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Abstract

Grouping in animals is ubiquitous. However grouping is thought to provide individuals

with foraging and antipredatory advantages, parasitic strategy often emerges in a group.

If parasitic strategy cannot simultaneously search for food itself and parasitize other

foragers, the success of parasitic strategy within any group is likely to be dependent on

its frequency. The optimal parasitic policy has given rise to the producer-scrounger (PS)

game model, in which producers search for food patches, and scroungers parasitize the

discovered patches. The N-persons PS game model constructed by Vickery et al.

(Vickery, W. L., Gireldeau, L., Templeton, J. J., Kramer, D. L., and Chapman, C. A.,

1991. Producers, scroungers, and group foraging. American Naturalist 137, pp. 847-863)

predicts the evolutionarily stable strategy (ESS) of frequency of producers (q̂) that

depends on the advantage of producers and the number of foragers in a group. However,

the model assumes that the number of discovered patches in one time unit never exceeds

one. In reality, multiple patches could be found in one time unit. In the present study,

we relax this assumption and assumed that the number of discovered patches depends

on the producers’ variable encounter rate with patches (λ). We show that q̂ strongly

depends on λ within a feasible range, although it still depends on the advantage of

producer and the number of foragers in a group. The basic idea of PS game is the same

as the information sharing (parasitism), because scroungers is also thought to parasitize

informations of locates of food patches. Horn referred the role of information parasitism

in animal aggregation as early as 1968 (Horn, H. S. 1968. The adaptive significance of

colonial nesting in the brewer’s blackbird (euphagus cyanocephalus). Ecology 49, pp.

682-646). Our modified PS game model shows the same prediction as the Horn’s

graphical animal aggregation model. Hence, if we consider food patch distribution and
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multiple patches could be found in one time, the PS game model is able to explain

animal aggregation. In this study, therefore, we compare our λ-dependent PS game

model not only to Vickery’s original PS game model but also to Horn’s graphical animal

aggregation model.

Keywords : information-parasitism, group foraging, animal aggregation,

Evolutionarily Stable Strategy, Horn’s model
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Introduction

Group foraging is widely assumed to be advantageous for animals. Two of its major

benefits are lower predation hazard and increased foraging efficiency (Clark and Mangel

1986) (e.g., increased foraging rate (Clark and Mangel 1984; Vickery et al. 1991),

reduced risk of starvation (Caraco 1981), and increased ability to capture elusive prey

(Ward and Enders 1985)). For example, Horn (1968) proposed a graphical model of the

spatial distribution of Brewer’s blackbird (Euphagus cyanocephalus) nests in light of

foraging efficiency. The model assumes territorial and colonial nesting, and in order to

minimize the average distance from nest to food, territorial nesting would be expected

when the distribution pattern of the food is uniform. When the distribution pattern of

the food is temporally and spatially clumped, colonial nesting would be favored. For

colonial nesting, Horn (1968) suggested that there is an additional advantage:

information sharing (information-parasitism) between individuals in the same colony,

which makes it possible for a bird who is foraging with little success to follow a more

successful bird to a better foraging area. The same argument was made in Clark and

Mangel (1984). They conclude that when food is abundant, information as to location is

not very valuable; if food is scarce but evenly distributed, little information is derived

from searching. Hence, flocking is most valuable when food is both scarce and patchy

(Clark and Mangel 1984). These social foraging interactions among individuals are

common in group foraging of birds, and most common is the exploitation of others’

efforts to find food (Brockmann and Barnard 1979).

Parasitism is important for group foraging because it produces both advantageous

(e.g. lower predation hazard and increased foraging efficiency for parasitic strategy

(Clark and Mangel 1986)) and disadvantageous effects (e.g. decreasing of food gains for
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patch discoverer and/or depletion of food; tragedy of commons (Hardin 1968; Rankin

et al. 2007)). In other words, if foragers have the option of using a parasitic strategy,

they can choose group foraging with parasitism or solitary foraging without parasitism

depending on the situation. The optimal parasitic policy has been analyzed by two

theoretical models: the information-sharing (IS) model (Caraco 1981; Clark and

Mangel 1984) and the producer-scrounger (PS) game model (Barnard and Sibly 1981;

Vickery et al. 1991; Caraco and Giraldeau 1991; Giraldeau and Caraco 2000).

