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Association or linkage disequilibrium mapping is alternative to identify QTLs in plants. In this study we used

SSR based sorghum diversity research set (SDRS) of 107 sorghum accessions. The representative set includ-

ed a geographically diverse collection of accessions from 27 countries in Asia and Africa. For association

analysis 98 sorghum SSR markers were selected from three previously published linkage maps. Phenotypic

data was recorded for 26 morphological traits. Different association models were used to identify QTLs con-

trolling major agronomic traits including both single QTL approaches as well as a multiple QTL approach.

All models revealed loci having different strength of association with morphological traits. A total of 14

common significant SSR loci were identified by three different models of association analysis namely,

single-QTL models with the effects of population structure, single-QTL models with the effects of population

structure and familial relatedness, and multiple-QTL model with the effects of population structure. These

loci were associated with 12 different morphological traits including days to heading, days to flowering, culm

length, number of tillers, number of panicles and panicle length. Comparing results from different models

may be an efficient way to detect reliable associations in the genome-wide association studies.
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Introduction

Sorghum bicolor L. (Moench) is one of the most important

cereal crops in the world. The small genome of sorghum and

representativeness of tropical grasses because of “C4”

photosynthesis makes it an attractive model for better

understanding of the structure, function, and evolution of

cereal genomes (Paterson 2008). Recently, the idea of utiliza-

tion of association mapping in crop plants is gaining more

attention than conventional linkage mapping. Sorghum is

well suited to association mapping methodologies because

of its medium-range patterns of linkage disequilibrium

(Hamblin et al. 2005) and its self-pollinating mating system.

Association mapping (a.k.a. linkage disequilibrium (LD)

mapping) is a way to detect causal genes by exploiting LD

which is non-random association of alleles at two or more

loci. It exploits both historical recombination and genetic

diversity for high resolution mapping.

Association mapping can be classified into two main cat-

egories (Chengsong et al. 2008). First one is candidate-gene

association mapping. Here candidate genes are selected

based on prior information from different ways e.g. muta-

tional analysis, biochemical pathway or linkage analysis. It

is trait-specific and low cost, but there is a chance to miss

other unknown loci. Another is the genome-wide association

mapping where genome-wide marker polymorphisms are

used to study casual genetic variations. Although a large

number of markers are necessary for detecting association

with complex morphological traits in general, it does not

require any prior information about candidate genes and

there are chances to detect unknown loci. As an alternative

to traditional linkage analysis, association mapping offers

three advantages, (i) increased mapping resolution, (ii) re-

duced research time, and (iii) greater allele number (Yu and

Buckler 2006). Since its introduction to plants (Thornsberry

et al. 2001), association mapping has continued to gain

favorability in genetic research because of advances in high

throughput genomic technologies, interests in identifying

novel and superior alleles, and improvements in statistical

methods.

Pattern of LD is dependent on the occurrence of a new

mutation that is associated with the variants on the chromo-

some on which it arises. Since recombination breaks the as-

sociation, the rate of recombination is a key parameter in the

process of LD decay. The pattern of LD is also affected by

demographic factors, like population size, selection, migra-

tion, and founder effects. Therefore, the analysis of LD pat-

tern is necessary to understand the feasibility and resolution

of mapping based on LD (i.e., association mapping).

Complex breeding histories of many important crops
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have created the complex population structure in germplasm

that hinders the application of association mapping in crop

species (Flint-Garcia et al. 2003). The presence of popula-

tion structure and unequal distribution of alleles within sub-

populations can cause LD between unlinked genes and result

in nonfunctional, spurious associations between a phenotype

and unlinked candidate gene (Knowler et al. 1988, Lander

and Schork 1994). To control false-positive and false-

negative rate, Yu et al. (2006) proposed a mixed-linear-

model method in which effects caused by population structure

estimated by the model-based approach (Pritchard et al.

2000b) and background polygenic effects are included as

independent variables. This method has been applied in

various association mapping studies (e.g., Zhao et al. 2007,

Stich et al. 2008). Iwata et al. (2007, 2009) combined a

Bayesian multiple-QTL mapping approach with association

mapping model including the effects of population structure,

and demonstrated its power and precision of QTL detection

in the genome-wide association study of rice germplasm.

In this study, we conducted genome-wide association

studies in sorghum with multiple association mapping meth-

ods. We also analyzed the LD pattern in our germplasm col-

lection to understand the feasibility and resolution of the

association mapping study. In the association mapping

study, we used two different types of approaches: the single

QTL approaches proposed by Yu et al. (2006) and the

multiple QTL approach proposed by Iwata et al. (2007). We

compared the results obtained from different methods and

tried to detect SSR loci that have strong association with

morphological traits.

