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1. Introduction

In this paper, we shall discuss a similarity between a Lagrangian branched
immersion from a Riemann surface to complex Euclidean plane and a
complex holomorphic function on a Riemann surface by the quater-
nionic theory of surfaces.

The quaternionic theory of surfaces in four-dimensional Euclidean
space R* is developed by Pedit and Pinkall [8], Burstall, Ferus, Leschke,
Pedit, and Pinkall [1], and Ferus, Leschke, Pedit, and Pinkall [2]. This
theory presents many new points of view on conformal geometry of
surfaces in R?, where R? is identified with the set H of quaternions.

In this theory, a right normal vector is defined for a conformal im-
mersion from a Riemann surface M to H. A right normal vector is a
quaternionic-valued function on M whose square is —1. It coincides
with a part of the generalized Gauss map of the conformal immersion
by taking a suitable decomposition of the Grassmanian manifold of two-
planes in H into a direct product of two spheres of dimension two. The
tangent space of the immersion is preserved by the right multiplication
of the right normal vector. Then a vector bundle endomorphism of the
trivial (right) quaternionic line bundle H over M is defined by the right
normal vector. This endomorphism is called a complex structure of H.
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For a smooth mapping from M to H, a right normal vector is defined
uniquely on the set where the mapping is a conformal immersion. If the
domain of a right normal vector can be extended to every point where
the differential of the smooth mapping is not injective, then the smooth
mapping is a conformal branched immersion by Lemma 1 in Section 2.

A complex structure of H plays a similar role to the complex struc-
ture of the space C of complex numbers. By a complex structure of
H, a quaternionic holomorphic structure of H is defined in a similar
way to define the complex holomorphic structure of C. A quaternionic
holomorphic structure is a zero-order perturbation of a complex holo-
morphic structure of a complex Euclidean plane C? identified with H
(see p. 520 in [2]). This quaternionic holomorphic structure is called
a Fuclidean holomorphic structure in Peters [9]. A smooth section of
H in the kernel of a quaternionic holomorphic structure is called a
quaternionic holomorphic section. When we consider a smooth section
of H as a smooth mapping from M to H, a non-constant quaternionic
holomorphic section is a conformal branched immersion with a right
normal vector. Hence a conformal branched immersion is a natural
generalization of a complex holomorphic function on M. In the same
way as a quotient of two complex holomorphic sections of a complex line
trivial bundle is a complex holomorphic function except at the zeros
of its denominator, a quotient of two linearly independent quaternionic
holomorphic sections of H with a complex structure is a conformal
branched immersion with a right normal vector except at the zeros of
its denominator by Example on p. 395 in [8].

We will look for a set of conformal branched immersions with a right
normal vector satisfying a geometric property such that it is similar to
a set of complex holomorphic function. Then it is expected that a set of
Lagrangian branched immersion from M to complex Euclidean plane
C? with a right normal vector is a candidate, where C? is identified
with H. Indeed, we shall characterize a Lagrangian immersion by its
right normal vector in Section 3. We define a complex structure by
a right normal vector of a Lagrangian branched immersion. Then ev-
ery quaternionic conjugate of non-constant quaternionic holomorphic
section of H is a Lagrangian branched immersion with the same right
normal vector by the discussion in Section 2.

We will consider the problem that whether the quotient of two La-
grangian branched immersions is a Lagrangian branched immersion.
We should take a quotient of two linearly independent quaternionic
holomorphic sections of H with a complex structure defined by a right
normal vector of a Lagrangian branched immersion. Then their quotient
is not necessarily a Lagrangian branched immersion. Hence it is an
interesting problem to classify the pairs of two quaternionic holomor-
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phic sections of H such that their quotient is a Lagrangian branched
immersion.

We shall devote this paper to classify quaternionic holomorphic sec-
tions of H vanishing nowhere which are the denominators of Lagrangian
branched immersions from M to C? with their right normal vector. This
paper is organized as follows.

In Section 2, we shall review the quaternionic theory of conformal
branched immersions from M to H and rewrite Example on p. 395 in
[8] to make it convenient for our use.

In Section 3, we shall characterize a Lagrangian immersion and a
Hamiltonian-minimal Lagrangian immersion in terms of the quater-
nionic formulation. The notions of Hamiltonian-minimality is intro-
duced by Oh [7].

In Section 4, we shall assume that a quaternionic holomorphic line
bundle is associated with a Lagrangian branched immersion with a
right normal vector. We shall classify the quaternionic holomorphic
sections vanishing nowhere which are the denominators of Lagrangian
branched immersions. In the case where M is closed, the image of M
by a denominator is a torus (Theorem 1). In the case where M is
open, a complex-valued function is defined locally as a function of a
complex holomorphic function on M and Lagrangian angle mappings
of a Lagrangian branched immersion and its denominator so that it is
a solution to a differential equation called the Carleman-Bers-Vekua
system in Rodin [10] (cf. Vekua [12]). A denominator is a mapping of
this complex holomorphic function on M and these Lagrangian angle
mappings (Theorem 2).

In Section 5, we discuss the case where a Lagrangian branched
immersion or its denominator is a Hamiltonian-minimal Lagrangian
branched immersion. If both of them are Hamiltonian-minimal La-
grangian branched immersions, then the image of M by a denominator
is a plane or a torus (Theorem 3). If one is a Hamiltonian-minimal
Lagrangian branched immersion and another is not a Hamiltonian-
minimal Lagrangian branched immersion, then we have a formula for
the denominator as a mapping of a holomorphic function (Theorem 4
and Theorem 5).

