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Abstract This paper presents a study on the recently proposed linear inequality representation of Arrovian
Social Welfare Functions (ASWFs). We correct and show several sufficient conditions on preference domains
for the linear inequalities of the representation to form integral polytopes. We also show that a given
probabilistic ASWF induces a real vector satisfying the inequalities.
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1. Introduction.

Social choice theory discusses the way of aggregating individual opinions and making a de-
cision of the society. Since Arrow [2] proved the classic Impossibility Theorem, this theory
has been studied by various researchers of various academic fields. For the comprehension
and the development of the theory see Arrow et al. [3] as well as Sen [11]. Recently Sethu-
raman et al. [12] formulated Arrovian Social Welfare Functions (ASWFs), which are social
welfare functions satisfying fundamental Pareto principle and independence of irrelevant
alternatives axioms, as integer solutions to a system of linear inequalities. They showed
the Impossibility Theorem and other results such as Kalai and Muller [6] by solving their
inequality system.

In this paper we study the linear inequality representation of ASWFs. We introduce
a rather intuitive profile-dependent integer linear inequality representation of ASWFs and
give a proof of the one-to-one correspondence result between an ASWF and an integer so-
lution to the ASWF linear inequality representation in [12] using the profile-dependent one.
Next we consider some polyhedral structure determined by the linear inequalities of the
original ASWF representation. We give a counter-example to a claim in [12] about a suffi-
cient condition on preference domains for the set of nonnegative solutions to the inequalities
to form an integral polytope, and correct it by introducing “weakly nonisolated” condition
about a triple of alternatives on the single-peaked domains. We also show that when the
domain is single-caved or belongs to the ones on which each triple of alternatives contains
an alternative that cannot be medium, and satisfies the weakly nonisolated condition, the
integrality of the corresponding ASWF polytope is also guaranteed. We then discuss non-
integer solutions to the inequality system. We show that a real vector satisfying the ASWF
inequalities can be constructed from every “probabilistic” ASWF from the result about our
profile-dependent representation, and then we derive a subadditive function of Barberá and
Sonnenschein [4] as a special case. The construction of a probabilistic ASWF from a given
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solution to the inequalities is also studied.
The rest of the paper is organized as follows. Section 2 introduces notation and axioms.

In Section 3 we introduce the ASWF integer linear inequality representation theorem of [12].
Discussions as to some polyhedral structure determined by the linear inequalities are held in
Section 4. In Section 5 we discuss a relation between probabilistic ASWFs and noninteger
solutions to the linear inequality representation. Section 6 concludes the paper and we give
our view to future work.

2. Notation and Axioms.

The finite set of players is denoted by N = {1, 2, . . . , n} and we suppose that the number
of players is at least two. Let X = {x, y, z, . . .} be the set of finite number of alternatives
and assume |X | ≥ 3. A binary relation % on X is a linear ordering if it satisfies
(i) completeness: x % y, y % x, or both hold for any pair of alternatives x, y ∈ X ,

(ii) transitivity : if x % y and y % z then x % z holds for any alternatives x, y, z ∈ X , and

(iii) antisymmetry : if x % y and y % x then x = y holds for any pair of alternatives x, y ∈ X .
When x % y but y ̸% x we write x ≻ y and say “x is (strictly) preferred to y.” In the rest
of the paper we discuss a pair or a triple of distinct alternatives so we use ≻ instead of %.
Let L(X ) be the set of all linear orderings on X . We call a member of L(X ) a preference
ordering or simply a preference. For a subset Y ⊆ X , we denote by ≻|Y the restriction of
binary relation ≻ to Y , i.e., ≻|Y is defined on Y × Y and x≻|Yy if and only if x ≻ y and
x, y ∈ Y .

Let Ω be a nonempty subset of L(X ) and call it the preference domain or the domain.
We set P = Ωn, the n-ary Cartesian product of Ω, call an element p ∈ P a profile, and
denote by ≻p

i the preference of player i at profile p. We denote by S(p, x ≻ y) the set of
players preferring alternative x to y at p ∈ P , i.e.,

S(p, x ≻ y) := { i ∈ N | x ≻p
i y }.

Given P ⊆ L(X )n we let CP(S, x ≻ y) be the set of profiles at which only the players in S
prefer x to y, that is,

CP(S, x ≻ y) := { p ∈ P | S(p, x ≻ y) = S }.

Let us define NP(x ≻ y), which indicates whether the players can express their opinions as
x ≻ y or not, and similarly NP(x ≻ y ≻ z), as

NP(x ≻ y) :=

{
N if there exists a preference in Ω such that x ≻ y,

∅ otherwise,

NP(x ≻ y ≻ z) :=

{
N if there exists a preference in Ω such that x ≻ y ≻ z,

∅ otherwise,

for each distinct x, y, z ∈ X on a given P = Ωn.
A social welfare function (on linear orderings) denoted by f , is a mapping that assigns

an ordering on X to a profile p ∈ P , i.e., f : P → L(X ). We denote by ≻f(p) the social
preference ordering on X determined by f at profile p ∈ P . A social welfare function is
said to satisfy unrestricted domain property when Ω = L(X ) holds. If there exists a player
i ∈ N , such that x ≻p

i y implies x ≻f(p) y for any pair of distinct alternatives x, y ∈ X
and for any profile p ∈ P , then the function is said to be dictatorial and i is said to be a

c⃝ Operations Research Society of Japan JORSJ (2009) 52-2



114 K. Sato & Y. Yamamoto

dictator. A social welfare function satisfying the following two axioms is called an Arrovian
Social Welfare Function (ASWF).
Definition 2.1 (Axiom of Pareto Principle (PP)). If the property that

x ≻p
i y for all i ∈ N implies x ≻f(p) y

holds for any pair of distinct alternatives x, y ∈ X and for any profile p ∈ P , then the social
welfare function f is said to have Pareto principle.
Definition 2.2 (Axiom of Independence of Irrelevant Alternatives (IIA)). If the property
that

≻p1

i |{x,y} = ≻p2

i |{x,y} for all i ∈ N implies ≻f(p1)|{x,y} = ≻f(p2)|{x,y}

holds for any pair of distinct alternatives x, y ∈ X and for any pair of distinct profiles
p1, p2 ∈ P , then the social welfare function f is said to satisfy independence of irrelevant
alternatives.

3. Integer Linear Inequality Representation.

This section introduces the linear inequality representation of ASWFs by [12] and the one-
to-one correspondence theorem between an ASWF and a solution to the inequality system
via a newly defined profile-dependent linear inequality representation of ASWFs. Suppose
that ASWF f is given. We introduce variable dS(x, y) for each pair of distinct alternatives
x, y ∈ X , and for each set S such that NP(x ≻ y) \ N P(y ≻ x) ⊆ S ⊆ NP(x ≻ y). The
value of dS(x, y) is set by

dS(x, y) :=

{
1 if x ≻f(p) y holds for all p ∈ CP(S, x ≻ y),

0 otherwise,
(3.1)

and we will give a certain integer linear inequality system to which the dS(x, y) constructed
as above becomes a solution. On the other hand, for a given solution to this inequality
system, we construct f , a function which maps a profile into a binary relation on X and
is hopefully an ASWF, as follows: for each profile p ∈ P and for each pair of distinct
alternatives x, y ∈ X ,

x ≻f(p) y if dS(p,x≻y)(x, y) = 1, and

x ̸≻f(p) y otherwise.
(3.2)

We present below the inequality system with regard to dS(x, y).
Definition 3.1 (Integer Linear Inequality Representation of ASWFs).

