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Abstract

This paper studies the geometric decay property of the joint queue-length distribution
{p(n1, n2)} of a two-node Markovian queueing system in the steady state. For arbitrarily given
positive integers c1, c2, d1 and d2, an upper bound η(c1, c2) of the decay rate is derived in the
sense

exp
{
lim supn→∞ n−1 log p(c1n+ d1, c2n+ d2)

} ≤ η(c1, c2) < 1.

It is shown that the upper bound coincides with the exact decay rate in most systems for which
the exact decay rate is known. Moreover, as a function of c1 and c2, η(c1, c2) takes one of eight
types, and the types explain some curious properties reported in the paper [2].
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1 Introduction

This paper studies the geometric decay property of the tail of the joint queue-length distribution
of a two-node open queueing network with MAP inputs, PH services and random routings. In a
previous paper [5], the authors derived an upper bound for the decay rate of the marginal queue-
length distribution for the same model. Using the result, here we derive an upper bound of the
decay rate for the joint queue-length distribution.

We refer the nodes of the network as Node 1 and Node 2, and denote by p(n1, n2) the stationary
probability that there are n1 customers in Node 1 and n2 customers in Node 2. One might expect
that p(n1, n2) decays geometrically, namely for some constants η1, η2 and C

p(n1, n2) ≈ C ηn1
1 ηn2

2 for large n1 and n2. (1.1)
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In case of a Jackson network, (1.1) holds with equality for any n1 and n2 if we take ηk as the
traffic intensity ρk at Node k (k = 1, 2). However, numerical results for tandem queueing systems
PH/PH/1→/PH/1 in Fujimoto et al. [2] showed that the situation is not so simple. In the paper [2]
the asymptotic behavior of p(n1, n2) was examined numerically when n1 = c1n+d1 and n2 = c2n+d2

go to infinity as n→ ∞ for arbitrarily given positive integers c1, c2, d1 and d2. Based on the results
of an extensive experiment, a conjecture was proposed. There exists a threshold ρ̃2, and the
behavior of p(n1, n2) is different between the cases that the traffic intensity of the second stage
ρ2 < ρ̃2 and ρ2 > ρ̃2.

The aim of this paper is to study this curious property theoretically rather than numerically.
And we will do it in a more general setting. Our model here is two-node Markovian queueing systems
for which the geometric decay property of the tail of the marginal queue-length distribution was
studied in [5]. Instead of (1.1), we consider here a weaker decay property

η∗(c1, c2, d1, d2) = exp
{

lim sup
n→∞

1
n

log p(c1n+ d1, c2n+ d2)
}
< 1, (1.2)

for arbitrarily chosen positive integers c1, c2, d1 and d2. We will refer η∗(c1, c2, d1, d2) above as the
decay rate of p(n1, n2) along line l(c1, c2, d1, d2), where l(c1, c2, d1, d2) is the set {(n1, n2) : n1 =
c1n+ d1, n2 = c2n+ d2, n = 1, 2, . . . } on the (n1, n2)–plane.

In one of our main theorems, Theorem 5.1, we will prove that the inequality (1.2) holds for any
choice of integers c1, c2, d1 and d2 by showing the existence of a function η(c1, c2) such that

η∗(c1, c2, d1, d2) ≤ η(c1, c2) < 1. (1.3)

The upper bound η(c1, c2) as a function of c1 and c2 takes one of eight forms depending on the
position of the point (η∗1 , η∗2) in a 2-dimension plane, where η∗k is the decay rate of the marginal
queue-length distribution of Node k (k = 1, 2) defined by (3.3).

In the theorem, η(c1, c2) is derived by using η∗1 and η∗2 , but we usually don’t know the values of
them except for some special systems. Fortunately we know their upper bounds η∗1 and η∗2, which
were derived in the previous paper [5]. Using these η∗1 and η∗2 instead of η∗1 and η∗2 , we can derive
another upper bound η(c1, c2) which is calculable for any two-node Markovian queueing system.
We will do this in another main theorem, Theorem 6.2. It is shown that the upper bound η(c1, c2)
coincides with the exact decay rate η∗(c1, c2, d1, d2) in some systems for which the exact decay rate
is known. Jackson type queueing networks are among them. The theorem shows that the upper
bound η(c1, c2) takes one of eight types as a function of c1 and c2. In one of them, η(c1, c2) is
given by (ηh1

1 )c1(η̂h2
2 )c2 (see (6.13)). In another type, η(c1, c2) is given by (ηh2

1 )c1(η̂h2
2 )c2 if −c1/c2 ≤

(b̂h1
2 − bh2

2 )/(bh1
1 − b̂h2

1 ) and by (η̂h1
1 )c1(ηh1

2 )c2 if −c1/c2 ≥ (b̂h1
2 − bh2

2 )/(bh1
1 − b̂h2

1 ) (see (6.11)). Each
of the types seems to correspond to the two cases above conjectured in [2]. There are other types
of η(c1, c2) where the function takes more complicated forms as in (6.12), (6.15), (6.16) and (6.17).
The systems reported in [2] for which the convergence speed of the ratio p(n1, n2)/(η1)n1(η2)n2 is
very slow are of these types. Hence the convergence speed might relate to the form of the function
η(c1, c2).
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Figure 2.1: Two-node Markovian queueing system

The rest of the paper is organized as follows. In Section 2 we describe our model and introduce
notations. We prepare some properties of the Markov chain which describes the stochastic behavior
of the model in Section 3. In Section 4 we prove our fundamental lemma that gives an upper bound
of the joint queue-length probability, and using the lemma we derive our main result in Section 5.
The result on the marginal queue-length distributions in [5] is applied to the upper bound in
Section 6. In Section 7 we discuss examples with some numerical results.

2 Model description and notations

In this section, we introduce our model and some notations. Our model here is the same as
the one used in [5].

Model: The system is an open queueing network with two nodes, Node 1 and Node 2 (Figure 2.1).
At Node k (k=1, 2), customers arrive from outside of the system via a Markovian arrival process
MAPk with representation (T k,Uk) [6]. There is a single server and a buffer of infinite capacity.
Customers are served in a usual FCFS (First Come First Served) manner. Service times are subject
to a common phase-type distribution PHk with representation (bk,Sk) [9]. After being served, each
customer proceeds to Node j (j=1, 2) with probability rkj , and leaves the system with probability
rk0 = 1 − rk1 − rk2. Without loss of generality, we assume that the exogeneous arrival rate λ1 to
Node 1 is positive and the routing probability r12 is positive. Exogenous arrival processes, service
times and routings in both nodes are all stochastically independent. We will refer this model as a
two-node Markovian queueing system. We use symbol “ k ” to refer to the node number of Node k.
And for brevity of exposition, when symbol “ k′ ” is used with a “ k ”, it refers to the other node
number, namely k′ = 2 if k = 1, and k′ = 1 if k = 2.

