METRIC-PRESERVING REDUCTION OF EARTH MOVER’S DISTANCE
YUICHI TAKANO! AND YOSHITSUGU YAMAMOTO!

ABSTRACT. Earth mover’s distance (EMD for short) is a perceptually meaningful dissimilarity measure
between histograms. The computation of EMD reduces to a network flow optimization problem;
however, it lays a heavy computational burden when the number of locations of histograms is large.
In this paper, we address an efficient formulation for computing the exact EMD value. We prove that
the EMD problem reduces to a problem with half the number of constraints regardless of the ground
distance. We then propose a further reduced formula in which the number of variables is reduced from
O(m?) to O(m) for histograms with m locations when the ground distance is derived from a graph
with a homogeneous neighborhood structure. Specifically, EMD problems with Li, Lo and D-norm
ground distances can be reduced in this manner. Some experiments show that the reduction helps
compute the EMD efficiently.

1. INTRODUCTION

Earth mover’s distance (EMD for short) is a mathematical measure of the dissimilarity between
distributions. It was first introduced by Rubner et al. [13] and has been successfully used in classi-
fication, image retrieval and multidimensional scaling [14]. It dates back to the work by Werman et
al. [16] although the name EMD was not yet used. EMD is defined as the minimal working cost that
must be paid to transform one distribution to the other; therefore, it has some desirable properties
that other dissimilarity measures fail to have, such as reflecting the perceptual dissimilarity.

The computation of EMD between histograms with m locations reduces to a network flow op-
timization problem with O(m?) variables, which grows rather rapidly and makes the computation
time-consuming as m grows. One possible remedy is to resort to approximation methods, e.g., [8, 15].
Indyc and Thaper [8] approximated the EMD by L; distance between vectors made by summing the
weights in rectangular cells with increasing length of sides and proposed a fast image retrieval algo-
rithm. Based on their work, Grauman and Darrell [5, 6] made a contour matching algorithm and
proposed a pyramid match kernel. Another approximation method is a wavelet EMD by Shirdhonkar
and Jacobs [15]. They consider the dual problem of EMD using the wavelet transform and compute
an approximate EMD by a weighted sum of wavelet coefficients. Among other interesting findings are
high-dimensional EMD [2, 17], EMD under translations, rigid motions and similarity operations [9].

In contrast to those approximation approaches, Ling and Okada [12] proposed a new efficient for-
mulation EMD-L; to compute the exact EMD value. When the ground distance, which is the distance
between locations, is L1, their formulation is equivalent to the EMD problem. Motivated by their work,
we will propose a reduced EMD formulation and prove its equivalence to the original EMD problem
via the flow decomposition theorem regardless of the ground distance employed. We also show that
the number of variables of the reduced EMD formulation is reduced from O(m?) to O(m) when the
ground distance is derived from a graph with a homogeneous neighborhood structure. This property
lighten the computational burden when the ground distance is Lj, L or D-norm. In experimental
results, we will show that EMD is a perceptually reasonable dissimilarity measure by contrast with
Frobenius norm, and the reduced formulation helps compute the EMD efficiently.
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The rest of this paper is organized as follows: In Section 2, we define the EMD and introduce the
reduced EMD. In Section 3, we show the equivalence between the EMD problem and the reduced
EMD problem regardless of the ground distance. Based on the homogeneous neighborhood structure
of the graph, we show in Section 4 that the number of variables is reduced from O(m?) to O(m).
Section 5 discusses the imbalance case, and in the last section some experimental results are reported.

2. EARTH MOVER’S DISTANCE

Let us consider two histograms {p(; ;) | (i,5) € N'} and {q( ;) | (4,5) € N'} defined on the two-
dimensional coordinate system N := {(i,5) | 1 <i <my,1 < j < mg}. A histogram is a mapping
from a set of grid locations (i,j) € N to the set of non-negative weights P(i,j)- Regarding the weight
P(i,j) in one histogram as the amount of “dirt” at location (i, j) and the weight g(; ;) in the other as
the capacity of “hole” at location (i, 7), EMD is viewed as the minimum transportation cost to fill all
the holes by dirt. With the assumption that the total amount of dirt is equal to the total capacity of
holes, i.e.,

(2.1) YooPin= Y )

(i,5)EN (i,5)EN

EMD is computed as an optimal value of the following well-known transportation problem of Hitchcock
type:

minimize Y Y d e fegom
(3,5)EN (k,1)eEN
subject o Y fu) k) = Plig) for all (i,7) € N
(EMD) (k)eN
Y fwnts = 469 for all (i,7) € N
(k,D)eN
T =0 for all (i,7), (k,1) e N,

where f(; iy, is the flow from location (i,j) to location (k,l). The objective function coefficient
d(i,j) (k) 1s a distance between location (i, j) and location (k, 1), and referred to as the ground distance.

