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Abstract

We consider the electron capture process in fast non-relativistic ion-atom colli-

sions in which the transfer of two electrons from the atom to the ion is accompanied

by emission of one photon with the mean energy ω
(2)
k about two times larger than

that ω
(1)
k characteristic for the radiative capture of one electron. Such a photon can

appear both due to the uncorrelated capture process, in which two electrons are

transferred to the ion independently via the Coulomb and radiative capture chan-

nels, and due to the correlated two-electron capture, where the electron-electron

interaction plays the crucial role. The uncorrelated capture produces the photon

spectrum which has a maximum at ω
(1)
k and gives the main contribution to the

two-electron capture. The correlated capture mechanism leads to very small cap-

ture cross sections but produces the photon spectrum having a maximum at ∼ ω
(2)
k

which in principle enables to separate this process in experiment.

PACS: 34.70.+e
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1 Theoretical framework

Introduction

Transfer of electrons between colliding ion and atom represents one of the basic processes

studied in atomic physics. In fast ion-atom collisions the most important capture process

having largest cross sections is the one-electron capture.

There are two distinct processes resulting in the capture of one atomic electron by

an incident ion. In the first of them the electron is transferred to the ion due to the

Coulomb interaction in the system of rearranging atomic particles. Such a process is

usually referred to as the Coulomb (or nonradiative) capture.

In the other capture process the coupling of the colliding ion-atom system to the

radiation field is of great importance. In this process, which is called the radiative capture,

the collision ’triggers’ the interaction of the electron with its own electromagnetic field

and the electron capture proceeds with emission of a real photon. Although the coupling

’constant’ for the interaction between the electron and its own field is per se quite weak,

the radiative capture channel may become rather effective because of its resonance nature.

Indeed, the photon emission results in the matching of the minimum momentum transfer

in the collision to the velocity of the ion which, at high collision velocities, drastically

improves the kinematic conditions for the electron transfer and can make the capture

process more likely to proceed with than without emission of a photon.

In the ’ordinary’ radiative capture process only one electron is transferred to the ion

and one photon is emitted. This process has been studied extensively for many years

and a large amount of both experimental and theoretical results for this process covering

collision energies from several MeV/u up to 160 GeV/u is available in the literature (see,

for instance, [1]- [17] and references therein).

Besides the ’ordinary’ radiative capture there also exists a more complicated capture

process in which two electrons are transferred from the atom to the ion in a single collision

event but only one photon is emitted during the process. First efforts to study this process

were undertaken more than ten years ago [18]. Theoretically the radiative capture of two

electrons with emission of a one photon was addressed in [19] and [20] where this process

was regarded as the radiative recombination of two free electrons which, in the initial

channel, move with respect to the ion with equal velocities.

The present article is an attempt to consider the process of the two-electron capture

with emission of one photon as a two-center ion-atom collision phenomenon. Atomic units

are used throughout the paper except where otherwise stated.

1 Theoretical framework

In the consideration of the capture in this article we shall adopt the semi-classical ap-

proach. Within this approach the electrons and the electromagnetic field are described

as quantum objects while the heavy nuclei of the colliding ion and atom are regarded as

classical particles. We shall assume that the non-relativistic electrons are initially bound
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in an internal state ϕi of the atom-target with the nucleus charge Zt. As a result of the

collision between the atom and a nucleus-projectile with a charge Zp the electrons are

captured into an internal state ψf of the ion-projectile and a photon is emitted. Because

of comparatively very large masses of the nuclei, the coupling of the nuclei to the radiation

field is much weaker than that of the electrons and will be neglected.

We shall consider the REC process in the rest frame of the incident nucleus (the

projectile frame) and take the position of the nucleus as the origin of this frame. In

the projectile frame the atomic nucleus is assumed to move along a classical straight-line

trajectory R(t) = b + vt, where b is the impact parameter of the atom with respect to

the origin and v the atomic velocity. The coordinates of the electrons with respect to

the origin are denoted by s1 and s2. The coordinates of the electrons with respect to the

nucleus of the atom are r1 and r2. Note that r1,2 = s1,2 − R.