Vector and matrix notations: Row vectors are represented by bold lower case letters (except
for the Markov chain X(t) representing the system behavior). To represent a column vector we
attach a superscript � to the corresponding row vector. We denote by 0 a row zero vector and by
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e a row vector with all elements equal to 1. Matrices are represented with bold upper case letters.
We denote by O a zero matrix and by I an identity matrix. Dimensions of vectors and matrices
should be understood from the context. They may be finite or infinite. Inequalities between vectors
or matrices are considered elementwise.

We extend our use of terminology “Perron-Frobenius eigenvalue” to an eigenvalue of a finite-
dimensional square matrix having nonnegative off-diagonal elements and possibly negative diagonal
elements. Let A be such a matrix. We will say that a real number x is the Perron-Frobenius
eigenvalue of A if x + s is the Perron-Frobenius eigenvalue in the usual sense (i.e. the maximal
eigenvalue) of the nonnegative matrix A + sI for a sufficiently large s.

Markov chain representations: The exogenous arrival process MAPk has an underlying finite
Markov chain with transition rate matrix T k + Uk. Elements of Uk govern state transitions
accompanied by arrivals, and off-diagonal elements of T k govern those without arrivals. Diagonal
elements of T k are negative so that (T k + Uk)e� = 0�. We denote the state space of the Markov
chain by Ik and refer to the state of the chain as the phase of MAPk. We assume that Ik is finite
and T k + Uk is irreducible. The stationary probability vector of the chain is denoted by ak. The

exogenous arrival rate to Node k is given by λk =
(
−akT

−1
k e�

)−1
. When there exist no exogenous

arrivals to Node 2, we consider both T 2 and U2 is a scalar equal to 0, and λ2 = 0.
The service time distribution PHk also has an underlying finite absorbing Markov chain with

transition rate matrix
(

Sk σ�
k

0 0

)
and an initial probability vector (bk 0 ). Here σ�

k = −Ske
�.

The state space of the chain is represented as Jk ∪ {0}, where Jk is a finite set of transient states
and 0 is a single absorbing state. When a new service starts at Node k, the Markov chain starts
from a transient state chosen according to the distribution bk, and the service lasts until the chain
is absorbed in the absorbing state. We refer to the state of the chain as the phase of PHk. We
assume the representation (bk,Sk) is irreducible in the sense bk(−Sk)−1 > 0. The service rate at

Node k is given by μk =
(
−bkS

−1
k e�

)−1
. Of course, μk > 0.

Let Nk(t) be the number of customers in node k at time t, Ik(t) the phase of MAPk, and Jk(t)
the phase of PHk. We put Jk(t) = 0 when Nk(t) = 0. Then, the vector

X(t) = (N1(t),N2(t), I1(t), I2(t), J1(t), J2(t)) (2.1)

is a time-continuous Markov chain representing the stochastic behavior of the whole system. Its
state is represented by a sextuple (n1, n2, i1, i2, j1, j2), and the state space is given as

S = {{0} × {0} × I1 × I2 × {0} × {0}} ∪ {{0} × N × I1 × I2 × {0} × J2}
∪ {N × {0} × I1 × I2 × J1 × {0}} ∪ {N ×N × I1 × I2 × J1 × J2} , (2.2)

where N = {1, 2, 3, · · · }. From the irreducibility assumptions of the MAPk and PHk representations
and from the model assumption that λ1 > 0 and r12 > 0, the chain {X(t)} is irreducible.

Stability condition: Hereafter we assume the traffic intensity of Node k is strictly less than 1,

ρk =
(1 − rk′k′)λk + rk′kλk′

{(1 − rkk)(1 − rk′k′) − rkk′rk′k}μk
< 1. (2.3)
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This assumption implies that the Markov chain {X(t)} is stable (see [5, 10]).
To make our discussion simpler, hereafter we assume there exists no direct feedbacks to the

same node, namely rkk = 0 for k = 1, 2. This does not restrict any generality as long as we are
concerned only about the numbers of customers in Nodes 1 and 2. Because, when rkk > 0, we may
change the routing probabilities to r̃k0 = rk0/(1 − rkk), r̃kk = 0 and r̃kk′ = rkk′/(1 − rkk), and use
the service time distribution (b̃k, S̃k) = (bk,Sk + rkkσ

�
k bk). The new model has the same {X(t)}

process as the original one.

3 Balance equations and doubly geometric solution

For further discussion, here we prepare some notations related to stationary probabilities of the
Markov chain {X(t)}.

Stationary probabilities: Assuming the chain {X(t)} is in the steady state, we denote its state
probabilities as

p(n1, n2)i1,i2,j1,j2 = P{(N1(t),N2(t), I1(t), I2(t), J1(t), J2(t)) = (n1, n2, i1, i2, j1, j2)},
(n1, n2, i1, i2, j1, j2) ∈ S. (3.1)

Joint queue-length probabilities and marginal queue-length probabilities of Node k are written as

p(n1, n2) = P{N1(t) = n1, N2(t) = n2}, n1, n2 = 0, 1, 2, . . . ,

pk(nk) = P{Nk(t) = nk}, nk = 0, 1, 2, . . . .
(3.2)

The decay rate η∗k of the marginal queue-length distribution {pk(nk)} is defined by

log η∗k = lim sup
nk→∞

1
nk

log pk(nk). (3.3)

In Theorem 4.1 of [5], an upper bound η∗k of η∗k was derived and proved to be less than 1. This
implies that the decay rate itself is strictly less than 1, i.e. η∗k < 1.

Balance equations: For n1, n2 ≥ 1, we let C(n1, n2) be the set of states at which there are n1

customers in Node 1 and n2 customers in Node 2, namely

C(n1, n2) = {n1} × {n2} × I1 × I2 × J1 × J2. (3.4)

We call C(n1, n2) as a cell. When n1 = 0 and/or n2 = 0, we define cell C(n1, n2) in a similar manner
by replacing J1 and/or J2 above with {0}. Clearly p(n1, n2) = P{X(t) ∈ C(n1, n2)}. The vector
of state probabilities corresponding to states in C(n1, n2) can be denoted by

p(n1, n2) = (p(n1, n2)i1,i2,j1,j2 ; (n1, n2, i1, i2, j1, j2) ∈ C(n1, n2)) . (3.5)
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For n1, n2 ≥ 2, the set of balance equations around C(n1, n2) is written in a vector form as

0 = p(n1, n2)(T 1 ⊕ T 2 ⊕ S1 ⊕ S2)

+p(n1 − 1, n2)(U1 ⊗ I ⊗ I ⊗ I) + p(n1, n2 − 1)(I ⊗ U2 ⊗ I ⊗ I)

+ {r10 p(n1 + 1, n2) + r12 p(n1 + 1, n2 − 1)} (I ⊗ I ⊗ σ�
1 b1 ⊗ I)

+ {r20 p(n1, n2 + 1) + r21 p(n1 − 1, n2 + 1)} (I ⊗ I ⊗ I ⊗ σ�
2 b2),

(3.6)

where ⊗ indicates a Kronecker product operation and ⊕ a Kronecker sum operation. If n1 ≤ 1 or
n2 ≤ 1, the equation takes a slightly different form.

