
 1

Floral morphology affects seed productivity through pollination efficiency in radish 1 

(Raphanus sativus L.) 2 

Kiwa Kobayashi 1, Atsushi Horisaki 2, Satoshi Niikura 2 & Ryo Ohsawa 1* 3 
1 Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 4 

Tennodai, Tsukuba, Ibaraki 305-8572, Japan 5 
2 Tohoku Seed Company, 1625 Nishihara, Himuro, Utsunomiya, Tochigi 321-3232, Japan 6 

(*Author for correspondence; e-mail: osawaryo@sakura.cc.tsukuba.ac.jp) 7 

Key words: floral morphology, insect pollination, pollination efficiency, Raphanus sativus L., 8 

seed productivity, self-incompatibility 9 

Abstract   10 

To examine the effect of stigma position and size on seed productivity through pollination 11 

efficiency in radish, the numbers of self and cross pollen grains on the stigmas and the seed 12 

productivity under insect-pollination were compared among 4 bred lines. Lines with a small 13 

stigma or a high stigma relative to the anthers on long stamens tended to receive fewer self 14 

and total (self + cross) pollen grains but showed a higher cross-pollination percentage (ratio 15 

of cross pollen grains to total pollen grains on stigmas) than those with a large stigma or a 16 

lower stigma. Additionally, a higher cross-pollination percentage was associated with a higher 17 

outcrossing percentage. This result suggests that variations in the two stigma traits affect the 18 

outcrossing percentage via the cross-pollination percentage. Therefore, it should be possible 19 

to prevent loss of F1 purity by selecting new parental lines with floral morphology that favors 20 

cross-pollination percentage.  21 
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Introduction  1 

Radish (Raphanus sativus L.) has self-incompatible entomophilous flowers and is categorized 2 

as allogamous (Bateman 1955). F1 hybrids are predominant in the current commercial radish 3 

market, and F1 seed production relies on self-incompatibility. This method results in some self 4 

seeds, lowering the F1 purity (Horisaki et al. 2003; Niikura 2007). To elucidate how radish 5 

produces self seeds as well as hybrids, and thus to counter the loss of F1 purity, it is essential 6 

to fully understand the reproductive process in radish. 7 

Reproduction is generally divided into two main processes, pollination and fertilization 8 

(Namai et al. 1992). Molecular biological studies of S gene-controlled self-incompatibility in 9 

radish fertilization have made good progress (Niikura & Matsuura 1997, 1998, 1999), but the 10 

pollination process is less well understood (but see Namai et al. 1992). Horisaki et al. (2003) 11 

reported that the self seed set percentage, indicating the level of self-incompatibility, changed 12 

between artificial and insect pollination. This result suggests that seed productivity may be 13 

affected not only by self-incompatibility, but also by steps in the pollination process. 14 

Therefore, both pollinator behavior and pollinator interaction with floral traits should be 15 

considered in the context of seed production in radish. 16 

Pollination in animal-pollinated plants has remained a well-studied topic since Darwin 17 

(1859). Most studies have reported clear relations between variation in floral characters and 18 

pollinator behavior or the resultant seed productivity. For example, different types of 19 

pollinators suited to species with different floral characters in Mimulus and more pollinators 20 

visit to wild radish plants with larger flowers (Young & Stanton 1990; Schemske & Bradshaw 21 

1999; Bradshaw & Schemske 2003) or to a particular flower color (Lee & Snow 1998; 22 

Johnson & Midgley 2001). In addition, seed sets in pin-styled morph are higher than those in 23 

thrum-styled morph through more pollination by legitimate pollen grains in the former than in 24 

the latter in Primula sieboldii (Nishihiro et al. 2000). Thus, variations in floral characters 25 

could affect seed productivity by controlling pollen removal, deposition, morph, and so on. 26 

Radish has a wide range of variations in floral morphology (Kobayashi et al. 2006). These 27 

variations might significantly affect seed productivity through their effects on pollination 28 

efficiency via the amount and ratio of both self and cross pollen grains on the stigma 29 

(Kobayashi et al. 2006). That is, a pin-styled flower, in which the stigma is higher than the 30 

tips of the anthers on the long stamens, might avoid self-pollination and encourage cross-31 

pollination, and a flower with a larger stigma might receive more pollen grains under open 32 

pollination, as reported in other species (Campbell et al. 1994; Anderson 1996; Nishihiro et al. 33 
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2000). 1 