Let m =my X mo. For k=1,2,...,m let E;, be the m X m zero matrix with its kth row replaced by
the m-dimensional row vector e := (1,1,...,1). Let A denote the m x m? matrix [Ey | Ea| ... | Ep,]
and B denote the matrix [I|I| ... |I] of the same size, where [ is the m x m identity matrix. By an

appropriate definition of row vector d, column vectors p and g, and variable column vector f, problem
(EMD) is rewritten as follows:

minimize df

subject to Af =p
Bf =q
F=>o.

(EMD)

In the sequel we consider

minimize dg
(R) subject to (A— B)g=p—q
g=>0,




which we call problem (R), standing for the reduced (EMD). We denote the optimal value of a problem
by ().
Lemma 2.1.

v(EMD) > v(R).
Proof. Straightforward from the fact that a feasible solution of (EMD) is a feasible solution of (R). O

3. EQUIVALENCE OF THE TwoO PROBLEMS
First note that the matrix A — B is of the form
[y —I|Ey—1I|...|E,—1],

and that this is the incidence matrix of a complete directed graph without a self loop on node set N.
We denote its arc set by D. We classify the nodes according to the sign of p(; jy — q(; ), namely

Ny ={(i,§) € N[ piij) — auz >0}

No = {(i,5) € N [ p(ij) — a6z =0}

N_ = {(i,§) € N | piij) — g <0}
Following the convention of network flow theory (see for example [1]), we refer to a node in each set
as deficit node, balanced node and excess node, respectively. Problem (R) is known as an arc flow
formulation of network flow problem and a feasible solution g of (R) is called an arc flow. Another
formulation, a path-and-cycle flow formulation, of the network flow problem starts with enumerating

all directed paths between any pair of nodes and all directed cycles. The decision variables are the
flow value on each path and cycle.

Theorem 3.1 (Theorem 3.5 (Flow Decomposition Theorem), [1]). Every arc flow can be represented
as a path-and-cycle flow (though not necessarily uniquely) such that every directed path with positive
flow connects a deficit node to an excess node.

Let IT and I" be the set of all directed paths and the set of all directed cycles of the network (N, D),
respectively. Applying the above theorem to problem (R), we obtain the following corollary.

Corollary 3.2. Let g be a feasible solution of (R). Then for each directed path m € II there is a
non-negative path flow value f(7), and for each directed cycle v € ' there is a non-negative cycle flow
value f(y) with the following two properties:

(1) For every arc ((i,7)(k,1)) € D it holds that
(3.1) N Z f(m) + Z f().

w:((4,5)(k,l))emell v:((4,5)(k,l))eyel

(2) f(m) is positive only when path ™ connects a node in Ny to a node in N_.

The arc-path incidence vector of a directed path 7 is the vector §(7m) of components

i) (k) () = {

The arc-cycle incidence vector of a directed cycle «y, denoted by d(7), is defined in the same way.
Then (3.1) is rewritten as

1 when ((i,7)(k,1)) €7
0 otherwise.

g=>Y_ fmsm)+> F(3)8().

well vyel



Let

(3.2) g =>_ f(mé(n).

mell

Lemma 3.3. If g is a feasible solution of (R), the following statements hold.

(1) g’ is a feasible solution of (R),
(2) dg' < dg.

Proof. Straightforward from the fact that (A— B)d(y) = 0 for every v € ', d > 0 and the construction
(3.2) of ¢'. O

Take a pair of nodes (i,j) € N} and (k,1) € N_ and let TI((4,7)(k,1)) be the set of all directed
paths connecting (i, 7) to (k,l), i.e., starting at (¢,7) and ending at (k,l). Let g” be the vector of
components

) > f(r)  when (i,j) € Ny and (k1) € N_
(3.3) 9(i5) (k1) = § €M@ (kD)
0 otherwise.

