant to understand the results obtained on the lattice.

VI. CONCLUSIONS

A comparison of results obtained by different lattice
formulations is important to estimate theoretical uncertain-
ties in lattice QCD calculations. Since most lattice QCD
simulations at finite temperatures and densities have been
performed using staggered-type quark actions so far, stud-
ies with a different lattice quark action is particularly
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important. In this paper, we carried out the first calculation
of the equation of state at nonzero densities with two
flavors of improved Wilson quarks. Simulations are per-
formed on a 163 � 4 lattice along the lines of constant
physics corresponding to mPS=mV ¼ 0:65 and 0.80 in the
ð�;KÞ plane. With Wilson-type quarks, statistical fluctua-
tions of physical observables at finite density are much
severer than with staggered-type quarks. To tame the prob-
lem, we combined and developed several improvement
techniques.

Adopting the Taylor expansion method, we calculated
the derivatives of pressure with respect to the chemical
potentials �q and �I up to the fourth order. Using these

derivatives, we studied the fluctuations of quark number
and isospin densities at finite chemical potentials. A quan-
titative difference between the second derivatives of�q and

�I was observed: �q shows a peak near Tpc, whose height

increases as �q increases, whereas �I does not show a

clear peak near Tpc. These behaviors agree qualitatively

with the results obtained using p4-improved staggered
fermions, and are consistent with the expectation from
the effective sigma model.

With the current statistics, the statistical errors in the
results were not small with the simple Taylor expansion
method. To improve the calculation, we adopted a hybrid
method of the Taylor expansion and the reweighting tech-
niques combined with a Gaussian approximation for the
distribution of the complex phase of the quark determinant.
In a previous study with a staggered-type quark [23], this
method was shown to be efficient to suppress statistical
fluctuations at finite densities. We found that the statistical
errors in the quark number density and the susceptibility at
finite densities are reduced with the new method. Although
the simulations at different temperatures are independent,
the resulting T dependence in the quark number density
and the susceptibility turned out to be smooth, and the heap
in �q near Tpc became clearer. These results suggest that

the sign problem at finite densities is mildened by such
improvements.

We also studied the heavy-quark free energies and the
Debye screening mass at finite densities in the high tem-
perature phase. We calculated the Taylor expansion coef-
ficients of the heavy-quark free energies in all color
channels up to the second order in �q=T. We found a

characteristic difference between Q �Q and QQ free ener-
gies: The interquark interactions betweenQ and �Q become
weak, while those between Q and Q become strong, as �q

increases. We also calculated the effective running cou-
pling and the Debye screening mass for each color channel
up to the second order of �q. Both quantities show no

significant color-channel dependence at T * 2Tpc. The

second order coefficient of the Debye screening mass,
mD;2ðTÞ, turned out to be positive, implying that the

Debye mass becomes larger as �q increases. We note

that our mD;2ðTÞ does not agree with the leading-order

thermal perturbation theory. Higher orders are required to
explain the lattice results.
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APPENDIX A: PRESSURE AND QUARK NUMBER
SUSCEPTIBILITY IN THE FREE GAS LIMIT

In order to estimate the equation of state at nonzero
quark chemical potential, � ¼ �qa in the high tempera-

ture limit, we calculate the pressure and its derivatives with
respect to � in the free quark gas limit. Because the effect
of finite quark mass becomes negligible in the high tem-
perature limit, we discuss only the case of massless quarks.
The partition function for free Wilson quarks is given by

Z ðK;�Þ ¼ ðdetMÞNf ; (A1)

Mxy ¼ �x;y � K
X
i

½ð1� �iÞ�xþî;y þ ð1þ �iÞ�x�î;y�

� K½e�ð1� �4Þ�xþ4̂;y þ e��ð1þ �4Þ�x�4̂;y�;
(A2)

on an N3
s � Nt lattice. Note that the clover term vanishes

for free quarks. We perform a unitary transformation into
momentum space (Fourier transformation):

~M kl � 1

N3
sNt

X
x;y

e�ikxþilyMxy � Uy
kxMxyUyl: (A3)

Here

Uyl � 1ffiffiffiffiffiffiffiffiffiffiffi
N3

sNt

p eily;

Uy
kx �

1ffiffiffiffiffiffiffiffiffiffiffi
N3

sNt

p e�ikx;