Materials and Methods

Plant materials and genomic DNA isolation

An SSR based sorghum diversity research set (SDRS) of

107 accessions (landraces) were selected from our previous

study (Shehzad et al. 2009) which is preserved in National

Institute of Agrobiological Sciences (NIAS), Genebank,

Japan. The SDRS was developed from a geographically

diverse base population of 320 sorghum landraces by the as-

sessment of 38 SSR markers which were randomly selected

from all linkage groups of sorghum. The representative set

includes accessions from 27 geographically diverse coun-

tries selected from Asian and African regions. In SDRS, 25

accessions are from East Asia (Japan; 11, Korea; 7, Taiwan;

1, China; 6), two are from Southeast Asia (Cambodia; 1,

Myanmar; 1), 26 from South Asia (India; 8, Pakistan; 13,

Afghanistan; 2, Bangladesh; 1, Nepal; 2) and two accessions

are from Southwest Asia (Iran; 1, Israel; 1). While the re-

maining 52 accessions are from African origin including

Chad; 2, Congo; 1, Lesotho; 3, Morocco; 5, South Africa; 7,

Central Africa; 1, Sudan; 11, Nigeria; 4, Algeria; 1, Uganda;

4, Ethiopia; 5, Kenya; 3, Zimbabwe; 3 and Tanzania; 2.

Leaves from 40 days old seedlings were cut and then sub-

jected to vacuum freeze drying method for dehydration.

Genomic DNA was extracted from leaf tissues using the

CTAB method described by Murray and Thompson (1980)

with some modification. Extraction buffer was composed

of 2% CTAB, 50 mM Tris-HCl pH 8.0, 10 mM EDTA, 0.7 M

NaCl, 0.1% SDS, 0.1 mg/ml Proteinase K, 2% insoluble

PVP and 2% 2-mercaptoethanol. Chloroform extraction was

performed to remove cellular debris and proteins by using

chloroform-isoamyl alcohol (24 : 1 v/v), DNA was precipi-

tated by the addition of 2-isopropanol and the precipitate

was washed twice in 70%/90% ethanol. The final precipitate

was dissolved in 50 μl of 1/10 TE solution containing RNase

A, incubated at 42°C overnight, and stored at 4°C. The DNA

concentration was measured by NanoDrop ND-1000

(Thermo scientific) spectrophotometer and diluted to a work-

ing concentration of 5 ng/μl.

Selection of SSR markers

Microsatellite primers were selected from published link-

age maps of sorghum as revealed by Bhattramakki et al.

(2000), Kong et al. (2000) and Taramino et al. (1997). All

SSRs were screened by using eight diverse accessions and

finally, a total of 98 markers were selected based on clear

polymorphic banding patterns. The list of 98 sorghum micro-

satellite markers with linkage group (LG), sequence in-

formation, size range and other information are given in

electronic supplementary material (ESM 1). Some of the

SSRs used in this study have homology to known genes as

previously described in Bhattramakki et al. (2000). Such

as Xtxp212 (LG-D) and Xtxp34 (LG-C) have a high degree

of homology to an expressed sequence tag derived from a

gene coding a putative protein in Arabidopsis thaliana (L.),

Xtxp92 (LG-E) has homology to heat-shock-like protein

gene in Picea glauca and Xtxp100 (Kaf) in LG B has homol-

ogy to S. bicolor kafirin gene/gene cluster. Two other SSR

loci, Xtxp38 (lg) in LG C and Xtxp273 (Pbbf) in LG-H have

a high degree of homology to other well-characterized

genes. Similarly three markers are derived from gene loci;

Cba (carbonic anhydrase) and PepC (phosphoenolpyruvate

carboxylase) in LGs C and G, respectively, and Kaf2

(Kafirin2) in LG-J (Bhattramakki et al. 2000). Summary sta-

tistics, including number of alleles, allele richness and gene

diversity for all 98 SSR markers were calculated by using

FSTAT software ver. 2.9.3 (available from http://www.unil.

ch/izea/softwares/fstat.html), updated from Goudet (1995).

PCR conditions and electrophoresis

PCR amplification of sorghum SSRs were performed in

10 μl reaction mixture containing 10 ng DNA template, 10 ×

PCR buffer (Mg2+ concentration: 20 mM), 2 mM dNTPs, 25

ng of each primer and 0.02 U of Blend Taq Plus polymerase

(Toyobo Co., LTD., Japan) enzyme in either Eppendorf

Master cycler or Applied Biosystems 9700/2700 PCR

system and Applied Biosystems 2720 thermal cycler. An-

nealing temperature was determined for all primers by using

Eppendorf Master Cycler ep. gradient S. Thermal cycler pro-

tocol was set as denaturation at 98°C for 3 min, 30 cycles of

98°C (10 s), 60°C (30 s), and 72°C (30 s), followed by 7 min
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at 72°C and then cooling at 4°C. PCR products were run on

10% polyacrylamide gel (10 cm in size) with constant supply

of 200 V power, 500 mA current for 70 min to 120 min de-

pending upon the size of PCR product. 10 × TBE buffer was

used in making the gel while 1 × Tris Glycine Buffer was

subjected to the tank. Gel was stained in ethidium bromide

solution and photograph was taken by using Kodak Digital

Science EDAS 290 ver. 3.6 with Kodak ID Image analysis

software ver. 3.5. Different bands of the same SSR primer

were grouped according to their respective sizes by compar-

ing with 50 bp DNA size marker ladder and genotyping was

done visually according to the format of different softwares

used.