Fig. 1 shows the node set A/ and two path-flows and a cycle-flow. The broad arrow from (i, j) to (k, )
shows g(i,j)(k,l)'

No

F1GURE 1. Reduction procedure

Lemma 3.4. If g is a feasible solution of (R), the following statements hold.
(1) g" is a feasible solution of (R),
(2) 90105 = 0 for all (i,§) € Ny and (k1) €N,
(4) 90 ey = 0 for all (i,j) € N— and (k,1) € N, and
(5) dg" < dg'.

Proof. The first four claims are readily seen by Corollary 3.2 (2) and the construction (3.3) of g”. Let
s(m) and t(7) denote the starting node and the terminal node of path 7, respectively. The last claim



is seen as follows.

dg' = Z Z d(i,j)(kvl)gfm)(k,l)

(4,9)EN (keN
Yo DL dagwy DL f(m
(i.5)EN (k)EN 7:((6,§) (k1)) Emell
=X @ > dujw
mell ((.5) (kD)) em
> Z f ) t(m)
well
X D dipwn Y. f()
(i,5)eEN (kLeN mell((3,5)(k,1))
Do D dap e
(4,9)EN (kEN
— dg//
where the inequality is due to the triangle inequality of ground distance d; j) ) O

By the above lemma and the equality constraint of (R)

Z Z Ik, (i) = Plig) — (i.g)

(k,l)e/\/ (kl)eN

we see

(3.4) D Giprn =Pasp 6 for (i.5) €Ny
(k,H)eN

(3.5) Do Gy = D Ihaay =0 for (i) €N
(k)eN (k)eN

(3.6) Z g(k,l)(m) = —P@,j) + q(i,5) for (17.7) € N_.
(k,HeN

Finally add q(; ;) flow to g(”)(”) for (4,7) € N, py j) flow to gE’Z N for (4, j) € N, and p(; j) = q(i,j)

flow to g(”)(”) for (i,7) € No to make g". Since d; j); j) = 0, we obtain the following lemma.

Lemma 3.5. If g is a feasible solution of (R), the following statements hold.

(1) g" is a feasible solution of (EMD),
(2) dg//l — dg”.

Combining the above lemmas, we have the following inequality.

Lemma 3.6.
v(EMD) < v(R).

By Lemma 2.1 and 3.6 we see that problem (R) yields the same optimal objective function value
as problem (EMD) does.

Theorem 3.7.
v(EMD) = v(R).

Note that this equality holds no matter what distance d; ), is postulated on N.
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4. PROBLEM REDUCTION BASED ON HOMOGENEOUS NEIGHBORHOOD STRUCTURE

Suppose we are given a connected undirected graph, denoted by G, with node set ANV and edge set
& without a self-loop. The edge connecting nodes (7,7) and (k,l) is denoted by [(¢,7)(k,1)] and is
assigned a positive value £(; ;) called length.

For each pair of nodes (7, j) and (k,1) let dfi Pk be the shortest length of paths between the pair.
It is known and easily seen that df Y(kl) provides a distance defined on N.

For each node (i,j) € N we deﬁiﬂa
(4.1) Ng(i,j) = A{(k,1) e N [(i, ) (k, D)] € € },

and refer to Ng(i,7) as node (4, j)’s neighborhood on G.

Definition 4.1. Let H be a finite subset of integer grid points of R? without (0,0) and gz-i[’,j’) be a
positive number for (i',j') € H. Graph G = (N, E,¥) is said to have the homogeneous neighborhood
structure of (H, ™) when

(1) Ng(i,5) =Nn{(i+i,5+7)]|(,5)€H} forall (i,57) € N, and

(2) f[(i,j)(k,l)} = fz_’g_u_j) for all (kﬁ,l) S Ng(’b,]) and (Z,]) eN.

Two graphs together with corresponding homogeneous neighborhood structures are shown in Fig. 2.
The distance d’ defined by the upper graph G, Manhattan graph, with the neighborhood structure
H ={(-1,0),(0,—1),(0,1),(1,0)} and

(4.2) 0y =1for all (') € H

is the L distance on N, while the other graph, Union Jack graph, with the neighborhood structure
H = {(_170)7 (_1? _1)? (07 _1)7 (17 _1)7 (17O)a (17 1)7 (07 1)) (_17 1)} and Ez—i(’,j’) = 1 for all (i/aj/) EH
defines the L., distance.

