Weakly hyperbolic systems with Hölder continuous coefficients

Piero D'Ancona
(Univ. Roma I)
Tamotu Kinoshita
(Univ. Tsukuba)
Sergio Spagnolo
(Univ. Pisa)

Abstract

We study the Cauchy Problem for hyperbolic systems with multiple characteristics and nonsmooth coefficients depending on time. We prove in particular that, if the leading coefficients are α-Hölder continuous, and the system has size $m \leq 3$, then the Cauchy Problem is well posed in each Gevrey class of exponent $s<1+\alpha / \mathrm{m}$.

§1. Introduction

We consider the Cauchy problem, on $[0, T] \times \mathbf{R}_{x}$, for the system

$$
\left\{\begin{array}{l}
\partial_{t} U=A(t) \partial_{x} U+B(t) U \tag{1}\\
U(0, x)=U_{0}(x)
\end{array}\right.
$$

where $U \in \mathbf{C}^{m}, A(t)$ is a $m \times m$ matrix with real eigenvalues $\left\{\lambda_{1}(t), \cdots, \lambda_{m}(t)\right\}$. We say that (1) is well posed in a class \mathcal{X} of functions on \mathbf{R}_{x}, when, for all $U_{0} \in[\mathcal{X}]^{m}$, it admits a unique solution $U \in C^{1}\left([0, T],[\mathcal{X}]^{m}\right)$.
If the entries of $A(t)$ are sufficiently smooth functions of t (e.g., of class C^{2}), we know by Bronshtein and Kajitani ([1], [9], see also [5]) that (1) is well posed in the Gevrey class $\gamma^{s}=\gamma^{s}\left(\mathbf{R}_{x}\right)$ provided

$$
1<s<1+\frac{1}{m-1} .
$$

When the leading coefficients are only Hölder continuous, i.e., $A(t) \in C^{0, \alpha}$ for some $\alpha \leq 1$, we expect a similar conclusion with $1<s<\bar{s}$, for some smaller bound $\bar{s}=\bar{s}(m, \alpha)$. The first result in this direction, due to Colombini, Jannelli and Spagnolo [4], was concerned with the scalar equation

$$
\partial_{t}^{2} u=a(t) \partial_{x}^{2} u+b(t) \partial_{x} u, \quad a(t) \geq 0, \quad a(t) \in C^{0, \alpha}
$$

for which the γ^{s} well-posedness for $s<1+\alpha / 2$ was proved. This upper bound is sharp.

Subsequently, such a result was extended by Nishitani [11] to the second order equations with coefficients also depending on x, and, finally, by Ohya and Tarama [12] to any scalar equation of order m. In the last case, the range of s for γ^{s} well-posedness is:

$$
1<s<1+\frac{\alpha}{m} .
$$

The purpose of this paper is investigate the vector case, and prove that the same range of well-posedness holds for any $m \times m$ system (1), at least for $m \leq 3$:

Theorem 1. Let $m=2,3$. Assume that $A(t)$ is hyperbolic, i.e., has real eigenvalues $\lambda_{j}(t)$, and $A(t) \in C^{0, \alpha}([0, T]), B(t) \in C^{0}([0, T])$. Therefore, (1) is well posed in γ^{s} for all $s<1+\alpha / m$, more precisely for

$$
1<s<1+\frac{\alpha}{r} \quad(r=2,3)
$$

where r is the maximum multiplicity of the $\lambda_{j}(t)$.
If $r=1$, i.e., in the strictly hyperbolic case, we have γ^{s} well-posedness for

$$
1<s<\frac{1}{1-\alpha} .
$$

It should be mentioned that the case $r=1$ was already proved by Jannelli [6] in full generality, i.e., for a differential system with arbitrary size and x depending coefficients, and then extended by Cicognani [2] to pseudodifferential systems. We also recall that Kajitani [10] (cf. Yuzawa [13]) proved the γ^{s} wellposedness for any size m, but with a smaller range of s than in Theorem 1:

$$
1<s<1+\min \{\alpha /(r+1),(2-\alpha) /(2 r-1)\} .
$$

In this paper we also prove a result of well-posedness for a special class of systems with arbitrary size m : the systems (1) where the square of the matrix $A(t)$ is Hermitian. Note that, if $A(t)$ is Hermitian, then (1) is a symmetric system, hence the Cauchy Problem is well posed in C^{∞} no matter how regular the coefficients are. However, A^{2} may be Hermitian even if A is not; for instance, A^{2} is Hermitian for any 2×2 hyperbolic matrix A with trace zero.

Theorem 2. If $A(t)$ is hyperbolic, $A(t) \in C^{0, \alpha}([0, T]), B(t) \in C^{0}([0, T])$, and

$$
\begin{equation*}
A(t)^{2} \text { is Hermitian, } \tag{2}
\end{equation*}
$$

then (1) is well posed in γ^{s} for

$$
1<s<1+\frac{\alpha}{2} .
$$

If, in addition, $\lambda_{1}(t)^{2}+\cdots+\lambda_{m}(t)^{2} \neq 0$ for all $t \in[0, T]$, then (1) is well posed for

$$
1<s<\frac{1}{1-\alpha}
$$

REMARK 1: By (2), the condition $\lambda_{1}(t)^{2}+\cdots+\lambda_{m}(t)^{2} \neq 0$ is equivalent to $A(t)^{2} \neq 0$.

REMARK 2: The case $m=2$ of Theorem 1 can be easily derived from Theorem 2: indeed, it is not restrictive to assume that the 2×2 matrix $A(t)$ has trace zero (see $\S 2$), which implies that $A(t)^{2}$ is Hermitian. The case $m=2$ of Theorem 1 is also a special case of the case $m=3$; indeed, any 2×2 system can be viewed as a 3×3 system with maximum multiplicity $r \leq 2$. However, we prefer to give here a direct proof of Theorem 1 even for $m=2$.

REmARK 3: The conclusions of Theorems 1 and 2 can easily be extended to spatial dimension $n \geq 2$. Here, for the sake of simplicity, we shall consider only the one dimensional case.

Our proof of Theorem 1 is rather elementary, relying on an appropriate choice of the energy function. To define such an energy, we suitably approximate the characteristic invariants of $A(t)$ and apply the Hamilton-Cayley equation. Due to its simplicity, the case $m=2$ will be treated in a direct way (see $\S 3$), while the case $m=3$ (see $\S 5$) can be better understood in the framework of quasi-symmetrizers introduced in [5] (see also [7, 8]).

§2. Preliminaries

In order to prove Theorem 1, we can assume that the matrix $A(t)$ satisfies

$$
\begin{equation*}
\operatorname{tr}(A(t))=0, \quad \forall t \in[0, T] . \tag{3}
\end{equation*}
$$

Indeed, if we put $U(t, x)=\widetilde{U}\left(t, x+\int_{0}^{t} \operatorname{tr}(A(\tau)) d \tau / m\right)$, we can reduce (1) to

$$
\left\{\begin{array}{l}
\partial_{t} \widetilde{U}=\widetilde{A}(t) \partial_{x} \widetilde{U}+B(t) \widetilde{U} \\
\widetilde{U}(0, x)=U_{0}(x)
\end{array}\right.
$$

where the matrix $\widetilde{A}(t) \equiv A(t)-\{\operatorname{tr}(A(t)) / m\} I$ is traceless. Note that, if \widetilde{U} belongs to $C^{1}\left([0, T],\left[\gamma^{s}\right]^{m}\right)$, then also $U \in C^{1}\left([0, T],\left[\gamma^{s}\right]^{m}\right)$.

By a standard argument based on Holmgren uniqueness theorem and on Paley-Wiener theorem (see for instance [4], or [3]), the γ^{s} well-posedness of (1) follows from the a priori estimate in $\widehat{\gamma^{s}}$ of $\widehat{U}(t, \xi)$, the Fourier transform w.r. t. x of a smooth solution $U(t, x)$ with compact support in \mathbf{R}_{x} for each t.