However, because the flower is composed of several organs, it is difficult to determine 2 

how much the variation in both stigma position and stigma size change pollination efficiency 3 

and seed productivity. In addition, multiple factors in field studies generate uncontrollable 4 

variation. To examine the effects of alleles at specific loci, recent studies have used near 5 

isogenic lines with different genotypes at a specific locus in the same genetic background 6 

(Bradshaw & Schemske 2003). To clearly show the effect of individual flower morphological 7 

traits, it is effective to compare the pollination efficiency and seed productivity among lines 8 

with different floral morphologies in a specific target trait but similar floral morphologies in 9 

other traits. Because the floral morphology in radish was highly heritable, selection by floral 10 

morphology based on the genetics behind each trait has been conducted (Kobayashi et al. 11 

2007). 12 

Self pollen grains landing on the stigma can lead to seed set, because self-incompatibility 13 

in radish is incomplete (Niikura & Matsuura 1999). Therefore, pollination efficiency of both 14 

self and cross pollen grains should be assessed. To clarify the mode of cross-pollination in 15 

species with hermaphroditic flowers, previous studies have used male-sterile lines as the 16 

recipient (Ohsawa & Namai 1988), emasculated recipient flowers (Young & Stanton 1990), 17 

used fluorescent powder in place of cross pollen grains (Campbell et al. 1994), or taken 18 

advantage of the difference in pollen grain sizes between heteromorphs (Nishihiro et al. 2000). 19 

In this study, to determine the ratio of self and cross pollen grains on stigmas under insect 20 

pollination, artificial tetraploid radishes with larger pollen grains than normal radishes were 21 

used as the donor to distinguish between self and cross pollen grains. 22 

To clarify the effect of floral morphology on seed productivity through pollination 23 

efficiency in radish, the pollen grains on the stigmas and seed productivity were compared 24 

among lines with different stigma positions and sizes but similar genetic backgrounds. 25 

Materials and Methods 26 

Plant materials 27 

Four lines with different floral morphologies but similar genetic backgrounds were bred from 28 

a hybrid population by crossing two accessions selected from the extremes of variations in 29 

each of stigma position and stigma size (Kobayashi et al. 2006). Cultivar ‘Manyo’, belonging 30 

to the ‘South China’ varietal group, has thrum-styled flowers (style shorter than long stamens) 31 

with large stigmas. Inbred line ‘SL19’, belonging to the ‘Risoh’ varietal group, has pin-styled 32 
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flowers (style longer than long stamens) with small stigmas (Table 1). Some F2 plants with 1 

desirable stigma position and size were selected in April 2004. They were selfed repeatedly to 2 

the F5 generation to derive the four lines ‘Pin-Large’, ‘Pin-Small’, ‘Homo-Large’, and 3 

‘Thrum-Small’ (Table 1, Fig. 1). The stigma positions of ‘Pin-Large’ and ‘Pin-Small’ were 4 

both higher than the anthers, but ‘Pin-Large’ had a larger stigma. The stigma position of 5 

‘Homo-Large’ was nearly equal to the anthers on the long stamens; these flowers were 6 

homostylous and had large stigmas. The stigma position of ‘Thrum-Small’ was lower than the 7 

anthers, and the stigma was small. Whole flower sizes were slightly different among the four 8 

lines, but only the difference between ‘Pin-Small’ and ‘Homo-Large’ was significant. Thus, 9 

the four lines had similar floral morphologies except in stigma position and size. 10 

As a donor to examine pollination efficiency, an artificial tetraploid line, ‘BmR’, bred at 11 

Utsunomiya University (Tochigi, Japan) was used. Because its pollen size (ø 30–35 µm) was 12 

larger than those of the four lines (ø 25 µm) it was possible to distinguish between self and 13 

cross pollen grains on the stigmas. As a donor to examine seed productivity, cultivar ‘Bei Jing 14 

Hong Xin-2’ was used; the pubescence of its true leaves was dominant to the glabrousness of 15 

the four lines. Therefore, it enabled to distinguish between self seeds and hybrid seeds by 16 

pubescence. 17 

Pollination efficiency 18 

All plants used in this examination were grown in a greenhouse at the Agriculture and 19 