Traditionally, the IS model assumes that in a group of N foragers all individuals

search for food independently while, at the same time, monitoring the behavior of other

group members, thereby allowing unsuccessful foragers to exploit food clumps discovered

by others (Caraco 1981; Clark and Mangel 1984; Beauchamp and Giraldeau 1996). In

the IS models, therefore, if an individual can use parasitism, they always choose

parasitic behavior.

The PS game model (Barnard and Sibly 1981) is an N -person alternative-option

game in which individuals use the producer strategy to find food clumps and the

scrounger strategy to partake in food clumps discovered by the producers. For the PS

game to apply to a group foraging situation, two assumptions must be met. First,

individuals can play either producer or scrounger, but cannot simultaneously play both

producer and scrounger strategy. Second, the payoffs received by a scrounger must be

highly negatively-frequency-dependent on the frequency of scroungers in the group

(Barnard and Sibly 1981; Vickery et al. 1991; Caraco and Giraldeau 1991; Beauchamp

and Giraldeau 1996; Giraldeau and Beauchamp 1999; Giraldeau and Caraco 2000). In

the PS game model, even if individuals can use scrounging, they do not always choose

scrounging behavior. When those two assumptions are met, the PS game model predicts
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the mixed evolutionarily stable strategy (ESS) of producers and scroungers.

An analytical PS game model constructed by Vickery et al. (1991) predicts the

ESS frequency of producers as a functions of the fraction of a producer’s advantage to

the total food items in a patch and the number of foragers in a group. However the

model assumes the producer’s encounter rate with food patches, the maximum number

of discovered patches in one time unit is always one, and the ESS frequency of producers

does not depend on the producer’s encounter rate with food patches. In their model, it

is assumed that the producer’s encounter rate with food patches is nearly equal to zero;

therefore, the number of discovered patches in one time unit never exceeds one. In

reality, the producer’s encounter rate with food patches depends on the environment of

the foraging site, and multiple patches could be discovered in one time unit. In this

study, therefore, we modify this assumption to the variable encounter rate, and

investigate the occurrence of parasitism. If the producer’s encounter rate with food

patches increases, the number of patches discovered during one time unit is sure to

multiply, and foragers might cease parasitism at a high encounter rate because the

benefits of group foraging are reduced in such situations. Actually, some empirical

studies manipulated the producer’s encounter rate with food patches by altering the

spatial distribution of food patches, and showed that this changes the proportional use

of producers and scroungers (Giraldeau et al. 1990; Giraldeau and Livoreil 1998;

Coolen et al. 2001; Coolen 2002).

We compare our modified PS game model to Vickery’s original model (Vickery

et al. 1991). In addition to this, we discuss the relationship between our modified PS

game model and Horn’s graphical model (Horn 1968), because Horn’s model includes

the original PS game model situation as an extreme colonial strategy. A colony is a one
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of the animal aggregations, and some studies explained the evolutionary advantages of

colonial breeding by information sharing (Ward and Zahavi 1973), and Barta and

Giraldeau (2001) reappraise this hypotheses using the PS game model.

The PS game model

In Vickery’s PS game model (Vickery et al. 1991), N individuals forage in sufficient

proximity that group members playing scrounger can all detect and exploit the food

uncovered by any of the group’s producers. A food clump contains F items. The

producer obtains a finder’s advantage, a portion (a) of the patch (0 ≤ a < F ) that it can

use exclusively before the scroungers arrive. The proportion of individuals playing

producer is q, and the proportion playing scrounger is 1 − q. The producer’s encounter

rate with food patches is λ. Once a producer finds a clump, (1− q)N scroungers arrive in

unison and divide the remaining food items (A = F − a) equally among the individuals

(n = 1 + (1 − q)N). The currency of fitness is energy intake, I. Patch discovery occurs

sequentially, and patch exploitation time is negligible, which means that there is no

handling time. Each producer’s expected intake (IP ) after T time units of foraging is

IP = λT (a +
A

n
). (1)

The rate of encounter with scrounging opportunities is a function only of the number of

producers (qN). The scrounger’s expected intake (IS) is

IS = λTqN
A

n
. (2)

The ESS frequency of producers (q̂) can be found by setting IP equal to IS and solving

for q:

q̂ =
a

F
+

1

N
(3)
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The ESS frequency of producers (q̂) depends on the fraction of a finder’s advantage (a)

to the total food items in a patch (F ) and the foraging group size (N).