Now, by Fourier transform (1) yields

$$
\left\{\begin{array}{l}
V^{\prime}=i \xi A(t) V+B(t) V \\
V(0, \xi)=V_{0}(\xi)
\end{array}\right.
$$

where $V=\hat{U}(t, \xi)$, and a compactly supported function $f(x)$ belongs to $\gamma^{s}(\mathbf{R})$ if and only if, for some $C, \delta>0$, one has

$$
|\widehat{f}(\xi)| \leq C e^{-\delta|\xi|^{1 / s}} \quad \text { for }|\xi| \geq 1
$$

Thus, to conclude that $U(t, x) \in C^{1}\left([0, T],\left[\gamma^{s}\right]^{m}\right)$ for all $s<\sigma$, it will be sufficient to prove that there are some ν and C for which

$$
\begin{equation*}
|V(t, \xi)| \leq|\xi|^{\nu}\left|V_{0}(\xi)\right| e^{C|\xi|^{1 / \sigma}} \quad \text { for }|\xi| \geq 1 \tag{5}
\end{equation*}
$$

Given a non-negative function $\varphi \in C_{0}^{\infty}(\mathbf{R})$ with $\int_{-\infty}^{\infty} \varphi(\tau) d \tau=1$, and $0<\varepsilon \leq 1$, we extend $A(t)$ as a Hölder function on \mathbf{R}, constant outside of $] 0, T$, and define the mollified matrix

$$
\begin{equation*}
A_{\varepsilon}(t)=\int_{-\infty}^{\infty} A(t-\varepsilon \tau) \varphi(\tau) d \tau \tag{6}
\end{equation*}
$$

Since $A(t) \in C^{0, \alpha}$, we can find a constant M for which

$$
\begin{equation*}
\left\|A_{\varepsilon}(t)\right\| \leq M, \quad\left\|A_{\varepsilon}^{\prime}(t)\right\| \leq M \varepsilon^{\alpha-1}, \quad\left\|A_{\varepsilon}(t)-A(t)\right\| \leq M \varepsilon^{\alpha}, \tag{7}
\end{equation*}
$$

for all $t \in[0, T]$, where $\|\cdot\|$ denotes the matrix norm.
§3. Proof of Theorem 1 in the case $m=2$
For the sake of brevity, we shall limit ourselves to assuming $B(t) \equiv 0$, the general case requires only minor changes. We put

$$
h_{A}(t)=-\operatorname{det}(A(t)), \quad h_{A_{\varepsilon}}(t)=-\operatorname{det}\left(A_{\varepsilon}(t)\right), \quad h_{\varepsilon}(t)=\Re h_{A_{\varepsilon}}(t) .
$$

Note that $h_{A}(t) \geq 0$, by (3), whereas $h_{A_{\varepsilon}}(t)$ is only complex valued. The characteristic equation and the Hamilton-Cayley equality have, respectively, the forms:

$$
\lambda^{2}-h_{A}(t)=0, \quad A(t)^{2}-h_{A}(t) I=0 .
$$

Since $\operatorname{tr}\left(A_{\varepsilon}(t)\right)=\operatorname{tr}(A(t))=0$, we also get

$$
\begin{equation*}
A_{\varepsilon}(t)^{2}-h_{A_{\varepsilon}}(t) I=0 \tag{8}
\end{equation*}
$$

From (7) we obtain, for possibly a larger constant M,

$$
\left|h_{A_{\varepsilon}}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1}, \quad\left|h_{A_{\varepsilon}}(t)-h_{A}(t)\right| \leq M \varepsilon^{\alpha},
$$

hence

$$
\begin{equation*}
\left|h_{\varepsilon}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1}, \quad\left|h_{\varepsilon}(t)-h_{A}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|\Im h_{A_{\varepsilon}}(t)\right| \leq M \varepsilon^{\alpha} . \tag{9}
\end{equation*}
$$

Now, having fixed a constant M which fulfills (7) and (9), we define, for any solution $V(t, \xi)$ of (4) and for any ε, the energy

$$
\begin{equation*}
E(t, \xi)=\left|A_{\varepsilon}(t) V\right|^{2}+\left\{h_{\varepsilon}(t)+2 M \varepsilon^{\alpha}\right\}|V|^{2} \tag{10}
\end{equation*}
$$

From (9) we have, observing that $h_{A}(t) \geq c>0$ in the strictly hyperbolic case,

$$
h_{\varepsilon}(t)+2 M \varepsilon^{\alpha} \geq h_{A}(t)+M \varepsilon^{\alpha} \geq \begin{cases}c & \text { if } r=1 \\ M \varepsilon^{\alpha} & \text { if } r=2\end{cases}
$$

hence

$$
C(M)|V|^{2} \geq E(t, \xi) \geq \begin{cases}\left|A_{\varepsilon}(t) V\right|^{2}+c|V|^{2} & \text { if } r=1 \tag{11}\\ \left|A_{\varepsilon}(t) V\right|^{2}+M \varepsilon^{\alpha}|V|^{2} & \text { if } r=2\end{cases}
$$

Differentiating the energy w.r.t. time, and using (4), we find the equality

$$
\begin{aligned}
E^{\prime}(t, \xi)= & 2 \Re\left(A_{\varepsilon} V^{\prime}, A_{\varepsilon} V\right)+2 \Re\left(A_{\varepsilon}^{\prime} V, A_{\varepsilon} V\right)+h_{\varepsilon}^{\prime}|V|^{2}+2\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\} \Re\left(V^{\prime}, V\right) \\
= & -2 \xi \Im\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)-2 \xi \Im\left(A_{\varepsilon}\left\{A-A_{\varepsilon}\right\} V, A_{\varepsilon} V\right)+2 \Re\left(A_{\varepsilon}^{\prime} V, A_{\varepsilon} V\right)+h_{\varepsilon}^{\prime}|V|^{2} \\
& -2\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\} \xi \Im\left(A_{\varepsilon} V, V\right)-2\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\} \xi \Im\left(\left\{A-A_{\varepsilon}\right\} V, V\right) \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} .
\end{aligned}
$$

Recalling that $\Re h_{A_{\varepsilon}}=h_{\varepsilon}$ we see, by (8), that

$$
\Im\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)=h_{\varepsilon} \Im\left(V, A_{\varepsilon} V\right)+\Im h_{A_{\varepsilon}} \Re\left(V, A_{\varepsilon} V\right)
$$

hence, by (7) and (10), we find

$$
\begin{aligned}
I_{1}+I_{5} & =-2 \xi \Im h_{A_{\varepsilon}} \Re\left(V, A_{\varepsilon} V\right)-4 M \varepsilon^{\alpha} \xi \Im\left(A_{\varepsilon} V, V\right) \leq 6 M \varepsilon^{\alpha}\left|\xi\|V\| A_{\varepsilon} V\right| \\
I_{2} & \leq 2|\xi|\left\|A_{\varepsilon}\right\|\left\|A-A_{\varepsilon}\right\|\left|V\left\|A_{\varepsilon} V\left|\leq 2 M^{2} \varepsilon^{\alpha}\right| \xi\right\|\right| V| | A_{\varepsilon} V \mid \\
I_{3} & \leq 2\left\|A_{\varepsilon}^{\prime}\right\|\left|V \| A_{\varepsilon} V\right| \leq 2 M \varepsilon^{\alpha-1}|V|\left|A_{\varepsilon} V\right| \\
I_{4} & \leq\left|h_{\varepsilon}^{\prime}\right||V|^{2} \leq M \varepsilon^{\alpha-1}|V|^{2} \\
I_{6} & \leq 2|\xi|\left\|A-A_{\varepsilon}\right\|\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\}|V|^{2} \leq 2 M \varepsilon^{\alpha}|\xi| E(t, \xi)
\end{aligned}
$$

Thus, choosing

$$
\varepsilon= \begin{cases}|\xi|^{-1} & \text { if } r=1 \\ |\xi|^{-1 /(1+\alpha / 2)} & \text { if } r=2\end{cases}
$$

and recalling (11), we find a constant $C=C(M)$ such that, for all $|\xi| \geq 1$,

$$
E^{\prime}(t, \xi) \leq \begin{cases}C E(t, \xi)\left\{\varepsilon^{\alpha}|\xi|+\varepsilon^{\alpha-1}\right\} \leq 2 C E(t, \xi)|\xi|^{1-\alpha} & \text { if } \quad r=1 \\ C E(t, \xi)\left\{\varepsilon^{\alpha / 2}|\xi|+\varepsilon^{-1}\right\} \leq 2 C E(t, \xi)|\xi|^{1 /(1+\alpha / 2)} & \text { if } r=2\end{cases}
$$

Gronwall's inequality and (11) yield the estimate (5) with $\sigma=1 /(1-\alpha)$ or $\sigma=1+\alpha / 2$ respectively. This concludes the proof of Theorem 1 for $m=2$.