In Section 6, we construct a numerator and obtain a Lagrangian
branched immersion by Theorem 4 and Theorem 5.
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2. Quaternionic holomorphic line bundles

We shall recall the quaternionic theory of surfaces by Pedit and Pinkall
[8], Burstall, Ferus, Leschke, Pedit, and Pinkall [1], and Ferus, Leschke,
Pedit, and Pinkall [2].

We denote by R the set of real numbers and by H the set of quater-
nions {ag + a1i + azj + ask | ap, a1, a2,as € R}, where i, j, and k are
elements of H such that

ij=—ji=k, jk=—kj=1, ki=—ik=7.

For a quaternion ag + a1t + a2j + ask such that ag, a1, as, and a3 € R,
the quaternionic conjugate a of a, the real part Rea of a, and the
imaginary part Ima of a are defined by & = ag — a1i — asj — ask,
Rea = ag, and Ima = a1i + asj + ask respectively. We denote by
Im H the set of imaginary parts of quaternions. The set of quaternions
H is considered as the set of quadruplets of real numbers R* by the
identification of a quaternion ag + a1? + aoj + azk such that ag, a1, as,
and a3 € R with a quadruplet (ag, a1, az, as) of real numbers. Let ¢ be
a quaternionic sesquilinear product on H by ¢(x,y) = Zy for every pair
(z,y) of quaternions. We define real-valued quadratic forms wy, wy, wa,
and w3 by ¢(z,y) = wo(x,y) + wi(x,y)i + wa(z,y)j + ws(x,y)k. Then
the quadratic form wy is the standard Euclidean inner product of R%.
Let (H, wp) be four-dimensional Euclidean space and |a| = (wo(a,a))/?
Fuclidean norm of a € H.

The set {ag + a1i|ap,a; € R} is considered as the set C of complex
numbers. Then the set of quaternions H is considered as the set of pairs
of complex numbers C? by the identification of a quaternion ag + a1i +
azj + ask such that ag, a1, as, and ag € R with a pair of complex
numbers (ap + a1i,a2 — agi). Then the quadratic w; is the standard
symplectic form of C? and wg + wii is the standard Hermitian inner
product on C2.

Euclidean inner product wg induces the standard Riemannian metric
of R*. We use the same notation wy for this Riemannian metric. Simi-
larly, we use the same notation wy for the standard symplectic structure
of C? induced by the symplectic form w; on C2. Then wg + wii is the
standard Hermitian metric of C?.

Let (M,g) be a two-dimensional oriented connected Riemannian
manifold M with a Riemannian metric g, T'M its tangent bundle, and
T*M its cotangent bundle. Then there exists a complex structure J7™
of (M, g) such that the ordered pair (e, J7™e) is a positive orthonormal
basis of T}, M for every point p in M and every unit vector e in the fiber
T,M of TM at p.
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For a smooth vector bundle V' over M, we denote by I'(V') the set
of smooth sections of V' and Q"(V) the set of smooth differential n-
forms on M with coefficients in V' (n = 0,1,2). We define a mapping
#QLV) = QY V) by xw =wo JIM for every w € Q1 (V).

Let H be the trivial (right) quaternionic line bundle H over M. A
smooth mapping ¢: M — H is considered as a smooth section ¢ of H.
Let L be a pair (H, J L) with a quaternionic vector bundle endomor-
phism J of H. The endomorphism J” is called a complez structure of
L in [1].

Let T M ®g H be the tensor bundle of T*M and H over R and (¢ an
element of T*M ®g H such that ¢ € T*M and ¢ € H. A quaternionic-
valued one-form on M is a section of T*M @ H. We define a vector
bundle endomorphism J of T*M ®g H by the equation J(¢ = (J ¢.

A quaternionic vector bundle KH is defined by
KH={weT*MerH| xw=—Juw}.

We define a quaternionic homomorphism D:T'(H) — I'(KH) by

D(9) = 1{(d6) +J + (d0)}.
for every smooth mapping ¢ from M to H. Following Peters [9], we call
the quaternionic homomorphism D the Fuclidean quaternionic holo-
morphic structure of L and the pair L = (H, JY) with its Euclidean
quaternionic holomorphic structure D a Fuclidean quaternionic holo-
morphic line bundle. A smooth section ¢ of L is called a quaternionic
holomorphic section of L if D(¢) = 0. We see that a constant section
is a quaternionic holomorphic section.

A smooth mapping f:(M,g9) — (H,wp) is called a conformal im-
mersion on M if f is an immersion and there exists a pair (N f,RT) of
smooth mappings from M to S?(1) C Im H such that

(NT)? = (RT)? = -1,
«(df) = N/ (df) = (df)(—R7). (2.1)

The smooth mappings N/ and R/ defined by the equation (2.1) are
called the left normal vector of f and the right normal vector of f
respectively (Definition 2 in [1]).

A point p € M is called a branch point of a smooth mapping
f:(M,g) — (H,wp) if the differential mapping (df), of f at p is the
zero mapping. A non-constant smooth mapping f: (M, g) — (H,wp) is
called a conformal branched immersion if every point p € M such that
(df)p is not injective is a branch point and f is a conformal immersion
on M except branch points.
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A right normal vector is not defined by the equation (2.1) at a point
p € M such that (df), is not injective.

LEMMA 1. Let f:(M,g) — (H,wp) be a non-constant smooth map-
ping. If there exists a mapping RY: M — S?(1) € ImH such that

(R)? = -1, «(df) = (df)(—R7),

then f is a conformal branched immersion.