Phenotypic evaluations

The data obtained from the characterization of sorghum

core set in Shehzad et al. (2009) were used here in associa-

tion mapping. The selected set of 107 sorghum accessions

were sown at NIAS field during growing season of year

2007. The statistical design used for field evaluation was

Randomized Complete Block Design (RCBD) with two rep-

lications. From NIAS Genebank sorghum descriptors, 26

major traits were selected for phenotypic evaluation (ESM

2). Among them, continuous type of data was recorded for

12 phenotypic traits including, days to heading (DH), days

to flowering (DF), days to maturity (DM), culm diameter

(CD), grain weight per panicle (GWP), 100 grain weight

(100GW), culm length (CL), number of tillers (NT), number

of panicles (NP), panicle length (PL), leaf length (LL) and

leaf width (LW). Similarly, panicle shape (PS), panicle type

(PT), coleoptile’s color (CC), quantity of lipid white powder

on stem and leaves (LWP), color of midrib (CM), neck

length of panicle (PNL), awn presence (AP), glume color

(GC), growth in early stage (GES), endosperm type (ET),

aphid resistance (AR), number of regenerated tillers (NRT),

regrowth (RG) and resistance to insecticides (RI) were traits

with categorical data.

Population structure and kinship matrix

The population structure among the 107 accessions by

using the genotype data of SSR markers was estimated by

using a program Structure ver. 2.2 (Pritchard et al. 2000a).

The analysis was conducted on 49 markers that were select-

ed, so that distances between adjacent markers were more

than 10 cM in order to avoid using closely linked markers.

The population structure was inferred with Bayesian cluster-

ing analyses with the admixture models in which the number

of populations (J) ranged from 2 to 9. Markov chain Monte

Carlo (MCMC) sampling was repeated 1 × 105 times after 1

× 104 cycles of a burn-in period. The optimal number of pop-

ulations was determined on the basis of estimated logarith-

mic posterior probability of the Bayesian clustering. The

analysis was repeated twice for each number of J. The pos-

terior probability of J = 3 was the largest among other values

of J (ESM 3). Thus, we chose J = 3 and obtained estimates

for the proportion of accession i’s genome that originated

from population j, qij. The Q matrix, whose (i, j)-th element

was qij, was further incorporated into the model of associa-

tion mapping for both single and multiple QTL approaches.

A kinship matrix, K, was calculated as allele sharing rates of

the 89 SSR markers as suggested by Zhao et al. (2007), and

used in the single-QTL approach. In the calculation of the

kinship matrix, nine markers that had missing data for more

than half of the accessions were eliminated.

Linkage Disequilibrium (LD)

LD between markers were estimated by D′ and r2, where

D′ is the standardized disequilibrium coefficient that is used

for determining whether recombination or homoplasy has

occurred between a pair of alleles; r2 represents the correla-

tion between alleles at two loci, and is informative for eval-

uating the resolution of association approaches. Statistical

software TASSEL (Trait Analysis by aSSociation, Evolu-

tion and Linkage) ver.2.0.1 was used for this purpose

(Bradbury et al. 2007). A weighted average of D′ or r2 was

calculated between the two loci (Farnir et al. 2000) for all

possible combinations of alleles, and then weighting them

according to the allele’s frequency. To test the significance

of the LD, we also obtained P-values that were determined

by permutation test to calculate the proportion of permuted

gamete distributions, which were less probable than the ob-

served gamete distribution under the null hypothesis of in-

dependence (Weir 1996). LD between the multi-allelic loci

was measured by following Lewontin (1964) as:

D′ = piqj|D′ij|

where u and v are the respective number of alleles at the two

marker loci, pi and qj are the frequencies of marker allele i at

locus A and marker allele j at locus B, and |D′ij| is the abso-

lute value of normalized LD measure computed as:

D′ij =  where;

Dmax = min if D > 0;

Dmax = min if D < 0

whereas, r2 was calculated as described by Hill and Robertson

(1968):

r2 = r2ij

where r2ij = 

Statistical models for Association analysis

a) Single QTL approach

Two different types of models, i.e., general linear model

(GLM) and mixed linear model (MLM), were used for the

single QTL method using TASSEL ver. 2.0.1 software. In

GLM, we used two different models: (i) the model with no

control for population structure and relatedness (hereafter, it

j 1=

v

∑
i 1=

u

∑

Dij

Dmax
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is called as naive model) and (ii) the model with population

structure (hereafter, it is called as Q model) (Yu et al. 2006).

In the second model, we used Q matrix estimated by the

Structure analysis for controlling the effect caused by popu-

lation structure. In MLM, we used two models: (i) the model

that accounted for familial relatedness between accessions

(hereafter, it is called as K model) and (ii) the model that

takes into account both the population structure and the fa-

milial relationship (hereafter, it is called as Q + K model). The

MLM approach was shown to be superior to more conven-

tional linear models in association analyses (Yu et al. 2006).

b) Multiple QTL approach

A Bayesian model proposed by Iwata et al. (2009) was

used in the multiple-QTL association mapping. The mod-

el is similar to one proposed by Iwata et al. (2007), but

can be also applied to multi-allelic marker data, like SSR.

