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Highly f110g / f101g-oriented semiconducting iron disilicideb-FeSi2 continuous films were grown
on Sis111d by molecular-beam epitaxy(MBE) using ab-FeSi2 epitaxial template formed by reactive
deposition epitaxy. The optimum MBE growth temperature was determined to be about 750°C. At
this temperature, the full width at half maximumb-FeSi2s220d / s202d x-ray diffraction peak was at
a minimum. Subsequent MBE overgrowth of an undoped Si layer was performed on theb-FeSi2 at
500°C, resulting in the Si/b-FeSi2/Si double heterostructure. After annealing the wafers at 800°C
in Ar for 14 h, 1.55mm photoluminescence(PL) was obtained at low temperatures. Time-resolved
PL measurements elucidated that the luminescence originated from two sources, one with a short
decay timest,10 nsd and the other with a long decay timest,100 nsd. The short decay time was
thought to be due to carrier recombination inb-FeSi2, whereas the long decay time was due
probably to a dislocation-relatedD1 line in Si. © 2004 American Institute of Physics.
[DOI: 10.1063/1.1774246]

I. INTRODUCTION

Semiconducting iron disilicidesb-FeSi2d has been at-
tracting much attention as a material for a Si-based light
emitter with a wavelength,1.5 mm, which would have ap-
plications to optical fiber communications.1 The room tem-
perature(RT) 1.6 mm electroluminescence(EL) has already
been realized inp-Si/b-FeSi2 particles /n-Si light-emitting
diodes(LEDs) formed by ion beam synthesis(IBS) and by
molecular-beam epitaxy(MBE) methods.2–6 In an effort to
make an efficient LED with ab-FeSi2 active region, it is
necessary to embed ab-FeSi2 continuous film rather than
particles in Si. Recently, Chuet al. reported EL from Si/b
-FeSi2/Si double heterostructures(DH), in which the b
-FeSi2 film was grown by a rf magnetron-sputtering tech-
nique, followed by chemical vapor deposition(CVD) of a Si
overlayer.7 The EL intensity was, however, comparable to
that of Si at RT. This is the only report on EL from a Si/b
-FeSi2/Si DH to date. This is due to the difficulty in embed-
ding a b-FeSi2 continuous film in Si. In the case of IBS,
implantation of high Fe doses is required in order to form a
b-FeSi2 continuous film in Si. Therefore, a tremendous num-
ber of defects are introduced.8 Hence, lower doses of Fe are
implanted in order to formb-FeSi2 precipitates in LEDs pro-
duced by IBS.2–4 In the case of reactive deposition epitaxy
(RDE) (Fe deposition on hot Si) and molecular beam epitaxy
[(MBE) (co-deposition of Fe and Si on hot Si)], a b-FeSi2
epitaxial film grown on Sis001d exhibits a strong tendency to

form islands.9,10 In particular, theb-FeSi2 epitaxial film eas-
ily aggregates into islands during high-temperature
annealing.11 High-temperature annealing is inevitable to im-
prove the crystalline quality ofb-FeSi2 as well as its lumi-
nescence intensity.12 Therefore, theb-FeSi2 particles are
used as an active region in LEDs grown by RDE and
MBE.5,6 However, there have been a few reports showing
that smoothb-FeSi2 films can be grown on Sis111d sub-
strates even at high temperatures, in spite of the large lattice
mismatch of approximately 5%.13,14 The DH prepared by
CVD described above was also formed on Sis111d. However,
there have been no reports on the formation of a Si/b
-FeSi2/Si DH on Si substrates by MBE.

The purpose of this investigation was to determine the
optimum growth conditions for epitaxial growth ofb-FeSi2
films on Sis111d by MBE and a Si/b-FeSi2/Si DH. The
origin of 1.55mm photoluminescence(PL) from the DH was
investigated using time-resolved PL measurements.