Proof. It is indicated on p. 8 in [1] that if *(df) = (df)(—R/), then
f is conformal at every point p € M such that (df), is injective. Let
p € M be a point such that (df), is not injective and (u1,us2) is an
isothermal coordinate around p such that J™™(9/0u;) = 9/0us. If
#(df) = (df)(=R), then

L) = 5 ()R ().

Since (df), is not injective and R/ is a mapping from M to S2(1) C
Im H, we have

of ., _of |
87@]? _Tul(p)_o'

Hence (df), = 0. O

We call the mapping f with a smooth mapping R': M — S%(1) C ImH
such that *(df) = (df)(—R’) on M a conformal branched immersion
with a right normal vector RY.

Let f:(M,g9) — (H,wp) be a conformal branched immersion with
its right normal vector Rf. We define a complex structure J/ of H
by Jf1 = Rf. Let DI be thAe Euclidean quaternionic holomorphic
structure of L/ = (H, J/) and ¢ a smooth section of L. Since D/ (¢) =
{(d) + R' % (dg)}/2, a section ¢ of L’ is a non-constant quaternionic
holomorphic section if and only if ¢ is a conformal branched immersion
with its right normal vector R/. Hence the section f is a non-constant
quaternionic holomorphic section of L7.

Let L be a Euclidean quaternionic holomorphic line bundle over
M with its complex structure .J L defined by JE1 = R for a smooth
mapping R: M — S%(1) € ImH. The following Lemma 2 is a variant
of Example on p. 395 in [§].

LEMMA 2. We assume that U is a non-zero quaternionic holomorphic
section of L and fi is a smooth section vanishing nowhere of L. A

smooth mapping X: (M, g) — (H,wp) defined by the equation v = g;\ is
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a conformal branched immersion with its right normal vector pRu ™"

if and only if [i is linearly independent of U and it is a quaternionic
holomorphic section of L. A

Proof. Evaluating the both side of the equation 2 = fjA by the
Euclidean quaternionic holomorphic structure D of L, we have

0= D@A+ Zf(dh) + i~ R (dX)}.

Hence Lemma 2 holds. O

3. Lagrangian surfaces

We shall describe a conformal Lagrangian immersion from (M, g) to
(C2%,wp) in terms of quaternions.

We identify H with C? by the identification of a quaternion ag +
a1i+ asj + ask such that ag, a1, as, and az € R with a pair of complex
numbers (ag+a1i, aa—asi). A conformal immersion f: (M, g) — (H, wy)
is called a Lagrangian immersion if

wo ({(df)p(X)}i, (df)p(Y)) = 0, (3.1)

for every point p € M and every pair (X,Y) of vectors X and Y €
T,M. A conformal branched immersion f: (M, g) — (H,wp) is called a
Lagrangian branched immersion if f is a Lagrangian immersion on M
except at branch points.

We shall rephrase this definition in terms of quaternions. Let Z be
the set of integers and R/27Z the quotient space of R by 27Z =
{2mn|n € Z}. Let f:(M,g9) — (H,wp) be a conformal immersion.
We make another identification of C? with H by the identification of
(20,21) € C? with 7(20 + jz1)7~ !, where 7 = i + j. Under this iden-
tification, Hélein and Romon [5] showed that a conformal immersion
f =7fr!is a Lagrangian immersion if and only if (df) = r(dz)e%/?
for a local complex holomorphic coordinate z of M, a quaternionic-
valued function r, and a smooth mapping 6: M — R/277Z. The mapping
0 is called the Lagrangian angle mapping of f. If the Lagrangian angle
mapping is constant, then f(M) is a Lagrangian plane. Let h be the
Riemannian metric of R/277Z induced by the standard Riemannian
metric of R. If the map 6: (M, g) — (R/2xZ,h) is harmonic, then f
is called Hamiltonian-minimal Lagrangian immersion (see Hélein and
Romon [6]). We see that

+(df) = r(dz)ie/? = (df)e09/%ie%/? = (df)ie®.
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Coming back to the identification of C? with H by the identification
(20,21) € C? with 2o + jz; € H, we have

w(df) = (df)r e = (df)je’.

Hence the right normal vector of f is —je?". We define a mapping
B: M — R/2rZ by 8 = 6 + 7. Then the right normal vector of f is je®
and f is Hamiltonian-minimal if and only if § is harmonic.

4. Lagrangian line bundles

We shall classify the denominators of Lagrangian branched immersions
from (M, g) to (H,wy).

Let L be a Euclidean quaternionic holomorphic line bundle L over a
Riemann surface M with complex structure JZ. We call L a Lagrangian
line bundle if J* is defined by J*1 = je® with a smooth mapping
B: M — R/2rwZ. A non-constant quaternionic holomorphic section of
a Lagrangian line bundle with its complex structure defined by J*1 =
jeP is identified with a Lagrangian branched immersion with a right

normal vector je.

LEMMA 3. We assume that U is a non-zero quaternionic holomorphic
section of a Lagrangian line bundle L with its complex structure J*
defined by J*1 = jeP' and that ji is a nowhere-vanishing smooth section
of L. A mapping A\: (M, g) — (H, wy) defined by the equation v = AN is
a Lagrangian branched immersion with its right normal vector je* if
and only if fi is linearly independent of U and

o= Moe(ﬁfv)i/Q + jule(ﬁ+7)i/27 (4.1)
po(—* (dB) 4 #(dv)) = pa((df) + (dv)), (4.2)

where po and p1 are real-valued functions on M such that pg — pii is
a complex holomorphic function vanishing nowhere on M.

