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ABSTRACT — We study the Cauchy Problem for hyperbolic systems with multiple charac-
teristics and nonsmooth coefficients depending on time. We prove in particular that, if the
leading coefficients are @-Hélder continuous, and the system has size m < 3, then the Cauchy
Problem is well posed in each Gevrey class of exponent § < 14/ m.

§1. Introduction

(1)

We consider the Cauchy problem, on [0,7] x R, for the system
U = A(t)o,U + B(t)U
{U<o,x> ~ Uo(a),

where U € C™, A(t) is a m x m matrix with real eigenvalues {\1(t), -, A (t)}.
We say that (1) is well posed in a class X of functions on R,, when, for all
Uy € [X]™, it admits a unique solution U € C1([0,T], [X]™).

If the entries of A(t) are sufficiently smooth functions of ¢ (e.g., of class C?), we
know by Bronshtein and Kajitani ([1], [9], see also [5]) that (1) is well posed in
the Gevrey class v* = v*(R,) provided

1
l<s <14+ —.
m—1

When the leading coefficients are only Hélder continuous, i.e., A(t) € C% for
some o < 1, we expect a similar conclusion with 1 < s < 5, for some smaller
bound § = 5(m, «). The first result in this direction, due to Colombini, Jannelli

and Spagnolo [4], was concerned with the scalar equation
O*u = a(t)0%u + b(t)ouu, a(t) > 0, a(t) € C%,

for which the v* well-posedness for s < 1+ «a/2 was proved. This upper bound

is sharp.



Subsequently, such a result was extended by Nishitani [11] to the second order
equations with coefficients also depending on =z, and, finally, by Ohya and
Tarama [12] to any scalar equation of order m. In the last case, the range of s

for v* well-posedness is:

Q@
l<s<1+4+ —.
m
The purpose of this paper is investigate the vector case, and prove that the same
range of well-posedness holds for any m x m system (1), at least for m < 3:

Theorem 1. Let m = 2,3. Assume that A(t) is hyperbolic, i.e., has real
eigenvalues \j(t), and A(t) € C**([0,T]), B(t) € C°([0,T)). Therefore, (1) is

well posed in v° for all s <1+ a/m, more precisely for

l<s<l1+9 (r =2,3)
T

where 1 is the mazimum multiplicity of the \;(t).

If r =1, i.e., in the strictly hyperbolic case, we have ~* well-posedness for

1 <s <

1—a

It should be mentioned that the case r = 1 was already proved by Jannelli
[6] in full generality, i.e., for a differential system with arbitrary size and z-
depending coefficients, and then extended by Cicognani [2] to pseudodifferential
systems. We also recall that Kajitani [10] (cf. Yuzawa [13]) proved the v* well-

posedness for any size m, but with a smaller range of s than in Theorem 1:

l1<s<1l4+min{a/(r+1),2—a)/(2r—1)}.

In this paper we also prove a result of well-posedness for a special class of
systems with arbitrary size m: the systems (1) where the square of the matrix
A(t) is Hermitian. Note that, if A(t) is Hermitian, then (1) is a symmetric sys-
tem, hence the Cauchy Problem is well posed in C'*° no matter how regular the
coefficients are. However, A% may be Hermitian even if A is not; for instance,

A? is Hermitian for any 2 x 2 hyperbolic matrix A with trace zero.
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Theorem 2. If A(t) is hyperbolic, A(t) € C%([0,T]), B(t) € C°([0,T)), and
A(t)? is Hermitian,
then (1) is well posed in v* for

1<s<1+%.

If, in addition, A1 (t)® + -+ X\ (£)2 £ 0 for all t € [0,T], then (1) is well posed
for
I1<s <

1—a

REMARK 1 : By (2), the condition \i(t)? + -+ + A\, (t)? # 0 is equivalent to
A(t)? #0.