Within the semi-classical approach, the transition amplitude as a function of the

impact parameter, obtained in the first order approximation in the interaction between

the electrons and the electromagnetic field, is given by

afi(b) = −i

∫ +∞

−∞

dt〈Ψf (t)|ŴEM |Ψi(t)〉. (1)

Here

ŴEM = −
e

2mc

∑

j=1,2

(

p̂j · Âj + Âj · p̂j

)

(2)

is the interaction between the electrons and the electromagnetic field, where p̂j (j = 1, 2)

is the momentum operator of the j-th electron, e is the electron charge, m its mass, c = 137

a.u. is the speed of light and Âj is the vector potential of the quantized electromagnetic

field in the point sj. The potential reads

Â(s) =
∑

k′λ′

√

2πc2

V ω′

k

ek′λ′

(

c+k′λ′ exp(iω′

kt− ik′ · s) + c−k′λ exp(ik′ · s − iω′

kt)
)

, (3)

where c+k′λ′ and c−k′λ′ are the creation and destruction operators, respectively, for a photon

with a momentum k′, polarization ek′λ′ (λ′ = 1, 2) and frequency ω′

k = c | k′ |, and V is

the normalization volume for the field. The sum in Eq.(3) runs over all photon modes.

The initial and final states, | Ψi(t)〉 and |Ψf (t)〉, read

| Ψi(t)〉 = Φi(t) | 0〉

| Ψf (t)〉 = Φf (t) | kλ〉. (4)

Here, Φ
(+)
i (s1, s2, t) and Φ

(−)
f (s1, s2, t) are solutions of the time-dependent Schrödinger

equation

i
∂

∂t
Φ(t) =

(

Ĥ1 + Ĥ2 +
1

s12

)

Φ(t) (5)
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1 Theoretical framework

with appropriate boundary conditions, where

Ĥj(t) =
p̂2

j

2
−
Zt

rj

−
Zp

sj

; j = 1, 2 (6)

are the one-electron Hamiltonians. Further | 0〉 is the vaccuum state of the radiation field

and | kλ〉 is the state of this field containing one photon with a momentum k, polarization

ekλ and frequency ωk.

If the change in the electron momentum in the capture process is much less than

mc = 137 a.u., the contribution to the capture from electron spin-flip transitions is of

minor importance and can be neglected. Within such an approximation projections of

electron spins do not change in the collision and, as a result, the (a)symmetry of the space

part of the two-electron states is conserved in the capture process. Below we shall restrict

our consideration only to the capture to the K-shell. This, in particular, means that the

space part of the electron wavefunction is symmetric in both the initial and final states.

In order to get some basic ideas about the possible mechanisms of the two-electron

capture with emission of one photon, let us assume for the moment that we know exact

solutions Φ
(+)
i (s1, s2, t) and Φ

(−)
f (s1, s2, t) of (5) which describe the motion of the electrons

in the combined field of the colliding nuclei of the atom and ion. These states satisfy the

corresponding ’in’ and ’out’ boundary conditions, Φ
(+)
i (t → −∞) → ϕi exp(−iǫit) and

Φ
(−)
f (t → +∞) → ψf exp(−iεf t), respectively. Since these states are exact, their scalar

product 〈Φ
(−)
f (t) | Φ(+)(t)〉 is time-independent

∂

∂t

(

〈Φ
(−)
f (t) | Φ(+)(t)〉

)

= 0 (7)

and represents the amplitude of the non-radiative (Coulomb) capture.

With these states the transition amplitude for the radiative electron capture, which

is of the first order in the interaction with the radiation field but otherwise exact, reads

afi(b) =
ie

mc

∫ +∞

−∞

dt exp(iωkt) ×

〈Φ
(−)
f (t) | exp(−ik · r1)αkλ · p̂1 + exp(−ik · r2)αkλ · p̂2 | Φ

(+)
i (t)〉, (8)

where αkλ =
√

2πc2

V ωk

ekλ.

If the electron-electron interaction is neglected (and for simplicity the electrons are

assumed to be distinguishable) the two-electron states can be presented as

Φ
(+)
i (t) = φ

(+)
i,1 (r1, t)χ

(+)
i,2 (r2, t)

Φ
(−)
f (t) = φ

(−)
f,1 (r1, t)χ

(−)
f,2 (r2, t), (9)

where φ(±)(t) and χ(±)(t) are exact solutions of the corresponding one-electron Schrödinger

equations with the Hamiltonians Ĥ1 and Ĥ2, respectively, obeying appropriate ’in’ and
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1.1 Correlated two-electron capture

’out’ boundary conditions. For these states one has

∂

∂t

(

〈φ
(−)
f,1 (t) | φ

(+)
i,1 (t)〉

)

= 0

∂

∂t

(

〈χ
(−)
f,2 (t) | χ

(+)
i,2 (t)〉

)

= 0, (10)

which is exactly similar to that of Eq.(7), and their time-independent scalar products,

〈φ
(−)
f,1 | φ

(+)
i,1 〉 and 〈χ

(−)
f,2 | χ

(+)
i,2 〉, are the amplitudes for the non-radiative capture of the first

and second electron.