Forestry Research Center, University of Tsukuba (Ibaraki, Japan). In the middle of December 20 

2005, all lines were sown in 8-cm plastic pots filled with soil (Metro-Mix 350, Scotts-Sierra 21 

Horticultural Products Co., Marysville, Ohio). On 7 February 2006, they were transplanted 22 

into 24-cm plastic pots and grown until before the beginning of flowering. Four sets of plants, 23 

each set was composed of four plants in each recipient and four donor plants, were made. On 24 

1 April 2006, four cages (2-m × 4-m) covered with gauze to exclude pollinating insects were 25 

built in the field and the each set was placed in each cage. Then, the plants for recipient and 26 

those for donor were transplanted at 50-cm spacing in a row, respectively, with 70-cm spacing 27 

between the two rows.   28 

Two pollination treatments were conducted for 3 days to measure pollination efficiency. 29 

One was automatic self-pollination, which meant self-pollination without assistance from an 30 

insect pollinator, and the other was insect-pollination by bees from a hive (Katakura 31 

Industries Co., Ltd., Tokyo) set in the corner in each cage. After each treatment, three 32 

branches per plant were randomly selected and their flowers that had bloomed over the 3 days 33 
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were sampled. Prepared slides of the stigmas were immediately made to count all pollen 1 

grains on them. The automatic self-pollination treatment was performed twice and the insect-2 

pollination treatment six times in all lines. To confirm that the bees visited both recipient and 3 

donor flowers, follow-up observation of the bees were conducted. A fling bee in the cage was 4 

focused on and its one movement between plants not within a plant was counted as one count. 5 

The follow-up observation on a bee was continued for a maximum of ten counts and next, 6 

another bee was observed. The observation was conducted for 15 min per trial; 13 or 14 trials 7 

were performed in each set throughout the 6 repeats of the insect-pollination treatment. The 8 

all counted numbers of movement were classified into three patterns in each set; within 9 

recipient, within donor, and between recipient and donor, respectively. 10 

Pollen grains on the prepared slides were stained with acetocarmine and the self grains 11 

and the cross grains were counted under an Olympus BH2 fluorescence microscope (Olympus, 12 

Tokyo) at a magnification of 100×. Then, the number of self pollen grains under automatic 13 

self-pollination, as well as the numbers of self, cross, and total (self + cross) pollen grains and 14 

the cross-pollination percentage ([number of cross pollen grains] / [number of total pollen 15 

grains] × 100%) under insect-pollination were recorded. 16 

 To test whether movements of honey bees differed significantly among sets, chi-square 17 

tests with the lines and movement patterns as factors were conducted. Because the frequency 18 

distribution of the pollination efficiency was not normal but sloped downward, Kruskal–19 

Wallis test which was one of the nonparametric analyses was used. To examine the effect of 20 

stigma size, comparison between ‘Pin-Large’ and ‘Pin-Small’ (pin-styled flowers but 21 

different stigma sizes) was conducted while to examine the effect of stigma position, 22 

comparisons between ‘Pin-Small’ and ‘Thrum-Small’ and between ‘Pin-Large’ and ‘Homo-23 

Large’ (different stigma positions but similar stigma size) were conducted. All statistical 24 

analyses were done with JMP 4.0 software (SAS Institute Inc., Cary, NC, USA). 25 

Seed productivity 26 

As above, plants were arranged into four sets and were transplanted into cages on 4 April 27 

2006. Three cages were randomly assigned as replications in each line. During flowering, a 28 

beehive was placed in the corner in each cage. To confirm that the bees visited the flowers of 29 

both recipient and donor during flowering, the movements were observed as noted before. 30 

Additionally, to determine the average number of ovules per flower in each line, four flowers 31 

from each plant were sampled and their ovules were counted. After flowering and seed set, all 32 

lines were harvested on 17 June 2006 and dried in a greenhouse. Five branches were 33 
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randomly selected from each plant and all seeds were collected from them. The seed set 1 

percentage as (total number of seeds) / ([average number of ovules per flower] × [total 2 

number of flowers]) × 100% was calculated. About 100 seeds randomly selected from each 3 

plant were grown and their genotypes were identified from their leaf pubescence. Then, the 4 

outcrossing percentage as (number of hybrid seeds) / (number of seeds grown) × 100% was 5 

calculated. 6 

To determine the level of self-incompatibility in the lines, artificial self-pollination tests 7 

were conducted by using four plants per line in a greenhouse. About 10 flowers that opened 1 8 

and 2 days before and were still blooming were self-pollinated. Then, pod set percentage, as 9 

