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Abstract. In the previous paper [AM], the author and Masuoka developed a Picard-
Vessiot theory for module algebras over a cocommutative pointed smooth Hopf algebra
D. By using the notion of artinian simple (AS) D-module algebras, it generalizes and
unifies the standard Picard-Vessiot theories for linear differential and difference equa-
tions. The purpose of this paper is to define the notion of Liouville extensions of AS
D-module algebras and to characterize the corresponding Picard-Vessiot group schemes.

Introduction

The notion of Liouville extensions of differential fields first appeared in Kolchin’s histor-

ical work on the Picard-Vessiot theory [K1]. Picard and Vessiot treated linear differential

equations which are solvable by quadratures, without explicit definition. Kolchin gave

a rigid definition to its meaning. An extension of differential fields (of zero character-

istic) is called Liouville iff it contains no new constants and it is obtained by iterating

integrations, exponentiations, and algebraic extensions. A Picard-Vessiot extension is

Liouville iff the connected component of its differential Galois group is solvable. By the

Lie-Kolchin triangularization theorem and others [K1, Ch. I], we can characterize several

types of Liouville extensions in matrix theoretical way. For example, a Liouville exten-

sion is obtained only by iterating integrations iff its differential Galois group is unipotent

(or “anticompact” in [K1]). In case of arbitrary characteristic, Okugawa [O] studied the

Picard-Vessiot theory for fields with higher derivations of infinite length and obtained

similar results on Liouville extensions.

Liouville extensions of (ordinary, inversive) difference fields were first studied by Franke

[F]. But at that time, the Picard-Vessiot theory remained incomplete since it was re-

stricted to field extensions (see [vPS1, p. 2]). The Picard-Vessiot theory for difference

equations in modern sense was developed by van der Put and Singer [vPS1], in which
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solution algebras can have zero divisors. In this context, Hendriks and Singer [HS] stud-

ied on Liouville solutions of difference equations with rational function coefficients. They

defined the notion of “Liouvillian sequences” and showed that a linear difference equa-

tion can be solved in terms of such sequences iff the difference Galois group is solvable.

(Moreover, they gave an algorithm to find such Liouville solutions.)

In the previous paper [AM], the author and Masuoka developed (following Takeuchi’s

Hopf algebraic approach [T]) a Picard-Vessiot theory for module algebras over a cocom-

mutative pointed smooth Hopf algebra D, so that D = D1#RG where R is the base field,

G = G(D) is the grouplikes of D, and D1 is the irreducible component which contains

1. D1 is of Birkhoff-Witt type by the smoothness assumption; namely it is spanned by

(possibly infinitely many) divided power sequences of infinite length; an infinite sequence

{1 = d0, d1, . . . , dn, . . . } in D1 is called a divided power sequence if ∆(dn) =
∑n

i=0 di⊗dn−i

[S, p. 268]. We observe divided power sequences act on a commutative D-module alge-

bra as higher derivations, while G acts as algebra automorphisms. Thus the notion of

commutative D-module algebras involves fields with higher derivations of infinite length,

inversive difference algebras, and moreover BiaÃlynicki-Birula’s pioneering notion of “fields

with operators” [B]. By using affine group schemes instead of algebraic matrix groups,

we removed (as in [T]) many assumptions from the Picard-Vessiot theory: for example,

the assumption that the constant field is algebraically closed can be removed for many of

the results.

The purpose of this paper is to generalize the notion of Liouville extensions for such

commutative D-module algebras and to characterize the corresponding property of affine

group schemes. We assume the reader has introductory knowledge on affine group schemes

and Hopf algebras. See [M, S] for basic concepts about Hopf algebras. On affine group

schemes, we refer to [W]. On the Picard-Vessiot theory, we follow [AM] for our expositions

and notations; here we outline it briefly in the next paragraph.

Throughout this paper, all D-module algebras are assumed to be commutative unless

otherwise stated. A D-module algebra is called artinian simple (AS) iff it is artinian

as a ring and simple as a D-module algebra (i.e. it has no non-trivial D-stable ideal).

We observe that if K is a simple D-module algebra, then the constants of K, defined

by KD = {a ∈ K | da = ε(d)a for all d ∈ D} where ε is the counit, is a field.