Laplace-Stieltjes Transforms: The Laplace-Stieltjes transform (LST) of the service time dis-
tribution PHk is given by

gk(y) = bk(yI − Sk)−1σ�
k . (3.7)

It is defined for y in the interval D[gk] = (δg
k,∞), where δg

k(< 0) is its abscissa of convergence. The
service rate is given by μk = −1/g′k(0), where the prime (′) indicates a derivative.

For MAPk, if λk > 0, we let TA
k (n) be the n-th exogenous arrival epoch at Node k, and define

the asymptotic LST of the exogenous interarrival times by

fk(x) = exp
{

lim
n→∞

1
n

logE[e−xT A
k

(n)]
}
. (3.8)

The function fk is defined on the interval D[fk] = (δf
k ,∞), where δf

k (< 0) is its abscissa of conver-
gence. It is known that fk(x) is the Perron-Frobenius eigenvalue of the matrix Uk(xI − T k)−1 for
x ∈ D[fk].

For a monotone function h, we denote its inverse function by inv[h]. Let φk be the inverse
function of log fk, and ψk be that of log gk, i.e.

φk(a) = inv[log fk](a) and ψk(a) = inv[log gk](a). (3.9)

These functions are defined on the whole real line (−∞,+∞). If λ2 = 0, we consider φ2(a) ≡ 0.
Functions φk and ψk can be interpreted probabilistically using LSTs of the number of exogenous
arrivals and the number of (fictitious) customers served at Node k during time interval (0, t]. See
[4, 5] for a detailed interpretation.

Doubly geometric form solution: Using functions introduced above, we construct a solution
to the local balance equations (3.6) for n1, n2 ≥ 2. Arbitrarily choose a pair of real numbers (a1, a2)
and let

ηk = eak . (3.10)

And let
κ(a1, a2) = φ1(a1) + φ2(a2) + ψ1(−a1 + h2(a2)) + ψ2(−a2 + h1(a1)), (3.11)

where
hk(ak) = − log

(
rk′k e

−ak + rk′0
)
. (3.12)
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If rk′k = 0 (this may occur only for k = 1 from the assumption r12 > 0 ), then hk(ak) ≡ 0.
We consider matrices T k +η−1

k Uk and Sk +
(
rk0 ηk + rkk′ ηkη

−1
k′
)

σ�
k bk. From the irreducibility

of the MAPk and PHk representations, these matrices are irreducible and have simple Perron-
Frobenius eigenvalues xk = φk(ak) and −yk = ψk(−ak + hk′(ak′)), respectively. We denote by νk

and νk the unique (up to multiplicative constants) positive left eigenvectors associated with them.
Now we let

ν = ν1 ⊗ ν2 ⊗ ν1 ⊗ ν2, (3.13)

and for arbitrarily given n1, n2 ≥ 2, let

p†(m1,m2) = ηm1
1 ηm2

2 ν, m1 = n1, n1 ± 1 and m2 = n2, n2 ± 1. (3.14)

Substituting p(m1,m2) = p†(m1,m2), a direct calculation shows the right hand side of (3.6) be-
comes κ(a1, a2)ν. If κ(a1, a2) = 0 then p†(m1,m2) given by (3.14) satisfies the local balance
equations (3.6) around cell C(n1, n2). So the function κ(a1, a2) is crucial in our discussion. Related
to the function, we introduce a set of pairs (a1, a2) as

K = {(a1, a2) : κ(a1, a2) ≤ 0} . (3.15)

This set is bounded and convex on the (a1, a2)-plane. Its periphery

Kloop = {(a1, a2) : κ(a1, a2) = 0} (3.16)

is a loop passing the origin. See Figure 5.1 for an example of Kloop. It is round in the sense that
any tangential line is tangent to Kloop at a single point. A segment of the loop passes the third
quadrant of the (a1, a2)-plane, i.e. Kloop ∩ {a1 < 0} ∩ {a2 < 0} �= φ. For other properties see
Section 7 of [5].

4 Fundamental lemma

For the decay rate η∗k of the marginal queue-length distribution of Node k we put

b∗k = log η∗k (< 0) (4.1)

and introduce two subsets of K:

H+ = {(a1, a2) : κ(a1, a2) ≤ 0, b∗1 < a1 < 0, a2 < 0}, and

H− = {(a1, a2) : κ(a1, a2) ≤ 0, a1 < 0, b∗2 < a2 < 0}. (4.2)

These sets are nonempty. The following is a key lemma for our discussion. It is proved at the end
of this section after preparing a series of lemmas. Note that η+

k and η−k defined in the lemma are
strictly less than 1 from the definition of H+ and H− in (4.2). Hence this lemma shows a geometric
decay property of the joint queue-length distribution {p(n1, n2)}.
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Lemma 4.1 (Fundamental lemma) For arbitrarily given (a+
1 , a

+
2 ) ∈ H+ and (a−1 , a

−
2 ) ∈ H−, we

put η+
k = ea

+
k and η−k = ea

−
k . Then there exist positive constants C+ and C− such that for any

nonnegative integers n1 and n2

p(n1, n2) < C+(η+
1 )n1(η+

2 )n2 + C−(η−1 )n1(η−2 )n2 . (4.3)

To prove (4.3), we exploit properties of rate matrix of a quasi-birth-and-death process having
infinite number of states in each level [5, 7]. We consider a general time-continuous ergodic Markov
chain on a two-dimensional state space S = {(n, i); n, i = 0, 1, 2, · · · }. Let L(n) be the set of states
{(n, i); i = 0, 1, 2, · · · } with common n and call it level n. The whole state space S is partitioned
into levels as S =

⋃∞
n=0 L(n). The Markov chain is called a quasi-birth-and-death (QBD) process

having infinite number of states in each level if, after partitioned into levels, its transition rate
matrix is of a block tri-diagonal form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q1 Q0

Q2 Q1 Q0

Q2 Q1
. . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.4)

Note that Qi and Qi have infinite dimension.
Let π be the stationary state probability vector of Q and partition it into subvectors as π =

(π(0) π(1) π(2) · · · ) according to the levels. It is known [8, 9] that π takes a matrix geometric
form as

π(n) = π(1)Rn−1, n = 1, 2, 3, · · · , (4.5)

where R, called the rate matrix, is the minimal nonnegative solution of the matrix quadratic
equation

Q0 + RQ1 + R2Q2 = O. (4.6)

If the dimension of R were finite, the level distribution {π(n)e�} would decay geometrically fast
with rate equal to the Perron-Frobenius eigenvalue of R. However, in our case, the dimension of
R is infinite and we cannot use the concept “eigenvalue”. Lemma 5.1 of [5] provides an alternative
tool for evaluating powers of R in such a case. Using the lemma together with (4.5), we can easily
obtain an useful inequality for state probabilities as in Lemma 5.2 of [5].