Bertsimas et al. [4] proposed the D-norm for y € R™ and p € [1,n] as the optimal value of the linear
program

n
maximize Z ujly;l
j=1
n
subject to Zuj <p

j=1
0<u; <1 forj=1,..,n.

The Union Jack graph with

- 1 for (¢,5") € {(-1,0),(0,-1),(1,0),(0,1)}
W3 ) p for (i,5) € {(=1,-1),(1,-1),(1,1),(=1,1)}
defines the D-norm, which gives, by setting the parameter p appropriately (e.g. p = \@)a an in-between

of L1 and Lo.
Suppose the ground distance d; ;) among locations of N is given as the distance d

(4.3)

() Tor @

j) and (k, 1)
)] such that

graph G with a homogeneous neighborhood structure. Then for two distinct locations (4,
there is an undirected path of edges [(i0,jo) (i1, 71)], [(¢1, J1)(i2, J2)], - - -, [(in—1, Fn—1) (in, Jn
(iOajO) = (Za])v (vajn) = (k7l)7

(ir+lajr+1) € Ng(irajr) for r = 0,. sy — 1



neighborhood structure
O for Ll

O O O
O o O
O O O

neighborhood structure
for D-norm

FIGURE 2. Graph and neighborhood structure defining a distance on N

and

n—1 n—1
— _ H
(44) d(lvj)(kvl) - Z d(i7'7j7‘)(iT+1va+1) - Z g(ir+1_ir7j1*+1_jr)'
r=0 r=0

Add the constraints
g(i,j)(k’l) =0 fOI‘ all (’L,j) S N and (k?,l) ¢ Ng(l,j)

to problem (R) and denote it by (R), i.e.,

minimize dg
= subject to (A—B)g=p—q
(R) 93>0
96i,5) (k1) = 0 for all (Z,j) € N and (k,l) ¢ Ng(i,j),

or equivalently



minimize Z Z Ez-/i_i,l_j)g(m)(k,l)
(1.4) €N (k,1)€NG (i.7)
(R) subject to > gy = DL ki) = Pli) ~ i)
(k’,l)e./\/’g(i,j) (k,l)ENg(i,j)
for all (i,7) e N
9(ij)(ka) = 0 for all (4, 7) € N, (k,1) € Ng(i, 7).

We see that problem (R) is equivalent to problem (R).

Lemma 4.2. Suppose that the graph G has the homogeneous neighborhood structure (H,¢™) and the
ground distance d; jy(x,) 15 gwen as the shortest length of paths in G. Then every optimal solution of
problem (R) is an optimal solution of problem (R), and

v(R) = v(R).

Proof. Let ((i,7)(k,1)) be an arc of D. Since the ground distance is given as the shortest length of
paths in G, there is a series of arcs ((ig, jo)(i1,71)), (41, 71) (%2, 72))s - - - ((4n—1, Gn—1)(in, jn)) such that
(i0,7J0) = (4,7), (in,jn) = (k,1), (ir41,dr+1) € Ng(ir,jr) for r =0,1,...,n — 1, and also the equality
(4.4) holds.

Now suppose we are given a feasible flow g of problem (R). The above observation implies that re-
placing the arc flow of g(; j)(x,;) on arc ((7, j)(k,1)) by the path-flow along ((40, jo) (i1, 1)), ((i1, j1) (42, j2)),
ooy ((in=1, Jn—1)(in, jn)) does not change the objective function value. Repeating this procedure if
necessary, we will obtain a feasible flow satisfying the additional equality constraints

9Gi.q) (k) = 0 for all (i, j) € N and (k,1) ¢ N (i, j)
of (R) without changing the objective function value. This completes the proof. O

Theorem 4.3. Suppose that the graph G has the homogeneous neighborhood structure (H,£™) and
problem (EMD) employs the shortest length of paths in G as the ground distance. Then

v(R) = v(EMD).
Proof. Straightforward from Theorem 3.7 and Lemma 4.2. O

Let h denote the size of H, which is four for the Manhattan graph and eight for the Union Jack
graph. Then comparing (R) with (EMD), the number of variables reduces from m? to mh. This will
greatly lighten the computational burden.