Following Takeuchi [T], we define the Picard-Vessiot (PV) extensions as follows. An

extension L/K of AS D-module algebras is called a PV extension iff LD = KD and there
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exist a (necessarily unique) D-module subalgebra A ⊂ L including K such that the total

quotient ring of A is equal to L and H = (A⊗K A)D generates the left A-module A⊗K A:

A ⊗K A = A · H. This A (resp., H) is called the principal algebra (resp., the Hopf

algebra) for L/K. To indicate these, we also say that (L/K,A, H) is a PV extension. H

has a commutative Hopf algebra structure which defines an affine group scheme G(L/K)

(' AutD,K-alg(A)) over KD, called PV group scheme for L/K. G(L/K) takes part of

the Galois groups; in particular the Galois correspondence between intermediate AS D-

module algebras of L/K and closed subgroup schemes of G(L/K) holds. In addition, the

definition of PV extensions here is compatible with the definition in the sense of Kolchin

[K] and also of van der Put and Singer [vPS1, vPS2] by the characterization theorem

[AM, Theorem 4.6].

When we characterize Liouville extensions in terms of affine group schemes, we will meet

the following difficulty: the Lie-Kolchin triangularization theorem cannot be extended

generally to affine group schemes (see [W, Ch. 10]). Certainly there are gaps between

the triangulability and the connected solvability, even if the base field is algebraically

closed. So we need some intermediate notions and have to study how they are related

each other. In Section 1, we define “Liouville group schemes” so that it is suitable for our

main theorem, and study how strong the definition is. An algebraic affine group scheme

G over a field k is called (k-)Liouville (cf. [K, p. 374]) iff there exists a normal chain

of closed subgroup schemes G = G0 B G1 B · · · B Gr = {1} such that each Gi−1/Gi

(i = 1, . . . , r) is at least one of the following types: finite etale, a closed subgroup scheme

of Ga, or a closed subgroup scheme of Gm. When k is algebraically closed, G is Liouville

iff the connected component G◦ is solvable (Proposition 1.5). But in general it does not

holds; we show this fact by examples. For connected affine group schemes, we will see

the condition to be Liouville is properly stronger than the solvability but weaker than the

triangulability.

Let L ⊃ K be an inclusion of AS D-module algebras. For finitely many elements

x1, . . . , xn ∈ L, let K〈x1, . . . , xn〉 denote the smallest AS D-module subalgebra in L

including both K and x1, . . . , xn. L/K is called Ga-primitive extension (resp., Gm-

primitive extension) iff there is an x ∈ L such that d(x) ∈ K for all d ∈ D+ = Ker ε

(resp., x is a non-zero divisor of L (which is necessarily invertible) and d(x)x−1 ∈ K

for all d ∈ D) and L = K〈x〉. We say that L/K is a finite etale extension iff L is a

separable K-algebra in the sense of [DI], i.e. L is a projective L ⊗K L-module. L/K is



4 KATSUTOSHI AMANO

called finitely generated if L = K〈x1, . . . , xn〉 for some x1, . . . , xn ∈ L. Then we define

Liouville extension as such a finitely generated extension L/K that LD = KD and there

exists a sequence of AS D-module algebras K = L0 ⊂ L1 ⊂ · · · ⊂ Lr = L such that

each Li/Li−1 (i = 1, . . . , r) is at least one of the following types: Ga-primitive extension,

Gm-primitive extension, or finite etale extension. As our main theorem, we will show in

Theorem 2.10 the following:

Theorem. Let L/K be a finitely generated PV extension. Then the following are

equivalent:

(a) L/K is a Liouville extension.

(b) There exists a Liouville extension F/K such that L ⊂ F .

(c) G(L/K) is Liouville.

When k is algebraically closed, these are equivalent to:

(d) G(L/K)◦ is solvable.

Moreover we will characterize ten types of Liouville extensions just being compatible

with [K1, §24–27]; see Definition 2.8, Corollary 2.12 and its following paragraph.

1. Liouville group schemes

Definition 1.1. Let G be an algebraic affine group scheme over a field k.

(1) We say G is (k-)Liouville (cf. [K, p. 374]) iff there exists a normal chain of closed

subgroup schemes

(1.1) G = G0 B G1 B · · · B Gr = {1}
such that each Gi−1/Gi (i = 1, . . . , r) is at least one of the following types: finite etale, a

closed subgroup scheme of Ga, or a closed subgroup scheme of Gm. In this case, we call

(1.1) a Liouville normal chain (LNC).

(2) In (1.1), if each Gi−1/Gi is merely a closed subgroup scheme of Ga or a closed

subgroup scheme of Gm, then we call it a restricted Liouville normal chain (RLNC).

We use the following abbreviation of some types on group schemes which arise as

factor group schemes in an LNC: we say G is of Ga-type (resp., Gm-type) iff it is a closed

subgroup scheme of Ga (resp., Gm), and a group scheme of RL-type (resp., L-type) means

that it is of Ga-type or Gm-type (resp., RL-type or finite etale). Each type is closed

under closed subgroups and quotient groups.
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Lemma 1.2. (1) If G is Liouville (resp., has an RLNC), then every closed subgroup

scheme of G is Liouville (resp., has an RLNC). Especially G is Liouville iff the connected

component G◦ is Liouville.