(number of pods per plant) / (number of flowers pollinated) × 100% was calculated. This 10 

percentage was considered as the level of self-incompatibility. 11 

The movements of bees were analyzed as above. The seed set, outcrossing, and pod set 12 

percentages were compared among lines by one-way ANOVA and Tukey’s multiple-13 

comparison test. The pollination efficiency examined by using the tetraploid radish as donor 14 

underestimates the pollination efficiency of normal radish because the pollen of the tetraploid 15 

radish is larger. However, it was assumed that the relative effects on pollination efficiency 16 

would be the same in the two experiments because the pollinator behaviors were almost the 17 

same (see Results). Therefore, the relationship between pollination efficiency and seed 18 

productivity was investigated by combining both data sets. 19 

Results 20 

Pollination efficiency in the four lines 21 

Because the visitation behavior by honey bees differed among the four sets even on the same 22 

day, all data was shown together in Figure 2. The numbers of movements within a line 23 

(recipient or donor) varied from 0 to 26, whereas those between recipient and donor varied 24 

from 0 to only 8, resulting in low averages of movements in each set. Chi-square analysis 25 

showed that means did not differ significantly among the four sets, suggesting that the 26 

visitation behavior by honey bees was almost the same for the whole of flowering periods in 27 

the four sets. 28 

Pollinated stigmas were obtained from all lines under both treatments. Figure 3 presents 29 

frequency distributions of the numbers of pollen grains on the stigmas sampled at all 30 

sampling times. Under automatic self-pollination, the distributions decayed and showed a 31 

mode of 0–50 pollen grains in all lines (Fig. 3a). ‘Homo-Large’ had more stigmas with >100 32 
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grains (up to 550 grains) than the others. Few stigmas had >100 grains in both ‘Pin-Large’ 1 

and ‘Thrum-Small’, and ‘Pin-Small’ received a maximum of about 100 grains. Under insect-2 

pollination, average numbers of total pollen grains were 2–10 times as many as under 3 

automatic self-pollination in each line (Fig. 3d). ‘Thrum-Small’ (small stigmas) and both 4 

‘Pin-Large’ and ‘Homo-Large’ (large stigmas) received >800 grains at a maximum, but ‘Pin-5 

Small’ received 500 grains at maximum. In all lines, most stigmas received 0–2 cross pollen 6 

grains; stigmas with >10 cross pollen grains were rare (Fig. 3c). Therefore most of the grains 7 

on the stigmas were derived from the same or other plants in the same line (Fig. 3b). Cross-8 

pollination percentages were also notably low (Fig. 3e); the maximum value was 70% in ‘Pin-9 

Small’. 10 

Because wind speed and direction differed between sampling times under automatic self-11 

pollination (data not shown), comparisons between lines were conducted at each sampling 12 

time (Fig. 4). ‘Pin-Large’ had significantly more pollen grains than ‘Pin-Small’ only on 15 13 

April (χ2 = 4.08, P < 0.05). ‘Pin-Small’ had significantly fewer grains than ‘Thrum-Small’ 14 

only on 6 May (χ2 = 4.50, P < 0.05). ‘Pin-Large’ had significantly fewer grains than ‘Homo-15 

Large’ at both sampling times (χ2 = 4.08, P < 0.05 on 15 April, χ2 = 5.33, P < 0.05 on 6 May). 16 

Under insect-pollination, not only did the wind behavior differ among the six sampling times, 17 

but also the pollinator’s behavior differed among sets at each sampling time. Therefore, the 18 

values were compared by using sampling times as replications (Fig. 5). ‘Pin-Small’ had 19 

significantly fewer self and total pollen grains but a higher cross-pollination percentage than 20 

both ‘Pin-Large’ and ‘Thrum-Small’ (χ2 = 5.77–8.31, P < 0.05–0.01). ‘Pin-Large’ and 21 