Inserting the states (9) into the transition amplitude (8) and taking into account (10)

we find that

afi(b) =
ie

mc
×

(

〈φ
(−)
f,1 | φ

(+)
i,1 〉

∫ +∞

−∞

dt exp(iωkt)〈χ
(−)
f,2 (t) | exp(−ik · r2)αkλ · p̂2 | χ

(+)
i,2 (t)〉

+〈χ
(−)
f,2 | χ

(+)
i,2 〉

∫ +∞

−∞

dt exp(iωkt)〈φ
(−)
f,1 (t) | exp(−ik · r1)αkλ · p̂1 | φ

(+)
i,i (t)〉

)

.(11)

The physical meaning of the amplitude (11) is simple: it is the product of the amplitude

for the non-radiative capture of one electron and the amplitude for the radiative capture

of the other electron. The amplitude (11) is not equal to zero which shows that the

capture of two electrons with the emission of one photon is possible without the electron-

electron interaction (or the electron-electron correlation). However, since in the physical

mechanism of the capture, described by the amplitude (11), only one electron is transferred

due to the coupling to the radiation field, the photon spectrum calculated with (11) has

a maximum at a frequency ω
(1)
k ∼ (v2/2 + Z2

p/2) which is typical for the ’ordinary’

(one-electron) radiative capture. As a result, if we calculate the emission of a photon

with a double frequency ω
(2)
k ∼ (v2 + Z2

p) using the uncorrelated amplitude (11), we find

that this frequency lies very far from the maximum of the calculated photon spectrum

and that this spectrum at ωk ∼ ω
(2)
k just monotonously decreases with the frequency

increase. Therefore, any particular structure found in the photon spectrum in the region

of ωk ∼ (v2 + Z2
p) (for instance, a maximum) has to be attributed solely due to effect of

the electron-electron interaction.

Below we shall consider the correlated and uncorrelated capture processes separately.

1.1 Correlated two-electron capture

In what follows it will be more convenient to work with the transition amplitude in the

momentum space, Sfi(Q⊥), which is related to the amplitude (1) by the two-dimensional

Fourier transformation

Sfi(Q⊥) =
1

2π

∫

d2b afi(b) exp(iQ⊥ · b). (12)
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1 Theoretical framework

This transition amplitude will be evaluated in this subsection using three different models

for the radiative capture.

1.1.1 First Born approximation

Within this approximation the initial and final states are taken as

|Ψ
(+)
i (t)〉 = exp

(

−i(ǫi + v2)t
)

exp(iv · (s1 + s2))ϕi(r1, r2)|0〉

|Ψ
(−)
f (t)〉 = exp (−iεf t)ψf (s1, s2)|kλ〉. (13)

Here ϕi(r1, r2) is the initial state of the electrons, which is approximated by an undistorted

eigenstate of the atom, and ψf (s1, s2) is the final state of the electrons which is taken as

an undistorted eigenstate of the ion. The initial and final energies of the electrons are

given by ǫi + v2 and εf , respectively, where ǫi is the electron binding energy in the atom

and εf is that in the ion. Further, |0〉 denotes the electromagnetic field vacuum and |kλ〉

is the photon state with one photon which has momentum k, polarization λ and frequency

ωk = c|k| = ck.

Taking into account Eqs.(1)-(13) and the symmetry of the states ϕi(r1, r2) and ψf (s1, s2)

(ϕi(r1, r2)=ϕi(r2, r1), ψf (s1, s2)=ψf (s2, s1)) the transition amplitude in the momentum

space can be presented in the following form

S1B
fi (Q⊥) =

8π2i

cv

∫

d3pφi(p,q − p)χ∗

f (p + v − k,v + q − p) (αkλ · (p + v)) . (14)

In the above expression φi(p1,p2) (= φi(p2,p1)) and χf (p1,p2) (= χf (p2,p1)) are the

Fourier transforms of the initial and final states ϕi(r1, r2) and ψf (s1, s2), respectively.

Further, q = (Q⊥, qm) is the momentum transfer in the collision where Q⊥ is its transverse

part, Q⊥ · v = 0, and

qm =
ωk + εf − ǫi

v
− v (15)

is the minimum momentum transfer.

1.1.2 Continuum-Distorted-Wave approximation

In order to improve the description of the electrons in the initial and final states, in both

of which the electrons move in the combined long-range Coulomb fields of the nuclei, we

employ the Continuum Distorted Wave (CDW) approximation which has been successfully

used in the theory of fast non-relativistic ion-atom collisions (see e.g. [21], [22]).