(2) Let H be a normal closed subgroup scheme of G. Then G is Liouville (resp., has

an RLNC) iff both H and G/H are Liouville (resp., have an RLNC).

(3) If G is connected Liouville, then G is solvable.

Proof. First we take an LNC (resp., an RLNC): G = G0 B G1 B · · · B Gr = {1} in each

proof of (1), “only if” part of (2), and (3).

(1) Let H be a closed subgroup scheme of G and put Hi := H∩Gi (i = 0, . . . , r). Then

we have H0 = H and Hi = Hi−1∩Gi = Ker(Hi−1 → Gi−1/Gi) for i = 1, . . . , r. It follows

that Hi−1 B Hi and Hi−1/Hi is a closed subgroup scheme of Gi−1/Gi for i = 1, . . . , r.

Therefore H = H0 B H1 B · · · B Hr = {1} is an LNC (resp., an RLNC).

(2) (“Only if” part.) H is Liouville (resp., has an RLNC) by (1). Put Fi := Gi/H∩Gi

(i = 0, . . . , r). Since each k[Fi−1/Fi] is a Hopf subalgebra of k[Gi−1/Gi], each Fi−1/Fi is

of L-type (resp., RL-type) for i = 1, . . . , r. Then G/H = F0 B F1 B · · · B Fr = {1} is

an LNC (resp., an RLNC).

(”If” part.) Let G/H = F0 B F1 B · · · B Fr = {1} be an LNC (resp., an RLNC) and

(0) = I0 ⊂ I1 ⊂ · · · ⊂ Ir the corresponding sequence of Hopf ideals of k[G/H]. If we

put I ′i := k[G] · Ii (i = 0, . . . , r), then each I ′i becomes a Hopf ideal of k[G]. Let Gi be

the closed subgroup scheme of G which corresponds to I ′i. Then we have a normal chain

G = G0 B G1 B · · · B H such that Gi−1/Gi ' Fi−1/Fi (i = 1, . . . , r). Therefore G is

Liouville (resp., has an RLNC).

(3) We use induction on the least length r of LNC. The case r = 0 is clear. Let r > 0.

Since G is connected, G/G1 is also connected. Then G/G1 is of RL-type and hence

abelian. Therefore DG (see [W, (10.1)]) is a connected closed subgroup scheme of G1.

By (1) and its proof, DG is connected Liouville and has an LNC with length ≤ r − 1.

Then DG is solvable by the induction hypothesis, concluding the proof. ¤

The converse of (3) above does not hold in general; see the following example:

Example 1.3. (1) A nontrivial anisotropic torus T is connected solvable but is not Liouville

since both Hom(T,Gm) and Hom(T,Ga) are trivial.

(2) Let k be the prime field of ch(k) = 2 and H = k[x]/〈x4 + x2 + x〉 with x primitive.

Then H is a commutative Hopf algebra and G = SpecH is abelian, finite etale, and
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unipotent. The Cartier dual G∗ is finite connected of multiplicative type and then solv-

able. Since H∗ does not have any nontrivial grouplike, Hom(G∗,Gm) is trivial. Therefore

G∗ is not Liouville.

Proposition 1.4. Let G be a connected algebraic affine group scheme over a field k.

Then G is Liouville iff G has an RLNC.

Proof. The “if” part is clear. For the “only if” part, we use induction on the least length r

of LNC G = G0 B G1 B · · · B Gr = {1}. The case r = 0 is clear. Let r > 0 and assume

G◦
1 has an RLNC. By the argument in the proof of Lemma 1.2 (3), we have G B G◦

1 and

G/G◦
1 is abelian. Thus the proof can be reduced to the case that G is connected abelian

by Lemma 1.2 (2).

Let G be connected abelian and put H = k[G]. Let Hu (= H1) be the irreducible

component of H which contains 1 (see [M, §5.6]) and Hs = H/HH+
u , where H+

u denotes

the augmentation ideal of Hu. Then we have the exact sequence

(1.2) Hu ½ H ³ Hs.

Let k̄ denote the algebraic closure of k. It is known that Hu ⊗k k̄ is also the irreducible

component of H ⊗k k̄ containing 1. The exact sequence (1.2) splits over k̄ (the Jordan

decomposition of Gk̄ [W, (9.5)]), and Gs := SpecHs is connected of multiplicative type

since (Gs)k̄ is connected diagonalizable. Put Gu := SpecHu (= G/Gs); this is unipotent.