REMARK 2 : The case m = 2 of Theorem 1 can be easily derived from Theorem
2: indeed, it is not restrictive to assume that the 2 x 2 matrix A(t) has trace zero
(see §2), which implies that A(¢)? is Hermitian. The case m = 2 of Theorem 1
is also a special case of the case m = 3; indeed, any 2 x 2 system can be viewed
as a 3 x 3 system with maximum multiplicity » < 2. However, we prefer to give

here a direct proof of Theorem 1 even for m = 2.

REMARK 3 : The conclusions of Theorems 1 and 2 can easily be extended to
spatial dimension n > 2. Here, for the sake of simplicity, we shall consider only
the one dimensional case.

Our proof of Theorem 1 is rather elementary, relying on an appropriate
choice of the energy function. To define such an energy, we suitably approximate
the characteristic invariants of A(t) and apply the Hamilton-Cayley equation.
Due to its simplicity, the case m = 2 will be treated in a direct way (see §3),
while the case m = 3 (see §5) can be better understood in the framework of

quasi-symmetrizers introduced in [5] (see also [7, 8]).



§2. Preliminaries

(3)

In order to prove Theorem 1, we can assume that the matrix A(t) satisfies
tr (A(t)) = 0, Vit e [0,T].

Indeed, if we put U(t,z) = [7(15, x+ f(f tr (A(7))dr/m), we can reduce (1) to

{ ,U = A(t)d,U + B(t)U
U(O,l‘) = Uo(.I),

where the matrix A(t) = A(t) — {tr (A(t))/m}] is traceless. Note that, if U
belongs to C*([0, 7], [y*]™), then also U € C* ([0, T7], [y*]™).

By a standard argument based on Holmgren uniqueness theorem and on
Paley-Wiener theorem (see for instance [4], or [3]), the * well-posedness of (1)
follows from the a priori estimate in 75 of U (t,€), the Fourier transform w.r.
t. x of a smooth solution U(¢,z) with compact support in R, for each t.

Now, by Fourier transform (1) yields
V' = i€A(t)V + B(t)V
{ V(0,8) = Vo(§)
where V =U (t,€), and a compactly supported function f(x) belongs to v*(R)

if and only if, for some C,§ > 0, one has
Fler < ce? for g > 1.

Thus, to conclude that U(t,z) € CL([0,T],[y*]™) for all s < o, it will be

sufficient to prove that there are some v and C for which
v 1/0o
V(&I < [¢]” [Vo(&)] e for |¢[ > 1.

Given a non-negative function ¢ € C§°(R) with [* o(7)dr = 1, and
0 < e <1, we extend A(t) as a Holder function on R, constant outside of |0, T,

and define the mollified matrix

Ac(t) = / A(t —eT)p(T)dr.
Since A(t) € C%*, we can find a constant M for which
IA(t) 1< M, | AL() < MeTh | A(t) — At) || < Me®,

for all t € [0,T], where || - || denotes the matrix norm.
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83. Proof of Theorem 1 in the case m = 2

(10)

(11)

For the sake of brevity, we shall limit ourselves to assuming B(t) = 0, the

general case requires only minor changes. We put
ha(t) = —det(A(t)), ha.(t)=—det(A(t)), he(t)=Rha_(t).

Note that ha(t) > 0, by (3), whereas ha_(t) is only complex valued. The
characteristic equation and the Hamilton-Cayley equality have, respectively,
the forms:

N —ha(t) =0, At)? —ha(t)I = 0.

Since tr (A.(t)) = tr (A(t)) = 0, we also get
A(t)* —ha (t)I = 0.
From (7) we obtain, for possibly a larger constant M,
P, (O] < Me™™h, |ha (t) — ha(t)] < Me*,
hence
|RL()| < Me*™', | he(t) —ha(t)| < Me®,  |Sha_(t)] < Me®.

Now, having fixed a constant M which fulfills (7) and (9), we define, for
any solution V' (¢,€) of (4) and for any e, the energy

E(t,&) = |A:()V > + {he(t) + 2Me* }|V 2.