II. EXPERIMENTAL METHOD

An ion-pumped MBE system equipped with electron
gun evaporation sources for Si and Fe was used in this evalu-
ation. A p-type floating zone Sis111d (r=1000–6000V cm;
2032030.5 mm3) was used as the substrate. After cleaning
the Sis111d substrate at 850°C for 30 min in UHV, and con-
firming a well-developed 737 reflection high-energy elec-
tron diffraction,b-FeSi2 films were grown by MBE as fol-
lows: A 20 nm-thickb-FeSi2 epitaxial film was grown by
RDE. This film was used as a template to control the crystala)Electronic Mail: suemasu@bk.tsukuba.ac.jp
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orientation of ab-FeSi2 overlayer. The deposition rate of Fe
was fixed at 0.6 nm/min, and the growth temperature was
varied from 470 to 850°C in order to determine the optimum
temperature. Then, Si and Fe were coevaporated on theb
-FeSi2 template at temperatures ranging from 550 to 850°C.
The total thickness of theb-FeSi2 film including the template
was 90 nm. In order to control the stoichiometry of the
MBE-grown films, the deposition rates of Fe and Si were
controlled by using an electron impact emission spectros-
copy (EIES) sensor for Fe and by maintaining constant input
power of the electron-beam gun for Si, respectively. For the
Si/b-FeSi2/Si DH, a 20-nm-thickb-FeSi2 template was
grown by RDE at 650°C, followed by a 70-nm-thickb
-FeSi2 film grown by MBE at 750°C. These temperatures
were optimized as detailed later. Next, undoped Si was
grown on theb-FeSi2 film at 500°C forming a DH. Finally,
the wafers were annealed in an Ar atmosphere for 14 h at
800 or 900°C. Samples were prepared as summarized in
Table I.

The crystal quality of the grown layers was characterized
by x-ray diffraction(XRD), and the surface morphology and
cross-sectional profile were observed by atomic force mi-
croscopy(AFM) and scanning electron microscopy(SEM).
Steady-state PL was measured by the standard lock-in tech-
nique using a He-Cd lasers442 nmd and a liquid-nitrogen-
cooled InP/ InGaAs photomultiplier(PM) (Hamamatsu Pho-
tonics R5509-72, Japan). The time-resolved PL was
measured from 8 to 150 K using a time-correlated single
photon counting setup. A mode-locked Ti:sapphire laser was
used as the excitation source. The excitation wavelength,
power, and repetition rate were 783 nm, 4 mW, and
0.8 MHz, respectively.

III. RESULTS AND DISCUSSION

A. Growth of b-FeSi2 film

Epitaxial growth ofb-FeSi2 films on Sis111d by RDE
was reported by Mahan, Thanh, Chavrier, Berbezier, Derrien,
and Long,15 but the detailed growth conditions were not de-
scribed. Figure 1 showsu -2u XRD patterns ofb-FeSi2 films
grown at different temperatures by RDE. The diffraction
peaks ofb-FeSi2s440d and/or b-FeSi2s404d were observed
for the samples grown above 650°C, showing that the[110]-
and/or[101]-oriented epitaxialb-FeSi2 was formed. It is dif-
ficult to distinguish the diffraction peaks ofb-FeSi2s440d and
b-FeSi2s220d from those ofb-FeSi2s404d andb-FeSi2s202d,
respectively, due to the small differences in the orthorhombic

b andc of b-FeSi2.
16 Two arrangements of theb-FeSi2 do-

mains, that is b-FeSi2f110g /Sif111g and b
-FeSi2f101g /Sif111g, are therefore thought to coexist in the
samples.15 Thus, the expression “[110]/[101]-oriented b
-FeSi2” will hereafter be used to denote the epitaxial film. At
temperatures below 600°C, however,[110/101]-oriented ep-
itaxial b-FeSi2 does not form. The diffraction peak corre-
sponding to theb-FeSi2s040d / s004d was observed for the
sample grown at 470°C. In order to determine the optimum
growth temperature for RDE, the rms roughness of the
samples grown at 650, 700, and 750°C was compared by
AFM. The values were determined to be 8.8, 11.7, and
18.6 nm, respectively, and therefore the optimum growth
temperature was determined to be approximately 650°C.
This temperature is about 200°C higher than that for RDE of
b-FeSi2 on Sis001d.17,18