(Integrality and IIA). For all pairs of distinct alternatives x, y ∈ X , and for all sets S
such that NP(x ≻ y) \ NP(y ≻ x) ⊆ S ⊆ NP(x ≻ y),

dS(x, y) ∈ {0, 1}. (3.3)

(PP). For all pairs of distinct alternatives x, y ∈ X such that NP(x ≻ y) = N ,

dN (x, y) = 1. (3.4)

(Completeness and Antisymmetry). For all pairs of distinct alternatives x, y ∈ X , and
for all sets S such that NP(x ≻ y) \ NP(y ≻ x) ⊆ S ⊆ NP(x ≻ y),

dS(x, y) + dN\S(y, x) = 1. (3.5)
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(Transitivity). For all ordered triples (x, y, z) of distinct alternatives x, y, z ∈ X , and for
all sets A ⊆ NP(x ≻ z ≻ y), B ⊆ N P(y ≻ x ≻ z), C ⊆ NP(z ≻ y ≻ x), U ⊆ N P(x ≻ y ≻
z), V ⊆ NP(z ≻ x ≻ y), W ⊆ NP(y ≻ z ≻ x), such that (A,B, C, U, V, W ) is a partition
of N , ∗

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2. (3.6)

We note that there is a slight difference between the original ASWF formulation by [12]
and that by Definition 3.1. For any pair of distinct x, y ∈ X , the set S takes between an
empty set and the whole set N of players in the former, while NP(x ≻ y)\NP(y ≻ x) ⊆ S ⊆
NP(x ≻ y) in the latter. The difference arises when NP(x ≻ y) = ∅ or N P(y ≻ x) = ∅,
i.e., one alternative is always strictly preferred to the other for all preference orderings
in the domain Ω. This situation is said that either (x, y) or (y, x) is a trivial pair (see
Definition 4.3). In [12] a constant value is set to the variables involving a trivial pair by
convention, while we do not even enumerate such variables.

Theorem 3.2 (Sethuraman et al. [12], Theorem 1). Every solution to Integer Linear In-
equality Representation of ASWFs corresponds to an ASWF on linear orderings and vice
versa.

We give a proof of this theorem by introducing a profile-dependent variable d(p, x, y) and
a system of inequalities whose solution vector corresponds to an ASWF f by the following
natural way: for each p ∈ P and for each distinct x, y ∈ X ,

x ≻f(p) y if and only if d(p, x, y) = 1, and

x ̸≻f(p) y if and only if d(p, x, y) = 0.
(3.7)

Definition 3.3 (Profile-dependent Integer Linear Inequality Representation of ASWFs).

(Integrality). For all profiles p ∈ P , and for all pairs of distinct alternatives x, y ∈ X ,

d(p, x, y) ∈ {0, 1}. (3.8)

(PP). For all profiles p ∈ P , and for all pairs of distinct alternatives x, y ∈ X , if
p ∈ CP(N , x ≻ y) then

d(p, x, y) = 1. (3.9)

(IIA). For all pairs of distinct profiles p1, p2 ∈ P , and for all pairs of distinct alternatives
x, y ∈ X , if p1, p2 ∈ CP(S, x ≻ y) for some S then

d(p1, x, y) = d(p2, x, y). (3.10)

(Completeness and Antisymmetry). For all profiles p ∈ P , and for all pairs of distinct
alternatives x, y ∈ X ,

d(p, x, y) + d(p, y, x) = 1. (3.11)

(Transitivity). For all profiles p ∈ P, and for all triples of distinct alternatives x, y, z ∈ X ,

d(p, x, y) + d(p, y, z) ≤ 1 + d(p, x, z). (3.12)

∗We say that (A,B,C, U, V, W ) is a partition of N if they are (possibly empty) disjoint sets whose union is
N .
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Figure 1: Correspondence among f , d(p, x, y) and dS(x, y)

Proof of Theorem 3.2. We connect the profile-dependent representation with the represen-
tation of Definition 3.1. Namely, let an arbitrary solution to (3.8)-(3.12) be given, and
set dS(x, y) for each pair of distinct alternatives x, y ∈ X , and for each set S such that
NP(x ≻ y) \ N P(y ≻ x) ⊆ S ⊆ NP(x ≻ y) as

dS(x, y) :=

∑
p∈CP (S,x≻y) d(p, x, y)

|CP(S, x ≻ y)|
. (3.13)

In other words, we regard dS(x, y) as the ratio of x being socially preferred to y at the
profiles such that all the players in S express their preferences as x ≻ y and the rest as
y ≻ x. We confirm that CP(S, x ≻ y) is not empty for each pair of distinct alternatives
x, y ∈ X and for each set S such that NP(x ≻ y) \ NP(y ≻ x) ⊆ S ⊆ NP(x ≻ y). When
NP(x ≻ y) = ∅, S can only be ∅. In this case there does not exist a preference such that
x ≻ y. Therefore S(p, x ≻ y) = ∅ holds for all p ∈ P , and equivalently CP(∅, x ≻ y) = P .
When NP(x ≻ y) = N and NP(y ≻ x) = ∅, S can only be N . This means that for all
profiles every player strictly prefers x to y, thus CP(N , x ≻ y) ̸= ∅ holds. Each player
can express x ≻ y or y ≻ x when both NP(x ≻ y) and NP(y ≻ x) are N , so in this
case CP(S, x ≻ y) is nonempty for any ∅ ⊆ S ⊆ N . From this discussion we see that
dS(x, y) constructed by (3.13) is well-defined. Meanwhile, given a solution to Integer Linear
Inequality Representation of ASWFs in the sense of Definition 3.1, we create d(p, x, y) for
each p ∈ P and for each pair of distinct alternatives x, y ∈ X as follows:

d(p, x, y) := dS(p,x≻y)(x, y). (3.14)

Since p ∈ CP(S, x ≻ y) holds if and only if S(p, x ≻ y) = S holds, d(p, x, y) obtained
from a given dS(x, y) by (3.14) equals dS(x, y) by (3.13). The converse also holds if (3.10)
is assumed. Hence it suffices to show that a solution to (3.8)-(3.12) constructs a solution to
(3.3)-(3.6) and a given dS(x, y) gives d(p, x, y) which satisfies the constraints (3.8)-(3.12) in
Definition 3.3.

Let an arbitrary solution to (3.8)-(3.12) be given. We take an arbitrary pair of distinct
x, y ∈ X , and an arbitrary but appropriate S. From (3.10) and (3.13), the equation

dS(x, y) = d(p, x, y) (3.15)
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holds for any p ∈ CP(S, x ≻ y). This equation along with (3.8) yields (3.3). Consider the
case where S = NP(x ≻ y) = N , and we have (3.4) from (3.9). When a profile p is in
CP(S, x ≻ y) it is also a member of CP(N \ S, y ≻ x) because of the antisymmetry of a
linear preference ordering. Therefore, (3.11) and (3.15) imply

dS(x, y) + dN\S(y, x) = d(p, x, y) + d(p, y, x) = 1,

which is (3.5). To show that (3.6) is satisfied, suppose the contrary. Then for some distinct
x, y, z ∈ X and for some partition (A,B,C, U, V, W ) of N with A ⊆ NP(x ≻ z ≻ y),
B ⊆ N P(y ≻ x ≻ z), C ⊆ N P(z ≻ y ≻ x), U ⊆ NP(x ≻ y ≻ z), V ⊆ N P(z ≻ x ≻ y), and
W ⊆ NP(y ≻ z ≻ x),

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) > 2

holds. If player i is in A, there exists a preference ordering on which i can express his/her
opinion as x ≻ z ≻ y. This is because i ∈ A implies NP(x ≻ z ≻ y) = N , the existence of
a preference with x ≻ z ≻ y. Likewise i ∈ B means that i can choose a preference from Ω
which is y ≻ x ≻ z, etc. Note also that each player is in exactly one of A, B, C, U , V , and
W , and that we can choose a profile p ∈ P such that, for each i ∈ N ,

if i ∈ A then x ≻p
i z ≻p

i y, else if i ∈ B then y ≻p
i x ≻p

i z,
else if i ∈ C then z ≻p

i y ≻p
i x, else if i ∈ U then x ≻p

i y ≻p
i z,

else if i ∈ V then z ≻p
i x ≻p

i y, else if i ∈ W then y ≻p
i z ≻p

i x.