From (9) we have, observing that h(t) > ¢ > 0 in the strictly hyperbolic case,

c if r=1,
he(t) +2Me® > ha(t) + Me* >
Me® if r =2,
hence
|A. (V> + c|V]? if r=1,

C(M)|V]* > E(t,§) >
[ Ac(OV ]2+ Me*|V]2 if r=2.
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Differentiating the energy w.r.t. time, and using (4), we find the equality
E'(t,&) = 2R(A V', AV) +2R(ALV, A.V) + BL[V [ + 2{h. + 2Me*}R(V', V)
= —26S(AZV, AV) — 26 S(AfA - AV, ALV) + 2R(ALV, ALV) + WV
—2{he +2Me® }¢ S(AV, V) — 2{he +2Me*}¢S({A — A}V, V)
= L+ L+ I+ 1+ I + I
Recalling that Rha. = h. we see, by (8), that
S(A2V,ALV) = hS(V,AV) +Sha, R(V, ALV),
hence, by (7) and (10), we find
—26Sha, R(V,AV) —AMeES(AV, V) < 6Me“[¢]|V ]| ALV
20¢ || Ac Il A= Ac || [VI|AV] < 2MZe¥[¢]|V || AV
2[| AL || [VIIAV] < 2Me* VALV
| [V? < Me*TH V]2
21¢| [| A— A. || {he +2Me“}V|* < 2Me*[€|E(t,£).

I+1s
I

IN

I3
1,
Is

VAR VAN

IN

Thus, choosing
e if r=1,
o { |72 =2,
and recalling (11), we find a constant C' = C(M) such that, for all [{] > 1,
Fe) < {C’E(t,f){e"‘|£| + et < 20EB(,€)E) if r=1,
CE(t,&){e*?|e| +e71} < 2CE(L&)|g[M /D if r=2.

Gronwall’s inequality and (11) yield the estimate (5) with 0 = 1/(1 — «) or
o = 1+ «a/2 respectively. This concludes the proof of Theorem 1 for m = 2. O

84. Proof of Theorem 2

Theorem 2 can be proved in a similar way to the proof of Theorem 1 for
m = 2, but we do not need to suppose (3). We still assume B = 0.
Let us first observe that || A2 — A2 [|[< (|| Ac || + || A ) || Ac — A ||, thus

recalling that A% = (A42)*, we can choose a constant M large enough to satisfy,

besides (7),
(12) I A(t)* = A(t)* || < Me®, I A-(t)? = (A=()*)" || < Me™.

— 6—



Then we define, instead of (10), the following energy:
E(t,¢) = [A.(OV]* + R({A-(t)* + 2Me*}V, V).
By the first inequality in (12) we derive:
R({A:(t)* +2Me*}V, V) > (A(t)*V,V) + Me*|V |2

But the Hermitian matrix A? has eigenvalues /\? > 0, hence we see that
(A2V,V) > 0, while (A%V,V)|V|72 > ¢ > 0 when A\ (£)2 + - + A\ (£)? # 0.
Thus, we obtain the estimates

AV >+ c|V]? if AT+ 4+ A2, #£0,

(13) C(M)|V]* = E(t,£) >
A OV 2+ Me*|V]2 if A2 4. 4+ X2 >0.

We differentiate the energy and use (2) and (4) to get the equality

E'(t,€) = 2R(AV, AV) + 2R(ALV, AV) + R({A2}V, V) + R({A2 + A2" + 4Me V', V)

= 26 S(AV,AV) = 26 S(A{A — AV, AV) 4+ 2R(ALV, ALV) + R({ A2}V, V)
—ES({ A2+ AT AMEOYAV, V) — ES({A2 + AT +AMeS (A - AV, V)
L+ Do+ I+ Iy + Is + L.