$\S 4$. Proof of Theorem 2

Theorem 2 can be proved in a similar way to the proof of Theorem 1 for $m=2$, but we do not need to suppose (3). We still assume $B \equiv 0$.

Let us first observe that $\left\|A_{\varepsilon}^{2}-A^{2}\right\| \leq\left(\left\|A_{\varepsilon}\right\|+\|A\|\right)\left\|A_{\varepsilon}-A\right\|$, thus recalling that $A^{2}=\left(A^{2}\right)^{*}$, we can choose a constant M large enough to satisfy, besides (7),

$$
\begin{equation*}
\left\|A_{\varepsilon}(t)^{2}-A(t)^{2}\right\| \leq M \varepsilon^{\alpha}, \quad\left\|A_{\varepsilon}(t)^{2}-\left(A_{\varepsilon}(t)^{2}\right)^{*}\right\| \leq M \varepsilon^{\alpha} \tag{12}
\end{equation*}
$$

Then we define, instead of (10), the following energy:

$$
E(t, \xi)=\left|A_{\varepsilon}(t) V\right|^{2}+\Re\left(\left\{A_{\varepsilon}(t)^{2}+2 M \varepsilon^{\alpha}\right\} V, V\right)
$$

By the first inequality in (12) we derive:

$$
\Re\left(\left\{A_{\varepsilon}(t)^{2}+2 M \varepsilon^{\alpha}\right\} V, V\right) \geq\left(A(t)^{2} V, V\right)+M \varepsilon^{\alpha}|V|^{2} .
$$

But the Hermitian matrix A^{2} has eigenvalues $\lambda_{j}^{2} \geq 0$, hence we see that $\left(A^{2} V, V\right) \geq 0$, while $\left(A^{2} V, V\right)|V|^{-2} \geq c>0$ when $\lambda_{1}(t)^{2}+\cdots+\lambda_{m}(t)^{2} \neq 0$. Thus, we obtain the estimates

$$
C(M)|V|^{2} \geq E(t, \xi) \geq \begin{cases}\left|A_{\varepsilon}(t) V\right|^{2}+c|V|^{2} & \text { if } \quad \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \neq 0 \tag{13}\\ \left|A_{\varepsilon}(t) V\right|^{2}+M \varepsilon^{\alpha}|V|^{2} & \text { if } \quad \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \geq 0\end{cases}
$$

We differentiate the energy and use (2) and (4) to get the equality

$$
\begin{aligned}
E^{\prime}(t, \xi)= & 2 \Re\left(A_{\varepsilon} V^{\prime}, A_{\varepsilon} V\right)+2 \Re\left(A_{\varepsilon}^{\prime} V, A_{\varepsilon} V\right)+\Re\left(\left\{A_{\varepsilon}^{2}\right\}^{\prime} V, V\right)+\Re\left(\left\{A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha}\right\} V^{\prime}, V\right) \\
= & -2 \xi \Im\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)-2 \xi \Im\left(A_{\varepsilon}\left\{A-A_{\varepsilon}\right\} V, A_{\varepsilon} V\right)+2 \Re\left(A_{\varepsilon}^{\prime} V, A_{\varepsilon} V\right)+\Re\left(\left\{A_{\varepsilon}^{2}\right\}^{\prime} V, V\right) \\
& -\xi \Im\left(\left\{A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha}\right\} A_{\varepsilon} V, V\right)-\xi \Im\left(\left\{A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha}\right\}\left(A-A_{\varepsilon}\right) V, V\right) \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} .
\end{aligned}
$$

Using (7) and the second inequality in (12), we find a constant $C=C(M)$ for which

$$
\begin{aligned}
I_{1}+I_{5} & =-\xi \Im\left[2\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)+\left(\left\{A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}\right\} A_{\varepsilon} V, V\right)\right]-4 M \varepsilon^{\alpha} \xi \Im\left(A_{\varepsilon} V, V\right) \\
& =-\xi \Im\left[\left(\left\{A_{\varepsilon}^{2}-A_{\varepsilon}^{2^{*}}\right\} V, A_{\varepsilon} V\right)\right]-4 M \varepsilon^{\alpha} \xi \Im\left(A_{\varepsilon} V, V\right) \leq C \varepsilon^{\alpha}|\xi||V|\left|A_{\varepsilon} V\right|, \\
I_{2} & \leq C \varepsilon^{\alpha}|\xi \| V|\left|A_{\varepsilon} V\right|, \quad I_{3} \leq C \varepsilon^{\alpha-1}|V|\left|A_{\varepsilon} V\right|, \quad I_{4} \leq C \varepsilon^{\alpha-1}|V|^{2} \\
I_{6} & \leq|\xi|\left\|A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha}\right\|^{1 / 2}\left\|A-A_{\varepsilon}\right\||V| \sqrt{2 E(t)} \leq C \varepsilon^{\alpha}|\xi||V| \sqrt{E(t)} .
\end{aligned}
$$

Note that, to estimate I_{6}, we have applied the Schwarz's inequality for the scalar product ($T V, V$) where $T \equiv T^{*}=A_{\varepsilon}^{2}+A_{\varepsilon}^{2^{*}}+4 M \varepsilon^{\alpha} \geq 0$, to get

$$
|(T S V, V)| \leq(T S V, S V)^{1 / 2}(T V, V)^{1 / 2} \leq\|T\|^{1 / 2}\|S\||V|(T V, V)^{1 / 2}
$$

where $S=A-A_{\varepsilon}$. Also note that $E(t)=\left|A_{\varepsilon} V\right|^{2}+(T V, V) / 2$.

In conclusion, recalling (13) and choosing

$$
\varepsilon= \begin{cases}|\xi|^{-1} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \neq 0 \\ |\xi|^{-1 /(1+\alpha / 2)} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \geq 0\end{cases}
$$

we have the following estimate for $|\xi| \geq 1$:

$$
E^{\prime}(t, \xi) \leq \begin{cases}C E(t, \xi)\left[\varepsilon^{\alpha}|\xi|+\varepsilon^{\alpha-1}\right] \leq 2 C E(t, \xi)|\xi|^{1-\alpha} & \text { if } \quad \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \neq 0 \\ C E(t, \xi)\left[\varepsilon^{\alpha / 2}|\xi|+\varepsilon^{-1}\right] \leq 2 C E(t, \xi)|\xi|^{1 /(1+\alpha / 2)} & \text { if } \quad \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \geq 0\end{cases}
$$

This yields (5) with $\sigma=1 /(1-\alpha)$, or $\sigma=1+\alpha / 2$, respectively. Hence, the conclusion of Theorem 2 follows.
§5. Proof of Theorem 1 in the case $m=3$
We now define:

$$
\begin{aligned}
& h_{A}(t)=\operatorname{det}(A(t))=\lambda_{1}(t) \lambda_{2}(t) \lambda_{3}(t) \\
& k_{A}(t)=\sum_{1 \leq i, j \leq 3}\left\{a_{i j}(t) a_{j i}(t)-a_{i i}(t) a_{j j}(t)\right\}=\frac{1}{2} \sum_{j=1}^{3} \lambda_{j}(t)^{2},
\end{aligned}
$$

thus, by (3), the characteristic equation and the Hamilton-Cayley equality are

$$
\lambda^{3}-k_{A}(t) \lambda-h_{A}(t)=0, \quad A(t)^{3}-k_{A}(t) A(t)-h_{A}(t) I=0 .
$$

By the assumption of hyperbolicity, we see that $k_{A}(t)$ is a non-negative function, and, in particular, $k_{A}(t) \geq c>0$ when $r \leq 2$. Moreover we have

$$
\triangle_{A}(t) \equiv \prod_{1 \leq i<j \leq 3}\left(\lambda_{i}(t)-\lambda_{j}(t)\right)^{2}=4 k_{A}(t)^{3}-27 h_{A}(t)^{2} \geq 0
$$