Uy
kxUxl ¼ 1

N3
sNt

X
x

eixðl�kÞ ¼ �k;l;

detðUyUÞ ¼ detUy detU ¼ 1

(A4)

We then calculate the partition function,
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Z ðK;�Þ ¼ ðdetMÞNf ¼ ðdet ~MÞNf ; (A5)

~Mkl ¼ 1

N3
sNt

X
x

�
e�ixðk�lÞ

�
1� K

X3
i¼1

ðð1� �iÞeili þ ð1þ �iÞe�iliÞ � Kðe�ð1� �4Þeil4 þ e��ð1þ �4Þe�il4Þ

�
��

¼ �k;l

�
1� K

X3
i¼1

ð2 coski � 2i�i sinkiÞ � Kð2 cosðk4 � i�Þ � 2i�4 sinðk4 � i�ÞÞ
�
; (A6)

where

k� ¼ 2
j�
Ns

; j� ¼ 0;�1; . . . ; Ns=2 for � ¼ 1; 2; 3; (A7)

k4 ¼ 2
ðj4 þ 1=2Þ
Nt

; j4 ¼ 0;�1; . . . ; Nt=2: (A8)

Introducing a 4� 4 matrix which is defined by ~Mkl ¼ �k;l
~MðkÞ,

ZðK;�Þ ¼
�Y

k

det ~MðkÞ
�
3Nf

;

det ~MðkÞ ¼ det

�
1� K

X3
i¼1

ð2 coski � 2i�i sinkiÞ � Kð2 cosðk4 � i�Þ � 2i�4 sinðk4 � i�ÞÞ
�

¼
��

1� 2K
X3
i¼1

coski � 2 cosðk4 � i�Þ
�
2 þ 4K2

X3
i¼1

sin2ki þ 4K2sin2ðk4 � i�Þ
�
2

¼
��

1� 8K þ 4K
X3
i¼1

sin2
�
ki
2

�
þ 4Ksin2

�
k4 � i�

2

��
2 þ 4K2

X3
i¼1

sin2ki þ 4K2sin2ðk4 � i�Þ
�
2

¼
�
ð1� 8KÞ2 þ 8Kð1� 8KÞ

�X3
i¼1

sin2
�
ki
2

�
þ sin2

�
k4 � i�

2

��

þ 4K2

��
2
X3
i¼1

sin2
�
ki
2

��
2 þ 4

�
2
X3
i¼1

sin2
�
ki
2

�
þ 1

�
sin2

�
k4 � i�

2

�
þX3

i¼1

sin2ki

��
2
; (A9)

where we used the identity: detða0I þ a1i�1 þ a2i�2 þ a3i�3 þ a4i�4Þ ¼ ða20 þ a21 þ a22 þ a23 þ a24Þ2.
In the massless quark limit K ¼ 1=8,

det ~MðkÞ ¼ 16

84

�
AðkÞ þ B2ðkÞ þ 4ðBðkÞ þ 1Þsin2

�
k4 � i�

2

��
2
; (A10)

where

AðkÞ ¼ X3
i¼1

sin2ki; BðkÞ ¼ 2
X3
i¼1

sin2
�
ki
2

�
: (A11)

We calculate the derivatives of pressure with respect to
� at � ¼ 0, K ¼ 1=8 numerically:

p

T4 ¼ N4
t

�
1

N3
sNt

lnZðT;�Þ � 1

N4
s

lnZðT ¼ 0; � ¼ 0Þ
�
;

(A12)

cn ¼ 1

n!

@nðp=T4Þ
@ð�q=TÞn

���������¼0
¼ N3�n

t

N3
s

@n lnZðTÞ
@�n

���������¼0
:

(A13)

Here, ZðT;�Þ and ZðT ¼ 0; �Þ are the partition functions
calculated on N3

s � Nt and N4
s lattices, respectively. The

derivative of the normalization lnZðT ¼ 0; � ¼ 0Þ in� is,
of course, zero. The derivatives of lnZ at � ¼ 0 are given
by

@ lnZ
@�

¼ 3Nf

@

@�

X
k

lndet ~MðkÞ ¼ 6Nf

X
k

�
D1ðkÞ
D0ðkÞ

�
;

(A14)
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@2 lnZ
@�2

¼ 3Nf

@2

@�2

X
k

lndet ~MðkÞ

¼ 6Nf

X
k

�
D2ðkÞ
D0ðkÞ �

D2
1ðkÞ

D2
0ðkÞ

�
; (A15)