We see Gu has an RLNC whose all factor group schemes are of Ga-type (see [W, Ch. 16,

Ex. 5]). Then it suffices to show that Gs has an RLNC. Let T be a maximal torus of Gs.

T includes no nontrivial anisotropic subtorus since it is Liouville. Hence, by [W, (7.4)],

we see T is a split torus and has an RLNC. Put H = Gs/T; this is finite connected,

Liouville, and of multiplicative type. Let H B H1 B · · · B Hr = {1} be an LNC. We

see H/H1 is of Gm-type. Since H is finite connected, k[H] is a local algebra of finite

dimension. Then its quotient k[H1] is also a local algebra of finite dimension and hence

H1 is connected. By the induction hypothesis, H1 has an RLNC. Therefore H also has

an RLNC, concluding the proof. ¤

Proposition 1.5. Let k be an algebraically closed field and G an algebraic affine group

scheme over k. Then G is Liouville iff G◦ is solvable.

Proof. In fact we have proved the “only if” part in Lemma 1.2 over an arbitrary field. For

the “if” part, we use induction on the least m such that DmG◦ = {1}. The case m = 0

is clear. Let m > 0 and assume that DG◦ has an RLNC. By Lemma 1.2 (2), it suffices
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to show that G◦/DG◦ has an RLNC. Thus the proof can be reduced to the case that G

is (connected) abelian.

Let G be abelian and take the Jordan decomposition G = Gs×Gu. Gu has an RLNC.

Since k is algebraically closed, Gs is diagonalizable and hence has an RLNC. Therefore

G has an RLNC. ¤

We observe that the triangulability is certainly stronger than the condition to have an

RLNC, even if k is algebraically closed. For example, the group scheme in [W, Ch. 10,

Ex. 3] has an RLNC but is not triangulable.

It is known that G is unipotent iff G has an RLNC whose all factor group schemes are

of Ga-type. We say that G is Gm-composite iff G has an RLNC whose all factor group

schemes are of Gm-type. When k is algebraically closed and G corresponds to the affine

algebraic group G(k) in the sense that the Hopf algebra k[G] representing G coincides

with the coordinate Hopf algebra of G(k), G is Gm-composite iff G(k) is solvable and

“quasicompact” in Kolchin’s terminology, which implies that each element of G(k) is

diagonalizable [K1, §6, Theorem 2]. In general it is difficult to characterize the condition

to be Gm-composite. As was seen above, group schemes of multiplicative type are not

necessarily Gm-composite. On the other hand, non-diagonalizable group schemes can be

Gm-composite; see the following example.

Example 1.6. Let k be the prime field with ch(k) = p > 0 and take the commutative

Hopf algebra H = k[x, y]/〈xp−x, yp−x− y〉 with x, y primitive. One sees G = SpecH is

abelian, finite etale, and unipotent. Hence the Cartier dual G∗ is of multiplicative type

and connected. We have the RLNC of G:

k[x]/〈xp − x〉 ½ H ³ k[y]/〈yp − y〉.

By dualizing this we see that G∗ is Gm-composite:

k[µp] ´ H∗ ¾ k[µp].

The grouplikes of H∗ is given by

Coalgk(k, H∗) ' Algk(H, k) = {(a, b) ∈ k2 | ap − a = 0, bp − a− b = 0}

where Coalg and Alg denote coalgebra maps and algebra maps respectively. Thus we

have G∗ is not diagonalizable since p2 = dimk H∗ 6= p = #Algk(H, k).
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2. Liouville extensions

Let D = D1#RG be a cocommutative pointed smooth Hopf algebra over a base field

R, as in [AM]. See the fifth paragraph in Introduction for an outline of the Picard-

Vessiot theory for artinian simple (AS) D-module algebras. Let L ⊃ K be an inclusion

of AS D-module algebras. For finitely many elements x1, . . . , xn ∈ L, let K〈x1, . . . , xn〉
denote the smallest AS D-module subalgebra in L including both K and x1, . . . , xn. If

L = K〈x1, . . . , xn〉 for some x1, . . . , xn ∈ L, we say that the extension L/K is finitely

generated. A PV extension L/K is finitely generated iff its PV group scheme G(L/K) is

an algebraic affine group scheme (see [AM, Corollary 4.8]).

In the following we always assume that L/K is an extension of AS D-module algebras

such that LD = KD =: k.

Definition 2.1. (1) An x ∈ L is called Ga-primitive over K iff d(x) ∈ K for all d ∈
D+ = Ker ε. In this case, we say that K〈x〉/K is a Ga-primitive extension.

(2) An x ∈ L is called Gm-primitive over K iff x is a non-zero divisor of L and

d(x)x−1 ∈ K for all d ∈ D. In this case, we say that K〈x〉/K is a Gm-primitive extension.