For this profile, we have p ∈ CP(A ∪ U ∪ V, x ≻ y), p ∈ CP(B ∪ U ∪ W, y ≻ z), and
p ∈ CP(C ∪ V ∪ W, z ≻ x) hold. Then by (3.15), we have

d(p, x, y) + d(p, y, z) + d(p, z, x) > 2.

On the other hand by applying (3.11) to (3.12) we obtain

d(p, x, y) + d(p, y, z) + d(p, z, x) ≤ 2, (3.16)

a contradiction.
Let a solution to Integer Linear Inequality Representation of ASWFs in the sense of

Definition 3.1 be given, and the value of d(p, x, y) be set by (3.14). We show that this
d(p, x, y) satisfies (3.8)-(3.12). The constructed d(p, x, y) in this way satisfies (3.10) since
the statement p1, p2 ∈ CP(S, x ≻ y) is equivalent to S(p1, x ≻ y) = S(p2, x ≻ y) = S.
In the case where S = N , (3.9) is implied by (3.4). The set S(p, x ≻ y) lies between
NP(x ≻ y) \ NP(y ≻ x) and NP(x ≻ y), hence we have (3.8) from (3.3). Antisymmetry of
preference orderings in the common preference domain framework guarantees S(p, y ≻ x) =
N \ S(p, x ≻ y), and this together with (3.5) assures us

d(p, x, y) + d(p, y, x) = dS(p,x≻y)(x, y) + dS(p,y≻x)(y, x) = 1,

which is (3.11). Let us suppose that (3.12) does not hold for some p ∈ P and for some
distinct alternatives x, y, z ∈ X . Then (3.16) is also violated by these p, x, y, and z, i.e.,

d(p, x, y) = 1, d(p, y, z) = 1, and d(p, z, x) = 1.

It means, by (3.14), that

dS(p,x≻y)(x, y) = 1, dS(p,y≻z)(y, z) = 1, and dS(p,z≻x)(z, x) = 1,
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respectively. Regarding the triple {x, y, z}, there are six patterns of preference orderings at
this p. We partition the whole set N of players into the six subsets as follows:

Ā := { i ∈ N | x ≻p
i z ≻p

i y }, B̄ := { i ∈ N | y ≻p
i x ≻p

i z },
C̄ := { i ∈ N | z ≻p

i y ≻p
i x }, Ū := { i ∈ N | x ≻p

i y ≻p
i z },

V̄ := { i ∈ N | z ≻p
i x ≻p

i y }, W̄ := { i ∈ N | y ≻p
i z ≻p

i x }.

Since S(p, x ≻ y) = Ā ∪ Ū ∪ V̄ , S(p, y ≻ z) = B̄ ∪ Ū ∪ W̄ , and S(p, z ≻ x) = C̄ ∪ V̄ ∪ W̄
hold, we have

dĀ∪Ū∪V̄ (x, y) + dB̄∪Ū∪W̄ (y, z) + dC̄∪V̄ ∪W̄ (z, x) = 3.

This contradicts (3.6) because the sets Ā, B̄, C̄, Ū , V̄ , and W̄ are all disjoint, their union
coincides with N , and Ā is a subset of NP(x ≻ z ≻ y), B̄ ⊆ NP(y ≻ x ≻ z), etc.

Now we see the one-to-one correspondence between an ASWF and a solution to Integer
Linear Inequality Representation of ASWFs under the transformations (3.7), (3.13) and
(3.14).

When (3.5) is assumed, the transitivity inequalities (3.6) ‘for all “ordered” triples’ can
be substituted for those ‘for all “unordered” triples’ by evaluating all permutations of every
triple, which contributes to a reduction in the number of constraints.

Definition 3.4 (Transitivity on Unordered Triples). For all unordered triples {x, y, z} of
distinct alternatives x, y, z ∈ X , and for all sets A ⊆ NP(x ≻ z ≻ y), B ⊆ N P(y ≻ x ≻ z),
C ⊆ NP(z ≻ y ≻ x), U ⊆ NP(x ≻ y ≻ z), V ⊆ NP(z ≻ x ≻ y), W ⊆ NP(y ≻ z ≻ x),
such that (A,B,C, U, V, W ) is a partition of N ,

1 ≤ dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2. (3.17)

4. Polyhedral Structure of Linear Inequalities.

This section studies some polyhedral structure determined by the linear inequalities (3.4)-
(3.6) along with the nonnegativity of the variables. We introduce the weakly nonisolated
condition on the preference domain and show that all the extreme points of the polytope are
integers when the domain is single-peaked, single-caved, or the domain on which each triple
of alternatives contains an alternative that cannot be medium, and it satisfies the weakly
nonisolated condition.

Definition 4.1 (Single-peakedness). Let ◃ be a linear ordering on X , i.e., ◃ ∈ L(X ). The
domain Ω is called single-peaked with respect to ◃ if Ω is a subset of ΩP (◃) defined as

ΩP (◃) := {≻∈ L(X ) | for every distinct x, y, z ∈ X with x◃ y ◃ z, y ≻ x or y ≻ z holds. }

We refer to the linear ordering ◃ as the reference linear ordering.

The class of single-peaked domains is well known and seen for example in [2, 11]. Con-
cerning the polyhedral structure on single-peaked domains the following is claimed in [12].

Claim [Sethuraman et al. [12], Theorem 10] When Ω is single-peaked (with respect to
◃ ∈ L(X )) the set of nonnegative solutions satisfying (3.4)-(3.6) is an integral polytope,
i.e., all the extreme points are integer vectors.

We discuss here an example of the ASWF linear inequality formulation and its polytope
on a single-peaked domain.

c⃝ Operations Research Society of Japan JORSJ (2009) 52-2
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Example 4.2. Let n = 2, X = {u, v, w, x, y, z}, Ω = {u ≻ v ≻ w ≻ x ≻ y ≻ z, z ≻ y ≻
x ≻ w ≻ v ≻ u}, and the reference linear ordering ◃ be u◃v◃w◃x◃y◃z. The domain Ω
is obviously single-peaked with respect to ◃. We show below its ASWF linear inequalities
(3.4), (3.5), and (3.17) that determine a polytope. Note that we choose here an unordered
triple {a, b, c} with a◃ b◃ c to enumerate all the inequalities of (3.17) for arbitrary distinct
alternatives a, b, c ∈ X . The sets A, B, V , and W in (3.17) must always be empty since
only the preferences with a ≻ b ≻ c and c ≻ b ≻ a are admissible.

For all pairs of distinct alternatives a, b ∈ X ,
dN (a, b) = 1, d∅(a, b) = 0, d{2}(a, b) = 1 − d{1}(b, a).

For all unordered triple {a, b, c} of alternatives a, b, c ∈ X such that a ◃ b ◃ c,
and for all disjoint sets U,C such that C ∪ U = N ,

1 ≤ dU(a, b) + dU(b, c) + dC(c, a) ≤ 2.