5. IMBALANCE CASE

When the equality (2.1) between p and q does not hold, a slight adjustment is needed. Suppose
E(i,j)eNp(i,j) < Z(i,j)eN q(i,j)- Firstly, add a node, say (0,0), to A/ and let

P(0,0) *= Z q(ig) — Z PGig), 40,0 =0,
(t,5)eEN (1,5)eN
so that the equality Z(i,j)eNu{(0,0)}p(i,j) = Z(i,j)eNu{(0,0)} q(i,j) holds. Secondly, define the distance
between nodes (0,0) and (i,5) € N as
d0,0)5) = dij)00) = L-
We see that if L is large enough to meet

L Z max d(i,j)(k,l)7

1
2 (i.4), (kD) EN



d satisfies the triangle inequality and hence is a distance on N'U {(0,0)}. Therefore the argument in
Section 3 applies and we obtain the equivalent reduced problem in variables g(; ;1) for (4,7), (k,1) €

N U{(0,0)}. When the graph G has the homogeneous neighborhood structure of (H,¢™), adding the
constraints

9ty =0 forall (4,5) € N and (k,1) € N\ Ng (4, 5)
does not change the optimal value. We could further add
g(i,j)(0,0) =0 for all (’L,j) S N
because (0, 0) is a deficit node, i.e., p(o,0)—¢(0,0) > 0. A parallel argument applies when 3 ; iycn P(i,j) >

6. EXPERIMENTAL RESULTS

We will report on some experimental results for the handwritten digits. We selected 20 images of
28 %28 pixels shown in Fig. 3 out of the MNIST handwritten digit database [10], and applied five
different methods to measure the dissimilarity between images.

We normalized the weights of each image or histogram so that they would sum up to 100, and
accordingly, the equality (2.1) holds. We compute the dissimilarity between a histogram of group A
and a histogram of group B by

(0A) (1A) (2A) (3A) (4A) (5A) (6A) (7TA) (8A) (9A)

(0B) (1B) (2B) (3B) (4B) (5B) (6B) (7B) (SB)  (9B)
FI1GURE 3. 20 images of the MNIST handwritten digit database

TABLE 1. Dissimilarity of the images by computing (a) Frobenius norm

0B 1B 2B 3B 4B 5B 6B 7B 8B 9B

0A | 7140 66.3 26.1 *24.5 44.6 34.0 *24.7  21.0 27.0 14.7
1A 91.9 ™09 89.1 76.5 100.0 95.8 943 98.7 74.1 71.5
2A 353 679 319 361 522 36.5 34.7 53.5 41.1 42.6
3A 355 63.7 347 263 *35.1 1*24.0 284 41.0 30.5 30.2
4A 41.0 934 434 571 452 59.7 525 50.2 1388 41.7
5A 29.8 609 314 41.0 44.2 58.8 42.2 46.5 1*21.6 33.4
6A | T*13.5 649 36.7 42.0 38.7 44.1  39.5 487 27.5 29.8
TA 58.9 79.1 49.1 411 432 67.4 65.8 0.0 55.4 241
8A 31.8 60.8 *23.8 379 43.2 52.1 36.1 46.1 28.4 T*14.4
9A or.1 721 60.1 399 58.7 55.9 32.8 57.0 126.3 37.6




(a) Frobenius norm ( i.e., \/2?21 2 (Pag) — 96.5)? )
(b) (EMD) with Ly ground distance,

(c) (R) with Manhattan graph and (4.2),

(d) (R) with Union Jack graph and (4.3) with p = 1.3, and

(e) (R) with Union Jack graph and (4.3) with p = 1.
All computations are conducted on a personal computer with Core2 CPU (2.66GHz) and 4GB memory.
Problems (b), (c), (d) and (e) are solved by using CPLEX 10.1, OPL Studio 5.1.

Tables 1, 2, 3, 4 and 5 show the dissimilarity values of the images, where the minimum of each
row is marked with ¥ and the minimum of each column is marked with *  and dissimilarity values are
normalized so that the minimum and maximum value become 0 and 100, respectively. Noteworthy
points are in order.