Proof. It is an immediate consequence of Lemma 2 that a mapping
\ is a Lagrangian branched immersion with its right normal vector je?!
if and only if /i is linearly independent of U, fi is a nowhere-vanishing,
quaternionic holomorphic section of L satisfying pje® =1 = je’*. We
rewrite the last equation.

Let Fy and F; be complex-valued functions on M such that yu = Fy+
jFi. Then the equation pje® u~! = je¥' is equivalent to the equation

—Fleﬁi _|_jF'0€ﬂi = —Fle_’yi —i—jF()e’Yi.
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Then the mapping p: M — H given by the equation (4.1) is the solution
to this equation.

A section i of L defined by (4.1) is a quaternionic holomorphic
section if and only if

B2 () e ((AB) + #(d)

4 {5 s () = Jpael® 2 (x(d) - w(d) |
= D2 ) 4 il (d) ~ ()

4 {F )+ e I2(a) + (a) |

This equation is equivalent to the system of equations (4.2) and
#(dpo) = (dpa).

Since this equation is equivalent to the equation
(Ao — puad)) + i * (d(pzo — i) = 0,

po — p1? is a complex holomorphic function. Since the section ji van-
ishes nowhere on M by the assumption, the function pg — w14 vanishes
nowhere on M. O

We shall classify the branch points of a smooth mapping p defined
by (4.1) and (4.2) with real-valued functions po and g1 on M such that
o — M1t is a nowhere vanishing complex holomorphic function. Since

(dp) = (dpo)e= 1%+ %uoie(ﬁ_”)i/ 2((dB) = (dv))
+ 5 e e () + (@)}

a point p € M is a branch point of u if and only if

(dNO)p =0, (d/“)p =0,
to(p)((dB)p — (d7)p) =0, p1(p)((dB)p + (d7)p) = 0.

Hence a point p € M is a branch point of u if and only if a point p is
a branch point of pg — pu1¢ and

to(p) = 0 and (df)p + (dv), =0, (4.3)
p1(p) = 0 and (dB), — (dv), =0, (4.4)
(dB)p = (dv)p = 0. (4.5)
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We shall classify the denominators of Lagrangian branched immer-
sions with a right normal vector. Let © be a non-zero quaternionic
holomorphic section of a Lagrangian line bundle L with its complex
structure JZ defined by J L1 = ij and fi a nowhere-vanishing smooth
section of L.

THEOREM 1. We assume that M is a closed Riemann surface. The
mapping \: (M,g) — (H,wp) defined by the equation 0 = [\ is a
Lagrangian branched immersion with its right normal vector je* if and
only if ji is linearly independent of U and p = poe B2 4 g1, e(B+7)i/2
with real constants uo and py such that (uo)? + (u1)? # 0 and that
U = po(B—7)+p1(B+7)i is a complex holomorphic mapping from M
to the torus C/A with A = {2wpon + 2rpami|n,m € Z}.

Proof. By Lemma 3, the mapping A is a Lagrangian branched im-
mersion with its right normal vector je?* if and only if f is linearly
independent of 7 and p is defined by (4.1) and (4.2) with real-valued
function pg and w1 on M such that pg — @14 is a complex holomorphic
function vanishing nowhere on M. Hence pug and pp are real con-
stants. Since p vanishes nowhere, (1) + (u1)? # 0. Then the mapping
U = po(B — ) + p1(B + )i is a non-constant complex holomorphic
mapping from M to C/A. Indeed, the equation (4.2) is equivalent to
the equation

#(d{po(=B+7)}) = ({1 (B+)})-

This is equivalent to W being a complex holomorphic mapping from M
to C/A. O

We see that the Lagrangian branched immersions p, v, and A in the
above theorem are Hamiltonian-minimal and that p(M) is a torus. If
¥ is non-constant, then the total branching order of ¥ is two times the
genus of M by the Riemann-Hurwitz formula on p.140 in [3].

Next, we discuss the case where M is an open Riemann surface. Let
0 be a mapping from the set of smooth complex-valued functions on
M to the set of smooth complex-valued one-forms of (0, 1)-type on M
defined by 0 = 271(d 4 i * d). Then a differential equation

O = pa + ¥b,

with complex-valued one-forms a and b of (0,1)-type for a complex-
valued function ¢ on M is called the Carleman-Bers-Vekua system and
a solution v to the equation is called a generalized analytic function in
Rodin [12] (cf, Vekua [10]).

On a sufficiently small open set of M, we may consider the mapping
U = uo(B — ) + pu1(8 + )i as a complex-valued function.
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THEOREM 2. We assume that M is an open Riemann surface. The
mapping X: (M,g) — (H,wp) defined by the equation 0 = [\ is a
Lagrangian branched immersion with its right normal vector je " if and
only if ji is linearly independent of U and p = poe B2 4 g1, e(B+7)i/2
with real-valued functions pg and py on M such that

— the function po — p1i is a complex holomorphic function on M
vanishing nowhere,

— the equation (dB) + (dy) = 0 holds on {p € M | po(p) = 0},
— the equation (d3) — (dv) = 0 holds on {p € M | p1(p) = 0},
and that

— a mapping V¥ = puo(B — ) + p1(B + )i is a generalized analytic
function for the Carleman-Bers-Vekua system

- 3! _ 9l o
50 — ¢2 Og(QMONI) L g2 og(goul ).