(4.1)

For this system of inequalities,

d{1}(u, v) = 0.5, d{1}(u,w) = 0, d{1}(u, x) = 0.5, d{1}(u, y) = 0.5, d{1}(u, z) = 0,
d{1}(v, u) = 0, d{1}(v, w) = 0, d{1}(v, x) = 0.5, d{1}(v, y) = 0, d{1}(v, z) = 0.5,
d{1}(w, u) = 0, d{1}(w, v) = 0, d{1}(w, x) = 0.5, d{1}(w, y) = 0.5, d{1}(w, z) = 0.5,
d{1}(x, u) = 0, d{1}(x, v) = 0, d{1}(x,w) = 0, d{1}(x, y) = 0, d{1}(x, z) = 0,
d{1}(y, u) = 0, d{1}(y, v) = 0, d{1}(y, w) = 0, d{1}(y, x) = 0, d{1}(y, z) = 0.5,
d{1}(z, u) = 0, d{1}(z, v) = 0, d{1}(z, w) = 0, d{1}(z, x) = 0, d{1}(z, y) = 0,
and dN (a, b) = 1, d∅(a, b) = 0, d{2}(a, b) = 1 − d{1}(b, a)

for all pairs of distinct alternatives a, b ∈ X ,
(4.2)

is a feasible solution and is seen to be the unique solution to the following equalities:

d{1}(u,w) = 0, d{1}(u, z) = 0, d{1}(v, u) = 0, d{1}(v, w) = 0, d{1}(v, y) = 0,
d{1}(w, u) = 0, d{1}(w, v) = 0, d{1}(x, u) = 0, d{1}(x, v) = 0, d{1}(x,w) = 0,
d{1}(x, y) = 0, d{1}(x, z) = 0, d{1}(y, u) = 0, d{1}(y, v) = 0, d{1}(y, w) = 0,
d{1}(y, x) = 0, d{1}(z, u) = 0, d{1}(z, v) = 0, d{1}(z, w) = 0, d{1}(z, x) = 0,
d{1}(z, y) = 0,
d{1}(u, v) + d{1}(v, y) + d{2}(y, u) = 1, d{1}(u,w) + d{1}(w, x) + d{2}(x, u) = 1,
d{1}(u,w) + d{1}(w, y) + d{2}(y, u) = 1, d{1}(u, x) + d{1}(x, y) + d{2}(y, u) = 1,
d{1}(v, w) + d{1}(w, x) + d{2}(x, v) = 1, d{1}(v, w) + d{1}(w, z) + d{2}(z, y) = 1,
d{1}(v, x) + d{1}(x, z) + d{2}(z, v) = 1,
d{1}(u, v) + d{1}(v, z) + d{2}(z, u) = 2, d{1}(u, y) + d{1}(y, z) + d{2}(z, u) = 2,
and dN (a, b) = 1, d∅(a, b) = 0, d{2}(a, b) = 1 − d{1}(b, a)

for all pairs of distinct alternatives a, b ∈ X .

Thus the fractional solution given by (4.2) is an extreme point of the polytope determined
by the linear inequality system (4.1). This is a counter-example to Theorem 10 in [12].

We impose an additional condition on a single-peaked domain and make the polytope
integral. For the introduction of the new condition let us present the commonly known
concept of a trivial pair of alternatives on admissible preferences, and then we define triviality
on an unordered triple of distinct alternatives.
Definition 4.3 (Trivial Pair). An ordered pair (x, y) of distinct alternatives x, y ∈ X is
said to be a trivial pair on Ω if x ≻ y holds for all preference orderings in Ω.
Definition 4.4 (Triviality over an Unordered Triple). For an unordered triple of distinct
alternatives x, y, z ∈ X , we say that {x, y, z} has a trivial pair on Ω if at least one of (x, y),
(y, x), (x, z), (z, x), (y, z), and (z, y) is a trivial pair.
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Then we refer to the notion of an isolated triple, which is originally proposed by [12],
and define nonisolation on an unordered triple.

Definition 4.5 (Isolated Triple). An ordered triple (x, y, z) of distinct alternatives x, y, z ∈
X , is said to be an isolated triple on Ω if there exists a preference ordering in Ω with
x ≻ y ≻ z and there does not exist preference ordering in Ω with y ≻ z ≻ x or z ≻ x ≻ y.

Definition 4.6 (Nonisolation over an Unordered Triple). For an unordered triple of distinct
alternatives x, y, z ∈ X , we say that {x, y, z} has nonisolation on Ω if none of (x, y, z),
(y, z, x), (z, x, y), (x, z, y), (z, y, x), and (y, x, z) is an isolated triple.

From the above definitions we finally introduce the condition on the preference domain
that we call weak nonisolation and show the corrected version of Theorem 10 in [12].

Definition 4.7 (Weak Nonisolation). The domain Ω is said to be weakly nonisolated if
every unordered triple in X has either a trivial pair or nonisolation on Ω.

Note that the domain Ω in Example 4.2 is not weakly nonisolated because (x, y, z) is an
isolated triple while there is no trivial pair on Ω.

Theorem 4.8. When Ω is single-peaked with respect to the reference linear ordering ◃ ∈
L(X ) and weakly nonisolated, the set of nonnegative solutions satisfying (3.4)-(3.6) is an
integral polytope.

Proof. We follow the technique of proof in [12]: given an arbitrary nonnegative solution
to the linear inequalities, we round it to an integer by a certain procedure, show that
the rounded solution still satisfies the inequalities, and see that these facts guarantee the
integrality of the polytope. Let OP be the polytope that we are to discuss, that is, the
set of nonnegative solutions satisfying (3.4), (3.5), and (3.17) instead of (3.6) on the given
P = Ωn. Let d be an arbitrary vector of dS(x, y)’s with d ∈ OP . We generate a random
number Z from the uniform distribution between 0 and 1. We round the vector d to a 0-1
vector, say d′, by the following way: for each pair of distinct alternatives a, b ∈ X , and for
each S with NP(a ≻ b) \ NP(b ≻ a) ⊆ S ⊆ NP(a ≻ b),

if a ◃ b, d′
S(a, b) :=

{
1 if dS(a, b) > Z,

0 otherwise,
else, d′

S(a, b) :=

{
1 if dS(a, b) ≥ 1 − Z,

0 otherwise.

We see that d′ trivially satisfies (3.4) for any Z. Because dS(x, y) + dN\S(y, x) = 1 for
an arbitrary pair of distinct alternatives x, y ∈ X and for an arbitrary but appropriate S,
dS(x, y) > Z holds if and only if dN\S(y, x) < 1 − Z holds and dS(x, y) ≤ Z if and only
if dN\S(y, x) ≥ 1 − Z. Either one of dS(x, y) or dN\S(y, x) is 1 and the other is 0 when
rounded, which means that (3.5) is also satisfied for d′.

Take an arbitrary triple of distinct alternatives x, y, z ∈ X with x ◃ y ◃ z, and consider
(3.17) for {x, y, z}. By the single-peakedness of the domain with respect to ◃, there does
not exist a preference in Ω such that x ≻ z ≻ y or z ≻ x ≻ y. The sets NP(x ≻ z ≻ y)
and NP(z ≻ x ≻ y) are empty, and (3.17) for {x, y, z} can be written without the sets A
and V : for all sets B ⊆ NP(y ≻ x ≻ z), C ⊆ NP(z ≻ y ≻ x), U ⊆ NP(x ≻ y ≻ z),
W ⊆ NP(y ≻ z ≻ x), such that (B, C, U,W ) is a partition of N ,

1 ≤ dU(x, y) + dB∪U∪W (y, z) + dC∪W (z, x) ≤ 2. (4.3)

Case 1: {x, y, z} has a trivial pair. When (x, y) is trivial, there does not exist a preference
with y ≻ x, which indicates that NP(y ≻ x ≻ z), NP(z ≻ y ≻ x), and NP(y ≻ z ≻ x) are
all empty. Since (B,C, U,W ) is a partition of N , U must be N , and we have dU(x, y) = 1,
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dB∪U∪W (y, z) = 1, and dC∪W (z, x) = d∅(z, x) = 0 from (3.4) and (3.5). Then the rounded
solution satisfies (4.3), for 1 is rounded to 1 and 0 to 0 for any Z.