‘Homo-Large’ did not differ significantly in any parameter. Any effect on the numbers of 22 

cross pollen grains on the stigmas was not shown because all lines received almost the same 23 

numbers of cross pollen grains. 24 

Seed productivity in the four lines 25 

The patterns and numbers of movements by honey bees were similar to those shown in Figure 26 

2. Bees moved much less between recipient and donor (0–0.5 per 15 min) than within 27 

recipient or donor (2.6–4.8 per 15 min). 28 

Table 2 shows the rate of pod set under artificial self-pollination and the rates of seed set 29 

and outcrossing under insect-pollination. The high average pod set percentage of ‘Thrum-30 

Small’ (72.3%) indicates that ‘Thrum-Small’ had a very low level of self-incompatibility. On 31 

the other hand, those of ‘Pin-Large’, ‘Pin-Small’, and ‘Homo-Large’ were 6.4%, 28.2%, and 32 

19.8%, respectively. Although the differences among these three lines were significant, they 33 
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were relatively small, implying a high level of self-incompatibility. The three lines averaged 1 

5–7 ovules per flower (data not shown), and the proportions of stigmas on which more pollen 2 

grains landed than the number of ovules pollinated were 97% in ‘Pin-Large’, 90% in ‘Pin-3 

Small’, and 100% in ‘Homo-Large’ (gray bars in Fig. 3d). Owing to the low level of self-4 

incompatibility, ‘Thrum-Small’ showed a significantly higher seed set percentage than the 5 

others (13.1%) and a low outcrossing percentage (9.2%). The seed set percentages in the other 6 

three lines ranged from 3.1% to 5.3% (not significantly different), and the outcrossing 7 

percentages varied from 66.0% (‘Homo-Large’) to 93.9% (‘Pin-Small’). A higher average 8 

cross-pollination percentage tended to increase the outcrossing percentage in the three lines 9 

(Fig. 6). 10 

Discussion 11 

The level of self-incompatibility in radish varies among lines and with the environment 12 

(Table 2; Niikura & Matsuura 1999; Horisaki & Niikura 2008). For this reason, self pollen 13 

grain can set seed, as observed in F1 seed production fields (Horisaki et al. 2003; Niikura 14 

2007). Therefore, it is essential to assess pollination efficiency by distinguishing between self 15 

and cross pollen grains on stigmas to understand the effects of floral morphology on seed 16 

productivity through pollination efficiency, and the reproductive process in radish. Use of the 17 

tetraploid radish made it possible to clearly determine pollination efficiency. In automatic 18 

self-pollination, the stigma receives pollen grains from anthers within the same flower by 19 

wind and gravity (Namai et al. 1992). The accidental effects by wind and gravity explain the 20 

downward-sloping distribution with a mode of 0–50 pollen grains, like a Poisson distribution, 21 

in all lines (Fig. 3a). Under insect pollination, the total number of pollen grains increased 22 

several fold and the distribution peaks shifted to the right (Fig. 3d). This indicates that 23 

pollinators increase the total number of pollen grains deposited on the stigmas under field 24 

conditions. But both the number and percentage of cross pollen grains on the stigmas were 25 

less than expected, and the majority of the grains on the stigmas were self pollen grains. The 26 

few number of cross pollen grains would be due to the limited movement of honey bees 27 

between recipient and donor lines (Fig. 2). Increased pollinator movement between recipient 28 

and donor would have facilitated cross-pollination. In addition, numbers of both self and cross 29 

pollen grains differed between sampling times under both pollination treatments (Figs. 4, 5) 30 

because of changes in environment and pollinator behavior during flowering (Fig. 2). Past 31 

studies of cross-pollination used only male-sterile recipients (Ohsawa & Namai 1988) or 32 

emasculated recipients (Young & Stanton 1990). However, these methods cannot reveal the 33 
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rates of self- and cross-pollination in a hermaphrodite flower. To our knowledge, this is the 1 

first study to show the numbers of both self and cross pollen grains on the stigmas in a species 2 

with homomorphic hermaphrodite flowers. The results show that events in the pollination 3 

process can affect seed productivity through pollination efficiency. Therefore, information on 4 

the conditions affecting pollination efficiency will improve understanding of the reproduction. 5 

There are many reports of the effects of stigma position and size in other plants 6 