Using (7) and the second inequality in (12), we find a constant C' = C(M) for
which

I+ I5 = —€63|2(A2V, ALV) + ({42 + AZ}ALV,V) | -AMe¢ S(AV, V)
—€3[({A2 = 4TIV, AV) | -AMEE S (A, V) < C=g||V]|AV ]

Ce*[¢[|V][A: V], I3 < Ce*HV||AV], Iy < Ce* MV,
€1 A2 + A2" 4 ame®|| V2| A - A|| VIV 2ER) < Ceie] [VIVED.

Iy
Is

IN

IN

Note that, to estimate Ig, we have applied the Schwarz’s inequality for the scalar

product (T'V,V) where T = T* = A2 + A%2" + 4Me™ > 0, to get
(TSV, V)| < (TSV,SV)YX(TV, V)2 < |T||V2|1S)|V(TV, V)2,

where S = A — A.. Also note that E(t) = |[A. V> + (TV,V)/2.
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In conclusion, recalling (13) and choosing

€|~ if Af 4o AT, #0,
|§‘—1/(1+a/2) if Af+---+A2 >0,

we have the following estimate for [ > 1:
P < CE(t,&)[evE| +e*7] < 20E €)™ if AP+ AL #0,
T CB@ Q[ 42 < 2CE- IV i XX, 20,

This yields (5) with o = 1/(1 — «), or 0 = 1 4+ «/2, respectively. Hence, the

conclusion of Theorem 2 follows. [

§5. Proof of Theorem 1 in the case m =3
We now define:

ha(t) = det(A®t)) = M (H)A2(t)As(t)

ka) = 3 {og(Dan() —auag 0} = 5 S A0

1<4,5<3 J=1

thus, by (3), the characteristic equation and the Hamilton-Cayley equality are
N — kAN —=ha(t) =0,  At)® —Eka(t)A(t) — ha(t)I = 0.

By the assumption of hyperbolicity, we see that k4 (t) is a non-negative function,

and, in particular, k4 (t) > ¢ > 0 when r < 2. Moreover we have

Aat)y =[] ult) = X(0)* = 4ka(t)® — 27ha(t)* > 0

1<i<j<3

Similarly as case m = 2, since tr (A.(t)) = tr (A(t)) = 0, the regularized matrix
(6) satisfies the equality

(14) A(t)? —ka (D) A(t) — ha (t)I = 0.

However, the eigenvalues of A.(t) may be non real, thus k4_(t) and h4_(t) are

complex valued. To overcome this difficulty, we introduce the real functions

(15)  he(t) = Rha (1), ke(t) = {{?leg(t)+Mea}3/2+12M3/25a}2/3.

— &



(17)

Here M is a constant > 1, which is chosen large enough to satisfy, besides (7),

the following inequalities on [0, T7:

{uw) “halt)] < M, [Sha ()] < Me, [BL(t)] < M,
ka (O] < M, [ka () —ka(t)] < Me®, [y (O] < Me*™",

which imply, in particular,
| RE)y_(2)] < Me* | REka_(t) —ka(t)] < Me“, ISka,(t) < Me“.
We also define
AL(t) = 4k (t) — 27 ho(t)2.

Next we show that A.(t) > 0, thus 22 — k.(t)z + he(t) is a hyperbolic

polynomial, and we also prove some crucial estimates on k. (t):

Lemma 1. We have for C' = C(M) and ¢ >0

n c if r=1,2,

ke(t) >

) Me2e/3 it =3,

KL < Ce*h, [ko(t) —ka.(t)] < Ceke(t)7/2,
c if r=1,

Ac(t) >
M3/2 ek ()32 if r=2,3,
4 s

[he(t)] < 1) 57 Ke(®)™".