(3) We say that L/K is a finite etale extension iff L is a separable K-algebra in the sense

of [DI], i.e. L is a projective L ⊗K L-module. Then, L is necessarily finitely generated

(free) as a K-module.

For a commutative K-algebra A, let π0(A) denote the union of all separable K-

subalgebras (in the sense of [DI]) in A. Recall that K is the direct product of finitely

many (mutually isomorphic) fields Ki, so that A is the direct product of commutative

Ki-algebra Ai. Hence π0(A) is the direct product of π0(Ai), the union of all separable

Ki-subalgebras of Ai (see [DI, Ch. II, Proposition 1.13]). It follows that if A is finitely

generated as a K-algebra, π0(A) is the largest separable subalgebra of A.

If we take a maximal ideal P of L and put L′ = L/P and K ′ = K/P ∩ K, then the

following are equivalent:

• L/K is a finite etale extension.

• L is a finitely generated K-algebra and π0(L) = L.

• L′/K ′ is a finite separable field extension.

Take a maximal ideal p of K. We say a finite etale extension L/K is copied (resp.,

anticopied) iff L′ = K ′ (resp., pL is a maximal ideal of L); this condition is independent

of the choice of P (resp., p).
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Let H be a commutative k-Hopf algebra, G = SpecH, and π0(H) the union of all

separable k-subalgebras in H. Since π0(H) is the directed union of all separable k-Hopf

subalgebras, it is a Hopf subalgebra. The connected component G◦ of G is represented

by H/Hπ0(H)+ by definition (see [W, Ch. 6, Ex. 7]).

Proposition 2.2. Let (L/K, A,H) be a PV extension.

(1) π0(A) = π0(L).

(2) π0(A) is the intermediate AS D-module algebra which corresponds to G(L/K)◦ and

(π0(A)/K, π0(A), π0(H)) is a PV extension.

Especially L/K is a finite etale extension iff G(L/K) is finite etale.

Proof. (L/K,A, H) is a directed union of finitely generated PV extensions (Lλ/K, Aλ, Hλ)

by [AM, Corollary 4.9]. Since π0(L) =
⋃

λ π0(Lλ), π0(A) =
⋃

λ π0(Aλ), and π0(H) =⋃
λ π0(Hλ), the proof can be reduced to the case that (L/K,A, H) is finitely generated.

(2) By [W, (6.5)] (together with [DI, Ch. II, Proposition 1.13]), we have π0(A⊗K A) =

π0(A)⊗K π0(A) and π0(A⊗kH) = π0(A⊗K (K⊗kH)) = π0(A)⊗K π0(K⊗kH) = π0(A)⊗k

π0(H). Thus we obtain an algebra isomorphism π0(A) ⊗k π0(H)
∼−→ π0(A) ⊗K π0(A) by

restricting the isomorphism µ : A ⊗k H
∼−→ A ⊗K A in [AM, Proposition 3.4]. This also

induces an isomorphism A⊗k π0(H)
∼−→ A⊗K π0(A). Therefore θ−1(A⊗k π0(H)) = π0(A),

where θ : A → A ⊗k H denotes the H-comodule structure map of A defined by θ(a) =

µ−1(1 ⊗ a). Since θ is a D-module algebra map, we have that π0(A) is a D-module

subalgebra of L.

Then we show that π0(A) is the total quotient ring of itself and is an intermediate AS

D-module algebra of L/K [AM, Lemma 2.8]. Let a be a non-zero divisor of π0(A). Then

it has full support [AM, Corollary 2.9 (i)] and is contained in a separable K-subalgebra

of A which is a finite product of fields (finite separable over each Ki). Thus a−1 is also

contained in π0(A).

By [AM, Theorem 3.9 (iii)] and its following remarks (see also [T, Theorem 2.9]), we

have that (π0(A)/K, π0(A), π0(H)) is a PV extension and π0(A) is the intermediate AS

D-module algebra of L/K corresponding to the normal Hopf ideal Hπ0(H)+.

(1) By [AM, Proposition 3.13], we may assume that K is a field and A is an integral

domain. Put M = π0(A). It suffices to show that M is separably closed in L. Write

H0 = H/Hπ0(H)+. Then we have an algebra isomorphism L ⊗k H0
∼−→ L ⊗M A since

(L/M, A, H0) is a PV extension [AM, Theorem 3.9 (ii)]. By [W, (6.6)], (L⊗kH0)/nilradical

is an integral domain. It follows that (L⊗M L)/nilradical is also an integral domain since
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it is a localization of (L⊗M A)/nilradical by a multiplicative subset not containing zero.