Figure 2 showsu -2u XRD patterns of theb-FeSi2 films
grown by MBE at different temperatures on the template
formed at 650°C by RDE. As shown in Fig. 2, theb
-FeSi2s220d / s202d peak dominated over the entire tempera-

TABLE I. Sample preparation: Growth temperature and thickness of RDE-
and MBE-grownb-FeSi2 layers. Thickness of the Si overlayer is listed in
parentheses. Annealing conditions are also specifield.

Sample RDE/MBE Si overlayer Annealing

A 650°Cs20 nmd /750°Cs70 nmd 500°Cs300 nmd 900°C/14 h
B 650°Cs20 nmd /750°Cs70 nmd 500°Cs300 nmd 800°C/14 h
C 650°Cs20 nmd /750°Cs70 nmd 500°Cs300 nmd no
D 650°Cs20 nmd /750°Cs70 nmd 500°Cs900 nmd 900°C/14 h
E 650°Cs20 nmd /750°Cs70 nmd 500°Cs900 nmd 500°C/14 h
F 650°Cs20 nmd /750°Cs70 nmd 500°Cs900 nmd no

FIG. 1. u -2u XRD patterns ofb-FeSi2 films grown at different temperatures
by RDE.

FIG. 2. u -2u XRD patterns ofb-FeSi2 films grown at different temperatures
by MBE.
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ture range. On the other hand, for theb-FeSi2 film grown at
750°C without the template, the intensity of theb
-FeSi2s220d / s202d diffraction peak was about one-fourth of
that grown at 750°C with the template. Other peaks corre-
sponding tob-FeSi2s400d and b-FeSi2s040d / s004d planes
were also observed at 2u=36.4 and 46.5°, respectively. The
presence of these peaks indicates that it is difficult to control
the crystal orientation ofb-FeSi2 without the template. Thus,
the introduction of an epitaxial template is a very effective
means of growing af110g / f101g-orientedb-FeSi2 epitaxial
film by MBE. The effect of the template was also confirmed
in the growth ofb-FeSi2 on a Sis001d substrate.10 In order to
determine the optimum MBE growth temperature, thev scan
full width at half maximum (FWHM) of the b
-FeSi2s220d / s202d diffraction peak intensity and the rms
roughness were plotted in Fig. 3. As can be seen in Fig. 3,
the FWHM initially decreases with increasing growth tem-
perature, up to approximately 750°C. The FWHM reaches
its minimum of 0.6° for the sample grown at 750°C. The
growth temperature dependence of the rms roughness
showed the same trend as that for FWHM. The rms rough-
ness was at a minimum for the sample grown at 750°C.
Figure 4 shows the tilted-angle SEM images of theb-FeSi2
films grown at(a) 650, (b) 750, and(c) 850°C. As seen in
Fig. 4, theb-FeSi2 film grown at 750°C was smoother than
the other two samples. These findings suggest that the opti-
mum growth temperature of ab-FeSi2 film by MBE is
around 750°C.

B. Growth of Si/ b-FeSi2 /Si structure

For fabrication of a Si/b-FeSi2/Si DH, a MBE-Si over-
layer was grown at the low temperature of 500°C, due to the
strong islanding tendency of Si observed when grown at
higher temperatures, such as 750°C. Figure 5(a) shows the
tilted-angle SEM image of sample A, obtained by annealing
the Sis300 nmd /b-FeSi2/Si structure at 900ºC for 14 h. The
white parts correspond tob-FeSi2. As can be seen, theb
-FeSi2 islands moved up to the surface, showing that ab
-FeSi2 continuous film cannot be embedded in Si under these
growth conditions. The same result was obtained for sample
B, which was formed by annealing the same Sis300 nmd /b
-FeSi2/Si structure at 800ºC for 14 h. These results sug-
gested that a 300-nm-thick Si overlayer was not sufficient to