Proof : We write for brevity (15) in the form
ke(t) = {ke()?2 412322} where  Fo(t) = Rka(t) + Me®,

and observe that, by (17), we have

c if r=1,2,

ke(t) = {Rhka (t) — ka(t)} +kalt) + Me™ > ka(t) > {0 o

This yields (19). Let us now prove (20). From (15) and (17) it follows that
KL = K| Y2 (B2 4 12M3/2e03 713 < B = |RK | < Meo1,
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(23)

Moreover we get, since ke (t) > k. (t),

3/2  T3/2y(.3/2 , 73/2 o 3/2

k} —% - ~ ~ =~ )
‘ € 5| kg+k€ks+kg k?

and hence, using again (17),
(ke —ka| < [ke(t) = Eo(8)] + | Fe(t) = Rha, ()] + | Ska. (1) < Cek2,

This completes the proof of (20).
To prove (21), we first derive the following estimate by (16) and (17),
recalling that k. (t) > k4(t),

}ES/Q —kim‘ = |E5 —kA‘ ke +Elf/1:2fll:f/j fia < {mkAE —kal —i—Me“}- g;‘;
< 2Me™ - 3kM? < 2Me® - 3(|Rka, |+ Me*)Y? < 632 M2,
Then, we write
(24) Ao = 4 {232 + V2T h }{2K3/% — V2T h.}.
We know that
(2657 + V2T ha} 2652 = V2Tha} = Aa(t) > 0, and  ka(t) >0,
thus
(25) {2ka(t)*? £V2Tha(t)} > 0.

For each fixed t € [0,T], we have either ho(t) > 0 or h.(t) < 0. In the first case,
we have {2k.(t)*% + V2T h.(t)} > k.(t)*/?, while, by (16), (23) and (25), we

obtain
[2k.(1)3/2 = V2T h(t)} = 24 M/ 4 {2k3/% — /2T h.}

= 24 M2 4 2{k3? — K3*} + {28%% — V2T ha} + V27 (ha — h.)

> 24 M3 — 2| B — k32 |+ {2k%7 — V2T ha} — V2T |ha — he|
> [24 - 12V2 — V2T M3/ 4 {277 — V2Tha)
> M3/2ee,

In the same way, when h.(t) <0 we obtain

{2632 = V2T h(t)} > ko(t)¥2,  {2k-()*2 + V2T he(t)} > M3/%e”,
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(27)

(28)

(29)

Thus, in both the cases we get by (24)
A(t) > AM3/? e k()32

In the special case when r = 1, the discriminant A 4 (t) is strictly positive, hence
both the inequalities in (25) are strict, and we conclude that A.(t) > ¢ > 0.
Finally, (22) follows directly from (21) and the definition (18) of A.(¢). O

In the following Lemma, we exhibit an exact (but possibly non-coercive)
symmetrizer Q. (t) for the 3x3 Sylvester matrix whose characteristic polynomial
is the polynomial 23 — k.(t)z + h.(t). We also give a lower estimate for such a

symmetrizer Q. (t), which will be decisive in our proof.

Lemma 2. Let us define

0 1 0 k-(t)?  3h.(t) —k.(t)
AL(t) = 0 0 1], Q) =/ 3nr(t) 2k(t) 0
he(t) ke(t) O —k(t) 0 3

Then, the matrix Q.(t) is Hermitian and satisfies

Qa(t) Ag(t) = Ag‘(t)* Qa(t)'

(Q:(t)W,W) > ¢c|L.(t)W|*  forall WeC?,  ¢>0,

where
ko (t)~1/2 0 0
Lo(t) = AL(t)Y/? 0 ke (t)~1 0
0 0 ko(t)=3/2

Proof : (27) follows from the definitions (26). Let us prove (28). Since

200 0
Lt = (L) = A7 0 ko o0 |,
0o 0 K/
we have
—1\* —1 kg ~
(Ls ) QELE = A_Qea
£
where
N L 3hok®? -1
Q-(t) = [6;(1)] ;o5 = 3hoks 2 0

-1 0 3
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Now, by (22) we see that || Q.(¢) | < C on [0,T]. Moreover, by (19) and (20),

the determinant and the minor determinants of Q. (t) satisfy

~ 27h: A
det Q-(t) = 4— 3 k:g 0
i~ i~ 9h? 2 A _
(@2 (t) = 2@ () = 2- 55 = o+ 3k§ >0, qut)=1>0.