Level partition for the two-node Markovian queueing system: We partition S in (2.2)
into levels by the smaller number of customers in Node 1 and Node 2 as

S =
∞⋃

n=0

L(n), where L(n) =
⋃

min{n1,n2}=n

C(n1, n2). (4.7)

By this partition, the transition rate matrix can be written in the form (4.4). To describe subma-
trices Q0, Q1 and Q2 explicitly, we further partition L(n) into cells as

L(n) =
+∞⋃

m=−∞
L(n,m), where L(n,m) =

{
C(n, n −m) if m < 0,
C(n+m,n) if m ≥ 0.

(4.8)
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We refer to L(n) as the nth level and to L(n,m) as the mth sublevel of the nth level. By suitably
arranging the order of states, Qi, i = 0, 1, 2, are written as

Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .
O A1 M21

O A1 M 21

O A1

[O]
A2 O

M 12 A2 O

M 12 A2 O
. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.9)

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .
A2 D M20

A2 D M20

A2 D M20 M21

A2 [D] A1

M12 M10 D A1

M10 D A1

M10 D A1

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.10)

Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .
M12 M10 O

M12 M10 O

M12 M10 [O] M20 M21

O M20 M21

O M20 M21

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.11)

where
A1 = U 1 ⊗ I ⊗ I ⊗ I, A2 = I ⊗ U2 ⊗ I ⊗ I,

M10 = r10I ⊗ I ⊗ σ�
1 b1 ⊗ I, M20 = r20I ⊗ I ⊗ I ⊗ σ�

2 b2,

M12 = r12I ⊗ I ⊗ σ�
1 b1 ⊗ I, M21 = r21I ⊗ I ⊗ I ⊗ σ�

2 b2,

and D = T 1 ⊕ T 2 ⊕ S1 ⊕ S2.

(4.12)

Here the submatrices with brackets indicate the position corresponding to the 0th sublevel. The
peripheral submatrices Qi, i = 0, 1, 2, are more complicated. However they don’t appear in our
proof of the fundamental lemma and we omit their explicit description.

The stationary state probability vector π is also partitioned according to levels and sublevels.
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Using p(n1, n2) in (3.5), the nth subvector π(n) of π = (π(0),π(1),π(2), · · · ) is represented as

π(n) =
(
· · · p(n, n + 2) p(n, n+ 1) [p(n, n)] p(n+ 1, n) p(n+ 2, n) · · ·

)
. (4.13)

Here the subvector with brackets indicates the position of the 0th sublevel.
For an arbitrarily given pair of real numbers (a1, a2), we construct a vector q using ηk in (3.10)

and ν in (3.13) as
q =

(
· · · η2

2ν η2ν [ν] η1ν η2
1ν · · ·

)
. (4.14)

Lemma 4.2 If the pair (a1, a2) satisfies the condition κ(a1, a2) ≤ 0, then the vector q given by
(4.14) satisfies qR ≤ η1η2q.

Proof From Lemma 5.1 of [5], if there exists some constant ξ satisfying q(ξ−1Q0+Q1 +ξQ2) ≤ 0
then qR ≤ ξq. From the matrix representations of Qi’s (4.10)∼(4.12) above, if we set ξ = η1η2,
the mth subvector of q(ξ−1Q0 + Q1 + ξQ2) for m = 2, 3, · · · is given by

1
η1η2

(
ηm+1
1 νA2 + ηm+2

1 νM 12

)
+
(
ηm−1
1 νA1 + ηm

1 νD + ηm+1
1 νD1

)
+ η1η2

(
ηm−1
1 νD2 + ηm−2

1 νM21

)
= ηm

1 ν

[(
T 1 +

1
η1

U2

)
⊕
(

T 2 +
1
η2

U 2

)

⊕
(

S1 + η1

(
r10 +

r12

η2

)
σ�

1 b1

)
⊕
(

S2 + η2

(
r20 +

r21

η1

)
σ�

2 b2

)]
. (4.15)

A direct calculation shows the right hand side of the above equation becomes κ(a1, a2)ηm
1 ν. Simi-

larly, for m = −2,−3, · · · the mth subvector of q(ξ−1Q0 + Q1 + ξQ2) is given by κ(a1, a2)η−m
2 ν.

When m = −1, 0, 1, the equation for the mth subvector takes a slightly different form from the
one above, but we can easily check that it is also given by κ(a1, a2)η2ν, κ(a1, a2)ν or κ(a1, a2)η1ν

according to the value of m. Hence q(ξ−1Q0 + Q1 + ξQ2) = κ(a1, a2)q. Then the condition
κ(a1, a2) ≤ 0 implies that q(ξ−1Q0 + Q1 + ξQ2) ≤ 0, and Lemma 5.1 of [5] assures that q satisfies
qR ≤ ξq. ♦

Proof of fundamental lemma: The key idea of the proof of Lemma 4.1 is to split the state
probability vector π(1) into two parts. Let

π−(1) =
(
· · · p(1, 3) p(1, 2) 0, 0 0 · · ·

)
, and

π+(1) =
(
· · · 0 0 p(1, 1), p(2, 1) p(3, 1) · · ·

)
.

(4.16)

Then, obviously π−(1) + π+(1) = π(1).
For the pair (a+

1 , a
+
2 ) ∈ H+, we construct a positive vector q+ as in (4.14) using corresponding

numbers η+
1 , η+

2 and vector ν+. Since κ(a+
1 , a

+
2 ) ≤ 0 from the condition of H+ in (4.2), Lemma 4.2

assures that q+ satisfies
q+R ≤ η+

1 η
+
2 q+. (4.17)
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Further, since η+
1 > η∗1 from the condition a+

1 > b∗1 of H+, there exists a positive constant C+
π such

that
p(m+ 1, 1) < C+

π (η+
1 )m ν+ for m = 0, 1, 2, · · · . (4.18)

The inequality 0 < C+
π (η+

2 )m ν+ trivially holds for m = 1, 2, 3, · · ·. Combining these inequalities
we have

π+(1) ≤ C+
π q+. (4.19)

For the pair (a−1 , a
−
2 ) ∈ H−, we can also construct a positive vector q− as in (4.14) using

corresponding numbers η−1 , η−2 and vector ν−. It satisfies similar inequalities to (4.17) and (4.19)
as q−R ≤ η−1 η

−
2 q− and π−(1) ≤ C−

π q− for some positive constant C−
π .