Similarly as case $m=2$, since $\operatorname{tr}\left(A_{\varepsilon}(t)\right)=\operatorname{tr}(A(t))=0$, the regularized matrix (6) satisfies the equality

$$
\begin{equation*}
A_{\varepsilon}(t)^{3}-k_{A_{\varepsilon}}(t) A_{\varepsilon}(t)-h_{A_{\varepsilon}}(t) I=0 \tag{14}
\end{equation*}
$$

However, the eigenvalues of $A_{\varepsilon}(t)$ may be non real, thus $k_{A_{\varepsilon}}(t)$ and $h_{A_{\varepsilon}}(t)$ are complex valued. To overcome this difficulty, we introduce the real functions

$$
\begin{equation*}
h_{\varepsilon}(t)=\Re h_{A_{\varepsilon}}(t), \quad k_{\varepsilon}(t)=\left\{\left\{\Re k_{A_{\varepsilon}}(t)+M \varepsilon^{\alpha}\right\}^{3 / 2}+12 M M^{3 / 2} \varepsilon^{\alpha}\right\}^{2 / 3} \tag{15}
\end{equation*}
$$

Here M is a constant ≥ 1, which is chosen large enough to satisfy, besides (7), the following inequalities on $[0, T]$:

$$
\left\{\begin{array}{l}
\left|h_{\varepsilon}(t)-h_{A}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|\Im h_{A_{\varepsilon}}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|h_{\varepsilon}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1}, \tag{16}\\
\left|k_{A_{\varepsilon}}(t)\right| \leq M, \quad\left|k_{A_{\varepsilon}}(t)-k_{A}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|k_{A_{\varepsilon}}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1},
\end{array}\right.
$$

which imply, in particular,

$$
\begin{equation*}
\left|\Re k_{A_{\varepsilon}}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1}, \quad\left|\Re k_{A_{\varepsilon}}(t)-k_{A}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|\Im k_{A_{\varepsilon}}(t)\right| \leq M \varepsilon^{\alpha} . \tag{17}
\end{equation*}
$$

We also define

$$
\begin{equation*}
\triangle_{\varepsilon}(t)=4 k_{\varepsilon}(t)^{3}-27 h_{\varepsilon}(t)^{2} . \tag{18}
\end{equation*}
$$

Next we show that $\triangle_{\varepsilon}(t) \geq 0$, thus $z^{3}-k_{\varepsilon}(t) z+h_{\varepsilon}(t)$ is a hyperbolic polynomial, and we also prove some crucial estimates on $k_{\varepsilon}(t)$:

Lemma 1. We have for $C=C(M)$ and $c>0$

$$
\begin{align*}
& k_{\varepsilon}(t) \geq \begin{cases}c & \text { if } r=1,2, \\
M \varepsilon^{2 \alpha / 3} & \text { if } r=3,\end{cases} \tag{19}\\
& \left|k_{\varepsilon}^{\prime}(t)\right| \leq C \varepsilon^{\alpha-1}, \quad\left|k_{\varepsilon}(t)-k_{A_{\varepsilon}}(t)\right| \leq C \varepsilon^{\alpha} k_{\varepsilon}(t)^{-1 / 2}, \tag{20}\\
& \triangle_{\varepsilon}(t) \geq \begin{cases}c & \text { if } r=1, \\
M^{3 / 2} \varepsilon^{\alpha} k_{\varepsilon}(t)^{3 / 2} & \text { if } r=2,3,\end{cases} \tag{21}\\
& \left|h_{\varepsilon}(t)\right| \leq \sqrt{\frac{4}{27}} k_{\varepsilon}(t)^{3 / 2} . \tag{22}
\end{align*}
$$

Proof: We write for brevity (15) in the form

$$
k_{\varepsilon}(t)=\left\{\widetilde{k}_{\varepsilon}(t)^{3 / 2}+12 M^{3 / 2} \varepsilon^{\alpha}\right\}^{2 / 3}, \quad \text { where } \quad \widetilde{k}_{\varepsilon}(t)=\Re k_{A_{\varepsilon}}(t)+M \varepsilon^{\alpha},
$$

and observe that, by (17), we have

$$
\widetilde{k}_{\varepsilon}(t)=\left\{\Re k_{A_{\varepsilon}}(t)-k_{A}(t)\right\}+k_{A}(t)+M \varepsilon^{\alpha} \geq k_{A}(t) \geq \begin{cases}c & \text { if } \quad r=1,2 \\ 0 & \text { if } r=3\end{cases}
$$

This yields (19). Let us now prove (20). From (15) and (17) it follows that

$$
\left|k_{\varepsilon}^{\prime}\right|=\left|\widetilde{k}_{\varepsilon}^{\prime}\right| \widetilde{k}_{\varepsilon}^{1 / 2}\left\{\widetilde{k}_{\varepsilon}^{3 / 2}+12 M^{3 / 2} \varepsilon^{\alpha}\right\}^{-1 / 3} \leq\left|\widetilde{k}_{\varepsilon}^{\prime}\right|=\left|\Re k_{A_{\varepsilon}}^{\prime}\right| \leq M \varepsilon^{\alpha-1} .
$$

Moreover we get, since $k_{\varepsilon}(t) \geq \widetilde{k}_{\varepsilon}(t)$,
$\left|k_{\varepsilon}-\widetilde{k}_{\varepsilon}\right|=\frac{\left\{k_{\varepsilon}^{3 / 2}-\widetilde{k}_{\varepsilon}^{3 / 2}\right\}\left\{k_{\varepsilon}^{3 / 2}+\widetilde{k}_{\varepsilon}^{3 / 2}\right\}}{k_{\varepsilon}^{2}+k_{\varepsilon} \widetilde{k}_{\varepsilon}+\widetilde{k}_{\varepsilon}^{2}} \leq \frac{12 M^{3 / 2} \varepsilon^{\alpha} \cdot 2 k_{\varepsilon}^{3 / 2}}{k_{\varepsilon}^{2}}=24 M^{3 / 2} \varepsilon^{\alpha} k_{\varepsilon}^{-1 / 2}$,
and hence, using again (17),

$$
\left|k_{\varepsilon}-k_{A_{\varepsilon}}\right| \leq\left|k_{\varepsilon}(t)-\widetilde{k}_{\varepsilon}(t)\right|+\left|\widetilde{k}_{\varepsilon}(t)-\Re k_{A_{\varepsilon}}(t)\right|+\left|\Im k_{A_{\varepsilon}}(t)\right| \leq C \varepsilon^{\alpha} k_{\varepsilon}^{-1 / 2} .
$$

This completes the proof of (20).
To prove (21), we first derive the following estimate by (16) and (17), recalling that $\widetilde{k}_{\varepsilon}(t) \geq k_{A}(t)$,

$$
\begin{align*}
\left|\widetilde{k}_{\varepsilon}^{3 / 2}-k_{A}^{3 / 2}\right| & =\left|\widetilde{k}_{\varepsilon}-k_{A}\right| \cdot \frac{\widetilde{k}_{\varepsilon}+\widetilde{k}_{\varepsilon}^{1 / 2} k_{A}^{1 / 2}+k_{A}}{\widetilde{k}_{\varepsilon}^{1 / 2}+k_{A}^{1 / 2}} \leq\left\{\left|\Re k_{A_{\varepsilon}}-k_{A}\right|+M \varepsilon^{\alpha}\right\} \cdot \frac{3 \widetilde{k}_{\varepsilon}}{\widetilde{k}_{\varepsilon}^{1 / 2}} \tag{23}\\
& \leq 2 M \varepsilon^{\alpha} \cdot 3 \widetilde{k}_{\varepsilon}^{1 / 2} \leq 2 M \varepsilon^{\alpha} \cdot 3\left(\left|\Re k_{A_{\varepsilon}}\right|+M \varepsilon^{\alpha}\right)^{1 / 2} \leq 6 \sqrt{2} M^{3 / 2} \varepsilon^{\alpha}
\end{align*}
$$

Then, we write

$$
\begin{equation*}
\triangle_{\varepsilon}=4\left\{2 k_{\varepsilon}^{3 / 2}+\sqrt{27} h_{\varepsilon}\right\}\left\{2 k_{\varepsilon}^{3 / 2}-\sqrt{27} h_{\varepsilon}\right\} . \tag{24}
\end{equation*}
$$