Thus L ⊗M L has no nontrivial idempotent. This implies that M is separably closed in

L. Indeed, let S be an intermediate field of L/M such that S/M is finite separable. If

e ∈ S ⊗M S (⊂ L ⊗M L) is a separability idempotent for S [DI, p. 40], then necessarily

e = 1⊗ 1. Hence a⊗ 1− 1⊗ a = 0 in S ⊗M S for all a ∈ S by the definition of such an

idempotent. Therefore S = M . ¤

Corollary 2.3. Let L/K be a PV extension. Then G(L/K) is connected iff π0(L) = K.

Definition 2.4. Let G be a finite group and put H = (kG)∗. We say L/K is a G-extension

iff:

(i) G acts on L as K-algebra automorphisms which are D-linear, and

(ii) L/K is a right H-Galois extension [M, §8.1], or in other words, the map

L⊗K L → Map(G, L), x⊗ y 7→ [σ 7→ xσ(y)]

is a bijection.

We easily see that L/K is a G-extension iff (L/K,L, (kG)∗) is a PV extension. If L/K

is an anticopied G-extension, then L′/K ′ is a Galois extension of fields in ordinary sense

such that Gal(L′/K ′) = G. Conversely, when L/K is a finite Galois extension of fields,

L/K is a Gal(L/K)-extension iff every element of Gal(L/K) is D-linear.

As in [T, (2.5a), (2.5b)], we have the following lemmas:

Lemma 2.5. (1) Let K〈x〉/K be a Ga-primitive extension. Put A = K[x] and l =

1⊗K x−x⊗K 1 ∈ (A⊗K A)D. Then (K〈x〉/K, A, k[l]) is a PV extension with l primitive

and the PV group scheme G(K〈x〉/K) of Ga-type.

(2) Let K〈x〉/K be a Gm-primitive extension. Put A = K[x, x−1] and g = x−1 ⊗K x ∈
(A⊗K A)D. Then (K〈x〉/K, A, k[g, g−1]) is a PV extension with g grouplike and the PV

group scheme G(K〈x〉/K) of Gm-type.

Proof. (1) x is Ga-primitive iff there exists a ϕ ∈ HomR(D, K) such that d(x) = ε(d)x +

ϕ(d) for all d ∈ D. Then

X =

(
1 1
x x + 1

)
∈ GL2(K〈x〉)

is GL2-primitive over K (see [AM, Theorem 4.6 (d)]). In fact,

dX =

(
ε(d) 0
ϕ(d) ε(d)

)
X (d ∈ D).
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Considering the proof of [AM, Theorem 4.6 ((d) ⇒ (a))], we see

Z = (X−1 ⊗K 1)(1⊗K X) =

(
1− l −l

l 1 + l

)
,

which concludes the proof.

(2) This is equivalent to saying that x is GL1-primitive over K. ¤

Lemma 2.6. (1) If l ∈ (L⊗K L)D and if l is primitive in the L-coring L⊗K L (see [S1]),

then there exists an x ∈ L such that l = 1⊗K x− x⊗K 1 and x is Ga-primitive over K.

(2) If g ∈ (L ⊗K L)D and if g is grouplike in L ⊗K L, then there exists a non-zero

divisor x ∈ L such that g = x−1 ⊗K x and x is Gm-primitive over K.

Proof. (1) Primitive elements in the L-coring L ⊗K L are precisely 1-cocycles in the

Amitsur complex:

0 → L
δ0−→ L⊗K L

δ1−→ L⊗K L⊗K L
δ2−→ · · · ,

δ0(x) = 1⊗K x− x⊗K 1,

δ1(
∑

xi ⊗K yi) =
∑

1⊗K xi ⊗K yi −
∑

xi ⊗K 1⊗K yi +
∑

xi ⊗K yi ⊗K 1, . . . ,

whose n-th cohomology is Hn(L/K,Ga). But H1(L/K,Ga) = 0 since L/K is a faithfully

flat extension (see [W, Ch. 17, Ex. 10]). Then l ∈ Ker δ1 = Im δ0 and hence there exists

some x ∈ L such that l = 1 ⊗K x − x ⊗K 1. Since dl = ε(d)l for all d ∈ D, we have

δ0(dx) = 0 for all d ∈ D+. This implies dx ∈ H0(L/K,Ga) = K for all d ∈ D+.