The λ-dependent PS game model

Vickery et al. (1991) supposed that patches are scarce so that the maximum number of

discovered patches in one time unit is only one, and all scroungers in a foraging group

rush to the discovered patch and exploit food items. This assumption is considered

reasonable if the number of producers in a foraging group (qN) is a minority and if a

producer’s encounter rate with food patches (λ) is small enough. However, if qN is large

and/or λ is not small, the number of discovered patches in one time unit might exceed

one, and a number of those discovered patches might disperse scroungers in multiple

exploiting groups. In such a scenario, the number of discovered patches in one time unit

depends on qN and λ. We modified the PS game model, which assumes that the

number of discovered patches in one time unit depends on the number of producers in

the foraging group (qN) and the producer’s encounter rate with food patches (λ). We

call this modified PS game the λ-dependent PS game model.

All parameters in the λ-dependent PS game model are the same as in the original

PS game model (Vickery et al. 1991). We assume that the number of discovered patches

in one time unit is determined by binomial distribution, and scroungers are divided

equally between all food patches discovered in one time unit. Assuming that when one

producer finds a food patch, other i (0 ≤ i ≤ qN − 1) producers find food patches

during the same time unit, the producer’s expected intake (IP ) after T time units is

IP = λT
qN−1∑
i=0

 qN − 1

i

λi(1 − λ)qN−1−i

a +
F − a

1 + (1−q)N
1+i

 . (4)
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When j (1 ≤ j ≤ qN) producers find food patches during one time unit, the scrounger’s

expected intake (IS) after T time units is

IS = T
qN∑
j=1

 qN

j

λj(1 − λ)qN−j

 F − a

1 + (1−q)N
j

 . (5)

Because i = j − 1, IP can be written by j as

IP = T
qN∑
j=1

 qN − 1

j − 1

λj(1 − λ)qN−j

 F − a

1 + (1−q)N
j

 + T
qN∑
j=1

 qN − 1

j − 1

λj(1 − λ)qN−ja.

(6)

As the first term in this expression is IS × j/qN (j ≤ qN), there is a possibility that a

producer’s expected intake equals a scrounger’s expected intake (IP = IS). The ESS

frequency of producer (q̂) is solved by equaling eq. 5 with eq. 6, which can be simplified

as follows:

qN∑
j=1

 qN − 1

j − 1

λj(1 − λ)qN−j

(
F (j − qN) + aN

j + (1 − q)N

)
= 0 (7)

This equation cannot be solved analytically, so we solve it numerically to find the ESS

frequency of producers (q̂).

In the numerical analysis, fixed values are the number of members in a foraging

group (N), the number of food items in a patch (F ), and the producers’ encounter rate

with food patches (λ). Variable values are the finder’s advantage (a) and the proportion

of producers (q). For example, we fix N = 2, F = 10, and λ = 0.1. Then, we change a

from 0 to F and q from 1/N to 1, and find the combination of a and q̂, which satisfies

IP = IS (eq. 7). In this example, there are two combinations of a and q̂: a = 0

(a/F = 0), q̂ = 0.5 (1/2) and a = 5 (a/F = 0.5), q̂ = 1 (2/2).
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Figure 1 shows the ESS frequency of producers (q̂) represented by stepwise lines in

a/F -q dimension with the number of foragers in a group (N) as 10. The stepwise solid

line describes the original PS game model (q̂ = a/F + 1/N). The stepwise dotted lines

describe the λ-dependent PS game model, for which the producers’ encounter rate with

food patches (λ) is fixed at 0.01, 0.1, 0.3, 0.5, 0.7, and 0.9. q̂ increased as λ increased,

and λ of the original PS game model is nearly equal to zero (λ ' 0). Therefore, even

though λ = 0.01, the q̂ of the λ-dependent model is sometimes higher than that of the

original PS game model (Fig. 1).