This implies that the eigenvalues ju; (), ua(t), u3(t) of Q.(t) are non-negative,
and thus we have, for {i,j,k} = {1,2,3},

pa(t)g (O)px(t) - det (Qc(1)) AR ()
pwi®pe(t) T Qe(t) |2 T ke(t)3

c > 0.

pi(t) =

Hence we get

~ — A (t) —~ —~
(Qe(t)W, W) > CWE):)))’WF for all W € C?,

and consequently, taking W= L.(t)W and recalling (29),

3 ~ ~ —~ —~
Qo w) = 20 QU0 ) = e[ = L 0

Lemma 2 also applicable to 9 x 9 block-matrices whose blocks are 3 x 3
matrices of scalar type. Indeed, denoting by I the 3 x 3 identity matrix, we

have:

Lemma 3. Let us define the 9 x 9 matrices

0 I 0 ke()2I  3ho(t)I —k-(t)I
A (t) = 0 0 I|, 9.(t)= 3he(t)]  2k.(t)] 0
he()I k() 0 —k.(t)I 0 31

Therefore, Q. (t) is Hermitian and satisfies

Qs (t)As (t) = "46 (t)* QE (t)=

(Qe(t)W, W) > c|L(t)W)? for all W € C?, c>0,

where
ko(t)~1/21 0 0
L(t) = A(t)V? 0 ko(t)~'1 0
0 0 ko(t)=3/21
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(34)

A— A, 0

RE (t) = AE (A - As) O
0

0

0

(35)

(36)

Proof :  Since the 3 x 3 submatrices in A.(t), Qc(t) and L.(t) consist of the
3 x 3 identity matrix I, (31) and (32) can be easily derived from (27) and (28)
respectively. O

Now, we transform the 3 x 3 system (4) into a 9 x 9 system whose principal

part is the block Sylvester matrix A.(¢) of Lemma 3. We deduce from (4) that
(1) V' = €AV + BV = €AV +i&(A — A.)V + BV,
(1) (AV) = €A%V +icA.(A— AV + ALV + A.BYV,
(iti) (AZV) = €AV +ilAZ(A — AV + (A2)'V + AZBV
= [iEhV 4+ ik A V] — ESha V + i€(ka, — k) AV
+i€AZ(A — AV + (A2)'V + A2BV,

where, in the last equality, we have used the Hamilton-Cayley equality (14).

v
V= V(t¢€) = AV | € C,
A2V

we combine together (7), (i7) and (i7i) to get the 9 X 9 system:

Putting

V= €AV + iR ()Y — EP-(1)V + D(t)V + B-(t)V,
where A, (t) is defined in (30), and:

AE(A - Ae)
0
Ds(t) = Ala
(A2)
Then, recalling (30), we define the energy:
E(t, &) = (Q-()V,V).
By the definition (33) of L£.(t), using (19) and (21), we see that

OO O O oo
~_
A
~
S~—

I
~/
&

S oo
ol

~

|

-~

ol
s
|©O
oyl

o

~

o OO
~_

=)

2
)

LW 2 bk W > et

hence, remarking that ||Q.(t)|| < C, and ‘Vﬁ < ‘V|2 < C’V|2, we deduce from
(32) and (35) :

cePlV|* < E(t,¢) < C|V|.
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By (31) and (34), considering that Q. is Hermitian, we get the equality

E'(t,&) = (QV,V) + (Q:V, V) + (Q.V,V)
= (QV,V) +i€({QeA: — AZQEIV, V)
+ (Q:{ilR. — EP. + D= + B}V, V) + (Q{i€Re — £P- + D + B}V, V)
= (QLV,V) = 26F(Q. RV, V) — 26R(Q. PV, V) + 2R(Q.D.V, V) + 2R(Q.B.V, V).