(4.6)

on every sufficiently small open set of {p € M | po(p)u1(p) # 0}.
Proof. On the set {p € M | uo(p) = 0}, the equation (4.2) is equiva-

(
lent to the equation p1((d3) + (d7)) = 0. Since (po)? + (1)? # 0, the
equation (4.2) is equivalent to the equation (d3) + (dvy) = 0. Similarly,
the equation (4.2) is equivalent to (df) — (dy) =0on {p € M | u1(p) =
0}.

On a sufficiently small open set of a point p with po(p)u1(p) # 0, we
define local real-valued functions n and ¢ by n =08 — vy and £ = 3 + 7.
Then ¥ = pon + p1&i; and the equation (4.2) is equivalent to the
equation g * (dn) = —pq(d). Since

(d(pon)) = n(duo) + po(dn), (d(p1€)) = &(dpr) + pa(dé),

the equation (4.2) is equivalent to the equation

*(d(pom)) — pon * (dlog po) = —(d(p€)) + paé(dlog ).
Then the equation (4.2) is equivalent to
200 = (dW) + i (dP)
= (d(pon)) + i(d(u18)) + i * (d(pon)) — #(d(p1§))
= pon(dlog o) — p1& + (dlog p)

+i{pon * (dlog o) + p1&(dlog pur)}
= pon((dlogpo) + i * (dlog o))
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+u1§(— * (dlog p1) +i(dlog p1))
= (U + B)(@log o) — (U — T)(~Dlog )
= W(dlog po + dlog p1) + ¥ (dlog po — dlog 1)
= U{dlog(popm)} + W{dlog (ko )}-

Then Theorem 2 follows from Lemma 3. O

5. Formulae for denominators

We shall discuss the case where A or its denominator p is a Hamiltonian-
minimal Lagrangian branched immersion with a right normal vector.
Throughout this section, we assume that M is an open Riemann sur-
face. We call a Lagrangian line bundle L with its Lagrangian angle
6 a Hamiltonian-minimal Lagrangian line bundle if 8 is a harmonic
mapping.

We shall rewrite the equation (4.2) in another way. Let po and p1 be
real-valued functions on M such that pg— 1 is a complex holomorphic
function vanishing nowhere on M and let M’ be the set of branch
points of pug — p1i. Then the functions pg and p; are constant if and
only if M’ = M and not constant if and only if every element of M’ is
an isolated point. We assume that pg and p; are not constant. Then
(1o, p1) is an isothermal coordinate on M \ M’. We define real-valued
functions By, , Vus Buppy a0d Yppp, o0 M\ M’ by the equations

(dB) = Buo(duo) + By, (dp),

(A7) = Yo (dro) + pur (dpaa),

(d/BNk) = ﬁﬂkﬂo(duo) +ﬂﬂkﬂl (dp),

(Vi) = Voo (dto) + Yy (dpen), (k1 =0,1).

Then Buou; = Buipo a0 Yuopr = Vuipo- The equation (4.2) on M \ M’
is equivalent to the equation

(i S ) Gon) = G i) (52), o
on M\ M.

LEMMA 4. If the equation (5.1) holds on M\ M', then the system of
equations

291+ 11 (Voo + Verpr) = —1#1(Buopuo + Buipa)s (5.2)
27#0 + NO(’VMOMO + 7#1#1) = Ho(ﬁuouo + ﬂuwl), (5'3)
holds on M \ M’'.
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Proof. By the differentiation of the both side of the equation (5.1),
we have a system of equations

(1) ()2 %) )
L0\ v o —H1 ) \ Vo
() (2 ) ()
10 ﬁul Ho M1 ﬂ/ﬂuo .
(1 0 ) ('Yuo)_i_ (:ul Ho ) (7#0#1)
0 —1 Y1 Mo —H1 Yu1pa
(@) G ()
0 1 ﬁ,ul Ho M1 ﬁuuﬂ .
This system of equations is equivalent to the system of equations
Vo T H1Vuopo + HOVprpo = 6;11 - Mlﬁuouo + MOﬂmuo’
Vo T 10 Vuopo — H1Vprpo = Buo + H0Buopo + 1B o

Vuo T H1Ypuopr + HOVprpr = _BMO - ,U«lfguoltl + MO/BHL“I’
Y T HOVpopr — A Vpipn = /3111 + HO/BNO/H + :ulﬁ,ullu'

Lemma 4 follows from this system of equations. a

We shall discuss the case where p, v and A are Hamiltonian-minimal
Lagrangian branched immersions. Let © be a non-zero quaternionic
holomorphic section of a Hamiltonian-minimal Lagrangian line bun-
dle L with its complex structure J¥ defined by J*1 = je? and i a
nowhere-vanishing quaternionic holomorphic sections of L.

THEOREM 3. The mapping X\: (M, g) — (H,wq) defined by the equa-
tion U = [1,5\ 18 o Hamiltonian-minimal Lagrangian branched immersion
with its right normal vector je* if and only if i 1s linearly independent
of U and p = poe B2 1 51 eBHN2 with real-valued functions g
and py on M such that

— the functions po and 1 are constants with (pg)? + (u1)? # 0 and
U = uo(B8 —7) + p1(B + )i is a complex holomorphic mapping
from M to C/A with A = {2mwpuon + 2rpuymi|n,m € Z},

or

— the function ug — p1t is a non-constant complex holomorphic
function vanishing nowhere and B and ~y are constant mappings.