In this study, the prior for the number of QTL (NQ) was

defined differently from Iwata et al. (2009) as p(NQ) =

K , where λ is the expected number

of QTLs included in the model and K is the number of mark-

ers. This prior was expected to be conservative than the pre-

vious prior (Iwata et al. 2009), because we observed that it

suppressed a greater number of significant markers than the

previous prior. The model included the Q matrix as inde-

pendent variables for controlling the effects caused by

population structure. All the parameters in the model were

estimated by MCMC sampling as described in Iwata et al.

(2007, 2009). The hyper-parameters of prior distributions of

parameters were set as υβ = 4, sβ2 = 0.04, υe = −2, se2 = 0, and

λ = 10. MCMC cycles were repeated 6 × 104 and the first

1×104 cycles (burn-in) were not used for estimating param-

eter values. In the MCMC cycles, missing genotypes were

sampled based on allele frequencies observed in non-missing

genotypes. Sampling of parameters in the model was carried

out every ten cycles to reduce serial correlation so that the

total number of samples we retained was 5 × 103. In the

model, each marker position k (k = 1, 2, ..., K) has its own in-

dicator variable γk, where the value one (γk = 1) corresponds

to the case in which the marker is included in the model as

a QTL representative, and the value zero (γk = 0) implies ex-

clusion. We used the posterior average of γk for determining

significant markers. That is, the markers that had γk larger

than the specific threshold, 0.5, were regarded as significant.

This threshold corresponds to the “moderate” threshold in

Iwata et al. (2007), and was expected to have smaller false

negative rate as well as larger false positive rate than a

stricter threshold like 0.9 (Iwata et al. 2007, 2009). Despite

the problem of large false positive rate, we employed the

moderate threshold because of the small sample size used

in this study. Under the strict threshold 0.9, we may miss a

number of true associations between QTLs and markers be-

cause of low statistical power caused by the small sample

size. In this study, we tried to detect reliable associations by

comparing significant markers between different methods.

In other words, we assumed that associations detected with

both single-and multiple-QTL models were reliable.

Results

Patterns of diversity in SDRS

Results obtained from previous study (Shehzad et al.

2009) showed a wide range of phenotypic diversity in SDRS

for all the traits studied. The accessions showed a highly sig-

nificant difference for the morphological traits with continu-

ous type numerical data including DH, DF, DM, CD, GWP,

100GW, CL, NT, NP, PL, LL and LW when tested for anal-

ysis of variance (ANOVA). Correlations among the traits

showed that DH, DF and DM were highly significantly cor-

related with most of the traits. However, NT was only highly

significantly correlated with CD and the remaining combi-

nations were not-significant. Similarly for 14 morphological

traits with categorical data, the core set (107 accessions) was

distributed with different frequencies according to the ranks

of sorghum descriptors list. The accessions could be divided

into five geographic regions such as; East Asia, Southeast

Asia, South Asia, Southwest Asia and Africa. According to

Pearson’s chi-square test, the geographic regions were found

to be independent for six traits including ET, RI, CC, PS, PT

and AP while for other traits (GES, CM, AR, LWP, NRT, RG,

PNL and GC) they were positively associated with each other.

In the assessments of the 98 SSR markers, a total of 470

alleles were observed and the alleles could specifically clas-

sify 107 sorghum accessions of diverse origin. The number

of alleles observed in each locus ranged from two to 10 with

the average of 4.79. In the Structure analysis, we found J = 3.

The accessions in SDRS were assigned to one of the three

populations in which they have the highest probability of

membership estimated in the Structure analysis when J = 3.

The first population contained 33 sorghum accessions most-

ly from Africa origin except for four accessions from Asia.

The second population contained 36 accessions, including

23 from Africa and 13 from Asia. The third population con-

tained 38 accessions form East and South Asia. The three

groups were classified according to their geographic origins

and are similar to the three clusters observed in our previous

report (Shehzad et al. 2009). The summary statistics of the

98 SSR markers over the whole accessions and three esti-

mated populations are given in ESM 4.

Linkage disequilibrium (LD) plot

A short to medium range of LD (i.e., LD across chromo-

somes) was observed in this germplasm. The triangle plot

for pairwise LD between marker sites in a hypothetical ge-

nome fragment, where pairwise LD values of polymorphic

sites were plotted on both the X- and Y-axis; above the diag-

onal displays r2 values and below the diagonal displays the

corresponding P-values from rapid 1000 shuffle permuta-

tion test (Fig. 1). Each cell represents the relationship be-

tween two markers with the color codes indicating the

significance of LD. Maximum number of SSR markers

with highly significant LD (P < 0.0001) were situated in

LGs A and B (marker index 1–41). On the other hand, a

considerable degree of LD between markers closely locating

CNQ
λ K⁄( )

NQ
1 λ K⁄–( )

K NQ–
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on the chromosomes was not obvious. Being a predominantly

self-pollinating species, sorghum is expected to show higher

levels of LD than outcrossing species like maize, reported by

Tenaillon et al. (2001) and Remington et al. (2001). Fig. 1

shows that LD generally decayed rapidly with distance

between sites within loci, but there was substantial variation

among loci.