We know that

$$
\left\{2 k_{A}^{3 / 2}+\sqrt{27} h_{A}\right\}\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\}=\triangle_{A}(t) \geq 0, \quad \text { and } \quad k_{A}(t) \geq 0,
$$

thus

$$
\begin{equation*}
\left\{2 k_{A}(t)^{3 / 2} \pm \sqrt{27} h_{A}(t)\right\} \geq 0 \tag{25}
\end{equation*}
$$

For each fixed $t \in[0, T]$, we have either $h_{\varepsilon}(t) \geq 0$ or $h_{\varepsilon}(t) \leq 0$. In the first case, we have $\left\{2 k_{\varepsilon}(t)^{3 / 2}+\sqrt{27} h_{\varepsilon}(t)\right\} \geq k_{\varepsilon}(t)^{3 / 2}$, while, by (16), (23) and (25), we obtain

$$
\begin{aligned}
\left\{2 k_{\varepsilon}(t)^{3 / 2}-\sqrt{2} 7\right. & \left.h_{\varepsilon}(t)\right\}=24 M^{3 / 2} \varepsilon^{\alpha}+\left\{2 \widetilde{k}_{\varepsilon}^{3 / 2}-\sqrt{27} h_{\varepsilon}\right\} \\
& =24 M^{3 / 2} \varepsilon^{\alpha}+2\left\{\widetilde{k}_{\varepsilon}^{3 / 2}-k_{A}^{3 / 2}\right\}+\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\}+\sqrt{27}\left(h_{A}-h_{\varepsilon}\right) \\
& \geq 24 M^{3 / 2} \varepsilon^{\alpha}-2\left|\widetilde{k}_{A}^{3 / 2}-k_{\varepsilon}^{3 / 2}\right|+\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\}-\sqrt{27}\left|h_{A}-h_{\varepsilon}\right| \\
& \geq[24-12 \sqrt{2}-\sqrt{27}] M^{3 / 2} \varepsilon^{\alpha}+\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\} \\
& \geq M^{3 / 2} \varepsilon^{\alpha} .
\end{aligned}
$$

In the same way, when $h_{\varepsilon}(t) \leq 0$ we obtain

$$
\left\{2 k_{\varepsilon}^{3 / 2}-\sqrt{27} h_{\varepsilon}(t)\right\} \geq k_{\varepsilon}(t)^{3 / 2}, \quad\left\{2 k_{\varepsilon}(t)^{3 / 2}+\sqrt{27} h_{\varepsilon}(t)\right\} \geq M^{3 / 2} \varepsilon^{\alpha} .
$$

Thus, in both the cases we get by (24)

$$
\triangle_{\varepsilon}(t) \geq 4 M^{3 / 2} \varepsilon^{\alpha} k_{\varepsilon}(t)^{3 / 2}
$$

In the special case when $r=1$, the discriminant $\triangle_{A}(t)$ is strictly positive, hence both the inequalities in (25) are strict, and we conclude that $\triangle_{\varepsilon}(t) \geq c>0$.

Finally, (22) follows directly from (21) and the definition (18) of $\triangle_{\varepsilon}(t)$.
In the following Lemma, we exhibit an exact (but possibly non-coercive) symmetrizer $Q_{\varepsilon}(t)$ for the 3×3 Sylvester matrix whose characteristic polynomial is the polynomial $z^{3}-k_{\varepsilon}(t) z+h_{\varepsilon}(t)$. We also give a lower estimate for such a symmetrizer $Q_{\varepsilon}(t)$, which will be decisive in our proof.

Lemma 2. Let us define

$$
A_{\varepsilon}^{\sharp}(t)=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{26}\\
0 & 0 & 1 \\
h_{\varepsilon}(t) & k_{\varepsilon}(t) & 0
\end{array}\right), \quad Q_{\varepsilon}(t)=\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{2} & 3 h_{\varepsilon}(t) & -k_{\varepsilon}(t) \\
3 h_{\varepsilon}(t) & 2 k_{\varepsilon}(t) & 0 \\
-k_{\varepsilon}(t) & 0 & 3
\end{array}\right) .
$$

Then, the matrix $Q_{\varepsilon}(t)$ is Hermitian and satisfies

$$
\begin{equation*}
Q_{\varepsilon}(t) A_{\varepsilon}^{\sharp}(t)=A_{\varepsilon}^{\sharp}(t)^{*} Q_{\varepsilon}(t) . \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\left(Q_{\varepsilon}(t) W, W\right) \geq c\left|L_{\varepsilon}(t) W\right|^{2} \quad \text { for all } W \in \mathbf{C}^{3}, \quad c>0 \tag{28}
\end{equation*}
$$

where

$$
L_{\varepsilon}(t)=\triangle_{\varepsilon}(t)^{1 / 2}\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{-1 / 2} & 0 & 0 \\
0 & k_{\varepsilon}(t)^{-1} & 0 \\
0 & 0 & k_{\varepsilon}(t)^{-3 / 2}
\end{array}\right) .
$$

Proof: (27) follows from the definitions (26). Let us prove (28). Since

$$
L_{\varepsilon}^{-1}=\left(L_{\varepsilon}^{-1}\right)^{*}=\triangle_{\varepsilon}^{-1 / 2}\left(\begin{array}{ccc}
k_{\varepsilon}^{1 / 2} & 0 & 0 \\
0 & k_{\varepsilon} & 0 \\
0 & 0 & k_{\varepsilon}^{3 / 2}
\end{array}\right)
$$

we have

$$
\begin{equation*}
\left(L_{\varepsilon}^{-1}\right)^{*} Q_{\varepsilon} L_{\varepsilon}^{-1}=\frac{k_{\varepsilon}^{3}}{\triangle_{\varepsilon}} \widetilde{Q}_{\varepsilon}, \tag{29}
\end{equation*}
$$

where

$$
\widetilde{Q}_{\varepsilon}(t) \equiv\left[\widetilde{q}_{i j}(t)\right]_{1 \leq i, j \leq 3}=\left(\begin{array}{ccc}
1 & 3 h_{\varepsilon} k_{\varepsilon}^{-3 / 2} & -1 \\
3 h_{\varepsilon} k_{\varepsilon}^{-3 / 2} & 2 & 0 \\
-1 & 0 & 3
\end{array}\right) .
$$

Now, by (22) we see that $\left\|\widetilde{Q}_{\varepsilon}(t)\right\| \leq C$ on $[0, T]$. Moreover, by (19) and (20), the determinant and the minor determinants of $\widetilde{Q}_{\varepsilon}(t)$ satisfy

$$
\begin{array}{r}
\operatorname{det} \widetilde{Q}_{\varepsilon}(t)=4-\frac{27 h_{\varepsilon}^{2}}{k_{\varepsilon}^{3}}=\frac{\triangle_{\varepsilon}}{k_{\varepsilon}^{3}}>0 \\
\widetilde{q}_{11}(t) \widetilde{q}_{22}(t)-\widetilde{q}_{12}(t) \widetilde{q}_{21}(t)=2-\frac{9 h_{\varepsilon}^{2}}{k_{\varepsilon}^{3}}=\frac{2}{3}+\frac{\triangle_{\varepsilon}}{3 k_{\varepsilon}^{3}}>0, \quad \widetilde{q}_{11}(t)=1>0 .
\end{array}
$$

This implies that the eigenvalues $\mu_{1}(t), \mu_{2}(t), \mu_{3}(t)$ of $\widetilde{Q}_{\varepsilon}(t)$ are non-negative, and thus we have, for $\{i, j, k\}=\{1,2,3\}$,

$$
\mu_{i}(t)=\frac{\mu_{i}(t) \mu_{j}(t) \mu_{k}(t)}{\mu_{j}(t) \mu_{k}(t)} \geq \frac{\operatorname{det}\left(\widetilde{Q}_{\varepsilon}(t)\right)}{\left\|\widetilde{Q}_{\varepsilon}(t)\right\|^{2}} \geq c \frac{\triangle_{\varepsilon}(t)}{k_{\varepsilon}(t)^{3}}, \quad c>0
$$