prevent the aggregation of a 90-nm-thickb-FeSi2 film.
Thus, the thickness of the Si overlayer increased from 300 to
900 nm in samples D and E. Figure 5(b) shows the SEM
cross section of sample D, prepared by annealing the
Sis900 nmd /b-FeSi2/Si structure at 900ºC for 14 h. Theb
-FeSi2 aggregated in the Si matrix. RDE-grownb-FeSi2
films are known to exhibit a strong tendency to form
islands,9 in particular during high-temperature annealing.11

The aggregation ofb-FeSi2 was thought to occur in order to
decrease theb-FeSi2/Si interface energy due to the lattice
mismatch between the two materials with decreasing contact
area. High-temperature annealing is expected to result in in-
tense PL, as later described; therefore, the annealing tem-

FIG. 3. Growth temperature dependence of XRDv-scan FWHMsPd of a
b-FeSi2s220d / s202d peak and rms roughness valueshd.

FIG. 4. Tilted-angle cross-sectional SEM images ofb-FeSi2 films grown by
MBE at (a) 650, (b) 750, and(c) 850°C.

FIG. 5. Tilted-angle SEM images of the Si/b-FeSi2/Si structure of(a)
sample A, obtained after annealing at 900°C. The thickness of the Si over-
layer is 300 nm.(b) and (c) are cross-sectional SEM images of samples D
and E, obtained after annealing 900°C, 800°C, respectively. The thickness
of the Si overlayer is 900 nm.
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perature was lowered from 900 to 800ºC. As shown in Fig.
5(c), theb-FeSi2 continuous film was successfully embedded
in a Si matrix in sample E. These results demonstrated that
both the thickness of the Si overlayer and the annealing tem-
perature are key parameters in forming a Si/b-FeSi2/Si DH.

C. Photoluminescence

Figure 6 shows the PL spectra measured at 77 K. PL was
not obtained from the as-grown samples of C and F. This is
probably because the Si overlayer grown at 500ºC contains
numerous defects, and thus photoexcited carriers nonradia-
tively recombine via the defect levels. In contrast, PL was
obtained from the annealed samples. The PL intensity was
observed to increase with increasing thickness of the Si over-
layer. This phenomenon is attributed to the increase in pho-
toexcited carriers generated in the Si overlayer. However, all
spectra obtained for samples A, B, and D, which contain the
aggregatedb-FeSi2 particles, were broader than the spectra
for sample E. Transmission electron microscopy(TEM) ob-
servation revealed that the large-sizedb-FeSi2 particles em-
bedded in Si induced dislocations in the surrounding Si.19

Stressed Si has been reported to introduce dislocations as
well as exhibit characteristicD-line emissions.20–22 The ori-
gin of these broad PL spectra are therefore thought to be the
dislocations. Although we obtained 1.55mm PL from the
Si/b-FeSi2/Si DH as shown in Fig. 6, a simple cw PL mea-
surement alone cannot distinguish the luminescence ofb
-FeSi2 from aD1 line because theD1 line corresponds to the
same emission line forb-FeSi2 at low temperatures. A de-
tailed discussion on the origin and nature of the lumines-
cence fromb-FeSi2 precipitates in Si has been recently re-
ported by Grimaldiet al. and Martinelliet al.23,24 We think
that time-resolved PL measurement, compared to cw PL
measurements, is one of the most powerful methods of in-
vestigating the intrinsic optical properties ofb-FeSi2. This is
because a band-to-band direct transition is generally charac-
terized by a short decay time. There have been only four
reports discussing the decay time of PL line ofb-FeSi2,

25–28

and there is no report on a PL decay time ofb-FeSi2 grown
by RDE and by MBE. Chuet al. reported a fast PL-decay
time of subnanosecond inb-FeSi2 films formed by the
magnetron-sputtering technique.28 However, we cannot rule
out the possibility that the measured PL-decay time was

dominated by nonradiative recombination process because
the evaluation of the temperature dependence of the PL-
decay time was lacking.