Firstly, the pairs (0A)-(0B), (1A)-(1B) and (7A)-(7B) are given remarkably low dissimilarity values
by all the methods. This means that these digits are not likely to be misread. On the other hand, the
(4A)-(4B) pair is well distinguished by (b), (c), (d) and (e) while the Frobenius norm (a) misreads
(4A) as (8B) and (4B) as (3A). Counting how many times the diagonal elements are marked with

TABLE 2. Dissimilarity of the images by computing (b) (EMD) with Lo ground distance

0B 1B 2B 3B 4B 5B 6B 7B 8B 9B

0A | 7*26.4 60.8 43.3 *36.2 52.8 45.7 *31.5 43.0 39.7 36.2
1A 85.3 ™0.0 779 57.1 77.5 90.0 66.4 81.6 60.6 56.3
2A 92.3 785 59.7 50.9 78.8 1413 421 80.4 60.9 78.1
3A 67.3 100.0 81.6 54.0 54.2 1*33.1 479 61.9 56.8 71.4
4A 545 795 60.1 61.5 T*31.3 67.7 44.6 56.1 34.4 46.0
5A 50.2 715 482 734 51.6 83.6  55.7 75.0 1*31.2 56.0
6A 373 736 53.0 50.6 43.0 53.5 135.9 58.7 36.8 40.0
TA 60.1 59.9 60.8 378 51.5 69.6 75.2 T*14.7 56.9 31.8
8A 47.0 545 *41.8 625 54.6 774 55.0 68.8 41.8 130.2
9A 83.8 804 90.0 51.7 58.1 62.8 142.8 75.1 48.2 67.6

TABLE 3. Dissimilarity of the images by computing (c) (R) with Manhattan graph and (4.2)

0B 1B 2B 3B 4B 5B 6B B 8B 9B

0A | ™*31.9 609 488 *36.4 55.0 48.0 *384 49.1 41.3 414
1A 87.8 0.0 853 60.3 80.8 95.6  66.0 86.5 64.1 64.6
2A 54.0 921 66.0 55.6 91.9 7440 46.2 90.1 63.9 86.0
3A 779 952 839 557 56.9 334  50.8 70.6 58.6 784
4A 56.2  79.7 625 61.0 '*35.0 72.3  50.6 60.3 41.0 49.2
5A 56.5 774 50.0 83.5 53.9 87.5 58.2 78.8 1%36.0 58.7
6A 409 77.0 552 57.6 47.1 57.8  40.9 67.2 139.5 475
TA 64.3 64.7 665 41.4 57.5 80.5 85.7 1*15.6 57.4 *32.9
8A 541 56.4 *45.6 68.0 55.1 84.6 64.9 79.7 46.2 135.2
9A 93.7 79.8 100.0 48.9 58.3 63.6 T45.0 76.4 93.4 617
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T and *, we have 6 for (a), 8 for (c), and 9 for (b), (d) and (e). As far as these digit images are
concerned, EMD based measures work better than Frobenius norm.

Secondly, we observe that the values of dissimilarity given by (d) are very close to those by (b).
By Proposition 3 in [4] the ratio of D-norm with p = 1.3 to Le-norm falls in [1.3/v/2, V14 0.32] ~
[0.92, 1.04]. Union Jack graph with p = 1.3 fully approximates the Ly ground distance.

Thirdly, dissimilarity values that are marked with { and/or * are at almost the same places in
Tables 2, 3, 4 and 5, however, we observe a contrast when we look closely at the row (6A). Namely,
the minimum value of the row (6A) appears in the column (8B) in Table 3, while it appears in the
column (6B) in Tables 2, 4 and 5. This shows that our proposed method can be some improvement
on Ling and Okada’s method.

For computing the dissimilarity, we have to solve the optimization problems (b), (c), (d) and (e),
whereas the computational burden of (a) is by far the lightest. In Table 6, the columns average, min
and maz show the average time, the minimal time and maximal time for computing the 100 values of

TABLE 4. Dissimilarity of the images by computing (d) (R) with Union Jack graph
and (4.3) with p=1.3

0B 1B 2B 3B 4B 5B 6B 7B 8B 9B

0A | 7256 614 422 *36.4 52.6 45.2 *30.7 425 39.1 35.4
1A 85.1 1™0.0 762 57.2 76.7 90.0 66.7 80.0 60.7 54.5
2A 92.7 756 593 50.5 76.8 1412  41.6 79.9 60.8 76.7
3A 65.1 100.0 80.7 55.3 54.8 1%33.6 47.8 61.9 96.7 72.2
4A 542 772 60.0 61.5 T*31.1 66.8 43.8 56.7 34.2 46.6
5A 50.1 711 483 727 51.3 84.3 56.3 76.4 1+30.4 56.3
6A 374 731 531 50.2 43.0 54.0 T34.5 58.1 36.4 38.7
TA 58.9 583 60.3 38.0 51.0 68.0 71.9 1*14.8 96.8 32.3
8A 46.4 554 7*40.6 624 54.8 75.5 544 66.3 41.9 299
9A 83.2 813 90.7 518 58.5 63.1 143.0 75.5 48.4 67.7