Hence we get

$$
\left(\widetilde{Q}_{\varepsilon}(t) \widetilde{W}, \widetilde{W}\right) \geq c \frac{\triangle_{\varepsilon}(t)}{k_{\varepsilon}(t)^{3}}|\widetilde{W}|^{2} \quad \text { for all } \widetilde{W} \in \mathbf{C}^{3}
$$

and consequently, taking $\widetilde{W}=L_{\varepsilon}(t) W$ and recalling (29),

$$
\left(Q_{\varepsilon}(t) W, W\right)=\frac{k_{\varepsilon}(t)^{3}}{\triangle_{\varepsilon}(t)}\left(\widetilde{Q}_{\varepsilon}(t) \widetilde{W}, \widetilde{W}\right) \geq c|\widetilde{W}|^{2}=c\left|L_{\varepsilon}(t) W\right|^{2}
$$

Lemma 2 also applicable to 9×9 block-matrices whose blocks are 3×3 matrices of scalar type. Indeed, denoting by I the 3×3 identity matrix, we have:

Lemma 3. Let us define the 9×9 matrices
$\mathcal{A}_{\varepsilon}(t)=\left(\begin{array}{ccc}0 & I & 0 \\ 0 & 0 & I \\ h_{\varepsilon}(t) I & k_{\varepsilon}(t) I & 0\end{array}\right), \quad \mathcal{Q}_{\varepsilon}(t)=\left(\begin{array}{ccc}k_{\varepsilon}(t)^{2} I & 3 h_{\varepsilon}(t) I & -k_{\varepsilon}(t) I \\ 3 h_{\varepsilon}(t) I & 2 k_{\varepsilon}(t) I & 0 \\ -k_{\varepsilon}(t) I & 0 & 3 I\end{array}\right)$.
Therefore, $\mathcal{Q}_{\varepsilon}(t)$ is Hermitian and satisfies

$$
\begin{equation*}
\left(\mathcal{Q}_{\varepsilon}(t) \mathcal{W}, \mathcal{W}\right) \geq c\left|\mathcal{L}_{\varepsilon}(t) \mathcal{W}\right|^{2} \quad \text { for all } \mathcal{W} \in \mathbf{C}^{9}, \quad c>0 \tag{32}
\end{equation*}
$$

where

$$
\mathcal{L}_{\varepsilon}(t)=\triangle_{\varepsilon}(t)^{1 / 2}\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{-1 / 2} I & 0 & 0 \tag{33}\\
0 & k_{\varepsilon}(t)^{-1} I & 0 \\
0 & 0 & k_{\varepsilon}(t)^{-3 / 2} I
\end{array}\right) .
$$

Proof: Since the 3×3 submatrices in $\mathcal{A}_{\varepsilon}(t), \mathcal{Q}_{\varepsilon}(t)$ and $\mathcal{L}_{\varepsilon}(t)$ consist of the 3×3 identity matrix I, (31) and (32) can be easily derived from (27) and (28) respectively.

Now, we transform the 3×3 system (4) into a 9×9 system whose principal part is the block Sylvester matrix $\mathcal{A}_{\varepsilon}(t)$ of Lemma 3. We deduce from (4) that

$$
\begin{equation*}
V^{\prime}=i \xi A V+B V=i \xi A_{\varepsilon} V+i \xi\left(A-A_{\varepsilon}\right) V+B V \tag{i}
\end{equation*}
$$

(ii) $\left(A_{\varepsilon} V\right)^{\prime}=i \xi A_{\varepsilon}^{2} V+i \xi A_{\varepsilon}\left(A-A_{\varepsilon}\right) V+A_{\varepsilon}^{\prime} V+A_{\varepsilon} B V$,
(iii) $\quad\left(A_{\varepsilon}^{2} V\right)^{\prime}=i \xi A_{\varepsilon}^{3} V+i \xi A_{\varepsilon}^{2}\left(A-A_{\varepsilon}\right) V+\left(A_{\varepsilon}^{2}\right)^{\prime} V+A_{\varepsilon}^{2} B V$

$$
\begin{aligned}
&=\left[i \xi h_{\varepsilon} V+i \xi k_{\varepsilon} A_{\varepsilon} V\right]-\xi \Im h_{A_{\varepsilon}} V+i \xi\left(k_{A_{\varepsilon}}-k_{\varepsilon}\right) A_{\varepsilon} V \\
&+i \xi A_{\varepsilon}^{2}\left(A-A_{\varepsilon}\right) V+\left(A_{\varepsilon}^{2}\right)^{\prime} V+A_{\varepsilon}^{2} B V
\end{aligned}
$$

where, in the last equality, we have used the Hamilton-Cayley equality (14). Putting

$$
\mathcal{V} \equiv \mathcal{V}(t, \xi)=\left(\begin{array}{c}
V \\
A_{\varepsilon} V \\
A_{\varepsilon}^{2} V
\end{array}\right) \in \mathbf{C}^{9}
$$

we combine together $(i),(i i)$ and $(i i i)$ to get the 9×9 system:

$$
\begin{equation*}
\mathcal{V}^{\prime}=i \xi \mathcal{A}_{\varepsilon}(t) \mathcal{V}+i \xi \mathcal{R}_{\varepsilon}(t) \mathcal{V}-\xi \mathcal{P}_{\varepsilon}(t) \mathcal{V}+\mathcal{D}_{\varepsilon}(t) \mathcal{V}+\mathcal{B}_{\varepsilon}(t) \mathcal{V} \tag{34}
\end{equation*}
$$

where $\mathcal{A}_{\varepsilon}(t)$ is defined in (30), and:

$$
\begin{aligned}
& \mathcal{R}_{\varepsilon}(t)=\left(\begin{array}{ccc}
A-A_{\varepsilon} & 0 & 0 \\
A_{\varepsilon}\left(A-A_{\varepsilon}\right) & 0 & 0 \\
A_{\varepsilon}^{2}\left(A-A_{\varepsilon}\right) & 0 & 0
\end{array}\right), \quad \mathcal{P}_{\varepsilon}(t)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\Im h_{A_{\varepsilon}} I & -i\left(k_{A_{\varepsilon}}-k_{\varepsilon}\right) I & 0
\end{array}\right), \\
& \mathcal{D}_{\varepsilon}(t)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
A_{\varepsilon}^{\prime} & 0 & 0 \\
\left(A_{\varepsilon}^{2}\right)^{\prime} & 0 & 0
\end{array}\right), \quad \mathcal{B}_{\varepsilon}(t)=\left(\begin{array}{ccc}
B & 0 & 0 \\
A_{\varepsilon} B & 0 & 0 \\
A_{\varepsilon}^{2} B & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Then, recalling (30), we define the energy:

$$
E(t, \xi)=\left(\mathcal{Q}_{\varepsilon}(t) \mathcal{V}, \mathcal{V}\right)
$$

By the definition (33) of $\mathcal{L}_{\varepsilon}(t)$, using (19) and (21), we see that

$$
\begin{equation*}
\left|\mathcal{L}_{\varepsilon}(t) \mathcal{W}\right|^{2} \geq c_{1} \triangle_{\varepsilon}(t) k_{\varepsilon}(t)^{-1}|\mathcal{W}|^{2} \geq c_{2} \varepsilon^{4 \alpha / 3}|\mathcal{W}|^{2} \tag{35}
\end{equation*}
$$

hence, remarking that $\left\|\mathcal{Q}_{\varepsilon}(t)\right\| \leq C$, and $|V|^{2} \leq|\mathcal{V}|^{2} \leq C|V|^{2}$, we deduce from (32) and (35) :

$$
\begin{equation*}
c \varepsilon^{4 \alpha / 3}|V|^{2} \leq E(t, \xi) \leq C|V|^{2} \tag{36}
\end{equation*}
$$