Within the CDW approximation the initial and final states are taken as

|Ψ
(+)
i (t)〉 = exp

(

−i(ǫi + v2)t
)

L
(+)
i (s1)L

(+)
i (s2) exp(iv · (s1 + s2))ϕi(r1, r2)|0〉

|Ψ
(−)
f (t)〉 = exp (−iεf t)L

(−)
f (r1)L

(−)
f (r2)ψf (s1, s2)|kλ〉 (16)
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1.1 Correlated two-electron capture

The states (16) differ from those given in (13) by the presence of the distortion factors

L
(+)
i (s1), L

(+)
i (s2), L

(−)
f (r1) and L

(−)
f (r2). The factors L

(+)
i (s1) and L

(+)
i (s2) are introduced

in order to take into account the distortion of the initial bound atomic state by the ionic

nucleus. Similarly, L
(−)
f (r1) and L

(−)
f (r2) account for the distortion of the final state of

the electrons captured to the ion which is caused by the field of the atomic nucleus.

The initial and final distortion factors read

L
(+)
i (s) = exp(πνp) Γ(1 − iνp)F (iνp, 1, ivs− iv · s)

L
(−)
f (r) = exp(πνt) Γ(1 + iνt)F (−iνt, 1,−ivr + iv · r) (17)

In Eqs.(17) νp = Zp/v, νt = Zt/v, Γ is the gamma-function and F (a, b, z) is the degenerate

hypergeometric function (see e.g. [23]).

In expression (16) the distortions for the initial and final electron bound states are

taken symmetrically. However, having in mind that we shall be interested only in collisions

with Zp ≫ Zt, the distortion factors for the final state may be replaced by 1. Then, taking

into account Eqs.(1)-(12) and (16)-(17) and the symmetry of the electronic wavefunctions,

the transition amplitude can be written as

SCDW
fi (Q⊥) =

8π2i

cv

∫

d3pφi(p,q − p)

×

∫

d3s1

∫

d3s2 ψ
∗

f (s1, s2) exp(i(q − p) · s2)ψ
(+)
v (s2)

× exp(−ik · s1)
(

αkλ · p̂1

(

exp(ip · s1)ψ
(+)
v (s1)

))

, (18)

where

ψ(+)
v (s) =

1

(2π)3/2
exp(iv · s)L

(+)
i (s) (19)

is the incoming Coulomb wave modeling the response of the incident electron, bound in

the atom, to the presence of the field of the ion nucleus.

1.1.3 Impulse approximation

The CDW approach of the previous subsection can be modified in the spirit of the so

called impulse approximation (IA). To this end we take the initial and final states as

|Ψ
(+)
i (t)〉 = exp

(

−i(ǫi + v2)t
)

L̂
(+)
i (s1) L̂

(+)
i (s2) (exp(iv · (s1 + s2))ϕi(r1, r2)) |0〉

|Ψ
(−)
f (t)〉 = exp (−iεf t)ψf (s1, s2)|kλ〉. (20)

In (20) the distortion operators L̂
(+)
i (s1) and L̂

(+)
i (s2) are understood to act according to

L̂
(+)
i (s1) L̂

(+)
i (s2) (exp(iv · (s1 + s2))ϕi(r1, r2)) =

∫

d3p1

∫

d3p2 φi(p1,p2) exp(−ip1 · R)

× exp(−ip2 · R)ψ
(+)
v+p1

(s1)ψ
(+)
v+p2

(s2),(21)
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1 Theoretical framework

where ψ
(+)
v+p(s) is given by (19) where the replacement v → v + p should be made.

The main difference between the distorted states (16) and (20) lies in the replacement

of the ’averaged’ momentum mv = v of the electrons with respect to the nucleus of the

ion in the initial channel (this momentum enters (16)) by the ’instant’ momenta of the

electrons v + p1 and v + p2. This replacement is an attempt to take into account, in

the spirit of the impulse approximation, the internal motion of the electrons in the initial

state of the atom.

Using the states Eqs.(20) and the symmetry of the electronic wavefunctions the tran-

sition amplitude in the impulse approximation can be cast into the following form

SIA
fi (Q⊥) =

8π2i

cv

∫

d3pφi(p,q − p)

∫

d3s1

∫

d3s2 ψ
∗

f (s1, s2)

×ψ
(+)
v+q−p(s2) exp(−ik · s1)

(

αkλ · p̂1ψ
(+)
v+p(s1)

)

. (22)

1.2 Uncorrelated two-electron capture

In the impact parameter representation the transition amplitude for the uncorrelated

two-electron capture, auncor
fi (b), can be written as

auncor
fi (b) = aR

fi(b) aC
fi(b), (23)

where aR
fi is the amplitude for the radiative capture of one electron and aC

fi(b) is the

amplitude for the Coulomb capture of the other electron.