(Campbell et al. 1994; Anderson 1996; Nishihiro et al. 2000; Syafaruddin et al. 2006). This 7 

study also examined these effects by comparing lines with different stigma positions and sizes. 8 

Differences in the distribution patterns of the numbers of pollen grains among the four lines 9 

suggest an effect of floral morphology on pollination efficiency (Fig. 3). A larger stigma 10 

tended to increase the amount of self pollen grains received on the stigma and to decrease the 11 

cross-pollination percentage. A higher stigma position than the anthers on long stamens 12 

tended to reduce self-pollination and to increase the cross-pollination percentage. The effect 13 

of stigma position was not shown in the comparison between ‘Pin-Large’ and ‘Homo-Large’ 14 

under insect pollination. However, the distribution patterns of both self and total pollen grains 15 

in ‘Pin-Large’ were downward-sloping, whereas those in ‘Homo-Large’ were unimodal-like. 16 

This difference indicates that lower stigma position clearly increases the proportion of 17 

pollinated stigmas by the dropping and deposition of self pollen grains by the impact of 18 

pollinator visitation. Additionally, although it was expected that higher stigma position and 19 

larger stigma size would increase cross-pollination, the four recipient lines had almost the 20 

same number of cross pollen grains, probably because of the limited movement of bees 21 

between recipient and donor lines (Fig. 2). If pollinators moved more between recipient and 22 

donor lines, cross-pollination would be facilitated, and the effect of floral morphology on the 23 

number and percentage of cross pollen grains on stigmas would be clearer. 24 

To examine the effects of floral morphology on seed productivity, the levels of self-25 

incompatibility should be identical in all the lines to remove its effect on seed productivity. 26 

This study compared the seed productivity among ‘Pin-Large’, ‘Pin-Small’, and ‘Homo-27 

Large’, which had high levels of self-incompatibility (Table 2). There were no significant 28 

differences in the seed set percentage among them (Table 2). The proportions of stigmas that 29 

received more pollen grains than the number of ovules pollinated were over 90% in all three 30 

lines (gray parts in Fig. 3d). Even in ‘Pin-Small’, which had the fewest total pollen grains 31 

among the four lines on account of its small stigma size and high stigma position, most 32 

stigmas received more pollen grains than the number of ovules under insect-pollination. For 33 

this reason or the small difference in cross-pollination percentages among the three lines, the 34 
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three lines had almost the same seed set percentages. Frequent pollinator movements will 1 

increase the variation in cross-pollination percentages among lines, thus highlighting the 2 

effect of floral morphology on seed set. There were significant differences in outcrossing 3 

percentages within the three lines, and ‘Pin-Small’ showed the highest percentage (Table 2). 4 

The outcrossing percentage tended to rise with average cross-pollination percentage in the 5 

same three lines (Fig. 6). Although the difference in either stigma position or stigma size did 6 

not change the outcrossing percentage significantly, differences in both might significantly 7 

change it by having more effect on cross-pollination percentage. This result suggests that 8 

outcrossing percentage is determined not only by self-incompatibility but also by pollination 9 

efficiency in radish, and that it increases with cross-pollination percentage. Why the higher 10 

cross-pollination percentage enhanced the outcrossing percentage remains unclear: further 11 

studies considering both pollination efficiency and self-incompatibility at the same time will 12 

be needed. 13 

Flower constancy—repeated visitation of the same species by insect pollinators—has 14 

been observed in both natural populations and F1 seed production fields (Yoshioka et al. 15 

2005; Ishii 2006). Flower constancy may explain the limited movement between recipient and 16 

donor lines (Fig. 2) by bees using cues that we did not consider, such as floral morphology, 17 

nectar guides, and floral scent. Because this phenomenon might cause low F1 purity in F1 seed 18 

production fields, clarification of the causes is vital for the improvement of F1 seed 19 

production and for clarification of the effect of floral morphology on seed productivity 20 

(Yoshioka et al. 2005). Because ‘Pin-Small’ showed the highest outcrossing percentage in 21 

this study (Table 2), genetic improvement for its floral morphology might raise F1 purity and 22 

yields through the improvement of pollination efficiency and thus F1 seed productivity. 23 