In order to prove the energy estimate, we use the following:

Lemma 4. If S be a 9 x 9 matrix, then we have, for all W € C?,

(37) (SWW) < C |l £tsct || (@, W),
(38) (Q:SW, W) < O || LZHS*Q:.8) L7t |2 (W, W) .
Proof . (37) follows directly from (32); indeed, noting that £} = L., we find

(SWW) = (LI'SLILW, LEW) < || L£21SL | 1L (W]

—~

<

ol

| £1SL | (Qew, W),

To prove (38), we use the Schwarz’s inequality for the scalar product (Y, W) =
(st, W), and (37) with S*Q.S in place of S. Thus we obtain

1/2

(QSW, W) = (Q.SW,SW)'Z (2., W)
< C| LN ST .S)Lt |V (oW, w). O

By (37) and (38), it follows
E'(t,£) < OE(t,f){ll LPOLLI |+ LN REQR) LI M2
HIE ) LN PrQP)LI ||V + || LN (DEQD) L |+ || LI (BEQB) LY ||1/2}.

Now we estimate the five summands on the left hand side. To this end, let

us firstly observe that, for any 9 x 9 block matrix § = [Sij} 1<ij<3 One has

(39) L'Scot = K28, 01 <6 <3 -

1
Al
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1) Estimate of || LZ1QLLZ || : By using (39), we see that

372 222K T 3T —kMPKLT
cotQuet = 4 3n. I 2K 0 :
: — kKT 0 0

thus, by (16) and (20), we get

1372 3/2

1> kE —
(40) | et | <= SOk + b} € S—Creoh
g g
2) Estimate of || L7 (PXQ.P.)L1 || @ By the equality
00 Yy K21 3hI —I 0 0 0 'Y, Y;Ys 0
00 Yy 3hI 2kl 0 0 0 0]=3( vwvi Y, o],
00 0 kI 0 3] i v, 0 0 0 0
and by (39), we find
- (Sha )1 —ikt?(ka. — k) Sha I 0
LPIQPILT = S5\ ikt (ka, — ke ) Sha I ke |k, — k|21 0
g
0 0 0

Hence, by (16) and (20),

ks e « kE «
(41) || LN (PEQPILT || < 7= Okl i, —hele®+hel ka, =k} < = Coe™.

To compute the products X*Q. X with X = R., D., B, we note that

X; X3 X3 K21 3hl —kd X, 00
(42) 0 0 0 3hI 2k I 0 X, 0 0| =27
0 0 0 kI 0 31 X; 0 0

where

Ze = E2X7X1 4+ 3h (X7 X0+ X3X1) — k(X7 X3+ X3X1 —2X5X0) +3X5 X3

and

I
oo~
coo
coo

— 15—



(45)

3) Estimate of || LY (REO-R)L-Y || @ From (42) with X; = AI71 (A — A,),
Jj =1,2,3, recalling (39), we see that
ke

LARIQRIL = = F.T,

where
Fo= (A= A {k2T 4 8ho(A. + AZ) = kel A. = AD)? 43427 A2} (A - AL).

Hence, by using (7), we get

ke

Ae Cg €2a.

ke
I LT RIQRILT | < - C A=A <
4) Estimate of || LZY(DXQ.D.)LIY ||+ From (42) with X; = 0, X = AL and
X3 = (A2), by (39) we see that
ke

£;1(D:Q€DE)£;1 = A_ G, J,

where G, = 2k. A" A’ + 3(A2)"(A2)". Hence we get, by using (7),

o) s

e 2(a—1)
AE = AE 04 9 .

| LZH(DZQD)L | <
5) Estimate of || L1 (B2Q:B.)L-1 || : From (42) with X; = B, X, = A.B,
X3 = A2B, and by using (39), we see that

ke
EQI(B:QEBS)Es_l = A_H€ J,
where :