By making use of the Fourier transformations

aR
fi(b) =

1

2π

∫

d2Q1 S
R
fi(Q1) exp(−iQ1 · b)

aC
fi(b) =

1

2π

∫

d2Q2 S
C
fi(Q2) exp(−iQ2 · b), (24)

where Q1 and Q2 are the two-dimensional vectors perpendicular to the collision velocity

v, the uncorrelated amplitude in the momentum space, Suncor
fi (Q), is obtained as the

convolution of the corresponding radiative and Coulomb one-electron amplitudes

Suncor
fi (Q) =

1

2π

∫

d2b auncor
fi (b) exp(−iQ1 · b)

=
1

2π

∫

d2Q1 S
R
fi(Q1)S

C
fi(Q − Q1). (25)

The two-dimensional vector Q has the meaning of the transverse part of the total mo-

mentum transfer to the ion in the collision.

In the calculation of the uncorrelated amplitude Suncor
fi (Q) we evaluate the radiative

and Coulomb capture amplitudes, SR
fi(Q) and SC

fi(Q), using the impulse and the CDW

approximations, respectively.
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2 Results and discussion

2.1 Correlated two-electron capture

An attempt to detect in experiment the correlated two-electron capture was made in [18]

using 11.4 MeV/u (v = 21 a.u.) Ar18+ ions colliding with a carbon target. However, no

particular structure in the photon spectrum at ωk ∼ (v2 + Z2
p) was found and, thus, the

correlated process had not been observed. The authors of [18] has only estimated that the

contribution of this frequency region to the two-electron capture was below 5 mb. This

means that the total cross section for the correlated capture does not exceed this value.

Using the three models for the correlated capture, described in the previous section,

we performed calculations for the two-electron capture into the K-shell of 11.4 MeV/u

(v = 21 a.u.) Ar18+ projectile-ions colliding with atomic helium and helium-like ions of

Li, Be, B and C. All the targets were assumed to be initially in their ground states.

Important to note that, with respect to the two-electron capture in collisions with

such a highly charged ions like Ar18+, the above helium-like target ions are essentially

equivalent to the corresponding neutral atoms of Li, Be, B and C. This is because the

main contribution to the two-electron capture in collisions between a highly charged ion

and light targets like Li - C is given by target K-shell electrons. Indeed, taking into

account that the capture is only possible when the initial and final bound states of the

electrons overlap in the space, it is not difficult to see that (in a sharp contrast to the

one-electron capture) the overall probability to capture two electrons from a light target

to a tightly bound state in the projectile depends inversely on the effective volume of an

atomic shell where these electrons were initially localized. Therefore, in order that two

electrons can be captured into such a quite compact state as the ground state of Ar16+,

they have to be localized very compactly in the space also in their initial bound state. For

a given atom the typical effective volume of the L-shell is much larger compared to that in

the K-shell. For instance, employing Slater wavefunctions [24] for the case of carbon we

find that the effective volume of its L shell is roughly by a factor of 40 larger than that of

the K-shell. Therefore, although the presence of the singlet (2s)2 and triplet (2p)2 pairs

in carbon brings (in addition to the (1s)2 pair) seven new options to form a pair of two

electrons with appropriate spin projections, their relative contribution does not exceed 20

per cent (see also the discussion of this subject in [20]).

In our calculations the initial and final electron bound states were approximated by

the following wavefunctions

ϕi(r1, r2) = Ni × (exp(−air1 − bir2) + exp(−air2 − bir1)) × (1 + ci exp(−dir12))

ψf (s1, s2) = Nf × (exp(−afs1 − bfs2) + exp(−afs2 − bfs1)) × (1 + cf exp(−dfs12)) .(26)

The variational parameters ai,f , bi,f , ci,f and di,f were obtained by minimizing the energy

of the corresponding ground states.

In addition to the correlated two-electron capture we performed calculations for the
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2 Results and discussion
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Figure 1: The cross section for the radiative capture in Ar18+ + He(1s2) → Ar17+(1s) + He+(1s) +

hν collisions given as a function of the collision velocity. Dash and dot curves display results of the CDW

and first Born approximations, respectively. Solid circles show results of the impulse approximation.

one-electron radiative capture in collisions between 11.4 MeV/u Ar18+ and He-C targets.

These calculations were done using the first Born, the CDW and the impulse approxima-

tions. The results for collisions with helium are displayed in figure 1. Calculations for

the other targets yielded quite close values of the cross section (per electron) and are not

shown in figure 1. It is seen in the figure that the CDW and the IA lead to almost identical

results for the capture cross section. Besides, in this case the first Born approximation

yields cross section values which differ by no more than a factor of 2 from those given by

the CDW and the IA.

The calculated results for the two-electron capture are shown in figure 2. We see that

these results turn out to be extremely strongly model-dependent. Thus, the relatively

small differences between results of the different models in the case of the one-electron

capture are extremely strongly enhanced in the description of the correlated two-electron

capture which makes the latter a very strict test for theory.