TABLE 5. Dissimilarity of the images by computing (e) (R) with Union Jack graph
and (4.3) with p=1

0B 1B 2B 3B 4B 5B 6B B 8B 9B

0A | 723.7 56.9 404 *37.6 54.8 44.8 *28.3 40.4 38.5 324
1A 83.2 0.0 751 585 74.9 90.6 68.2 77.9 62.3 49.0
2A 544 674 58.2 49.1 72.5 39.5 138.9 76.6 61.2 72.1
3A 61.8 100.0 81.9 57.7 55.0 1*34.4 483 59.2 59.0 72.9
4A 53.7 785 59.5 653 1*30.7 65.7 424 56.0 32.3 46.7
5A 489 70.7 494 69.6 51.8 83.4 554 77.2 1291 57.6
6A 37.0 69.2 52.2 488 42.9 54.3 132.2 55.8 36.8 35.5
TA 574 56.0 57.8 38.0 49.4 63.4 67.1 1*13.7 57.7 33.8
S8A 44.3 544 740.2 61.6 57.6 74.5 51.6 61.0 41.3 28.9
9A 81.6 86.3 89.7 56.7 61.4 66.1 743.6 7.3 48.3 74.2
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TABLE 6. Computational time and size of (EMD) and (R)

CPU time (sec) #Var | #Const
average | min | max
b) 8.04 | 6.53 | 8.67 | 614,656 1,568
c) 0.77 1 0.75 | 1.09 3,024 784
d) 0.80 | 0.75 | 1.26 5,940 784
e) 0.81|0.75 | 1.25 5,940 784

dissimilarity, respectively, and the columns # Var and #Const show the number of variables and the
number of constraints of each problem, respectively. Because of the remarkable reduction of problem
size (see the columns #Var and #Const), (¢), (d) and (e) reduce the computational time sharply in
contrast to (b). It is reported in Ling and Okada [12] that the larger the size of histogram grows, the
more efficient the reduction becomes. The reduction proposed in this paper would be especially useful
when applied to image retrieval systems that need to compute dissimilarity of a large number of pairs
of images.

7. CONCLUSION

We have shown that the earth mover’s distance problem reduces to a problem with half the number of
constraints regardless of the ground distance. Furthermore, we have proved that a further reduction is
possible when the ground distance derives from the graph with a homogeneous neighborhood structure,
such as L1, Ly and D-norm. The preliminary experiment has shown that the reduction helps compute
the earth mover’s distance efficiently.

A further direction of this study will be to apply our efficient formulation to non-negative matrixz
factorization (NMF for short). Given a non-negative matrix M € R™*™ and a positive integer r
less than min{m,n}, NMF is to make two non-negative matrices: the basis matrix U € R™*" and
the weight matrix W € R"™™™ such that product UW approximates M. By choosing a measure of
dissimilarity p(-) the NMF problem is formulated as

minimize p(M — UW)
subject to U € RM*", W e RIX".

Frobenius norm, Kullback-Leibler divergence and the like are commonly used as p. The concern
with NMF has been growing since it was used in Lee and Seung [11] for feature extraction and
identification. It has a wide range of applications such as image retrieval, text mining and so on, and
various NMF algorithms have been proposed (see e.g., Berry et al. [3]). Guillamet and Vitria [7]
showed in the experimental evaluation that EMD is a good metric when combined with the NMF
minimizing Kullback-Leibler divergence. This motivates us to use the earth mover’s distance as the
measure of dissimilarity of NMF problems.

Multimedia applications, ranging from magnetic resonance imaging to music recommendation sys-
tems, commonly exhibit high-dimensional feature representations [17]. In this paper we have assumed
that the location has two coordinates such as (i, j), however, it can be generalized to a higher dimen-
sional coordinate system with a slight modification.
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