(2) Grouplike elements in L⊗K L are precisely 1-cocycles in the complex:

{1} → Gm(L)
δ0−→ Gm(L⊗K L)

δ1−→ Gm(L⊗K L⊗K L)
δ2−→ · · · ,

δ0(x) = (1⊗K x)(x⊗K 1)−1 = x−1 ⊗K x,

δ1(
∑

xi ⊗K yi) = (
∑

1⊗K xi ⊗K yi)(
∑

xi ⊗K 1⊗K yi)
−1(

∑
xi ⊗K yi ⊗K 1), . . . ,

whose n-th cohomology is Hn(L/K,Gm). But H1(L/K,Gm) = Pic(L/K) ⊂ Pic(K) =

{1} since K is a finite product of fields. Then g ∈ Ker δ1 = Im δ0 and hence there exists

some x ∈ Gm(L) such that g = x−1 ⊗K x. Since dg = ε(d)g, we have

1⊗K dx = d(1⊗K x) = d((x⊗K 1)g) = d(x)x−1 ⊗K x

for all d ∈ D. By multiplying 1 ⊗K x−1, we have 1 ⊗K d(x)x−1 = d(x)x−1 ⊗K 1 for all

d ∈ D, which implies d(x)x−1 ∈ K for all d ∈ D. ¤

Proposition 2.7. L/K is a Ga-primitive (resp., Gm-primitive) extension iff L/K is a

PV extension and G(L/K) is of Ga-type (resp., Gm-type).
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Proof. (“Only if” part.) This has been proved in Lemma 2.5.

(“If” part.) Let k[l] (resp., k[g, g−1]) be the Hopf algebra for L/K. By Lemma 2.6,

there exists the corresponding x ∈ L. Then K〈x〉 is an intermediate AS D-module algebra

of L/K such that K〈x〉/K is a PV extension. Since the Hopf algebras of K〈x〉/K and

L/K coincide, we have L = K〈x〉. ¤

Definition 2.8. Let F/K be a finitely generated extension of AS D-module algebras

such that FD = KD = k. We call F/K a Liouville extension iff there exists a sequence

of AS D-module algebras

(2.1) K = F0 ⊂ F1 ⊂ · · · ⊂ Fr = F

such that each Fi/Fi−1 (i = 1, . . . , r) is at least one of the following types: Ga-primitive

extension, Gm-primitive extension, or finite etale extension. In this case, the sequence

(2.1) is called a Liouville chain. Moreover, F/K is called a Liouville extension of type

(j) (j = 1, . . . , 10) iff F/K has a Liouville chain (2.1) such that each extension Fi/Fi−1

(i = 1, . . . , r) is

(1) Ga-primitive, Gm-primitive, or finite etale,

(2) Ga-primitive or Gm-primitive,

(3) Gm-primitive or finite etale,

(4) Ga-primitive or finite etale,

(5) Ga-primitive or a G-extension for a finite solvable group G,

(6) Gm-primitive,

(7) Ga-primitive,

(8) finite etale,

(9) a G-extension for a finite solvable group G,

(10) trivial (i.e. Fi = Fi−1),

respectively. For the list above, we followed [K1, §24]. We observe an anticopied G-

extension for a finite solvable group G is identified with a Galois extension by radicals

and is also a Liouville extension of type (6).

To show the main theorem, we need the following lemma (cf. [K1, §21]).

Lemma 2.9. Let L/K be a finitely generated PV extension and F an AS D-module

algebra containing L such that FD = KD = k. Take one t ∈ F . Then L〈t〉/K〈t〉 is a

finitely generated PV extension and G(L〈t〉/K〈t〉) ' G(L/K〈t〉 ∩ L).
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Proof. By [AM, Theorem 4.6], there exists a GLn-primitive X = (xij) ∈ GLn(L) over

K such that L = K〈xij〉. Since L〈t〉 = K〈t, xij〉, we have that L〈t〉/K〈t〉 is a finitely

generated PV extension. Write M = K〈t〉 ∩ L, Z = (X−1 ⊗M 1)(1 ⊗M X) = (zij),

and Z−1 = (wij). Then H = k[zij, wij] becomes the Hopf algebra for L/M . Similarly

by writing Z ′ = (X−1 ⊗K〈t〉 1)(1 ⊗K〈t〉 X) = (z′ij), and (Z ′)−1 = (w′
ij), we obtain the

Hopf algebra H ′ = k[z′ij, w
′
ij] for L〈t〉/K〈t〉. It follows that there exists a surjective Hopf

algebra map ϕ : H ³ H ′, zij 7→ z′ij. This implies that G(L〈t〉/K〈t〉) is a closed subgroup

scheme of G(L/M). Let I = Ker ϕ be the corresponding Hopf ideal.