Association by GLM model

The association analysis by using the model without pop-

ulation structure and kinship detected a large number of

markers suggesting associations between genotypes and

phenotypes. This model had no control for the heterogeneity

of genetic background (i.e., population structure and familial

relatedness among accessions) and thought to be affected

largely by false positives. A total of 76 significant loci were

identified to be associated with 20 morphological traits. On

the other hand, in Q model, only 15 SSR loci had strong as-

sociation at P < 0.001 (Table 1). Among them Xtxp316 in

LG-A and Xtxp104 in LG-I were associated with GES.

Locus Xtxp23 in LG-J had association with DH. The same

locus (Xtxp23) was moderately associated (P < 0.01) with

DF and DM. Similarly Xtxp88 (LG-A), Xtxp24 (LG-D) and

Xtxp278 (LG-E) were found to be associated with presence

of lipid white powder on stem and leaves (LWP). Two SSR

loci; Xtxp76 and Xtxp88 in LG-A showed strong association

with CL. A single locus Xtxp100 (LG-B) and Xtxp38 (LG-C)

were identified as significant for LW and PS, respectively.

Multiple number of SSR loci had strong association with PL

by using this model, namely, Xtxp335, Xtxp302 and

SbAGF06 in LG-A, Xtxp7 in LG-B and Xtxp10 in LG-E.

Association by MLM model

In K model, 35 SSR loci had strong association

(P < 0.001) with 14 morphological traits. The number of sig-

nificant markers was second-largest after naive model. Sim-

ilarly a total of 33 markers were detected as significantly

associated with 16 traits in Q + K method. The P-value for

associations between SSR markers and morphological traits

in Q + K model are shown in Fig. 2 (i). A single locus;

Xtxp316 (LG-A), Xtxp14 (LG-J), Xtxp18 (LG-H), Xtxp100

(LG-B) and Xtxp38 (LG-C) were associated with GES, AR,

Fig. 1. LD plot generated by 98 SSR markers. Each cell represents the relationship between two markers with the color codes for the presence of

significant LD. Colored bar code for the significance threshold levels.
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LL, LW and PS, respectively. Locus Xtxp23 (LG-J) was

found to be strongly associated with DF as well as 100 GW.

Xtxp67 in LG-F was found to be strongly associated with

AP. Presence or absence of awn is supposed to be controlled

by a single recessive gene in wheat and other cereal crops

(Tsunewaki 1983). This model identified two SSR loci for

DH (Xtxp312; LG-E, Xtxp23; LG-J), two loci for ET

(Xtxp316; LG-A, Xtxp315; LG-B), three loci for LWP

(Xtxp88; LG-A, Xtxp24; LG-D, Xtxp278; LG-E), three loci

for CL (Xtxp75; LG-A, Xtxp88; LG-A, Xtxp69; LG-C) and

four loci for CM (Xtxp296; LG-B, Xtxp31; LG-C, Xtxp21;

LG-D, Xtxp105; LG-H). The maximum number of signifi-

cant SSR loci was observed for PL, including Xtxp75,

Xtxp335, Xtxp302 and SbAGF06 in LG-A, Xtxp7 in LG-B

and Xtxp10 in LG-F.

Multiple-QTL model

The strength of association between SSR loci and traits

detected by the multiple-QTL model is shown as the posteri-

or mean of γk (Fig. 2. ii). In this study, SSR loci with posteri-

or mean of γk above 0.5 were considered as significant. A

total of 19 SSRs, associated with 10 morphological traits

were significant (Table 1). Among them single QTL Xtxp340

(LG-A) was found to be associated with GES, Xtxp31 (LG-

C) with CM, Xtxp75 (LG-A) with CL and Xtxp23 (LG-J)

with both DH as well as DF. One of the quantitatively inher-

ited trait i.e., awn presence (AP) was found to be associated

with a locus named Xtxp67 in LG-F. In this model of multi-

ple QTL association analysis, two SSR loci had significant

association with LWP (Xtxp88; LG-A, Xtxp278; LG-E),

three SSR loci for PL (Xtxp335 and SbAGB02; LG-A, Xtxp7;

Table 1. Significant SSR loci associated with different traits as identified by single-QTL (Q, Q + K) models and multiple-QTL model with Q matrix