When (y, x) is trivial, NP(x ≻ y ≻ z) = ∅, and dU(x, y) = d∅(x, y) = 0. Then the
rounded solution d′ trivially satisfies the “less than or equal to 2” part of (4.3). The rest is
to show that

1 ≤ dB∪W (y, z) + dC∪W (z, x)

is satisfied even after d is rounded. We see that if dB∪W (y, z) ≤ Z, then dC∪W (z, x) ≥ 1−Z.
Therefore d′ satisfies this inequality from the rounding rule as well as y ◃ z and x ◃ z.

When (x, z) is trivial, NP(z ≻ y ≻ x) and NP(y ≻ z ≻ x) are the empty set. Ac-
cordingly B ∪ U = N holds. This indicates dB∪U∪W (y, z) = 1 and dC∪W (z, x) = 0, so the
rounded d′ clearly satisfies (4.3).

When (z, x) is trivial, it means NP(y ≻ x ≻ z) = NP(x ≻ y ≻ z) = ∅. Then
dU(x, y) = 0, and dC∪W (z, x) = 1 due to C ∪ W = N . In this case d′ satisfies (4.3) again.

When (y, z) is trivial, C ⊆ NP(z ≻ y ≻ x) = ∅, and dB∪U∪W (y, z) = 1 since B ∪U ∪W
must be N . The rounded solution trivially satisfies the “greater than or equal to 1” part of
(4.3). The rest is to prove that

dU(x, y) + dW (z, x) ≤ 1

is kept satisfied after the rounding procedure. We see that if dU(x, y) > Z, then dW (z, x) <
1 − Z. Hence by x ◃ y and x ◃ z this inequality is satisfied for d′.

When (z, y) is trivial, NP(y ≻ x ≻ z), NP(x ≻ y ≻ z), and NP(y ≻ z ≻ x) are
empty. This means B = U = W = ∅ and C = N . Accordingly we obtain dU(x, y) =
dB∪U∪W (y, z) = 0 and dC∪W (z, x) = 1. The variables do not change if rounded.

Case 2: {x, y, z} does not have a trivial pair. From the single-peakedness of Ω there is not
a preference with z ≻ x ≻ y or x ≻ z ≻ y. Then there exist preferences in Ω with x ≻ y ≻ z,
z ≻ y ≻ x, respectively, otherwise (y, x) or (y, z) is trivial. Since {x, y, z} is nonisolated,
a preference with y ≻ z ≻ x exists in Ω, and also a preference such that y ≻ x ≻ z.
Therefore, NP(y ≻ x ≻ z), NP(z ≻ y ≻ x), NP(x ≻ y ≻ z), and N P(y ≻ z ≻ x) are all
equal to N , and (4.3) holds for any partition (B, C, U,W ) of N . Take an arbitrary partition
(B, C, U,W ), and let W ′ = C ∪W , C ′ = ∅. Because (B, C ′, U,W ′) is also a partition of N ,
d satisfies the following:

2 ≥ dU(x, y) + dB∪U∪W ′(y, z) + dC′∪W ′(z, x) = dU(x, y) + dB∪U∪C∪W (y, z) + dC∪W (z, x)

= dU(x, y) + 1 + dC∪W (z, x).

By rounding dU(x, y) and dC∪W (z, x) in this inequality, we have

d′
U(x, y) + d′

C∪W (z, x) ≤ 1

from the rounding procedure together with x◃y and x◃z. We see that d′ satisfies the “less
than or equal to 2” part of (4.3), whether dB∪U∪W (y, z) is rounded to 1 or 0. Regarding the
“greater than or equal to 1” part of (4.3), let B′ = B ∪ U , U ′ = ∅, and (B′, C, U ′,W ) is
also a partition of N . Hence,

1 ≤ dU ′(x, y) + dB′∪U ′∪W (y, z) + dC∪W (z, x) = dB∪U∪W (y, z) + dC∪W (z, x)

holds. If we round the vector d in this inequality, then

d′
B∪U∪W (y, z) + d′

C∪W (z, x) ≥ 1
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is obtained. This observation implies that d′ satisfies the “greater than or equal to 1” part
of (4.3) regardless of the rounded value of dU(x, y). Hence we have confirmed that for any
d ∈ OP the rounded vector d′ is also in OP .

Now we are ready to consider our main problem. Suppose that the polytope OP , the
set of nonnegative solutions which satisfies (3.4), (3.5), and (3.17), has an extreme point
which is not an integer. Here we let d̄ be such a point. Since d̄ is an extreme point of OP

there exists a cost vector c such that d̄ becomes the unique optimal solution to the linear
programming problem:

(P )

∣∣∣∣ minimize c⊤d
subject to d ∈ OP

where c⊤ denotes the transpose of c. We generate a random number Z and round d̄ by the
procedure proposed above. The rounded vector, denoted by d̄′, is still in OP as we have
discussed. Now d̄ is assumed to be the unique optimal solution to (P), then

c⊤d̄′ > c⊤d̄ (4.4)

holds for any Z. Meanwhile, the expected value of each component of d̄′ is

if a ◃ b, E(d̄′
S(a, b)) = 0 × P (Z ≥ d̄S(a, b)) + 1 × P (Z < d̄S(a, b)) = d̄S(a, b),

else, E(d̄′
S(a, b)) = 0 × P (Z < 1 − d̄S(a, b)) + 1 × P (Z ≥ 1 − d̄S(a, b)) = d̄S(a, b),

for each a, b ∈ X and for each S which lies between NP(a ≻ b)\NP(b ≻ a) and NP(a ≻ b),
since Z is uniformly distributed between 0 and 1. This fact implies

E(c⊤d̄′) = c⊤d̄,

contradicting (4.4). Thus all the extreme points of OP are integers.

We give another type of preference domains, called single-caved domains, and show that
such domains along with weakly nonisolation condition also form integral polytopes.
Definition 4.9 (Single-cavedness). The domain Ω is called single-caved with respect to
◃ ∈ L(X ) if Ω is a subset of ΩC(◃) defined as

ΩC(◃) := {≻∈ L(X ) | for every distinct x, y, z ∈ X with x◃ y ◃ z, x ≻ y or z ≻ y holds. }

Theorem 4.10. When Ω is single-caved with respect to ◃ ∈ L(X ) and weakly nonisolated,
the set of nonnegative solutions satisfying (3.4)-(3.6) is an integral polytope.

Proof. The same proof technique applies to this case as the case where Ω is single-peaked,
so we omit the proof.

Single-peakedness (with respect to some reference ordering) is interpreted as that at
each player’s admissible preference a certain one in any triple of distinct alternatives cannot
be the worst among the three, while single-cavedness is that a certain one in any triple
cannot be the best. Both of them are treated as special cases of Value Restriction (VR) by
Sen [10, 11]. Another example of VR referred to in [10] is that one alternative cannot be
medium among three alternatives. We derive integral polytopes on the domains that have
such property.
Definition 4.11 (Cannot-be-medium Property). For an ordered triple (x, y, z) of distinct
alternatives x, y, z ∈ X , it is said that y cannot be medium among (x, y, z) on Ω if there
does not exist a preference ordering in Ω such that x ≻ y ≻ z or z ≻ y ≻ x.
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Theorem 4.12. When each triple of alternatives contains an alternative that cannot be
medium on Ω and Ω is weakly nonisolated, the set of nonnegative solutions satisfying (3.4)-
(3.6) is an integral polytope.