Despite the predictions of all the models differ between themselves by orders of mag-

nitude there nevertheless exists one feature which is common for all of them. Namely, all

the models suggest that the capture cross section for collisions between a highly charged

ion and very light targets increases rather rapidly with the increase in the atomic number

of the target. This is a peculiarity of the two-electron capture process which is not present

in the ’ordinary’ radiative capture. It can be understood if one takes into account that

when increasing the atomic number the target K-shell becomes more compressed which

makes it easier to capture its two electrons into the tightly bound K-shell of a highly

charged projectile. For the process of the one-electron capture such a feature is absent

because one electron, depending on the impact parameter, can be captured by the pro-
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2.1 Correlated two-electron capture
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Figure 2: The section for the correlated capture of two electrons in collisions between 11.4 MeV/u

Ar18+ and different targets given as a function of the atomic number of the target. Solid squares show

results of the impulse approximation. Open triangles and circles display results of the CDW and first

Born approximations, respectively. The solid triangle shows the experimental upper limit for the cross

section.

jectile from any target shell and for the asymmetric (Zp ≫ Zt) collisions all target shells

yield almost the same contribution (per electron) to the total cross section.

The difference between our first Born and CDW models lies solely in the presence

of the distortion factors L
(+)
i (s1) and L

(+)
i (s2) in the latter. While according to the

calculation of the one-electron radiative capture the role of the single distortion factor

is relatively modest, the ’multiplicative’ effect of two such factors turns out to be very

strong, especially for the capture from the lightest targets.

On the general grounds one can expect that the CDW and IA models are superior to

the simple first Born approximation. Therefore, one can conclude that in the case of the

two-electron capture the Born approximation strongly fails and rule out its results.

The main physical difference between the CDW and IA models lies in the following.

According to the CDW model the electron-electron correlation does not have a substantial

impact on the two-electron capture. The CDW total capture cross section is essentially

independent of whether the electron-electron correlation is kept in the wavefunctions (26)

or it is removed by setting there a = b and c = 0. What is even more important is

that the shape of the photon spectrum in the range ωk ∼ v2 + Z2
p , obtained in the CDW

model, is also not sensitive to the electron correlation: this model predicts a maximum

at ωk ∼ v2 +Z2
p no matter whether the electron-electron correlation is taken into account

11



2 Results and discussion

or neglected 1.

In a contrast, according to the IA model, the electron-electron correlation is not very

important only in the initial state while the correlation in the final state becomes really

crucial since without it the IA transition amplitude simply vanishes. When the electron-

electron correlation is taken into account, the IA model predicts for the photon spectrum

a maximum in the range ωk ∼ v2 + Z2
p .

In section II we have inferred that the electron-electron correlation is the only mecha-

nism capable to produce a maximum in the photon spectrum at ωk ∼ v2 +Z2
p . While the

IA model is in accord with this general statement, the latter is completely violated in the

CDW model. Therefore, unlike in the one-electron radiative capture, these two models

become quite different in the case of the correlated two-electron capture. For the latter

process the IA model is clearly more physically appealing and sound and, therefore, its

results are expected to be superior to those of the CDW.

This purely theoretical conclusion is supported by the data for for the two-electron

capture in collisions with carbon. The experimental upper limit for the cross section is

5 mb, the CDW result is 37 mb and the IA model yields 0.23 mb. The CDW result

exceeds the experimental limit almost by order of magnitude and, therefore, should be

ruled out. Thus, from all the three models only the result of the IA does not contradict

to the experiment. This result is, however, much smaller than the upper limit.

We have tested the sensitivity of our IA results to the form of the wavefunctions in

(26) by performing calculations in which the angular correlation parameter d in 26 was

set to zero (i) only in the initial state, (ii) only in the final state and (iii) in both these

states. (Setting d = 0 of course also changes values of the radial correlation parameters

a and b.) The sensitivity of the cross section to the choice of the target state for a fixed

state of the projectile did not exceed 20-25%. At the same time when the target state

was fixed but the state of the projectile was varied the change in the cross section could

be as large as ≈ 100% 2.

Using the IA model we also performed calculations in which the final state in the

ion was taken as the sum of the product of two hydrogen-like 1s-wavefunctions with the

nuclear charge equal to Zp = 18 and the correction of the first order in the electron-

electron interaction. Using this perturbative approach to build the final bound state we

found the cross section values which are pretty close to those obtained with the variational

wavefunctions (26).

Our IA cross section 0.23 mb is also by an order of magnitude smaller than theoretical

results reported previously in [19] (≃ 2 mb) and [20] (≃ 3 mb). In these articles the two-

electron capture in ion-atom collisions was considered as the process of the radiative

recombination of two electrons with the ion.