Figure 2 shows the borderlines between group foraging with parasitism (coexistence

of producers and scroungers) and solitary foraging without parasitism (producers only)

in λ− a/F dimension. When λ is small, the coexistence of producers and scroungers has

a wide range for a/F , and this range is wider with a larger N . However, it becomes

narrower as λ increases and the difference between N diminishes at a large λ.

Figure 3 shows the four examples of the number of foragers in a group (N) (2, 4, 8,

and 16) of the original PS game model, and one combined (superimposed) graph of

these four examples. In the original PS game model, the slope of the ESS frequency of

producers (q̂) is unity in a/F -q dimension (q̂ = a/F + 1/N), so that the q̂ of a larger N

never exceeds that of a smaller N (superimposed graph). In the λ-dependent PS game

model, however, the q̂ of a larger N sometimes exceeds that of a smaller N (Fig. 4;

λ = 0.3).

Discussion

We modified the PS game model proposed by Vickery et al. (1991) to the λ-dependent

PS game model, which assumes that the number of discovered patches in one time unit
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depends on the producer’s encounter rate with patches (λ). The ESS frequency of

producers (q̂) depends on three parameters for the λ-dependent PS game model (λ, a/F ,

and N), and we will discuss these parameters’ effects on the polymorphic q̂ (coexistence

of producers and scroungers) comparing with Vickery’s original PS game model. First,

we will discuss the length of one time unit in the PS game model because λ relates to it.

Second, we will discuss the effect of the variable λ on q̂, and the relationship between

the λ-dependent PS game model and Horn’s graphical nesting model (Horn 1968).

Third, we will discuss the effect of finder’s advantage (a/F ) on q̂. And finally, we will

discuss the effect of the number of foragers in a group (N) on q̂.

The length of one time unit in the PS game model

λ describes a producer’s encounter rate with food patches, so that if a producer searches

for food patches for T time units, the number of patches discovered by each producer is

λT . When we set λ = 0.01, it means that a producer finds one food patch in 100 time

units. Then, how long is one time unit in the PS game model? In the original PS game

model (Vickery et al. 1991), patch exploitation time is assumed to be negligible because

patches are scarce in foraging areas, so search time is long relative to exploitation time.

Ignoring exploitation time means that one time unit includes the events following

foraging: a producer finds a food patch and consumes the finder’s advantage (a) before

scroungers arrive, and the producer and scroungers (1 + (1 − q)N) consume the

remaining food items (F − a). In the PS game model, all these events occur in one time

unit, and this is the length of one time unit implied in the PS game model. In the

original PS game model, λ is set to make food finding an extremely rare event. If food

finding events are not rare, how a situation of PS game will change? We discuss this

effect connecting with animal aggregation in the following section. .
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The effect of a variable λ on q̂ and the relationship between the
λ-dependent PS game model and Horn’s model

In the λ-dependent PS game model, the ESS frequency of producers (q̂) at a given

producer’s advantage (a/F ) increases as λ increases (Fig. 1). q̂ of λ-dependent PS game

model is the same or larger than that of original PS game model (Vickery et al. 1991)

in all range of λ > 0. If λ increases, the number of discovered patches in one time unit

increases and scroungers are equally divided between each patch so that producers and

scroungers gain an equal amount of food even if a/F is not large. In addition to this,

the ratio of coexistence of producers and scroungers become smaller in the a/F

dimension and all foragers end up producers as λ increases, meaning that foragers cease

group foraging with parasitism (Fig. 2). The PS game condition is assumed to occur

when not every forager is equally successful at foraging, so that some foragers parasitize

other foragers’ information of food. Therefore, if λ is large enough and each forager is

successful, they do not need to parasitize for information and the PS game (parasitism)

situation would dissolve. Some empirical studies showed the same trend with this

prediction when the spatial distribution of food patches are distributed more

(Giraldeau et al. 1990; Giraldeau and Livoreil 1998; Coolen et al. 2001; Coolen 2002).