In conclusion, floral morphology affected seed productivity through the pollination 24 

efficiency. Variations in floral morphology can change both pollination efficiency and seed 25 

productivity. But the effect on seed productivity through cross-pollination percentage was not 26 

as clear on account of rare visitations between recipient and donor lines by bees. Because 27 

flowers with a higher stigma position than anthers on the long stamens and a small stigma 28 

showed the highest cross-pollination percentage, genetic improvement for such floral 29 

morphology could improve F1 seed productivity. 30 
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Titles and legends for figures and tables 1 

Figure 1. Floral morphology in (a) ‘Pin-Large’, (b) ‘Pin-Small’, (c) ‘Homo-Large’, and (d) 2 

‘Thrum-Small’. The stigma images are enlarged in the upper right boxes. 3 

 4 

Figure 2. Numbers of movements of honey bees (mean ± SD) in the four sets of plants. 5 

 6 

Figure 3. Frequency distributions of (a, b) self, (c) cross, and (d) total pollen grains on the 7 

stigmas, and (e) cross-pollination percentage under automatic self- and insect-pollination in 8 

the four lines. n indicates the total number of stigmas sampled at two or six sampling times. 9 

Mean ± SD was calculated in each line. In (d), shading indicates the proportion of stigmas on 10 

which fewer (black) and more (gray) pollen grains landed than the average number of ovules 11 

in each flower. 12 

 13 

Figure 4. Number of pollen grains on stigmas under natural self-pollination in the four lines. 14 

Black, individual means sampled on 15 April; white, on 6 May. 15 

 16 

Figure 5. Numbers of self, cross, and total pollen grains and cross-pollination percentages 17 

under insect pollination in the four lines. Each point is the average of four individuals 18 

sampled at each sampling time. 19 

 20 

Figure 6. Relationship between cross-pollination percentage and outcrossing percentage in 21 

the four lines. Each point is the average of four individuals in each line. 22 

 23 

Table 1. Stigma position, stigma size, and whole flower size in the four lines and their parents. 24 

 25 

Table 2. Percentages of pod set, seed set, and outcrossing in the four lines. 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 
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Table 1. .  1 

Line
Pin-Large 1.07 ± 0.01 a 0.21 ± 0.04 b 5.15 ± 0.49 ab
Pin-Small 1.08 ± 0.02 a 0.08 ± 0.02 d 6.38 ± 0.13 a 
Homo-Large 1.02 ± 0.04 a 0.29 ± 0.02 a 4.43 ± 0.82 b
Thrum-Small 0.80 ± 0.04 b 0.15 ± 0.03 c 5.28 ± 0.78 ab
Manyo1) 0.85 ± 0.02 0.23 ± 0.06 4.48 ± 0.44
SL191) 1.02 ± 0.02 0.12 ± 0.01 6.56 ± 0.18
At spring 2006, sixteen flowers in each recipient (four flowers × four plants) were photographed
by a digital microscope. Then, from these images the floral traits were measured (Kobayashi et 
The means ± SD was calculated among four plants in each recipient.
Stigma position: pistil height / height of long stamen
Stigma size: stigma length × stigma width × stigma width
Whole flower size: tube length × corolla length × corolla length /1000
Means followed by different letters differ significantly (P < 0.05, Tukey's multiple-comparison 
1) The floral traits of parents were measured at spring 2003.

Whole flower size (cm3)Stigma position Stigma size (mm3)

2 
 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 
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Table 2.  1 

Pin-Large 6.4 ± 6.1 c 5.0 ± 1.8 b 78.8 ± 9.8 ab
Pin-Small 28.2 ± 8.1 b 3.1 ± 0.8 b 93.9 ± 4.2 a
Middle-Large 19.8 ± 7.8 bc 5.3 ± 1.7 b 66.0 ± 6.7 b
Thrum-Small 72.3 ± 6.5 a 13.1 ± 2.7 a 9.2 ± 1.3 c
Means ± SD among four individuals in the pod set percentage and among three 
replications in the seed set and outcrossing percentages.
Means followed by different letters differ significantly (P < 0.05, Tukey's multiple-compariso

Recipients
self-pollination (%) insect-pollination (%) insect-pollination (%)

Pod set under artificial Seed set under Outcrossing under 
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 3 
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 26 

 27 
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a)

d)c)

b)

Figure 1. 1 
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(c) Number of cross pollen grains under
insect-pollination
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(d) Number of total pollen grains  under insect-pollination
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