Since π(1) = π+(1) + π−(1) ≤ C+
π q+ + C−

π q−, from (4.5) we have

π(n) = π(1)Rn−1 ≤ C+
π q+Rn−1 + C−

π q−Rn−1

≤ C+
π (η+

1 η
+
2 )n−1q+ + C−

π (η−1 η
−
2 )n−1q− for n = 1, 2, 3, · · · . (4.20)

Rewriting this inequality in subvector-wise, we have

p(n1, n2) ≤ C+
π (η+

1 )n1−1(η+
2 )n2−1ν+ + C−

π (η−1 )n1−1(η−2 )n2−1ν− for n1, n2 = 1, 2, 3, · · · . (4.21)

It is easily checked that this inequality also holds for the cases with n1 = 0 or n2 = 0. Post-
multiplying (4.21) with e� and choosing C+ and C− so that C+ > (η+

1 η
+
2 )−1 C+

π ν+e� and
C− > (η−1 η

−
2 )−1 C−

π ν−e�, we get the inequality (4.3). ♦

5 Upper bound for the decay rate

Using Lemma 4.1, our fundamental lemma, we shall derive an upper bound for the decay rate
η∗(c1, c2, d1, d2) of the joint queue-length distribution {p(n1, n2)} when n1 and n2 get large along
line l(c1, c2, d1, d2). Remind that η∗(c1, c2, d1, d2) is defined by (1.2) and l(c1, c2, d1, d2) is defined
just below the equation.

Upper bound for decay rate: From Lemma 4.1, for any (a+
1 , a

+
2 ) ∈ H+ and (a−1 , a

−
2 ) ∈ H−,

there exist constants C+ and C− for which (4.3) holds. Hence we have

p(c1n+ d1, c2n+ d1) < D+ exp
{
n
(
c1a

+
1 + c2a

+
2

)}
+D− exp

{
n
(
c1a

−
1 + c2a

−
2

)}
≤ D exp

{
n max

[
c1a

+
1 + c2a

+
2 , c1a

−
1 + c2a

−
2

]}
, (5.1)

where D+ = C+ exp
{
d1a

+
1 + d2a

+
2

}
, D− = C− exp

{
d1a

−
1 + d2a

−
2

}
and D = D+ +D−. It follows

that
lim sup

n→∞
1
n

log p(c1n+ d1, c2n+ d1) ≤ max
[
c1a

+
1 + c2a

+
2 , c1a

−
1 + c2a

−
2

]
. (5.2)
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We note that the right hand side of the inequality does not depend on d1 and d2. Taking the
infimum of the right hand side of (5.2) over possible pairs (a+

1 , a
+
2 ) and (a−1 , a

−
2 ), we get an upper

bound of the limes superior. We let

w+(c1, c2) = inf
(a+

1 ,a+
2 )∈H+

(
c1a

+
1 + c2a

+
2

)
,

w−(c1, c2) = inf
(a−1 ,a−

2 )∈H−

(
c1a

−
1 + c2a

−
2

)
, and

w(c1, c2) = max
[
w+(c1, c2), w−(c1, c2)

]
.

(5.3)

Then we have the following.

Theorem 5.1 For arbitrarily positive integers c1, c2 and nonnegative integers d1 and d2, the decay
rate η∗(c1, c2, d1, d2) of p(n1, n2) along l(c1, c2, d1, d2) is bounded from above by exp{w(c1, c2)},
namely

η∗(c1, c2, d1, d2) ≤ exp{w(c1, c2)}. (5.4)

Notations: To derive an explicit expression for w(c1, c2), we prepare some more notations. As
stated before, the closed set K is convex and its periphery Kloop is a round loop. So any straight
line on the (a1, a2)-plane, if it meets Kloop, intersects with Kloop at two points or is tangent to Kloop

at a single point (see Lemma 7.2 of [5] for details). Let bK(1)
1 be the minimum of a1 on Kloop, i.e.

b
K(1)
1 = min{a1 : ∃a2 such that κ(a1, a2) = 0}, (5.5)

and denote the coordinates of the point attaining the minimum as (bK(1)
1 , b

K(1)
2 ). Similarly we denote

the coordinates of the point attaining the minimum of a2 on Kloop as (bK(2)
1 , b

K(2)
2 ). It is known that

b
K(k)
k < 0. On the contrary, bK(k)

k′ may be positive or negative, or equal to 0.
For a given a◦1 such that bK(1)

1 ≤ a◦1 ≤ 0, we let θ2(a◦1) be the second coordinate of the lower
intersection of the straight line a1 = a◦1 with Kloop, namely θ2(a◦1) is the smaller root of the equation
κ(a◦1, a2) = 0 for a2. Similarly, for a given a◦2 such that bK(2)

2 ≤ a◦2 ≤ 0, we let θ1(a◦2) be the smaller
root of the equation κ(a1, a

◦
2) = 0 for a1. Especially we write

b0k′ = θk′(0), and b̂∗k′ = θk′(b∗k) if b∗k ≥ b
K(k)
k . (5.6)

Note that b∗k is the logarithm of η∗k, the decay rate of the marginal queue-length distribution at
Node k as defined in (4.1).

For a point (a1, a2) on Kloop such that bK(1)
1 < a1 < b

K(2)
1 and b

K(2)
2 < a2 < b

K(1)
2 , let σ(a1, a2)

be the gradient of the tangential line of the loop at the point, namely

σ(a1, a2) = −
∂

∂a1
κ(a1, a2)

∂
∂a2

κ(a1, a2)
. (5.7)

As a convention, we regard σ(bK(1)
1 , b

K(1)
2 ) = −∞ and σ(bK(2)

1 , b
K(2)
2 ) = 0. For an arbitrarily given

negative number u, let (τ1(u), τ2(u)) be the coordinates of the point (a1, a2) on Kloop such that

12
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Figure 5.2: H+ and the line attaining
w+(c1, c2) when bK1

1 < b∗1 < bK2
1

b
K(1)
1 < a1 < b

K(2)
1 , bK(2)

2 < a2 < b
K(1)
2 and σ(a1, a2) = u. Note that a line which is tangent to

Kloop at (τ1(u), τ2(u)) with gradient u is −ua1 + a2 = −uτ1(u) + τ2(u) (= const).
Let bK1