Two main differences between the IA model and the approach of [19] and [20] are

worth to be mentioned here. Firstly, while in [19]- [20] the two electrons are assumed to

1Note that the first Born model also possesses this undesirable feature.
2The set of the IA data in figure 2 shows the largest values of the cross section.

12



2.2 Uncorrelated two-electron capture

imping the ion with equal velocities, according to the IA model there exist the spread

in the initial electron velocities due to the target Compton profile and this spread in the

case of (the ground state of) carbon is just by a factor of 3-4 smaller than the collision

velocity.

Secondly, according to the approach of [19]- [20] the neglect of the electron-electron

interaction in the final state would not terminate the correlated two-electron capture pro-

vided the electron-electron interaction in the initial state is taken into account. In our IA

model the electron-electron correlation in the initial state was effectively discarded when

the distortion operation was performed in (21). The latter is the common assumption of

the impulse approximation which assumes that the relative motion of the atomic parti-

cles in the initial state is slow enough, so that no substantial exchange of ’information’

between them in this state can occur during the very short effective transition time.

Since it is stated in [19] (see also [25]) that for the radiative recombination of two

equivelocity electrons with 11.4 Ar18+ the electron-electron interaction in the final state is

more important compared to that in the initial state, the second point can hardly account

for the order of magnitude difference in the cross section 3. Therefore, it is the spread in

the electron velocities caused by the Compton profile of the target K-shell, which is likely

to be the main reason for this difference.

2.2 Uncorrelated two-electron capture

The same geometric arguments show that the uncorrelated two-electron capture in colli-

sions between a highly charged ion and a light neutral atom occurs predominantly from

the atomic K-shell. Moreover, the relative role of the capture from the K-shell is now even

more enhanced since one of the electrons is transferred to the ion via the Coulomb capture

channel (for the Coulomb capture occurring in fast collisions the contribution from the

target K-shell is known to dominate even in the case of the one-electron capture).

The cross sections for the uncorrelated two-electron capture in collisions with 11.4

MeV/u Ar18+ are displayed in figure 3. The uncorrelated cross section was calculated

using the amplitude (25) where the initial and final one-electron states were approximated

by hydrogen-like 1s orbitals with the effective nucleus charge equal to Zt−0.3 and Zp−0.3

for the initial and final states, respectively.

Compared to the correlated capture the uncorrelated capture cross section turns out

to be much larger. In addition, the uncorrelated capture cross section increases even faster

with the increase of the target atomic number. Both these points take place due to the

Coulomb capture channel. For the collision systems under consideration this channel is

3Taking into account the Compton profile of the target K-shell electrons, one may conclude that

there is quite a low probability that in the initial channel the (vector) velocities of these electrons are

equal. Both in [19] and [20] the electrons in the initial state were assumed to move with equal velocities.

Since for equivelocity electrons the correlation effect should be strongest, the actual effect of the electron

correlation in the initial state on the capture process was likely to be noticeably overestimated in [19]

and [20].
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Figure 3: The cross section for the uncorrelated capture in collisions of 11.4 MeV/u Ar18+ with

different targets given as a function of the target atomic number.

quite efficient. Besides, its role strongly increases with increasing the effective charge of

the target nucleus seen by the target K-shell electrons.

2.3 Photon energy spectrum

In figure 4 we show results for the energy spectrum of photons emitted in the correlated

and uncorrelated two-electron capture processes occurring in collisions of 11.4 MeV/u

Ar18+ with carbon.

According to our estimates, in collisions of 11.4 MeV/u Ar18+ with carbon the uncor-

related capture mechanism contributes more than 99 per cent to the total two-electron

capture. Besides, because of the relatively broad Compton profile of the ground state

of carbon, for this collision system the two capture mechanisms produce photons which

are not very well separated in the energy spectrum. The figure 4, nevertheless, suggests

that a certain signature of the correlated capture can be observed in the energy spectrum

of the emitted photons in the range ωk ∼ (v2 + Z2
p) where the spectrum exhibits the

bump resulting from the superposition of the contributions given by the correlated and

uncorrelated capture mechanisms

One should also note that in this range of photon energies the total spectrum of

photons emitted in 11.4 MeV/u Ar18+-C collisions is still strongly dominated by the

high-frequency tail of the one-electron radiative capture. Our calculation shows that at

ωk ∼ (v2 +Z2
p) the intensity of the photon spectrum of the one-electron radiative capture

is roughly by 2 orders of magnitude larger compared to the total intensity of the photons

emitted in the two-electron capture.