Proof. Let A be a Hamiltonian-minimal Lagrangian branched im-

mersion. If py and w1 are constants, then ¥ is a complex holomorphic
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mapping from M to C/A by (4.2) in the same way as the proof of Theo-
rem 1. We assume that pg— 1 is a non-constant complex holomorphic
function. By Lemma 4, we have

2’}%1 =0, 27#0 =0,

on M\ M’ since (3 and ~ are harmonic mappings. Hence ~ is a constant
mapping on M \ M’. Then —pg * (d3) = p1(dB) by the equation (4.2)
on M\ M'. Since g(dB) = p1 * (d3), we have {(uo)? + (11)?}(dB) =0
on M \ M'. Hence (df) = 0 and [ is a constant mapping on M \ M.
Since every element of M’ is an isolated point and (3 and v are smooth
on M, both [ and ~ are constant mappings on M.

It is easy to see that the converse holds, O

We shall discuss the case where p and v are Hamiltonian-minimal
Lagrangian branched immersion and )\ is a Lagrangian branched im-
mersion with its right normal vector je?? which is not Hamiltonian-
minimal. Let © be a non-zero quaternionic holomorphic section of a
Hamiltonian-minimal Lagrangian line bundle L with its complex struc-
ture J= defined by J1 = je and i a nowhere-vanishing quaternionic
holomorphic sections of L. N

THEOREM 4. The mapping X\: (M, g) — (H,wo) defined by the equa-
tion U = ﬂj\ is a Lagrangian branched immersion with its right normal
vector je* which is not Hamiltonian-minimal if and only if fi is linearly
independent of U and p = poe B2 4 11 eBTNY2 with real-valued
functions pg and puy on M such that po— @1t is a non-constant complex
holomorphic function vanishing nowhere on M and mappings B and ~y
are given by the equations

2 _ 2
g —
B0, p1) = AW—FBa (5.4)
A
, = + C, 5.5
(o, p11) Ng‘FH% (5.5)

on M for an arbitrary non-zero real number A and arbitrary real num-
bers B and C.

Proof. We assume that A is a Lagrangian branched immersion with
its right normal vector je?* which is not a Hamiltonian-minimal La-
grangian branched immersion. If yg and g are constant functions, then
U = uo(B — ) + p1(8 + )t is a complex holomorphic mapping in the
same way as the proof of Theorem 1. Then ( and ~ are harmonic
mappings. Since < is not a harmonic mapping by the assumption, the
functions pg and w1 are not constant functions.
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Since [ is a harmonic mapping, we have

29 + /ﬂ(%muo + 'Ymm) = 0, (5-6)
2Yu0 + 110 (Voo + V) = 0, (5.7)

on M\ M’ by Lemma 4. Then p17,, — oy, = 0. Hence (o, 1) =
(p3+u?) on M\ M’ for a smooth real-valued function ¢ on R\ {u2(p)+

pi(p)[p € M\ M'}.
Since

Yuopo (B0, 1) = 4450”15 + ) + 20/ (1§ + 417),

Vi (Hos 1) = 4pie" (g + 413) + 268 (1§ + 117),
the equations (5.6) and (5.7) is equivalent to the equation

t¢"(t) + 24/ (t) =0, t = pd + .
The solution to this equation is ¢/(t) = —At~2 for a real number A.
Since 7y is not a harmonic mapping, it is not a constant mapping. Then
we obtain the equation (5.5) with a non-zero real number A and a real
number C' on M \ M’. Since every element of M’ is an isolated point

and ~y is smooth on M, the equation (5.5) holds on M.
Since

2Ap0
’Yuo(/tmm) = _W’

241
Vs (p0, 1) = G2+ 2

we have
-1 _
(ﬁuo ) _ (—m Mo) (m 10 ) <—2AM0(M§+M§) z>
By to 1 po —p1 ) \ —2Ap (g + pi)”
—24 ( I ; 3uou§ )
(13 + p3)3 \ 3ughr — py

on M \ M’ by the equation (5.1). Since

)

Ho = 3popt _ polud +ud —4pud) _ po L po(=4ud)
(ug + i) (1§ + i) (g + 1) (ug + i)
0 -1 N 0 %

Ao 2(uf + 1) Ao (g + pi)?’

we have

-1 i
— 924 E
Pl 1) (2% + p?) " (15 + u?)2> T Em)

1 13 )
=24 - + E(:U’l)a
(2(u3 + i) (g4 pd)?
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16 Katsuhiro Moriya

where E(u) is a differentiable function of 1. Then

- 42 0
ﬁul(uo,u1)=—2A< S e )+ E(m)

(g +13)?  (ug+ui)?)  Om
—2ABugm — i) | 0
- + -2 B(um).
R T

Hence E(p1) is a constant and the equation (5.4) is satisfied on M\ M’
for a non-zero real number A and a real number B. Since every element
of M’ is an isolated point and 3 is smooth, the equation (5.4) holds on
M.

Conversely, we assume that 5 and ~y satisfies the equations (5.4) and
(5.5). Then we see that 3 is a harmonic mapping and that the equation
(4.2) holds by a direct calculation. O

We discuss the case where p and v are Lagrangian branched im-
mersions which are not Hamiltonian-minimal and X is a Hamiltonian-
minimal Lagrangian branched immersion. Let © be a non-zero quater-
nionic holomorphic section of a Lagrangian line bundle L with its
complex structure JL defined by JZ1 = je®" which is not Hamiltonian-

minimal and { a nowhere-vanishing quaternionic holomorphic sections
of L.