1 be the minimum of a1 on Kloop with a2 ≤ 0, i.e.

bK1
1 = min{a1 : ∃a2 such that a2 ≤ 0 and κ(a1, a2) = 0}, (5.8)

and we denote the coordinates of the point attaining the minimum as (bK1
1 , bK1

2 ). The point is given
by (bK(1)

1 , b
K(1)
2 ) if bK(1)

2 ≤ 0, and by (b01, 0) if bK(1)
2 > 0. Similarly we denote the coordinates of the

point attaining the minimum of a2 on Kloop with a1 ≤ 0 as (bK2
1 , bK2

2 ).
For positive integers c1 and c2, we put

v(c1, c2) = min{c1a1 + c2a2 : (a1, a2) ∈ K, a1 ≤ 0, a2 ≤ 0}. (5.9)

Some considerations reveal that

v(c1, c2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c1τ1(−c1/c2) + c2τ2(−c1/c2), if τ1(−c1/c2) < 0 and τ2(−c1/c2) < 0,

c1b
0
1, if τ2(−c1/c2) ≥ 0,

c2b
0
2, if τ1(−c1/c2) ≥ 0.

(5.10)

Note that, the second case may occur only when b
K(1)
2 > 0 and the third case may occur only when

b
K(2)
1 > 0. Hence, if bK(2)

1 < 0 and bK(1)
2 < 0, then the first case occurs.

Explicit expressions for w+(c1, c2) and w�(c1, c2): For a given pair of positive integers c1
and c2, we shall derive explicit expressions for w+(c1, c2) and w−(c1, c2). For w+(c1, c2), we check
cases b∗1 ≥ bK2

1 , bK1
1 < b∗1 < bK2

1 and b∗1 ≤ bK1
1 separately.
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When b∗1 ≥ bK2
1 , the infimum of c1a+

1 + c2a
+
2 over points (a+

1 , a
+
2 ) ∈ H+ is attained at (b∗1, b̂∗2) as

illustrated in Figure 5.1. Hence w+(c1, c2) = c1b
∗
1 + c2b̂

∗
2.

When bK1
1 < b∗1 < bK2

1 , the line c1a1+c2a2 = v(c1, c2) is tangent to Kloop at (τ1(−c1/c2), τ2(−c1/c2)).
If τ1(−c1/c2) ≥ b∗1, this point is included in H+ as illustrated in Figure 5.2. Hence the infimum is
attained at the point, and w+(c1, c2) = v(c1, c2). If τ1(−c1/c2) < b∗1, the point is not included in
H+, and the infimum is attained at the extreme point (b∗1, b̂∗2) with value w+(c1, c2) = c1b

∗
1 + c2b̂

∗
2.

When b∗1 ≤ bK1
1 , the set H+ consists of all the points of K in the third quadrant (except for the

point (b∗1, b̂∗2) when b∗1 = bK1
1 ). Hence the infimum w+(c1, c2) is given by v(c1, c2).

Summarizing the above arguments, we have an explicit expression for w+(c1, c2) as in (5.11)
below. Note that here we use the fact that b∗1 ≥ τ1(−c1/c2) when b∗1 ≥ bK2

1 . For w−(c1, c2) we have
a similar expression as in (5.12).

Lemma 5.2 For a given pair of positive integers c1 and c2, w+(c1, c2) and w−(c1, c2) defined in
(5.3) are expressed as follows.

w+(c1, c2) =

{
c1b

∗
1 + c2b̂

∗
2, if b∗1 ≥ τ1(−c1/c2) and b∗1 ≥ bK1

1 ,

v(c1, c2), if b∗1 ≤ τ1(−c1/c2) or b∗1 ≤ bK1
1 ,

(5.11)

w−(c1, c2) =

{
c1b̂

∗
1 + c2b

∗
2, if b∗2 ≥ τ2(−c1/c2) and b∗2 ≥ bK2

2 ,

v(c1, c2), if b∗2 ≤ τ2(−c1/c2) or b∗2 ≤ bK2
2 .

(5.12)

Explicit expression for w(c1, c2): Using Lemma 5.2, we shall derive an explicit expression for
w(c1, c2) = max{w+(c1, c2), w−(c1, c2)}. We consider three cases separately: (i) τ1(−c1/c2) < 0
and τ2(−c1/c2) < 0, (ii) τ1(−c1/c2) ≥ 0 (and hence τ2(−c1/c2) < 0), and (iii) τ2(−c1/c2) ≥ 0 (and
hence τ1(−c1/c2) < 0).

(i) case τ1(−c1/c2) < 0 and τ2(−c1/c2) < 0: Since the point (τ1(−c1/c2), τ2(−c1/c2)) is on
Kloop, we have τ1(−c1/c2) ≥ bK1

1 and τ2(−c1/c2) ≥ bK2
2 . Hence (5.11) and (5.12) are rewritten as

w+(c1, c2) =

{
c1b

∗
1 + c2b̂

∗
2, if b∗1 ≥ τ1(−c1/c2),

v(c1, c2), if b∗1 ≤ τ1(−c1/c2),

w−(c1, c2) =

{
c1b̂

∗
1 + c2b

∗
2, if b∗2 ≥ τ2(−c1/c2),

v(c1, c2), if b∗2 ≤ τ2(−c1/c2).

Further we note that c1b∗1 + c2b̂
∗
2 ≥ v(c1, c2) and c1b̂∗1 + c2b

∗
2 ≥ v(c1, c2) since the points (b∗1, b̂∗2) and

(b̂∗1, b∗2) are on Kloop and v(c1, c2) = c1τ1(−c1/c2)+c2τ2(−c1/c2). So if we define regions in the third
quadrant of the (a1, a2)-plane as

(when τ1(−c1/c2) < 0 and τ2(−c1/c2) < 0)

W 0 = {(a1, a2) : a1 ≤ τ1(−c1/c2) and a2 ≤ τ2(−c1/c2)},
W+ = {(a1, a2) : a1 ≥ τ1(−c1/c2), c1a1 + c2θ2(a1) ≥ c1θ1(a2) + c2a2 and a1, a2 < 0},
W− = {(a1, a2) : a2 ≥ τ2(−c1/c2), c1a1 + c2θ2(a1) ≤ c1θ1(a2) + c2a2 and a1, a2 < 0},

(5.13)
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Figure 5.3: Curve V and regions W+, W−

and W 0
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Figure 5.4: Relation between (b∗1, b∗2) and
the point attaining w(c1, c2)

then we have Lemma 5.3 below.
(ii) case τ1(−c1/c2) ≥ 0: In this case b∗1 < 0 ≤ τ1(−c1/c2), and hence w+(c1, c2) = v(c1, c2).