H. = B*{kg 4 3ho(Ae + AY) — ke(Ae — A% + 3A:;2A§}B.
Hence

1k _ ke k.
L BQBL || < = [ He | < G5 = [ BO)|”

— 16—



From (40), (41), (43), (44), (45) and (19), (21), recalling that ||B(t)|| < C,
and choosing
[ if r=1,
e=1{ g7+ =9

|7V AFa/3) i =3,

we have the following estimate, for |[£| > 1,

, KPR R
E'(t,&) < CsE(t,€) {a A—€+€ NG €]+ ¢ A;/Q}
(CE a—17.3/2 a.1/2 a—171/2 : _
TE(t,&) |e* k2 E + ek 2|E| 44k, if r=1

<
| CrE(t,€) {5—1 + 22 4] + aa/2—1k;1/4} if r=23
(CE(t,€) [°l¢| +e°1] < 20B(t6)[¢~ if =1,

< CB(t€) |2+ 7| < 20B(1,€) g/ 0+ if r=2,
| CE(t€) [/3]¢] + 5—1] < 2CE(t,¢) ¢/ /) if r=3,

which gives, by (36), the required a priori estimate (5) with o equal respectively
to1/(1 —«), 1+ /2, or 1 +«/3. This concludes the proof of Theorem 1 for
m=3. O

REFERENCES

M.D. Bronsthein, The Cauchy Problem for hyperbolic operators with character-
istics of variable multiplicity, Trudy Mos. Mat. Obsc. 41 (1980) 83-99. English
translation: Trans. Moscow Math. Soc. 1 (1982) 87-103.

M. Cicognani, On the strictly hyperbolic equations which are Holder continuous
with respect to time, Italian J. Pure Appl. Math. 4 (1998) 73-82.

F. Colombini, E. De Giorgi, S. Spagnolo, Sur les équations hyperboliques avec
des coefficients qui ne dépendent que du temps, Ann. Scu. Norm. Sup. Pisa 6
(1979) 511-559.

F. Colombini, E. Jannelli, S. Spagnolo, Wellposedness in the Gevrey classes
of the Cauchy problem for a non strictly hyperbolic equation with coefficients
depending on time, Ann. Scu. Norm. Sup. Pisa 10 (1983) 291-312.

— 17—



[5]

[10]

[11]

[12]

[13]

P. D’Ancona, S. Spagnolo, Quasi-symmetrization of hyperbolic systems and
propagation of the analytic regularity, Boll. Un. Mat. Ital. 1-B (1998) 169-
185.

E. Jannelli, Regularly hyperbolic systems and Gevrey classes, Ann. Mat. Pura
Appl. 140 (1985) 133-145.

E. Jannelli, On the symmetrization of the principal symbol of hyperbolic equa-
tion, Comm. Part. Diff. Equat. 14 (1989) 1617-1634.

E. Jannelli, Sharp quasi-symmetrizers for hyperbolic Sylvester matrices, Lecture
held in the ”Workshop on Hyperbolic Equations”, Venice, April 2002.

K. Kajitani, Cauchy problem for non strictly hyperbolic systems in Gevrey
classes, J. Math. Kyoto Univ. 23 (1983) 599-616.

K. Kajitani, The Cauchy problem for nonlinear hyperbolic systems, Bull. Sci.
Math. 110 (1986) 3-48.

T. Nishitani, Sur les équations hyperboliques a coefficients holderiens en ¢ et
de classes de Gevrey en z, Bull. Sci. Math. 107 (1983), 113-138.

Y. Ohya, S. Tarama, Le probleme de Cauchy a caractéristiques multiples dans
la classe de Gevrey - coefficients holderiens en ¢, in: ”Hyperbolic Equations and
Related Topics”, S. Mizohata (Ed.), Kinokuniya, Tokyo 1986, 273-306.

Y. Yuzawa, Local solutions of the Cauchy problem for nonlinear hyperbolic

systems in Gevrey classes, Doctoral Thesis, University of Tsukuba, 2003.

— 18-