When the food distribution is considered and multiple patches can be found in one

time unit, the PS game model is able to connect with a subject of animal aggregation;

group foraging (grouping) or solitary foraging (solitariness). This is the same situation

in Horn’s graphical model of whether colonial or territorial nesting is favored (Horn

1968). When λ is large, it is the same as when the distribution pattern of food is

uniform, and territorial nesting (solitary foraging) would be expected. On the other

hand, when λ is small, it is the same as when the distribution pattern of food is
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temporally and spatially clumped, and colonial nesting (group foraging) would be

favored. Hence, the λ-dependent PS game model shows the same predict of Horn’s

graphical nesting model (Horn 1968). Barta and Giraldeau (2001) also use the PS

game to reappraise information-based hypotheses that explains the evolutionary

advantages of colonial breeding.

The effect of a/F on q̂

As well as the original PS game model (Vickery et al. 1991), a/F plays an important

role in the coexistence of producers and scroungers, but the effect of a/F on q̂ in the

λ-dependent PS game model is smaller than that of the original PS game model. When

λ is less than 0.5, producers and scroungers are able to coexist unless a/F is less than

0.5 and the number of foragers (N) is less than 4 (Fig. 2). When λ increases, however,

even though a/F (advantage of producers) is small enough, the strategy of producer is

favored and the PS game (group foraging with parasitism) condition could not occur at

any N . In the original PS game model (Vickery et al. 1991), on the contrary, producers

and scroungers are always able to coexist at any N if a/F is less than 0.5.

The positive effect of N on q̂ in the λ-dependent PS game model

In the original PS game model (Vickery et al. 1991), q̂ at a given a/F decreases as N

increases. This is obvious from the q̂ equation: q̂ = a/F + 1/N . And, even if we fix q̂N

as an integer, q̂ of a larger N never exceeds that of a smaller N (Fig. 3). Because the

maximum number of discovered food patches in one time unit is only one, the number of

scroungers gather in the patch ((1 − q)N) increases as N increases, so that the

increasing of N causes a only negative effect on producers. Conversely, in the

λ-dependent PS game model, the number of discovered food patches in one time unit
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increases as λ and N increase, and scroungers are equally divided between those food

patches, so that the difference of q̂ between various N at a given a/F becomes smaller

as λ increases. When we fix q̂N as an integer, available q̂ increases and the increment

decreases little by little as N increases, and q̂ of the bigger N exceeds that of the smaller

N at some given a/F (Fig. 4). This positive effect of N on q̂ is never seen in the

original PS game model (Vickery et al. 1991). In the λ-dependent PS game model, if

the food patches are abundant in the foraging area, the food intake per individual does

not decrease as N increases. Therefore, the aggregation of foraging individuals keeps up

and N becomes larger. As we mentioned above, however, the PS game condition often

occurs around small λ, so this case might be rare.

Additional Considerations

As we described above, the effect of λ on q̂ is not negligible in the PS game. Therefore,

when we apply the PS game model, we have to check the λ of the intended species and

foraging area. In this study, we assumed that each patch has a finite renewable resource

for simplicity, so that a binomial distribution is used to calculate the predicted number

of discovered food patches in one time unit. In reality, however, patches are usually a

finite resource that do not instantaneously replenish. Hence, a hypergeometric

distribution might be more appropriate for the foraging situation of some species of

birds, which are often used for test of PS game model. In addition to this, other

probability distribution functions (negative binomial (hypergeometric) distribution,

uniform distribution, etc.) should be used according to the distribution of food

availability.
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Figure 1: The ESS frequency of producers of N = 10

The solid line is the original PS game model and the others lines are λ = 0.01, 0.1,

0.3, 0.5, 0.7, 0.9.

Figure 2: Borderline between group foraging and solitary foraging

The line describes the maximum fraction of producer’s advantage (a/F ) at which

producers and scroungers can co-exist.

Figure 3: The ESS frequency of producers in the original PS game model

The left-hand side of figure shows four examples of ESS frequency of producers (q̂) in

N = 2, 4, 8, and 16. The right-hand side of figure combines these four examples.

Figure 4: The ESS frequency of producers in the λ-dependent PS game model with

λ = 0.3

The left-hand side of figure shows four examples of ESS frequency of producers (q̂) in

N = 2, 4, 8, and 16. The right-hand side of figure combines these four examples.
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