On the other hand, bK2
2 = b02 ≥ τ2(−c1/c2). Hence w−(c1, c2) = c1b̂

∗
1 + c2b

∗
2 if b∗2 ≥ b02, and

w−(c1, c2) = v(c1, c2) if b∗2 ≤ b02. Since always c1b̂∗1 +c2b∗2 ≥ v(c1, c2), we have w(c1, c2) = w−(c1, c2).
So the three regions for Lemma 5.3 below are given as follows.

(when τ1(−c1/c2) ≥ 0)

W 0 = {(a1, a2) : a1 < 0 and a2 ≤ b02},
W+ = φ, W− = {(a1, a2) : a1 < 0 and b02 ≤ a2 < 0}.

(5.14)

(iii) case τ2(−c1/c2) ≥ 0: Similarly the three regions for Lemma 5.3 are given as follows.

(when τ2(−c1/c2) ≥ 0)

W 0 = {(a1, a2) : a1 ≤ b01 and a2 < 0},
W+ = {(a1, a2) : b01 ≤ a1 < 0 and a2 < 0}, W− = φ.

(5.15)

Lemma 5.3 For a given pair of positive integers c1 and c2, w(c1, c2) defined in (5.3) is expressed
as follows.

w(c1, c2) =

⎧⎪⎪⎨
⎪⎪⎩
c1b

∗
1 + c2b̂

∗
2 if (b∗1, b∗2) in W+,

c1b̂
∗
1 + c2b

∗
2 if (b∗1, b∗2) in W−,

v(c1, c2) if (b∗1, b∗2) in W 0,

(5.16)

where W 0, W+ and W− are regions defined in (5.13), (5.14) or (5.15).

Note that these expressions for W+, W− and W 0 depend only on the ratio −c1/c2, and any
pair (c1, c2) having a common ratio leads to same regions. Figure 5.3 shows an example of the

15



··················
··················
··················
···················
···················
···················
··················

·······················
···············································································································································································································································································································································································································································································································································································································

·································
·································
·································
·································
·································
·································
····························

�

�

0 a1

a2

·······························································································

··························································································································

···················································································································································

··································································································································································

······································································································································································································

··································································································································································································································

··························································································································································································································································

���������

�
��

(b01, 0)

���
(0, b02)

���
Kloop

�
��

(bK1
1 , bK1

2 )

�
�

�


(bK2
1 , bK2

2 )

Figure 5.5: Movement of W’s when −c1/c2
increases from −∞ to 0
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Figure 5.6: Partition by the form of the
function w(c1, c2)

division of the third quadrant of the (a1, a2)-plane into sets W+, W− and W 0 in the case (i). The
boundary between W+ and W− is denoted by V. Figure 5.4 shows how (b∗1, b∗2) is related to a point
on Kloop which gives the value of w(c1, c2).

Remark 5.1 From Theorem 5.1, an upper bound for the decay rate η∗(c1, c2, d1, d2) of p(n1, n2)
along l(c1, c2, d1, d2) is given by ew(c1,c2). Hence, the lemma above shows that the upper bound
takes the form either

(η∗1)c1(η̂∗2)c2, (η̂∗1)c1(η∗2)c2 or ev(c1,c2), (5.17)

where η̂∗k = exp{b̂∗k}. Let η0
k = exp{b0k}. From (5.10), ev(c1,c2) is given by exp{c1τ1(−c1/c2) +

c2τ2(−c1/c2)} when τ1(−c1/c2) < 0 and τ2(−c1/c2) < 0, by (η0
1)

c1 when τ2(−c1/c2) ≥ 0, and by
(η0

2)
c2 when if τ1(−c1/c2) ≥ 0. Remind that η∗k is the exact decay rate of the marginal queue-length

distribution of Node k. In some systems (such as Jackson type networks), η̂∗k coincides with η∗k.
However, the bound in general may differ from (η∗1)c1(η∗2)c2 . It might be smaller or even larger than
(η∗1)c1(η∗2)c2 . ♦

w(c1, c2) as a function of c1 and c2: So far we have treated c1 and c2 being fixed. Now we
vary c1 and c2 and examine the behavior of w(c1, c2) as a function of them.

We note that, as −c1/c2 → −∞, the curve V in Figure 5.3 tends to the upper left arc of Kloop

from (b01, 0) to (bK1
1 , bK1

2 ), and as −c1/c2 → 0, V tends to the lower right arc of Kloop from (0, b02) to
(bK2

1 , bK2
2 ). Two half-lines, which are boundaries between W+ and W 0 and between W− and W 0,

also move as V moves. Hence, when −c1/c2 increases from −∞ to 0, the boundaries of the regions
move as illustrated in Figure 5.5. So, if we partition the third quadrant of the (a1, a2)-plane into
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eight regions as illustrated in Figure 5.6, the function w(c1, c2) takes different forms according to
the region in which (b∗1, b∗2) falls. Formally these regions are defined as follows.

R0 = {(a1, a2) : κ(a1, a2) = 0, a1 < 0 and a2 < 0},
R1

0 = {(a1, a2) : κ(a1, a2) < 0, a1 < 0 and a2 < 0},
R1

1 = {(a1, a2) : κ(a1, a2) > 0, bK2
1 ≤ a1 < 0 and bK2

2 a1 − bK2
1 a2 ≥ 0},

R1
2 = {(a1, a2) : κ(a1, a2) > 0, bK1

2 ≤ a2 < 0 and bK1
2 a1 − bK1

1 a2 ≤ 0},
R2

0 = {(a1, a2) : κ(a1, a2) > 0, bK1
1 < a1 < bK2

1 and bK2
2 < a2 < bK1

2 },
R2

1 = {(a1, a2) : κ(a1, a2) > 0, bK1
1 < a1 < bK2

1 and a2 ≤ bK2
2 },

R2
2 = {(a1, a2) : κ(a1, a2) > 0, a1 ≤ bK1

1 and bK2
2 < a2 < bK1

2 },
R2

3 = {(a1, a2) : κ(a1, a2) > 0, a1 ≤ bK1
1 and a2 ≤ bK2

2 }.

(5.18)

Note that κ(a1, a2) = 0 implies that the point (a1, a2) is on Kloop, κ(a1, a2) < 0 implies that (a1, a2)
is inside of Kloop, and κ(a1, a2) > 0 implies that (a1, a2) is outside of Kloop. Then we have the
following lemma. Remind that, from Theorem 5.1, exp{w(c1, c2)} is our upper bound of the decay
rate η∗(c1, c2, d1, d2) of p(n1, n2) along line l((c1, c2, d1, d2).

Lemma 5.4 The function w(c1, c2) is given as follows.