Proof. Again we apply the same technique as when Ω is single-peaked, except that the
rounding rule is changed as follows: for each pair of distinct alternatives a, b ∈ X , and for
each S with NP(a ≻ b) \ NP(b ≻ a) ⊆ S ⊆ NP(a ≻ b),

if 1 ∈ S, d′
S(a, b) :=

{
1 if dS(a, b) > Z,

0 otherwise,
else, d′

S(a, b) :=

{
1 if dS(a, b) ≥ 1 − Z,

0 otherwise.

Given an arbitrary vector d ∈ OP , the rounded d′ clearly satisfies (3.4) for any Z, and
also (3.5) since player 1 is always a member of either S or N \ S but not both. Now it
suffices to show that d′ satisfies (3.17). Let us take an arbitrary triple of distinct alternatives
x, y, z ∈ X , and consider (3.17) for {x, y, z} with y cannot be medium. Then NP(x ≻ y ≻
z) = NP(z ≻ y ≻ x) = ∅ holds, and (3.17) for {x, y, z} reduces to this: for all sets
A ⊆ NP(x ≻ z ≻ y), B ⊆ NP(y ≻ x ≻ z), V ⊆ NP(z ≻ x ≻ y), W ⊆ NP(y ≻ z ≻ x),
such that (A,B, V,W ) is a partition of N ,

1 ≤ dA∪V (x, y) + dB∪W (y, z) + dV ∪W (z, x) ≤ 2. (4.5)

Case 1: {x, y, z} has a trivial pair. When (x, y) is trivial, B and W must be empty and
A ∪ V = N holds. Then dA∪V (x, y) = dN (x, y) = 1 as well as dB∪W (y, z) = d∅(y, z) = 0
holds. Recall that 1 is rounded to 1 and 0 to 0 for any Z, and we see that the rounded d′

satisfies (4.5) regardless of the value of d′
V ∪W (z, x).

When (y, x) is trivial, A = V = ∅ and the union of B and W is the whole set of players.
This time dA∪V (x, y) = 0 and dB∪W (y, z) = 1 hold. Again (4.5) is still satisfied after d is
rounded.

When (x, z) is trivial, both NP(z ≻ x ≻ y) and NP(y ≻ z ≻ x) are empty, and
accordingly V and W are. Then dV ∪W (z, x) = 0 and the rounded d′ trivially satisfies the
“less than or equal to 2” part of (4.5). We round the rest inequality:

1 ≤ dA(x, y) + dB(y, z).

Player 1 is in exactly either A or B, so we see that d′ still satisfies this inequality.
When (z, x) is trivial, it means A = B = ∅ and dV ∪W (z, x) = dN (z, x) = 1. Hence the

“greater than or equal to 1” part of (4.5) is cleared, and

dV (x, y) + dW (y, z) ≤ 1

is still satisfied after the rounding, for player 1 is a member of either V or W but not both.
When (y, z) is trivial, NP(x ≻ z ≻ y) and NP(z ≻ x ≻ y) are empty. The set of players

N is partitioned into B and W , which is the same case as (y, x)-trivial.
When (z, y) is trivial, B ⊆ NP(y ≻ x ≻ z) = ∅ and W ⊆ NP(y ≻ z ≻ x) = ∅. For the

rest of sets it holds that A ∪ V = N . This is the same situation where (x, y) is trivial.
Case 2: {x, y, z} does not have a trivial pair. The cannot-be-medium property of y

means that there is not a preference with x ≻ y ≻ z or z ≻ y ≻ x in Ω. Then it can
be said that there exist preferences such that x ≻ z ≻ y, y ≻ x ≻ z, z ≻ x ≻ y, and
y ≻ z ≻ x. That is because an isolated triple emerges if any one of them is removed. Thus
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(4.5) holds for any partition (A, B, V, W ) of N . Take an arbitrary partition (A,B, V,W ),
and let V ′ = A ∪ V , W ′ = B ∪ W , A′ = B′ = ∅. We see that (A′, B′, V ′,W ′) is a partition
of N . Then d satisfies the following:

2 ≥ dA′∪V ′(x, y) + dB′∪W ′(y, z) + dV ′∪W ′(z, x) = dA∪V (x, y) + dB∪W (y, z) + 1.

We round dA∪V (x, y) and dB∪W (y, z) in this inequality, and obtain

d′
A∪V (x, y) + d′

B∪W (y, z) ≤ 1

since player 1 is either in A ∪ V or in B ∪ W . This inequality implies that the “less than
or equal to 2” part of (4.5) is satisfied at d′. With regard to the “greater than or equal to
1” part of (4.5), let A′ = A ∪ V , V ′ = B ∪ W , V ′ = W ′ = ∅, and we have a partition
(A′, B′, V ′,W ′) of the set of the players. Then d satisfies the following:

1 ≤ dA′∪V ′(x, y) + dB′∪W ′(y, z) + dV ′∪W ′(z, x) = dA∪V (x, y) + dB∪W (y, z).

We round the d in this inequality and obtain

d′
A∪V (x, y) + d′

B∪W (y, z) ≥ 1.

This observation tells us that d′ satisfies the “greater than or equal to 1” part of (4.5).
We have confirmed that for a given d ∈ OP , the rounded vector d′ is also in OP . Then

assuming that there is a noninteger extreme point leads to a contradiction as we have seen
in the single-peaked case.

5. Probabilistic ASWFs and Linear Inequality Representation.

In this section we discuss the relation between a noninteger solution to the linear inequality
representation and a probabilistic social welfare function. A probability measure on L(X )
is a function ℓ : 2L(X ) → [0, 1] such that ℓ(∅) = 0, ℓ(L(X )) = 1, and ℓ(ω1 ∪ ω2) =
ℓ(ω1)+ ℓ(ω2)− ℓ(ω1 ∩ω2) for all ω1, ω2 ∈ 2L(X ). We let L(L(X )) be the set of all probability
measures on L(X ). We introduce here a probabilistic social welfare function of [4] which
gives each linear ordering on X a certain probability of its occurrence when a profile is input.
Definition 5.1. A probabilistic social welfare function (on linear orderings) is a mapping,
say h, that maps each profile to a probability measure on L(X ), that is, h : P → L(L(X )),
where P = Ωn ⊆ L(X )n. The probabilistic social welfare function h is said to satisfy
unrestricted domain property when Ω = L(X ).

Let p ∈ P be a profile, then h(p) is a probability measure on L(X ). Given distinct
alternatives x, y ∈ X , consider the set {◃ ∈ L(X ) | ◃|{x,y} = x ≻ y}. We define rh(p, x ≻
y) as the sum of probabilities that h gives to the preference orderings such that x ≻ y, i.e.,

rh(p, x ≻ y) := h(p)
(
{◃ ∈ L(X ) | ◃|{x,y} = x ≻ y}

)
.

We call the function h satisfying the probabilistic version of Arrow’s two axioms shown
below a probabilistic Arrovian Social Welfare Function (probabilistic ASWF for short).
Definition 5.2 (Axiom of Probabilistic Pareto Principle (PPP)). If the property that

x ≻p
i y for all i ∈ N implies rh(p, x ≻ y) = 1

holds for any pair of distinct alternatives x, y ∈ X and for any profile p ∈ P , then the
probabilistic social welfare function h is said to have the Pareto principle.
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Definition 5.3 (Axiom of Probabilistic Independence of Irrelevant Alternatives (PIIA)). If
the property that

≻p1

i |{x,y} = ≻p2

i |{x,y} for all i ∈ N implies rh(p1, x ≻ y) = rh(p2, x ≻ y)

holds for any pair of distinct alternatives x, y ∈ X and for any pair of distinct profiles
p1, p2 ∈ P , then the probabilistic social welfare function h is said to satisfy independence of
irrelevant alternatives.