THEOREM 5. The mapping X\: (M, g) — (H,wq) defined by the equa-
tion U = ﬂj\ 1s a Hamiltonian-minimal Lagrangian branched immersion
with its right normal vector je7* if and only if i 1s linearly independent
of U and p = poeP=Y2 4 11 eBHNY2 with real-valued functions g
and py on M such that pg — p1t is non-constant complex holomorphic
function vanishing nowhere and mappings B and v are given by the
equations

B(po.p1) = A(ug + p3) + B, (5.8)
Y(po, 1) = A(pug — p3) + C, (5.9)

on M with a non-zero real number A and real numbers B and C'.
Proof. We assume that A is a Hamiltonian-minimal Lagrangian im-
mersion with its right normal vector jeY’. Since [ is not a harmonic
mapping, we see that the functions ug and p; are not constant functions
in a similar way as the proof of Theorem 4.
Since « is a harmonic mapping, we have the equations

2’7,uo = /‘O(ﬁuouo +ﬁu1,u1),
2'7#1 = _Ml(ﬁuo,uo +/8,u1#1):
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m |l

on M \ M’ by Lemma 4. Then p1v,, + poYu, = 0. Hence y(u
¢ (u3 —p3) for a smooth real-valued function ¢ on R\ {ud(p) —u3
M\ M'}. Since

Oaﬂl)
(p)|p
Yo (0, 1) = 2109 (1 — p1?),

Yr (pos 1) = —2m e (1§ — p13),

Vuoo (H0s 1) = 4:“(2)¢”(,U(2) — /L%) + 2¢/('u3 _ M%),

Yy (o5 1) = 4;1%(;6”('“3 _ H%) _ 2(]5/(”% B M%)’

we have

Yuowo (10> 111) + Varpy (10, 1) = 4§ + 113) 9" (g — p7) = 0.

Hence the equation (5.9) holds on M \ M’ for a non-zero real number
A and a real number C. Since every element of M’ is an isolated point
and ~ is smooth on M, the equation (5.9) holds on M.

By the equation (5.1), we have the equation

() =22 ()

Hence the equation (5.8) holds for a non-zero real number A and a real
number B on M \ M'. Since every element of M’ is an isolated point
and [ is smooth, the equation (5.8) holds on M.

Conversely, we assume that 5 and « are given by the equations (5.8)
and (5.9) respectively. Then we see that the equation (4.2) holds and
~ is a harmonic mapping by a direct calculation.

6. Examples

We apply Theorem 4 and Theorem 5 to obtain examples of Lagrangian
branched immersions. We calculate left normal vectors of the examples
to see that there are examples with both conformal Maslov forms (see
[4]) and non-conformal Maslov forms.

Let f: M — C? be a Lagrangian immersion with its left normal
vector N and its right normal vector je®. The map (N,je): M —
S2(1) x S'(1) is a decomposition of the generalized Gauss map of f,
where S(1) is a circle in {j(u+vi) | u,v € R} with radius one centered
at origin. Let w; is the symplectic form of C? and H the mean curvature
vector of f. The one-form w on M defined by w(X) = wi(X, H)/7 is
called the Maslov form of f. A Maslov form o is said to be conformal
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18 Katsuhiro Moriya

if the tension field of the left normal vector IV of f vanishes, or equiva-
lently d * (dN) = hN with a real-valued function h on M. Locally, this
equation is equivalent to the equation

Ny + Ny = kN, (6.1)

where (x,y) is a local coordinate of M such that x+yi is a local complex
holomorphic coordinate and k is a local real-valued function on M (see
[11] for example).

We use the following coordinate transformation. Let pp and p; be
real-functions on M such that pg — py¢ is a complex holomorphic
function on M. Then (o, 1) is a coordinate of M and pg — p1i is a
complex holomorphic coordinate except branch points of pg — p14. Let
= po(pd +p?)~t and y = py(pd + p?) 1. Then (z,y) is a coordinate
on M such that z+yi is a complex holomorphic coordinate of M except
branch point and zeros of g — p1i. We see that 23 + 2% = (ud + u3)~ L.

Ezample 1. Let pn = poe P42 4 j1,eB+47)i/2 with real-valued func-
tions pg and p; on M such that pug — p1¢ is a non-constant complex
holomorphic function vanishing nowhere on M. We assume that the
mappings 3 and ~ are given by the equations (5.4) and (5.5) with non-
zero real number A and B = C = 0. Then

,UJ(IMO7 //Jl) = /‘606_‘4”%(”(2)4—“?)7% + juleAN?)(N(Q)+M%)72i

is a Hamiltonian-minimal Lagrangian branched immersion with its right
normal vector je* by Theorem 4.
Let (z,y) be a coordinate of M such that @ = po(u3 + pu3)~

y = pa (g + p3) " Since

L and

=2 f— y? M I —7— y? a
= —z? +y? o~ Av?i le’Z/{—l +A(e® + yz)i}eAx%'
(22 + y?)? (22 + y?)? ’
C2xy{-1 - A@*+ 7))} api . =Y a2y
Hy = (22 + y2)2 € +J (2 + yz)ze J

the left normal vector of y is

— P 2_,2Y);
pgiy ' = —je ATV

By the equation (6.1), we see that the Maslov form of p is conformal.
The section 1 of a Hamiltonian-minimal Lagrangian line bundle L with
its complex structure J= defined by J*1 = je® is a non-zero quater-

nionic holomorphic section. We define a smooth mapping A by 1 = gj\
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Figure 1. (Example 1) U = {x +yi € C|0.5% < 22 + ¢y < 4%}, wo = x, 1 = —v,
A=1,Imu:U — ImH.