@3 lnZ
@�3

¼ 3Nf

@3

@�3

X
k
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(A16)

@4 lnZ
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X
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¼ 6Nf

X
k

�
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0ðkÞ

�
; (A17)

where

D 0 ¼ AðkÞ þ B2ðkÞ þ 4½BðkÞ þ 1�sin2ðk4=2Þ; (A18)

D n: odd ¼ �2i½BðkÞ þ 1� sink4; (A19)

D n: even ¼ �2½BðkÞ þ 1� cosk4: (A20)

The odd derivatives vanish as in the case of interacting
quarks. Since cn ¼ 0 for n > 4 in the continuum limit, we
calculate p at � ¼ 0 as well as c2 and c4. The numerical
results normalized by the values of their continuum
Stephan-Boltzmann limit are plotted in Fig. 34. Circle,
square, and triangle symbols are the results of pð� ¼ 0Þ,
c2, and c4 for each Nt with Ns=Nt ¼ 4, respectively. The
results with Ns=Nt ¼ 8 are also shown by the dashed lines.
The Ns dependence is found to be negligible. However, the
results are much larger than unity for small Nt, suggesting
sizable lattice discretization effects for Nt < 10.

APPENDIX B: DERIVATIVES OF lnZ IN THE
GAUSSIAN APPROXIMATION

We discuss the error from the Gaussian approximation
of a complex phase distribution function. We calculate the
second and forth derivatives of lnZ when the Gaussian
approximation is applied, and compare with the exact
results.
Denoting the derivative of lndetM as

D n � Nf

@n lndetMð�Þ
@�n

���������¼0
; (B1)

the partition function with the Gaussian approximation Eq.
(37) can be expanded in a power series,

Zð�Þ
Zð0Þ �

�
exp

�
F� h�2iF

2

�	
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¼
Z

exp

�
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¼
Z
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�hD2
1iF�2

2
þ hD1D3iF�4

3!

þ hD2
3iF�6
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þ hD2
2iF�4

8
� hD2i2F�4

8
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�
w0ðFÞdF: (B2)

We then obtain the second and forth derivatives of lnZ at
� ¼ 0. The second derivative is

@ lnZ
@ð�2Þ

���������¼0
¼ 1

2

@2 lnZ
@�2

���������¼0

¼
Z �hD2

1iF
2

þ hD2iF
2

�
w0ðFÞdF

¼ 1

2
ðhD2

1i þ hD2iÞ: (B3)

This result is, of course, the same as the exact result. Next,
we calculate the forth derivative:
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FIG. 34 (color online). The results of pð� ¼ 0Þ (circle), c2
(square), and c4 (triangle) normalized by the values of their
continuum limit.
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Because F ¼ D2ð�2=2Þ þOð�4Þ and
Rh� � �iFO½F� �

w0ðFÞdF ¼ h� � �O½F�i, where O½F�is an arbitrary func-
tion of F;

Z
hD2

1iFhD2iFw0ðFÞdF ¼ hD2
1D2i þOð�2Þ: (B5)

Moreover, as discussed in Sec. IVB, D1 is given by a
sum of the local number density operator ð� �c�0c ðxÞÞ at
�q ¼ 0. If the simulation is performed apart from a sin-

gular point, we may adopt the Gaussian approximation for
the distribution of D1. In such a case, D1 satisfies

hD2
1i2F � 1

3hD4
1iF: (B6)

Substituting this equation, the forth derivative becomes

@4 lnZ
@�4

¼ 4hD1D3i þ hD4i þ 3hD2
2i þ hD4

1i

þ 6hD2
1D2i � 3ðhD2

1i þ hD2iÞ2: (B7)

This is the same as the exact result. In this calculation, we
assumed that the distribution function of the total quark
number,D1, is Gaussian at �q ¼ 0. Within this condition,

we find that the Gaussian approximation does not affect the
calculation of the derivatives of lnZ up toOð�4Þ. A similar
discussion is also possible for the higher order terms of �
and one can find out the condition in which the Gaussian
approximation is valid for each order of �.