Trait Model LG Locationa Markerb −Log10(P)c/γd

ET Q + K A 5.0 Xtxp316 3.068

B 148.7 Xtxp315 4.477

GES Q A 5.0 Xtxp316 3.000

I 47.7 Xtxp104 3.000

Q + K A 5.0 Xtxp316 3.682

Multiple-QTL A 5.0 Xtxp316 0.646

CM Q + K B 171.5 Xtxp296 3.033

C 92.1 Xtxp31 3.590

D 135.0 Xtxp21 3.305

H 104.1 Xtxp105 4.315

Multiple-QTL C 92.1 Xtxp31 0.743

DH Q J 69.9 Xtxp23 3.000

Q + K E 42.5 Xtxp312 3.407

J 69.9 Xtxp23 3.880

Multiple-QTL J 69.9 Xtxp23 0.698

DF Q + K J 69.9 Xtxp23 3.816

Multiple-QTL J 69.9 Xtxp23 0.705

AR Q + K J 48.7 Xtxp14 4.570

LWP Q A 117.4 Xtxp88 3.000

D 95.6 Xtxp24 3.000

E 73.2 Xtxp278 3.000

Q + K A 117.4 Xtxp88 3.195

D 95.6 Xtxp24 4.313

E 73.2 Xtxp278 4.349

Multiple-QTL A 117.4 Xtxp88 0.698

E 73.2 Xtxp278 0.826

CL Q A 60.0 Xtxp75 3.000

A 117.4 Xtxp88 3.000

Q + K A 60.0 Xtxp75 3.428

A 117.4 Xtxp88 3.154

C 8.0 Xtxp69 3.479

Multiple-QTL A 60.0 Xtxp75 0.500

PS Q C 30.2 Xtxp38 3.000

Q + K C 30.2 Xtxp38 3.190

Trait Model LG Locationa Markerb −Log10(P)c/γd

AP Q + K F 86.6 Xtxp67 3.509

Multiple-QTL F 86.6 Xtxp67 0.637

NP Q + K B 38.2 Xtxp211 3.051

B 41.2 Xtxp84 4.871

B 160.4 Xtxp100 10.923

Multiple-QTL A 90.1 Xtxp37 0.544

B 160.4 Xtxp100 1.000

G 53.6 Xtxp331 0.667

J 69.9 Xtxp23 0.510

100GW Q + K J 69.9 Xtxp23 3.515

PL Q A 86.7 Xtxp335 3.000

A 174.0 Xtxp302 3.000

A 76.5 SbAGF06 3.000

B 163.7 Xtxp7 3.000

F 63.5 Xtxp10 3.000

Q + K A 60.0 Xtxp75 3.473

A 86.7 Xtxp335 5.387

A 174.0 Xtxp302 4.281

A 76.5 SbAGF06 6.377

B 163.7 Xtxp7 3.407

F 63.5 Xtxp10 6.316

Multiple-QTL A 86.7 Xtxp335 0.859

A 127.8 SbAGB02 0.994

B 163.7 Xtxp7 0.551

LL Q + K H 91.0 Xtxp18 3.553

NT Q + K B 41.2 Xtxp84 3.748

B 160.4 Xtxp100 9.436

E 0.0 SbAGE03 3.324

Multiple-QTL A 90.1 Xtxp37 0.963

B 160.4 Xtxp100 0.968

B 196.8 Xtxp8 0.564

G 53.6 Xtxp331 0.965

LW Q B 160.4 Xtxp100 3.000

Q + K B 160.4 Xtxp100 3.597

a Location of SSRs on linkage map as described in (Bhattramakki et al. 2000, Kong et al. 2000 and Taramino et al. 1997).
b Markers with bold face shows significant association with traits as revealed by any two of Q, Q + K and multiple-QTL models.
c −Log10 of P-values determined for Q and Q + K model with 3.0 as threshold value for strong association.
d Multiple-QTL model; mean of posterior distribution of γk with 0.5 as threshold value.
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LG-B), four loci for NT (Xtxp37; LG-A, Xtxp100 and Xtxp8;

LG-B, Xtxp331; LG-G) and four loci were significant for NP

(Xtxp37; LG-A, Xtxp100; LG-b, Xtxp331; LG-G, Xtxp23;

LG-J). The strength of association of the loci with traits de-

pends upon the mean values of posterior distribution of γk
and βk. With threshold of 0.9, three QTLs had association

with NT while one locus with PL. Xtxp100 (Kaf) showed a

maximum value of posterior mean distribution i.e. γk = 1 for

NP, which shows that the marker had been always included

in the model during MCMC sampling process as a QTL.

Comparison among different statistical models

To evaluate the possibility of false positives in associa-

tion models, we plotted observed P-values against expected

P-values as described by Stich et al. (2008) (Fig. 3). As a re-

sult, naive model showed the highest deviation from the y =

x line than K, Q and Q + K models, indicating the method

might detect a larger number of false positives than the oth-

ers. The K model was better than naive but still showed the

deviation from the y = x line in comparison with Q and Q + K

models. Casa et al. (2008) also showed the performance of

models in sorghum that account for both population struc-

ture and kinship better than those controlled only for Q or K

while Zhao et al. (2007) reported the same result in

Arabidopsis. From Fig. 3, the Q and Q + K models showed

the smallest possibility of false negatives among single-QTL

models.

The results obtained from naive and K models detected

large number of markers associated with different morpho-

logical traits. The results, however, might be come from a

large number of false positives, and was not comparable to

ones obtained from the other methods. The Q and Q + K

models and multiple-QTL model gave comparable results.