By (31) and (34), considering that $\mathcal{Q}_{\varepsilon}$ is Hermitian, we get the equality

$$
\begin{aligned}
E^{\prime}(t, \xi)= & \left(\mathcal{Q}_{\varepsilon}^{\prime} \mathcal{V}, \mathcal{V}\right)+\left(\mathcal{Q}_{\varepsilon} \mathcal{V}^{\prime}, \mathcal{V}\right)+\left(\mathcal{Q}_{\varepsilon} \mathcal{V}, \mathcal{V}^{\prime}\right) \\
= & \left(\mathcal{Q}_{\varepsilon}^{\prime} \mathcal{V}, \mathcal{V}\right)+i \xi\left(\left\{\mathcal{Q}_{\varepsilon} \mathcal{A}_{\varepsilon}-\mathcal{A}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon}^{*}\right\} \mathcal{V}, \mathcal{V}\right) \\
& +\left(\mathcal{Q}_{\varepsilon}\left\{i \xi \mathcal{R}_{\varepsilon}-\xi \mathcal{P}_{\varepsilon}+\mathcal{D}_{\varepsilon}+\mathcal{B}_{\varepsilon}\right\} \mathcal{V}, \mathcal{V}\right)+\overline{\left(\mathcal{Q}_{\varepsilon}\left\{i \xi \mathcal{R}_{\varepsilon}-\xi \mathcal{P}_{\varepsilon}+\mathcal{D}_{\varepsilon}+\mathcal{B}_{\varepsilon}\right\} \mathcal{V}, \mathcal{V}\right)} \\
= & \left(\mathcal{Q}_{\varepsilon}^{\prime} \mathcal{V}, \mathcal{V}\right)-2 \xi \Im\left(\mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon} \mathcal{V}, \mathcal{V}\right)-2 \xi \Re\left(\mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon} \mathcal{V}, \mathcal{V}\right)+2 \Re\left(\mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon} \mathcal{V}, \mathcal{V}\right)+2 \Re\left(\mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon} \mathcal{V}, \mathcal{V}\right) .
\end{aligned}
$$

In order to prove the energy estimate, we use the following:
Lemma 4. If \mathcal{S} be a 9×9 matrix, then we have, for all $\mathcal{W} \in \mathbf{C}^{9}$,

$$
\begin{align*}
(\mathcal{S W}, \mathcal{W}) & \leq C\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1}\right\|\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right) \tag{37}\\
\left(\mathcal{Q}_{\varepsilon} \mathcal{S W}, \mathcal{W}\right) & \leq C\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{S}^{*} \mathcal{Q}_{\varepsilon} \mathcal{S}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right) \tag{38}
\end{align*}
$$

Proof: (37) follows directly from (32); indeed, noting that $\mathcal{L}_{\varepsilon}^{*}=\mathcal{L}_{\varepsilon}$, we find

$$
\begin{aligned}
(\mathcal{S W}, \mathcal{W}) & =\left(\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1} \mathcal{L}_{\varepsilon} \mathcal{W}, \mathcal{L}_{\varepsilon}^{*} \mathcal{W}\right) \leq\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1}\right\|\left|\mathcal{L}_{\varepsilon}(t) \mathcal{W}\right|^{2} \\
& \leq \frac{1}{c}\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1}\right\|\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right) .
\end{aligned}
$$

To prove (38), we use the Schwarz's inequality for the scalar product $\langle\mathcal{Y}, \mathcal{W}\rangle \equiv$ $\left(\mathcal{Q}_{\mathcal{E}} \mathcal{Y}, \mathcal{W}\right)$, and (37) with $\mathcal{S}^{*} \mathcal{Q}_{\mathcal{E}} \mathcal{S}$ in place of \mathcal{S}. Thus we obtain

$$
\begin{aligned}
\left(\mathcal{Q}_{\varepsilon} \mathcal{S W}, \mathcal{W}\right) & =\left(\mathcal{Q}_{\varepsilon} \mathcal{S} \mathcal{W}, \mathcal{S} \mathcal{W}\right)^{1 / 2}\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right)^{1 / 2} \\
& \leq C\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{S}^{*} \mathcal{Q}_{\varepsilon} \mathcal{S}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right)
\end{aligned}
$$

By (37) and (38), it follows

$$
\begin{aligned}
& E^{\prime}(t, \xi) \leq C E(t, \xi)\left\{\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{Q}_{\varepsilon}^{\prime} \mathcal{L}_{\varepsilon}^{-1}\right\|+|\xi|\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{R}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\right. \\
& \left.+|\xi|\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{P}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}+\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{D}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}+\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{B}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\right\}
\end{aligned}
$$

Now we estimate the five summands on the left hand side. To this end, let us firstly observe that, for any 9×9 block matrix $\mathcal{S}=\left[S_{i j}\right]_{1 \leq i, j \leq 3}$, one has

$$
\begin{equation*}
\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1}=\frac{1}{\triangle_{\varepsilon}}\left[k_{\varepsilon}^{(i+j) / 2} S_{i j}\right]_{1 \leq i, j \leq 3} . \tag{39}
\end{equation*}
$$

1) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{Q}_{\varepsilon}^{\prime} \mathcal{L}_{\varepsilon}^{-1}\right\|$: By using (39), we see that

$$
\mathcal{L}_{\varepsilon}^{-1} \mathcal{Q}_{\varepsilon}^{\prime} \mathcal{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}}\left(\begin{array}{ccc}
2 k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I & 3 h_{\varepsilon}^{\prime} I & -k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I \\
3 h_{\varepsilon}^{\prime} I & 2 k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I & 0 \\
-k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I & 0 & 0
\end{array}\right)
$$

thus, by (16) and (20), we get

$$
\begin{equation*}
\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{Q}_{\varepsilon}^{\prime} \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}} C\left\{k_{\varepsilon}^{1 / 2}\left|k_{\varepsilon}^{\prime}\right|+\left|h_{\varepsilon}^{\prime}\right|\right\} \leq \frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}} C_{1} \varepsilon^{\alpha-1} \tag{40}
\end{equation*}
$$

2) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{P}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|$: By the equality

$$
\left(\begin{array}{ccc}
0 & 0 & Y_{1}^{*} \\
0 & 0 & Y_{2}^{*} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k^{2} I & 3 h I & -I \\
3 h I & 2 k I & 0 \\
-k I & 0 & 3 I
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
Y_{1} & Y_{1} & 0
\end{array}\right)=3\left(\begin{array}{ccc}
Y_{1}^{*} Y_{1} & Y_{1}^{*} Y_{2} & 0 \\
Y_{2}^{*} Y_{1} & Y_{2}^{*} Y_{2} & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and by (39), we find

$$
\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{P}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}=\frac{3 k_{\varepsilon}}{\triangle_{\varepsilon}}\left(\begin{array}{ccc}
\left(\Im h_{A_{\varepsilon}}\right)^{2} I & -i k_{\varepsilon}^{1 / 2}\left(k_{A_{\varepsilon}}-k_{\varepsilon}\right) \Im h_{A_{\varepsilon}} I & 0 \\
i k_{\varepsilon}^{1 / 2}\left(\overline{k_{A_{\varepsilon}}-k_{\varepsilon}}\right) \Im h_{A_{\varepsilon}} I & k_{\varepsilon}\left|k_{A_{\varepsilon}}-k_{\varepsilon}\right|^{2} I & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Hence, by (16) and (20),
(41) $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{P}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C\left\{\varepsilon^{2 \alpha}+k_{\varepsilon}^{1 / 2}\left|k_{A_{\varepsilon}}-k_{\varepsilon}\right| \varepsilon^{\alpha}+k_{\varepsilon}\left|k_{A_{\varepsilon}}-k_{\varepsilon}\right|^{2}\right\} \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C_{2} \varepsilon^{2 \alpha}$. To compute the products $\mathcal{X}^{*} \mathcal{Q}_{\varepsilon} \mathcal{X}$ with $\mathcal{X}=\mathcal{R}_{\varepsilon}, \mathcal{D}_{\varepsilon}, \mathcal{B}_{\varepsilon}$, we note that

$$
\left(\begin{array}{ccc}
X_{1}^{*} & X_{2}^{*} & X_{3}^{*} \tag{42}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k_{\varepsilon}^{2} I & 3 h_{\varepsilon} I & -k_{\varepsilon} I \\
3 h_{\varepsilon} I & 2 k_{\varepsilon} I & 0 \\
-k_{\varepsilon} I & 0 & 3 I
\end{array}\right)\left(\begin{array}{ccc}
X_{1} & 0 & 0 \\
X_{2} & 0 & 0 \\
X_{3} & 0 & 0
\end{array}\right)=Z_{\varepsilon} \mathcal{J}
$$

where
$Z_{\varepsilon}=k_{\varepsilon}^{2} X_{1}^{*} X_{1}+3 h_{\varepsilon}\left(X_{1}^{*} X_{2}+X_{2}^{*} X_{1}\right)-k_{\varepsilon}\left(X_{1}^{*} X_{3}+X_{3}^{*} X_{1}-2 X_{2}^{*} X_{2}\right)+3 X_{3}^{*} X_{3}$
and

$$
\mathcal{J}=\left(\begin{array}{lll}
I & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

3) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{R}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|$: From (42) with $X_{j}=A_{\varepsilon}^{j-1}\left(A-A_{\varepsilon}\right)$, $j=1,2,3$, recalling (39), we see that

$$
\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{R}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}}{\triangle_{\varepsilon}} F_{\varepsilon} \mathcal{J}
$$

where

$$
F_{\varepsilon}=\left(A-A_{\varepsilon}\right)^{*}\left\{k_{\varepsilon}^{2} I+3 h_{\varepsilon}\left(A_{\varepsilon}+A_{\varepsilon}^{*}\right)-k_{\varepsilon}\left(A_{\varepsilon}-A_{\varepsilon}^{*}\right)^{2}+3 A_{\varepsilon}^{* 2} A_{\varepsilon}^{2}\right\}\left(A-A_{\varepsilon}\right)
$$

Hence, by using (7), we get

$$
\begin{equation*}
\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{R}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C\left\|A-A_{\varepsilon}\right\|^{2} \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C_{3} \varepsilon^{2 \alpha} . \tag{43}
\end{equation*}
$$

4) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{D}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|$: From (42) with $X_{1}=0, X_{2}=A_{\varepsilon}^{\prime}$ and $X_{3}=\left(A_{\varepsilon}^{2}\right)^{\prime}$, by (39) we see that

$$
\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{D}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}}{\triangle_{\varepsilon}} G_{\varepsilon} \mathcal{J}
$$

where $G_{\varepsilon}=2 k_{\varepsilon} A_{\varepsilon}^{\prime *} A_{\varepsilon}^{\prime}+3\left(A_{\varepsilon}^{2}\right)^{\prime *}\left(A_{\varepsilon}^{2}\right)^{\prime}$. Hence we get, by using (7),

$$
\begin{equation*}
\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{D}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C\left\|A_{\varepsilon}^{\prime}\right\|^{2} \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C_{4} \varepsilon^{2(\alpha-1)} \tag{44}
\end{equation*}
$$

5) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{B}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|$: From (42) with $X_{1}=B, X_{2}=A_{\varepsilon} B$, $X_{3}=A_{\varepsilon}^{2} B$, and by using (39), we see that

$$
\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{B}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}}{\triangle_{\varepsilon}} H_{\varepsilon} \mathcal{J}
$$

where

$$
H_{\varepsilon}=B^{*}\left\{k_{\varepsilon}^{2}+3 h_{\varepsilon}\left(A_{\varepsilon}+A_{\varepsilon}^{*}\right)-k_{\varepsilon}\left(A_{\varepsilon}-A_{\varepsilon}^{*}\right)^{2}+3 A_{\varepsilon}^{* 2} A_{\varepsilon}^{2}\right\} B .
$$

Hence

$$
\begin{equation*}
\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{B}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}}\left\|H_{\varepsilon}\right\| \leq C_{5} \frac{k_{\varepsilon}}{\triangle_{\varepsilon}}\|B(t)\|^{2} \tag{45}
\end{equation*}
$$

From (40), (41), (43), (44), (45) and (19), (21), recalling that $\|B(t)\| \leq C$, and choosing

$$
\varepsilon= \begin{cases}|\xi|^{-1} & \text { if } r=1 \\ |\xi|^{-1 /(1+\alpha / 2)} & \text { if } r=2 \\ |\xi|^{-1 /(1+\alpha / 3)} & \text { if } r=3\end{cases}
$$

we have the following estimate, for $|\xi| \geq 1$,

$$
\begin{aligned}
E^{\prime}(t, \xi) & \leq C_{6} E(t, \xi)\left[\varepsilon^{\alpha-1} \frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}}+\varepsilon^{\alpha} \frac{k_{\varepsilon}^{1 / 2}}{\triangle_{\varepsilon}^{1 / 2}}|\xi|+\varepsilon^{\alpha-1} \frac{k_{\varepsilon}^{1 / 2}}{\triangle_{\varepsilon}^{1 / 2}}\right] \\
& \leq \begin{cases}C_{7} E(t, \xi)\left[\varepsilon^{\alpha-1} k_{\varepsilon}^{3 / 2}+\varepsilon^{\alpha} k_{\varepsilon}^{1 / 2}|\xi|+\varepsilon^{\alpha-1} k_{\varepsilon}^{1 / 2}\right] & \text { if } r=1 \\
C_{7} E(t, \xi)\left[\varepsilon^{-1}+\varepsilon^{\alpha / 2} k_{\varepsilon}^{-1 / 4}|\xi|+\varepsilon^{\alpha / 2-1} k_{\varepsilon}^{-1 / 4}\right] & \text { if } r=2,3\end{cases} \\
& \leq \begin{cases}C E(t, \xi)\left[\varepsilon^{\alpha}|\xi|+\varepsilon^{\alpha-1}\right] \leq 2 C E(t, \xi)|\xi|^{1-\alpha} & \text { if } r=1, \\
C E(t, \xi)\left[\varepsilon^{\alpha / 2}|\xi|+\varepsilon^{-1}\right] \leq 2 C E(t, \xi)|\xi|^{1 /(1+\alpha / 2)} & \text { if } r=2 \\
C E(t, \xi)\left[\varepsilon^{\alpha / 3}|\xi|+\varepsilon^{-1}\right] \leq 2 C E(t, \xi)|\xi|^{1 /(1+\alpha / 3)} & \text { if } r=3\end{cases}
\end{aligned}
$$

which gives, by (36), the required a priori estimate (5) with σ equal respectively to $1 /(1-\alpha), 1+\alpha / 2$, or $1+\alpha / 3$. This concludes the proof of Theorem 1 for $m=3$.

REFERENCES

[1] M.D. Bronsthein, The Cauchy Problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Mos. Mat. Obsc. 41 (1980) 83-99. English translation: Trans. Moscow Math. Soc. 1 (1982) 87-103.
[2] M. Cicognani, On the strictly hyperbolic equations which are Hölder continuous with respect to time, Italian J. Pure Appl. Math. 4 (1998) 73-82.
F. Colombini, E. De Giorgi, S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scu. Norm. Sup. Pisa 6 (1979) 511-559. of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scu. Norm. Sup. Pisa 10 (1983) 291-312.
[5] P. D'Ancona, S. Spagnolo, Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Un. Mat. Ital. 1-B (1998) 169185.
[6] E. Jannelli, Regularly hyperbolic systems and Gevrey classes, Ann. Mat. Pura Appl. 140 (1985) 133-145.
[7] E. Jannelli, On the symmetrization of the principal symbol of hyperbolic equation, Comm. Part. Diff. Equat. 14 (1989) 1617-1634.
[8] E. Jannelli, Sharp quasi-symmetrizers for hyperbolic Sylvester matrices, Lecture held in the "Workshop on Hyperbolic Equations", Venice, April 2002.
[9] K. Kajitani, Cauchy problem for non strictly hyperbolic systems in Gevrey classes, J. Math. Kyoto Univ. 23 (1983) 599-616.
[10] K. Kajitani, The Cauchy problem for nonlinear hyperbolic systems, Bull. Sci. Math. 110 (1986) 3-48.
[11] T. Nishitani, Sur les équations hyperboliques à coefficients hölderiens en t et de classes de Gevrey en x, Bull. Sci. Math. 107 (1983), 113-138.
[12] Y. Ohya, S. Tarama, Le problème de Cauchy à caractéristiques multiples dans la classe de Gevrey - coefficients hölderiens en t, in: "Hyperbolic Equations and Related Topics", S. Mizohata (Ed.), Kinokuniya, Tokyo 1986, 273-306.
[13] Y. Yuzawa, Local solutions of the Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Doctoral Thesis, University of Tsukuba, 2003.