In the experiment [18] the photon energy spectrum and the final charge state of the

projectile were measured but momenta of the target recoil ions were not detected. Under
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Figure 4: The spectrum of photons emitted in Ar18+ + He(1s2) → Ar17+(1s) + He+(1s) + hν collisions.

Dash curve: the contribution of the correlated two-electron capture. Dot curve: the contribution of the

uncorrelated two-electron capture. Solid curve: the sum of the correlated and uncorrelated contributions.

such conditions one can separate the one- and two-electron capture processes. However,

if the photons emitted in the correlated and uncorrelated two-electron capture have a

substantial energy overlap, there is no way to experimentally distinguish between the

correlated and uncorrelated two-electron capture.

The uncorrelated capture mechanism was not even mentioned in [18]. However, our

results show that it plays the important role in the producing of photons with energies

ωk ∼ (v2 + Z2
p). If this mechanism is taken into account than the total contribution

of the above photon energy range to the two-electron capture cross section turns out to

be substantially larger than just its correlated part (0.23mb). The magnitude of this

contribution strongly depends on what particular energy is chosen as the left boundary

of this photon energy range and, therefore, it is difficult to give a definite value for it.

For instance, if we choose the left boundary at points ωk = 13.4 and 14.3 keV (where the

correlated cross section is 0.25% and 0.16% of its maximum value, respectively), we get

the contribution of about 2.6 and 1.4 mb. These values are already much closer to the

experimental upper limit of 5 mb.

3 Conclusions

We have considered the two-electron capture with emission of a single photon in fast

non-relativistic collisions between a highly charged ion and a light atomic target. One of

the main characteristic features of this radiative process is that it is strongly dominated

by the capture from the target K-shell. Two different mechanisms contribute to the

two-electron–one-photon capture.
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3 Conclusions

In the uncorrelated capture one of the electrons is transferred to the ion via the

interaction with the radiation field and the other electron is captured due to the Coulomb

interaction with the ion. This capture mechanism produces the photon spectrum which is

rather similar to that emitted in the one-electron radiative capture and has a maximum

at a frequency ω
(1)
k ≈ (v2 +Z2

p)/2. The uncorrelated capture dominates in the total cross

section for the two-electron–one-photon capture. Since the amplitude for the uncorrelated

capture process is the product of the one-electron transition amplitudes, which can be

evaluated with good accuracy, the theoretical description of the uncorrelated capture is

rather simple.

In the correlated capture mechanism the electron-electron interaction plays the crucial

role. This mechanism results in very small capture cross sections and produces the photon

spectrum having a maximum at a frequency ω
(2)
k ≈ (v2 + Z2

p) ≈ 2ω
(1)
k .

In order to treat the correlated capture we used three different models: the first Born

approximation, the Continuum-Distorted-Wave and the Impulse Approximation models.

The results turned out to be extremely model-sensitive with the different models yielding

cross section values which differ by orders of magnitude. From these models, only the

IA was found to be consistent with the general statement that no particular structure

can appear in the photon spectrum at ωk ∼ ω
(2)
k if the electron-electron interaction were

’switched off’. Consequently, it is not very surprising that only the result of the IA model

does not contradict to the existing experimental data for the upper limit of that part of the

two-electron–one-photon capture cross section which is given by the range of ωk ∼ ω
(2)
k .

Our IA result is much less than the theoretical estimates of the cross section of the

correlated capture obtained previously in which this process was regarded as the radiative

recombination of two free electrons and an ion. The probable reason for this difference

is the neglect of the target Compton profile in the previous calculations. Our IA result

is also about twenty time smaller than the experimental upper limit suggesting that it

might be even more difficult to observe the correlated two-electron capture process in

experiment than what had been thought before.

Under collision parameters considered in this article the uncorrelated capture mech-

anism turned out to be by far the dominant one in the total cross section for the two-

electron–one-photon capture. Yet, the uncorrelated capture has a comparatively much

stronger dependence on the target atomic number. Therefore, taking a target with the

atomic number as low as possible, one can reach the collision regime where the relative

role of the uncorrelated mechanism in the total two-electron capture would not be so

dominant. Besides, when the target atomic number decreases the spectra of photons,

emitted in the uncorrelated and correlated capture processes, narrow. This reduces their

energy overlap favoring the separation of the correlated and uncorrelated capture. Note,

however, that for collisions with targets having very low atomic numbers the total cross

section for the two-electron capture becomes extremely small which makes it very uneasy

to detect the process in experiment.

Taking into account the difficulties in the theoretical description of the correlated
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capture, very small values of the corresponding cross sections and the possible overlap

between the photon spectra produced via the correlated and uncorrelated capture mech-

anisms, one can say that the correlated part of the two-electron radiative capture process

represents the real challenge both for theory and experiment which makes this process

especially attractive for explorations.
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