We show that a given probabilistic ASWF induces a real vector satisfying the inequalities
of the ASWF representation and it derives a subadditive function of [4] on the family of
subsets of players under unrestricted domain property. The vector is constructed in the
following way: given an h : P → L(L(X )), we set

dS(x, y) :=

∑
p∈CP (S,x≻y) rh(p, x ≻ y)

|CP(S, x ≻ y)|
(5.1)

for each pair of distinct alternatives x, y ∈ X and for each set S such that N P(x ≻ y) \
NP(y ≻ x) ⊆ S ⊆ NP(x ≻ y).
Theorem 5.4. For every probabilistic ASWF, dS(x, y) defined by (5.1) is a nonnegative
solution to (3.4)-(3.6).

Proof. Note that

{◃ ∈ L(X ) | ◃|{x,y} = x ≻ y} ∪ {◃ ∈ L(X ) | ◃|{x,y} = y ≻ x} = L(X ),

and we see from the definition of rh that

rh(p, x ≻ y) + rh(p, y ≻ x) = 1

and

rh(p, x ≻ y) + rh(p, y ≻ z) = rh(p, x ≻ y or y ≻ z) + rh(p, x ≻ y and y ≻ z)

≤ 1 + rh(p, x ≻ z)

hold for any profile p ∈ P and for any distinct x, y, z ∈ X . We simply let

d(p, x, y) := rh(p, x ≻ y),

then (3.11) as well as (3.12) in Section 3 is satisfied. We also see that (3.9) holds because of
Axiom (PPP), and (3.10) holds because of Axiom (PIIA). As we have seen in the proof of
Theorem 3.2 that dS(x, y) defined by d(p, x, y) through (3.13) satisfies (3.4)-(3.6), dS(x, y)
defined by (5.1) satisfies (3.4)-(3.6).

Note that under Axiom (PIIA) dS(x, y) of (5.1) satisfies

dS(x, y) = rh(p, x ≻ y) for any p ∈ CP(S, x ≻ y) (5.2)

or equivalently
dS(p,x≻y)(x, y) = rh(p, x ≻ y). (5.3)

While the following statement can be found in [12], we give the proof to make this paper
more self-contained.
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Lemma 5.5. When the domain is unrestricted, the solution dS(x, y) to (3.4)-(3.6) does not
depend on the pair (x, y) of alternatives.

Proof. We consider (3.6) for an arbitrary triple of distinct alternatives x, y, z ∈ X . By
unrestricted domain property, NP(x ≻ z ≻ y), NP(y ≻ x ≻ z), NP(z ≻ y ≻ x), NP(x ≻
y ≻ z), NP(z ≻ x ≻ y), and NP(y ≻ z ≻ x) are all N . Take an arbitrary S ⊆ N and let
U = S, W = N \ S, the other sets be empty. Then the following holds:

dS(x, y) + dS∪(N\S)(y, z) + dN\S(z, x) ≤ 2.

Applying (3.4) and (3.5) to this inequality ensures

dS(x, y) ≤ dS(x, z).

Meanwhile, we set U = S, V = N \ S and have

dS(y, z) ≤ dS(x, z).

Exchanging x, y and z we have

dS(x, y) ≤ dS(x, z) ≤ dS(y, z) ≤ dS(y, x) ≤ dS(z, x) ≤ dS(z, y) ≤ dS(x, y),

which means that the value of dS(x, y) does not depend on the pair of alternatives but only
the set S for {x, y, z}. If we repeat the procedure for all triples of alternatives we complete
the proof.

Thus, when the domain is unrestricted, the system (3.4)-(3.6) reduces to

dN = 1, (5.4)

dS + dN\S = 1 for each S ⊆ N , (5.5)

dA∪U∪V + dB∪U∪W + dC∪V ∪W ≤ 2 for each partition (A,B, C, U, V, W ) of N . (5.6)

Now we are ready to prove the following theorem via the linear inequality representation
of ASWFs.
Theorem 5.6 (Barberá and Sonnenschein [4]). For every probabilistic ASWF h on the
unrestricted domain, there exists a function µ : 2N → R such that

µ(S(p, x ≻ y)) = rh(p, x ≻ y) (5.7)

for each profile p ∈ P and for each pair of distinct alternatives x, y ∈ X , and furthermore
µ satisfies

µ(N ) = 1, (5.8)

µ(S) + µ(N \ S) = 1 for each S ⊆ N , (5.9)

µ(S ∪ T ) ≤ µ(S) + µ(T ) for each S, T ⊆ N (subadditivity). (5.10)

Proof. Suppose d satisfies (5.4)-(5.6) and let S and T be arbitrary subsets of N . We set
C = S ∩ T, U = N \ (S ∪ T ), V = T \ S and W = S \ T . Then we see

dS∪T ≤ dS + dT .

Since we have seen (5.3), we simply let

µ(S) := dS.
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Note that the following monotonicity condition in the original version of Theorem 5.6:

µ(S ′) ≤ µ(S) for each S, S ′ ⊆ N with S ′ ⊆ S,

can be derived from (5.8)-(5.10) by setting T = N \ S ′ as follows:

µ(S) + µ(N \ S ′) ≥ µ(S ∪ (N \ S ′)) = µ(N ) = 1 = µ(S ′) + µ(N \ S ′).

We next consider the construction of a probabilistic ASWF from a solution to the linear
inequalities. Let HP be the set of all probabilistic ASWFs on the given P = Ωn ⊆ L(X )n,
and recall that OP defined in the proof of Theorem 4.8 is the set of nonnegative solutions
satisfying (3.4)-(3.6). We denote by ΓP : HP → OP a function that assigns a nonnegative
solution in OP to a probabilistic ASWF by (5.1). Concerning its characteristics, the first
question is whether ΓP is injective. The following example shows that it is not injective in
general.
Example 5.7. Let n = 2, X = {x, y, z}, and Ω = {x ≻ y ≻ z, z ≻ y ≻ x}. Then
there are four profiles, named p1, . . . , p4. We define two probabilistic ASWFs h1, h2 where
the probability of each social preference being selected at each profile is shown in Table 1.
While these two functions h1 and h2 are different, they give the same value of rh and hence
dS(x, y). In fact, take p2 for example, then we have

rh1(p2, x ≻ y) = h1(p2) ({x ≻ y ≻ z, x ≻ z ≻ y, z ≻ x ≻ y}) =
1

2
+ 0 + 0 =

1

2
,

and

rh2(p2, x ≻ y) = h1(p2) ({x ≻ y ≻ z, x ≻ z ≻ y, z ≻ x ≻ y}) =
1

4
+

1

4
+ 0 =

1

2
.

The second question is whether ΓP is surjective, i.e., if there is a probabilistic ASWF for
each point of OP . Concerning the problem, we should observe the result of McLennan [7]
that when the number of alternatives is six or more and the domain is unrestricted, the
function µ in Theorem 5.6 is additive, that is,

µ(S ∪ T ) = µ(S) + µ(T ) for all disjoint S, T ⊆ N (5.11)

is also satisfied in addition to (5.8)-(5.10). Using this result we see by the next example
that ΓP is not surjective in general.
Example 5.8. Let n ≥ 3, |X | ≥ 6, and P = Ωn = L(X )n, i.e., unrestricted domain. For
each pair of distinct alternatives x, y ∈ X , and for each set S ⊆ N , we set

dS(x, y) :=


1 if S = N ,
1
2

if ∅ ( S ( N ,

0 if S = ∅.