After taking consensus among methods, a total of 14 loci

were identified either by any two or all of the three models

that have strong association with 12 morphological traits

(Table 1). Among them, a single SSR locus Xtxp67 in LG-F

was identified by Q + K model and multiple-QTL model as

significantly associated with AP. For CM, locus Xtxp201

(LG-B) was identified by Q + K model and multiple-QTL

model. All the three models of association analysis identi-

fied Xtxp23 (LG-J) as associated with DH while the same

locus had association with DF in Q + K model and multiple-

QTL model. One of the morphological traits, growth in early

stage (GES) had strong association with Xtxp316 in LG-A,

as revealed by both Q + K model and multiple-QTL model.

For LWP, two SSR loci (Xtxp88; LG-A, Xtxp278; LG-E)

were found significant in all three of the models while locus

Xtxp24 (LG-D) was identified only by Q and Q + K models.

Similarly, for CL one locus Xtxp75 (LG-A) was associated

Fig. 2. Comparison between single-QTL model with Q and K matrices and multiple-QTL model with Q matrix. i) −Log10 (P-marker) values of

98 SSR markers determined for 26 morphological traits. ii) Mean of posterior distributions of γk of 98 SSR markers, estimated for 26 traits.
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in Q and Q + K models and multiple-QTL model, while

Xtxp88 (LG-A) had association in Q and Q + K models. A

single locus Xtxp100 (LG-B) was found to be strongly as-

sociated with two morphological traits (NT; NP) in Q + K

model and multiple-QTL model. Panicle length (PL) was

controlled by two common SSRs (Xtxp335; LG-A, Xtxp7;

LG-B) in three models of association while three loci

(Xtxp302 and SbAGF06; LG-A, Xtxp10; LG-F) identified by

Q and Q + K models.

Discussion

Association mapping is a powerful tool for fine mapping of

quantitative traits and is dependent on the structure of link-

age disequilibrium of alleles at different loci (Flint-Garcia et

al. 2003). Association analysis is strongly affected by both

false positives as well as false negatives. In this study we

have used different models for association mapping to con-

trol both “false positives” and “false negatives”. Some of the

significant markers showed same level of association in all

the models, while in some cases same markers identified

with different level of significance by different models.

Choice of germplasm is one of the key factors determin-

ing the resolution of association mapping in plants. To detect

more alleles, germplasm selected should include maximum

diversity of the genepool with more extensive recombination

in the history to allow a high level of resolution. The repre-

sentative set of accessions used here retained more than 90%

genetic diversity of its base population assessed by sorghum

SSR markers (Shehzad et al. 2009). This type of germplasm

is considered an ideal material for association mapping

(Whitt and Buckler 2003).

The success of association mapping depends upon the

possibility of detecting LD between marker alleles and al-

leles affecting the expression of phenotypic traits (Stich et al.

2005). SSR markers has more affinity towards genome-wide

association mapping than either amplified fragment length

polymorphism (AFLP) markers (Stich et al. 2006) or single-

nucleotide polymorphisms (SNPs) (Remington et al. 2001).

In this study, we found a wide-range of LD, which ranged

over chromosomes, whereas a short-range of LD between

markers closely locating on the same chromosome was not

obvious. A wide range of LD might be caused by population

structure, and might be responsible for a large number of

false positives when the association mapping models did not

take into account the population structure (i.e., in the naive

and K models). On the other hand, a short range of LD is

caused mainly by the physical linkage on the chromosome.

Low LD in a short range may indicate that marker density in

this study is not enough for detecting QTLs in a genome-

wide manner. Thus, many QTLs might be missed because of

the low density of markers used in the study, although some

markers still captured the signal of QTL even in this density.

For the genome-wide association study with sorghum germ-

plasms, we should use much larger number of markers in the

future.

Fig. 3. Comparison among association models for the control of false positives in four traits; Observed P-values vs. Expected P-values.
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The naive and K models, which did not control the effects

caused by population structure, detected a larger number of

significant associations between markers and traits. These

models showed large discrepancy of the observed P-values

from the expected P-values, indicating these models were

affected by a larger number of spurious associations in com-

parison with the other models. For example, in two qualita-

tive traits (single gene control), endosperm type (ET) and

awn presence (AP), a large number of loci were detected as

significant by these two models, whereas only a single locus

was detected by Q + K and multiple-QTL models. When the

population structure was taken into account in a single-QTL

model (i.e., Q and Q + K models), a smaller discrepancy

from the uniform distribution of P-values was observed.

Moreover, the results obtained from multiple QTL model

were more similar to Q + K than Q models. This may indicate

the familial relatedness (i.e., kinship) should also be taken

into account in the model for association mapping. The re-

sults are in accordance with the findings of Casa et al. (2008)

in sorghum, indicating the population structure should be

taken into account in the association mapping in sorghum.