Then
1

p + 13
X (MoeA“%(N(2)+N%)72i — j/,{/leA“(%(Ng+“%)72i)

A(MO& /,61) =

is a Lagrangian branched immersion with its right normal vector je*
which is not Hamiltonian-minimal by Theorem 4.

Let # = po(pd + pf) ™! and y = pi(pd + p3)~!. Then (z,y) is a
coordinate of M such that x + yi is a complex holomorphic coordinate
except branch point of pg — p14. Since

A2~ . A2
Yt — jye™™,
2.

Ap = e j2 Agyie Ay = 2Axyie VT — jerri
the left normal vector of A is
o Adayi (442222 — 1)eA®—y?)i
vie T 1142072 Y 1+ 44222
After long computation, we see that the Maslov form of A is not
conformal since the equation (6.1) does not hold.

A =zxe

Ezample 2. Let p be the Hamiltonian-minimal Lagrangian branched
immersion with its right normal vector je?* defined in the same way as
Example 1. The function

_ 2Apo0mm
(up + ui)?
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Figure 2. (Example 1) U = {z +yi € C|0.5% < 2? +3y? < 4%}, o = z, 1 = —v,
A=1,ImA:U — ImH.

satisfies the equation *(da) = (df3). Then

2Apop jielAWG—u) (ug+ud) 2}

v=a-—jie’" =
(g + 117)?

is a Hamiltonian-minimal Lagrangian branched immersion with its right
normal vector je®. Indeed,

(@) = (da) + je” (dB), |
“(dv) = (d6) — je(da) = (dv)(—je™).

Since the left normal vector of v is —je?, we see that the Maslov form
of v is conformal by the equation (6.1). The image v(M) is a part of a
circular cylinder.

We define a smooth mapping A by 0 = ﬂj\ Then

1
Apo, 1) = 753
(g + p3)?
x ({240 e WUy (iF 4 pid)Rie 06D
iy {—QAMou%GA‘L%(“‘Q)JF“%)_Qi — po(pd + M%)%@Auﬁ(uﬁwf)”i}}

is a Lagrangian branched immersion with its right normal vector je*
which is not Hamiltonian-minimal by Theorem 4.
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Figure 3. (Example 2) U = {x +yi € C|0.68% < x® +y* < 1.5?}, po = x, 1 = —v,
A=1,Im(iv): U — ImH.

-
i

Figure 4. (Example 2) U = {x+yi € C|0.68% <z +y* < 1.5%}, po = x, 1 = —v,
A=1,Im(i\):U — ImH.

Let © = po(pg + p7) ™" and y = p1 (u§ + p3)~". Then

A= (2422 + i)ye V" 4 ju(—24y° — i)eT,
Ao = 4Azye 4 (1 + 242%) (—24y2 — i)eA",
Ay = (242° +0)(1+ 24y°0)e™™ + j(—4Awy)e™™™.

Hence the left normal vector of \ is

-l - 8Azy(1 + 4A%2%y?) ;
Yo 1+ 4A22% 4 16A222y2 + 4A%2y* + 16 A% x4yt
, 14 16A%%* — 44%(2* + )
+ { 1+ 4A22% + 16A222y2 + 4A%2y* + 16 A%x4y?t
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Figure 5. (Example 3) U = {z +yi € C|0.1 < |z|] < 2.6,]y| < 2.6}, po = =,
p=-y, A=1,TImupu:U — ImH.

2 2 2,.2,2
N 4A(x2 — y?)(1 4 4A22%2) } A2 y?)

1+4A22% + 16420292 + 4A2y% + 16A4x4y4l

After long computation, we see that the Maslov form of A is not
conformal by the equation (6.1).

Ezample 3. Let pn = pioeB=2 4 j1,eB47)i/2 with real-valued func-
tions pg and p; on M such that pg — pq? is a non-constant complex
holomorphic function vanishing nowhere on M. We assume that the
mappings 3 and «y are given by the equations (5.8) and (5.9) with non-
zero real number A and B = C = 0. Then

= poe™l 4 jpy et

is a Lagrangian branched immersion which is not Hamiltonian minimal
with its right normal vector je® by Theorem 5. We see that the Maslov
form of p is not conformal in a similar way as Example 1.

Let p be a point in M and

v (o, p1) Z/ 6At2idt+j/

ro(p) p1(p)

Ko p1

eAtzidt.

Then v is a Lagrangian branched immersion with its right normal vector
je which is not Hamiltonian-minimal. Indeed,

(dv) = M8 (dpg) + je* T (dp),
w(dv) = M (dpy) — jeM (dpo) = (dv) (_jeA(ungu%)i) .
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Figure 6. (Example 3) U = {z +yi € C|0.1 < |z] < 2.6,]y] < 2.6}, po = =,
p=-y, A=1,Imv:U — ImH.

Since the left normal vector of v is —jeA(_“gﬂ‘%)"', we see that the
Maslov form of v is conformal by the equation (6.1). In the case where
M=A{z+vyi|lz,ye R} =C, A=1, ppo =z, uy1 = —y, and p = 0, the
map v is a flat Lagrangian embedding given in [4].

~

Let us define a smooth mapping A by = iA. Then

1
Apo, 1) = ——=
pg + 1t
w |4 prge—nti /“O At 4y e /’“ oA g
po(p) p1(p)

1 4 pge At /’“ At _ 1 Wi /“O oA gy
1 (p) #o(p)
is a Hamiltonian-minimal Lagrangian branched immersion with its right
normal vector je¥ by Theorem 5. We should seek an alternative method
to the equation (6.1) to conclude whether the Maslov form of A is
conformal since the computation becomes very long.
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