APPENDIX C: RESULTS OF EXPANSION
COEFFICIENTS FOR �eff AND mD

To evaluate expansion coefficients of �eff andmD, we fit
the normalized free energies with (77) and (78). Our results
of the expansion coefficients together with the quality of
the fits are summarized in Tables V, VI, VII, VIII, and IX.
We adopt the fit ranges 0:5 � rT � 1:0 for Eq. (77) and
0:25 � rT � 1:0 for Eq. (78). These fit ranges are chosen

by examining the fit range dependence as follows. Let us
denote the fit range as Rini � rT � Rfin. We find that the fit
results are insensitive to Rfin when Rfin is sufficiently large.
To evaluate the sensitivity on Rini, we introduce Riniþ2 as
the next-neighboring longer distance on the lattice. For
example, when Rini ¼ 0:5 at Nt ¼ 4, the lattice distance
of the point is 2 and the next-neighboring longer distance isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12 þ 22

p
¼ ffiffiffi

6
p

, and thus Riniþ2 ¼
ffiffiffi
6

p
=4. Similarly,

when Rini ¼ 0:25 at Nt ¼ 4, Riniþ2 ¼
ffiffiffi
3

p
=4. Then, we

estimate the systematic error due to the fit range by the
difference of the fit results between Rini and Riniþ2 with
fixed Rfin. The systematic errors are shown in the second

TABLE V. Results �1ðTÞ and �2=NDF for the fit of first order
coefficients at mPS=mV ¼ 0:65 (left) and 0.80 (right). The sec-
ond parentheses in the 3� channel of �1ðTÞ expresses the system-
atic errors due to the difference of the fit range.

mPS=mV ¼ 0:65
�1ðTÞ � 10 �2=NDF

T=Tpc R ¼ 6 3� 6 3�

1.07 �0:01ð2Þ 10.86(501)(42) 0.36 1.10

1.18 1.64(116) 3.64(95)(54) 1.11 0.52

1.32 0.92(66) 3.58(85)(2) 2.42 0.47

1.48 1.07(36) 2.14(35)(21) 1.27 0.82

1.67 1.49(41) 0.90(16)(18) 1.04 0.86

2.09 0.62(13) 0.54(11)(11) 0.92 1.68

2.59 0.44(9) 0.56(10)(7) 1.91 2.14

3.22 0.26(5) 0.36(5)(4) 0.48 1.25

4.02 0.33(5) 0.29(5)(2) 1.13 1.16

mPS=mV ¼ 0:80
�1ðTÞ � 10 �2=NDF

T=Tpc R ¼ 6 3� 6 3�

1.08 � � � 3.03(51)(40) � � � 0.71

1.20 1.35(67) 2.37(44)(68) 0.98 1.27

1.35 1.35(36) 1.28(26)(22) 2.18 0.88

1.69 0.65(10) 0.92(14)(13) 1.05 1.21

2.07 0.50(7) 0.36(6)(16) 1.87 2.81

2.51 0.45(7) 0.38(4)(1) 0.70 0.38

3.01 0.23(3) 0.34(3)(1) 1.83 2.04

TABLE VI. �2=NDF for the fit of 2nd order coefficients at
mPS=mV ¼ 0:65 (left) and 0.80 (right).

mPS=mV ¼ 0:65 mPS=mV ¼ 0:80
T=Tpc R ¼ 1 8 6 3� T=Tpc R ¼ 1 8 6 3�

1.07 0.87 1.29 0.64 1.05 1.08 0.63 1.15 � � � 1.82

1.18 0.43 0.85 0.64 1.04 1.20 1.00 1.70 2.17 1.46

1.32 1.86 0.95 1.17 2.22 1.35 0.99 0.65 0.64 0.46

1.48 1.02 1.56 1.10 1.32 1.69 2.83 2.49 1.53 1.44

1.67 1.12 1.73 1.22 0.61 2.07 0.95 0.64 1.05 0.98

2.09 1.01 0.96 2.43 1.84 2.51 1.83 1.28 0.73 1.25

2.59 1.19 1.49 1.66 1.21 3.01 1.08 1.76 1.08 0.59

3.22 1.02 1.83 1.98 0.90

4.02 1.61 0.72 1.10 1.86
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parentheses for �1ðTÞ of the color-antitriplet channel in
Table V, formD;2ðTÞ of color-singlet channel in Tables VIII
and IX. We find that the systematic errors are almost

comparable with the statistical errors, except very close
to Tpc.
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