ϕ is the restriction (to H) of the natural map ϕ̃ : L⊗M L → L〈t〉 ⊗K〈t〉 L〈t〉. Since the

coideal I ·(L⊗M L) of L⊗M L, which corresponds to I [AM, Proposition 3.10], is included

in Ker ϕ̃, we have {a ∈ L | a⊗M 1− 1⊗M a ∈ I · (L⊗M L)} ⊂ {a ∈ L | a⊗M 1− 1⊗M a ∈
Ker ϕ̃} = L ∩ K〈t〉 = M . This implies that the intermediate AS D-module algebra of

L/M which corresponds to I is M . Thus I = 0. ¤

Theorem 2.10. Let L/K be a finitely generated PV extension. Then the following are

equivalent:

(a) L/K is a Liouville extension.

(b) There exists a Liouville extension F/K such that L ⊂ F .

(c) G(L/K) is Liouville.

When k is algebraically closed, these are equivalent to:

(d) G(L/K)◦ is solvable.

Proof. ((a) ⇒ (b)) This is clear.

((b) ⇒ (c)) Take a Liouville chain of F/K:

K = F0 ⊂ F1 ⊂ · · · ⊂ Fr = F.

We use induction on r. The case r = 0 is obvious. Let r > 0. Since there are finite

t1, . . . , ts ∈ F such that F1 = K〈t1, . . . , ts〉, we have that L〈t1, . . . , ts〉/F1 is a finitely

generated PV extension and G(L〈t1, . . . , ts〉/F1) ' G(L/F1 ∩ L) by Lemma 2.9. By the

induction hypothesis, G(L/F1 ∩ L) is Liouville. Put L1 = F1 ∩ L.

If F1/K is a finite etale extension, then L1 ⊂ π0(L). It follows G(L/L1) ⊃ G(L/π0(L)) =

G(L/K)◦ (Proposition 2.2). Since G(L/L1) is Liouville, G(L/K)◦ is also Liouville and

hence (c) holds by Lemma 1.2.
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If F1/K is a Ga-primitive extension, then one sees that L1/K is also a Ga-primitive ex-

tension (see [T, (2.9a)]). Hence G(L/K) B G(L/L1) and G(L/K)/G(L/L1) = G(L1/K)

is of Ga-type by Proposition 2.7. Therefore (c) holds.

If F1/K is a Gm-primitive extension, then L1/K is also a Gm-primitive extension (see

[T, (2.9b)]). Thus we obtain (c) similarly.

((c)⇒ (a)) Let G(L/K) = G0 B G1 B · · · B Gr = {1} be an LNC and Li (i = 0, . . . , r)

the intermediate AS D-module algebra which corresponds to Gi. Then by Proposition

2.2 and by Proposition 2.7, K = L0 ⊂ L1 ⊂ · · · ⊂ Lr = L is a Liouville chain. ¤

By Proposition 1.4, we have the following.

Corollary 2.11. Let L/K be a finitely generated PV extension. If L/K is a Liouville

extension, then there exists a Liouville chain

K = L0 ⊂ π0(L) = L1 ⊂ L2 ⊂ . . . ⊂ Lr = L

such that each Li/Li−1 (i = 2, . . . , r) is a Gm-primitive or Ga-primitive extension.

Corollary 2.12. Let L/K be a finitely generated PV extension. Then L/K is (included

in) a Liouville extension of type (j) (j = 1, . . . , 10) iff

(1) G(L/K) is Liouville,

(2) G(L/K) has an RLNC,

(3) G(L/K)◦ is Gm-composite,

(4) G(L/K)◦ is unipotent,

(5) π0G(L/K) is finite constant and solvable, and G(L/K)◦ is unipotent,

(6) G(L/K) is Gm-composite,

(7) G(L/K) is unipotent,

(8) G(L/K) is finite etale,

(9) G(L/K) is finite constant and solvable,

(10) G(L/K) is trivial,

respectively.

This corollary can become more explicit when K is a perfect field and k is algebraically

closed. In such a case, if (L/K, A,H) is a finitely generated PV extension, then A⊗K A

is reduced (see [W, Ch. 6, Ex. 2]), and so H is reduced. Thus H coincides with the

coordinate Hopf algebra of the affine algebraic group G(L/K)(k) = AutD,K-alg(L) (see

[W, (4.5)]). There we can do the following replacement on the condition about G(L/K):

(1) G(L/K)◦ is solvable (⇔ G(L/K)◦ is triangulable),
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(2) G(L/K) is solvable,

(3) G(L/K)◦ is diagonalizable,

(4) G(L/K)◦ is unipotent,

(5) G(L/K) is solvable and G(L/K)◦ is unipotent,

(6) G(L/K)(k) is solvable and quasicompact (in Kolchin’s sense),

(7) G(L/K) is unipotent,

(8) G(L/K) is finite constant,

(9) G(L/K) is finite constant and solvable,

(10) G(L/K) is trivial.
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