This is clearly a fractional solution to (3.4)-(3.6). Suppose that this is obtained from a
probabilistic ASWF h through (5.1). Then µ(S) = dS(x, y) from Lemma 5.5 and equations
(5.3) and (5.7). Equation (5.11) is violated, however, when we partition N into three
nonempty sets (S1, S2, S3) and observe that µ(S1) + µ(S2) = 1 whereas µ(S1 ∪ S2) = µ(N \
S3) = 1/2. Hence dS(x, y) is not an image of ΓP .
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Table 1: Two different probabilistic ASWFs that yield the same dS(x, y)

h(p) x ≻ y ≻ z z ≻ y ≻ x x ≻ z ≻ y y ≻ z ≻ x y ≻ x ≻ z z ≻ x ≻ y

h1

(
x ≻p1

1 y ≻p1
1 z

x ≻p1
2 y ≻p1

2 z

)
1 0 0 0 0 0

h1

(
x ≻p2

1 y ≻p2
1 z

z ≻p2
2 y ≻p2

2 x

)
1/2 1/2 0 0 0 0

h1

(
z ≻p3

1 y ≻p3
1 x

x ≻p3
2 y ≻p3

2 z

)
1/2 1/2 0 0 0 0

h1

(
z ≻p4

1 y ≻p4
1 x

z ≻p4
2 y ≻p4

2 x

)
0 1 0 0 0 0

h2

(
x ≻p1

1 y ≻p1
1 z

x ≻p1
2 y ≻p1

2 z

)
1 0 0 0 0 0

h2

(
x ≻p2

1 y ≻p2
1 z

z ≻p2
2 y ≻p2

2 x

)
1/4 1/4 1/4 1/4 0 0

h2

(
z ≻p3

1 y ≻p3
1 x

x ≻p3
2 y ≻p3

2 z

)
1/4 1/4 1/4 1/4 0 0

h2

(
z ≻p4

1 y ≻p4
1 x

z ≻p4
2 y ≻p4

2 x

)
0 1 0 0 0 0

The following result shows that we have only to check the extreme points of the polytope
when we judge whether ΓP is surjective.

Theorem 5.9. The function ΓP is surjective if and only if for each extreme point d∗ of OP

there exists a probabilistic ASWF h∗ such that ΓP(h∗) = d∗.

Proof. The “only if” part is trivial, and we show the “if” part. For a given P we denote
all the extreme points of polytope OP by d∗

1, . . . , d
∗
K. Then for any point d̄ in OP there is

λ1, . . . , λK satisfying
∑K

i=1 λi = 1 as well as λi ≥ 0 for each i ∈ {1, . . . ,K} and d̄ can be
written as

d̄ =
K∑

i=1

λid
∗
i .

For each i ∈ {1, . . . ,K} let h∗
i a probabilistic ASWF with ΓP(h∗

i ) = d∗
i . We define h̄ as

h̄(p)(◃) :=
K∑

i=1

λih
∗
i (p)(◃)

for each p ∈ P and for each ◃ ∈ L(X ), then h̄ is a probabilistic ASWF and ΓP(h̄) = d̄.

Let us consider the polytope determined by (5.8)-(5.10), (5.11) and the nonnegativity
constraint of µ. Combining (5.8) and (5.11), we have (5.9). Furthermore (5.10) is obtained
from (5.11) and nonnegativity:

µ(T ) + µ(S) − µ(S ∪ T ) = µ(T ) + µ(S ∩ T ) + µ(S \ T ) − µ(S \ T ) − µ(T )

= µ(S ∩ T ) ≥ 0.
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Thus (5.8)-(5.11) together with the nonnegativity constraint is equivalent to the system
of (5.8), (5.11) and the nonnegativity. Therefore there is an n-dimensional vector π =
(π1, . . . , πn) in the regular simplex Π := { π ∈ Rn | π ≥ 0;

∑n
i=1 πi = 1 } such that

µ(S) =
∑
i∈S

πi (5.12)

holds for every S ⊆ N . Conversely, for a given π ∈ Π, µ(S) :=
∑

i∈S πi satisfies (5.8), (5.11)
and nonnegativity. Therefore the polytope defined by (5.8)-(5.11) and the nonnegativity is
the image of the regular simplex Π ⊆ Rn under the linear function defined by (5.12). Since
each extreme point of the polytope is an image of an extreme point of Π, which is a unit
vector, we see that all the extreme points of the polytope are integer vectors. In fact, for
each i ∈ N let µi ∈ R2N be defined by

µi(S) :=

{
1 if i ∈ S,

0 otherwise.

Then the set of extreme points of the polytope consists of µi’s for i ∈ N . Since, as we have
seen, an integer extreme point of the polytope is an image of an ASWF, this together with
Theorem 5.9 means that a mapping from a probabilistic ASWF to the polytope determined
by (5.8)-(5.11) and µ ≥ 0 via (5.7) is surjective.

6. Concluding Remarks.

This paper presented a study on the linear inequality representation of Arrovian Social
Welfare Functions. We gave a proof of the ASWF integer linear inequality representation
theorem of [12] by introducing the profile-dependent integer linear inequality representation
of ASWFs. Our way of proof can be applied to derive another linear inequality formulation
of ASWFs for different preference domain frameworks such as the one discussed in Ando
et al. [1] and in Ohbo et al. [8] as well as an ASWF on weak orderings. See Sato [9] for
further details. We also studied the polyhedral structure determined by the original ASWF
linear inequalities on single-peaked domains, single-caved domains, and the domains where
each triple of alternatives contains one that cannot be medium, showing that the set of
nonnegative solutions to the inequalities forms an integral polytope when these domains
satisfy weakly nonisolated condition. We then showed that a real vector satisfying the
linear inequalities can be created from any probabilistic ASWF and derived the subadditive
function of [4] as a special case. We also considered the construction of a probabilistic
ASWF from a given nonnegative solution to the inequalities.

There still remain interesting problems unsolved. One is the characterization of social
choice functions as a system of inequalities. Our counter-example to [12] indicates that
necessary conditions to form an integral polytope on single-peaked domains are still open.
A construction problem of a probabilistic ASWF from a solution to the linear inequalities on
restricted domains is worth further study. Study of the probabilistic version of social choice
functions in Gibbard [5] through inequality representations is also left for future research.
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[4] S. Barberá and H. Sonnenschein: Preference aggregation with randomized social or-
derings. Journal of Economic Theory, 18 (1978), 244–254.

[5] A. Gibbard: Manipulation of schemes that mix voting with chance. Econometrica, 45
(1977), 665–681.

[6] E. Kalai and E. Muller: Characterization of domains admitting nondictatorial social
welfare functions and nonmanipulable voting procedures. Journal of Economic Theory,
16 (1977), 457–469.

[7] A. McLennan: Randomized preference aggregation: Additivity of power and strategy
proofness. Journal of Economic Theory, 22 (1980), 1–11.

[8] K. Ohbo, M. Tsurutani, M. Umezawa, and Y. Yamamoto: Social welfare function for
restricted individual preference. Pacific Journal of Optimization, 1 (2005), 315–325.

[9] K. Sato: A Study on Linear Inequality Representation of Social Welfare Functions
(Master’s thesis, Graduate School of Systems and Information Engineering, University
of Tsukuba, 2006).

[10] A.K. Sen: A possibility theorem on majority decisions. Econometrica, 34 (1966),
491–499.

[11] A.K. Sen: Collective Choice and Social Welfare (Holden-Day, San Francisco, 1970).

[12] J. Sethuraman, C.P. Teo, and R.V. Vohra: Integer programming and Arrovian social
welfare functions. Mathematics of Operations Research, 28 (2003), 309–326.

Keisuke Sato
Transport Information Technology Division
Railway Technical Research Institute
2-8-38 Hikari-cho, Kokubunji-shi
Tokyo 185-8540, Japan
E-mail: keisato@rtri.or.jp

c⃝ Operations Research Society of Japan JORSJ (2009) 52-2