Figure 7(a) shows the PL decay curve of the 1.55mm
peak in sample E measured at 8 K. The time resolution of
the system was about 1 ns. This decay curve could not be
fitted to one exponential decay curve. In contrast, the decay
curve obtained from the Si/b-FeSi2 particles/Sis001d struc-
ture grown by MBE was well-described by a single-decay
time.29 In order to estimate the decay time, the decay curve
shown in Fig. 7(a) was fitted using Eq.(1), which is based on
the assumption that it was composed of the sum of two ex-
ponentials, as discussed by Schulleret al.26,27

Istd = I1 expS−
t

t1
D + I2 expS−

t

t2
D . s1d

Here,I1 andI2 are the PL intensities of the components with
decay timest1 and t2, respectively. The curve shifted up-
wards, as seen in Fig. 7. Good agreement was obtained with
the experimental curve whent1 and t2 were 12 ns and
104 ns, respectively. This finding indicates that the 1.55mm
PL originated from two sources. Figure 7(b) shows the ob-
tained PL decay time vs. temperature plot. The short decay
time t1 was found to be almost the same as the decay time
obtained in the Si/b-FeSi2 particles/Sis001d structure (t
=5 ns at 8 K).29 This short decay time is about three orders
of magnitude smaller than that previously reported in
IBS.25,26The short-decay time increased with temperature at
low temperatures and then decreased above a critical tem-
peratures,50 Kd. This decay-time behavior was reported to
be typical for excitons,30,31 indicating that the nonradiative
recombination process was negligible at the lowest tempera-
ture measured. Therefore, this decay was thought to be at-
tributable to the recombination inb-FeSi2. Theb-FeSi2 par-
ticles embedded in Si by MBE at 500°C were found to be

FIG. 6. PL spectra measured at 77 K for samples A–F.

FIG. 7. (a) Time-resolved PL decay curve of the 1.55mm emission at 8 K.
(b) The observed PL decay times vs temperature obtained from the decay
curves.(c) Temperature dependence of the PL intensity ratio of the fastI fast

to the slow componentIslow.
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under tensile strain in thea-axis direction6 and thus we sup-
pose that they have a direct band gap nature. We therefore
speculate that theb-FeSi2 film is also strained as in the case
of the b-FeSi2 particles. Unfortunately, we have no definite
information to discuss strain and thus further study will be
needed. On the other hand, the long-decay timet2 is thought
to be due to theD1 luminescence, because theD1 line is
another possible origin of the 1.55mm PL. In addition, the
long-decay time obtained was comparable with the reported
D1-decay time.32 The origin of the short and long decay
times are therefore thought to be due to the recombination in
b-FeSi2 and the defects in the Si, respectively. Figure 6(c)
shows the temperature dependence of the PL intensity ratio
of the fast I fast to the slow Islow component. The ratio
I fast/ Islow was almost one at the low temperature, but in-
creased as the temperature increased. This increase was
thought to be because theD1 line was more rapidly
quenched, indicating that PL fromb-FeSi2 dominates at
higher temperatures.

IV. SUMMARY

Highly-oriented b-FeSi2 continuous films and Si/b
-FeSi2/Si DH were grown on Sis111d substrates by RDE
and by MBE. Thef110g / f101g-orientedb-FeSi2 continuous
films with smooth surfaces were obtained by MBE at 750°C
using ab-FeSi2 epitaxial template formed by RDE at 650°C.
In order to prevent aggregation ofb-FeSi2 and to form the
Si/b-FeSi2/Si DH, both the thickness of the Si overlayer and
the annealing temperature were important. Strong 1.55mm
PL was obtained from the DH. Time-resolved PL measure-
ments showed that the 1.55mm PL originated from two
sources; recombination inb-FeSi2 and the dislocation-
relatedD1 line emission.
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