For both NT and NP, Xtxp100 (Kaf) was identified to be

highly significant (γk = 1) by multiple-QTL model. This

marker is also identified by the Q + K model with strong

association for these two traits, whereas Q model identified

it as weakly associated with NT and as moderately associat-

ed with NP. Similarly, the locus Xtxp23 had association with

three correlated traits i.e., DH, DF and DM, as identified by

all these three models. In multiple-QTL model, this locus

was found to present at the similar posterior mean of γk for

DH and DF. These correspondences among results from dif-

ferent methods indicate the reliability of the detected associ-

ations.

Association mapping is also useful for identification of

genes controlling qualitative traits. In this study, one locus

named Xtxp67 (LG-F) was mapped by the Q + K model and

multiple-QTL model as associated with AP (a qualitative

trait) in sorghum. Here, however, we treated as qualitative

traits as quantitative traits by scoring the qualitative varia-

tion in an ordinal way. More sophisticated methods, how-

ever, will improve the power and precision of the association

mapping of qualitative traits (Iwata et al. 2009). The com-

parison between single-QTL and multiple-QTL approaches

of association analysis is reported for the first time in our

study. Association mapping is a new tool for identifying

complex traits in plant species. We tried to detect reliable as-

sociations by comparing significant markers among differ-

ent methods and assumed that associations detected by both

single-and multiple-QTL models were more reliable.

In sorghum, some reports have been published regarding

linkage mapping and identification of QTLs responsible for

some important traits including yield, maturity, photoperiod

sensitivity, resistance/tolerance to biotic and abiotic stresses

etc. Some of the previously identified QTLs by using link-

age mapping in sorghum for different traits are in accor-

dance to the findings of association studies reported here.

Hart et al. (2001) reported several QTLs identified by using

linkage mapping for different morphological traits. The po-

sitions of two QTLs responsible for height of main culm in

LG-A (50 and 90 cM) and two QTLs for panicle length in

LG-F (100 and 104 cM) are in accordance with the findings

reported in this study such as, two QTLs in LG-A Xtxp75 (60

cM) and Xtxp88 (117.4 cM) were associated with CL where-

as, Xtxp10 (63.5) in LG-F had significant association with

PL. The QTLs reported for number of basal tillers with

heads per plant and number of basal tillers per basal tillered

plant reported in Hart et al. (2001) are inconsistence with the

results of association mapping, similarly a single gene for

awn presence/absence was mapped in LG-C, which is in

contrary to our findings (i.e., LG-F). Chantereau et al.

(2001) identified three QTLs on LGs C, F and H controlling

photoperiod response in sorghum which is contradictory to

the finding of association analysis in this study (i.e., LG-J).

There are several possible causes for the discordance be-

tween this study and previous QTL mapping studies. One of

them is that this study may not have detected all the existing

major QTLs because of the small number of markers and ac-

cessions used in the study. Another cause is that a major

QTL detected in bi-parental-cross QTL mapping may not

have large effect in the phenotypic variation of a germplasm

collection and may be difficult to be detected with associa-

tion mapping.

Feltus et al. (2006) have aligned genetic maps obtained

from two different sorghum populations and detected 61

new QTLs from 17 traits. Among them single QTL for awn

length was found at a position of 66.5–92.4 cM in LG-F with

four co-localized RFLP markers including Xucm58.2 (86.3

cM) which is almost at same position of the locus identified

in this study i.e., Xtxp67 (86.6 cM) associated with AP. Sim-

ilarly, two of the QTLs for culm length at the positions of

31.0–77.0 cM and 127.1 cM in LG-A, two QTLs for days to

flowering in LG-J at position of 90.0–132.4 cM and 102.6–

132.4 cM, one for leaf width at 100.80–134.7 cM in LG-B

and a single QTL for seed weight in LG-A at the position of

75.7–113 cM were identified (Feltus et al. 2006). Comparing

with the results of association mapping in sorghum reported

here, QTLs identified for these traits falls in the same posi-

tions on chromosomes which shows the accuracy of the

models and its reliability. For example, Xtxp75 (60.0 cM)

and Xtxp88 (117.4 cM) in LG-A associated with CL, Xtxp23

(69.9 cM) in LG-J for DF, Xtxp100 (160.4 cM) for LW while

for 100GW two loci Xtxp75 (60.0 cM) and Xtxp88 (117.4

cM) were found to be significantly associated.

There have been only a few reports on linkage disequilib-

rium and association mapping in sorghum. For example,

Hamblin et al. (2005, 2007) reported the patterns and pros-

pects of LD in sorghum while Casa et al. (2008) compared

different models of association mapping in a panel of 377

sorghum accessions. Recently, Brown et al. (2008) utilized

the same panel of sorghum accessions from the study of

Casa et al. (2008) in association mapping to characterize the

phenotypic effects of the dw3 (dwarfing gene) mutation.
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The SDRS used in this study showed a wide range of ge-

netic as well as phenotypic diversity and is suitable for asso-

ciation mapping. Although for the genome-wide association

study a huge number of molecular markers are necessary,

our study can serve as initial effort for the association map-

ping studies in sorghum. We employed different models for

association mapping in sorghum. By comparing multiple

models for association mapping, we might be able to find re-

liable associations between markers and traits.
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