If (b∗1, b
∗
2) ∈ R0, then w(c1, c2) = c1b

∗
1 + c2b

∗
2. (5.19)

If (b∗1, b
∗
2) ∈ R1

0, then w(c1, c2) =

⎧⎨
⎩
c1b

∗
1 + c2b̂

∗
2 for − c1/c2 ≤ (b̂∗2 − b∗2)/(b∗1 − b̂∗1),

c1b̂
∗
1 + c2b

∗
2 for − c1/c2 ≥ (b̂∗2 − b∗2)/(b∗1 − b̂∗1).

(5.20)

If (b∗1, b
∗
2) ∈ R1

1, then w(c1, c2) = c1b
∗
1 + c2b̂

∗
2. (5.21)

If (b∗1, b
∗
2) ∈ R1

2, then w(c1, c2) = c1b̂
∗
1 + c2b

∗
2. (5.22)

If (b∗1, b
∗
2) ∈ R2

0, then w(c1, c2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c1b

∗
1 + c2b̂

∗
2 for − c1/c2 ≤ σ(b∗1, b̂∗2),

v(c1, c2) for σ(b∗1, b̂∗2) ≤ −c1/c2 ≤ σ(b̂∗1, b∗2),

c1b̂
∗
1 + c2b

∗
2 for − c1/c2 ≥ σ(b̂∗1, b∗2).

(5.23)

If (b∗1, b
∗
2) ∈ R2

1, then w(c1, c2) =

⎧⎨
⎩
c1b

∗
1 + c2b̂

∗
2 for − c1/c2 ≤ σ(b∗1, b̂∗2),

v(c1, c2) for − c1/c2 ≥ σ(b∗1, b̂∗2).
(5.24)

If (b∗1, b
∗
2) ∈ R2

2, then w(c1, c2) =

⎧⎨
⎩
v(c1, c2) for − c1/c2 ≤ σ(b̂∗1, b∗2),

c1b̂
∗
1 + c2b

∗
2 for − c1/c2 ≥ σ(b̂∗1, b∗2).

(5.25)

If (b∗1, b
∗
2) ∈ R2

3, then w(c1, c2) = v(c1, c2). (5.26)

Proof The case (b∗1, b∗2) ∈ R0 is a special case where (b∗1, b∗2) is on Kloop and hence b̂∗k = b∗k from
the definition (5.6). Since (b∗1, b∗2) is in W+ or W−, w(c1, c2) is always given by c1b

∗
1 + c2b

∗
2 from

(5.16). This proves (5.19).
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If (b∗1, b∗2) ∈ R1
0, then (b∗1, b∗2) ∈ W+ for small −c1/c2, and (b∗1, b∗2) ∈ W− for large −c1/c2.

The changing point is determined by the equation c1b
∗
1 + c2b̂

∗
2 = c1b̂

∗
1 + c2b

∗
2. A trite calculation

proves (5.20). If (b∗1, b∗2) ∈ R1
1, then (b∗1, b∗2) stays in W+ for any −c1/c2. Hence, from (5.16),

w(c1, c2) = c1b
∗
1 + c2b̂

∗
2, and this proves (5.21). (5.22) is proved in a similar manner.

If (b∗1, b∗2) ∈ R2
0, then (b∗1, b∗2) ∈ W− for large −c1/c2, (b∗1, b∗2) ∈ W0 for medium −c1/c2, and

(b∗1, b∗2) ∈ W+ for small −c1/c2. The changing points are given by equations b∗2 = τ2(−c1/c2) and
b∗1 = τ1(−c1/c2). Since these equations are equivalent to −c1/c2 = σ(b̂∗1, b∗2) and to −c1/c2 =
σ(b∗1, b̂∗2) respectively, we have (5.23). When (b∗1, b∗2) ∈ R2

1, the case (b∗1, b∗2) ∈ W− cannot occur.
When (b∗1, b∗2) ∈ R2

2, the case (b∗1, b∗2) ∈ W+ cannot occur. When (b∗1, b∗2) ∈ R2
3, always (b∗1, b∗2) ∈ W0.

Hence (5.24)∼(5.26) are proved immediately from (5.16). ♦

Combining the above lemma with Theorem 5.1, we have an upper bound for the decay rate
η∗(c1, c2, d1, d2) of the joint queue-length probability p(n1, n2) along line l(c1, c2, d1, d2).

6 Use of upper bound η∗
k

In the preceding section, the upper bound exp{w(c1, c2)} of η∗(c1, c2, d1, d2) was derived from
the exact decay rates η∗1 and η∗2 of the marginal queue-length distributions. However, these marginal
decay rates are usually unknown. By scrutinizing the deriving process, we see that another upper
bound can be derived in the same way by using arbitrary upper bounds for the marginal decay
rates. Here we shall apply the upper bound η∗k proposed in [5].

For arbitrarily given positive numbers ηk (< 1), we let

H+(η1) = {(a1, a2) : κ(a1, a2) ≤ 0, log η1 < a1 < 0, a2 < 0}, and

H−(η2) = {(a1, a2) : κ(a1, a2) ≤ 0, a1 < 0, log η2 < a2 < 0}. (6.1)

We choose η�
k so that η∗k ≤ η�

k < 1, then H+(η�
1) is a subset of H+ and H−(η�

2) is a subset of H−.
So, our fundamental lemma, Lemma 4.1, still holds if we use H+(η�

1) instead of H+ and H−(η�
2)

instead of H−. We let w�(c1, c2; η
�
1, η

�
2) be the function defined by (5.3) using H+(η�

1) and H−(η�
2)

instead of H+ and H−. Then it is represented as in (5.19) ∼ (5.26) where b∗k is replaced with
b�k = log η�

k and b̂∗k′ with b̂�k′ = θk′(b�k).
The following lemma is a trivial generalization of Theorem 5.1.

Lemma 6.1 For positive numbers η�
1 and η�

2 such that η∗k ≤ η�
k < 1, we let η�(c1, c2; η

�
1, η

�
2) =

exp{w�(c1, c2; η
�
1, η

�
2)}. Then it is an upper bound of the decay rate η∗(c1, c2, d1, d2) of p(n1, n2)

along l(c1, c2, d1, d2) for arbitrarily given positive integers c1, c2, d1 and d2. Namely

η∗(c1, c2, d1, d2) ≤ η�(c1, c2; η
�
1, η

�
2). (6.2)

In the previous paper [5], the authors have derived an upper bound η∗k of the decay rate η∗k of
the marginal queue-length distribution for node k. The upper bound is defined as follows. For the
function hk(ak) defined in (3.12) we let

Ek = {(a1, a2) ∈ Kloop : ak < 0 and hk(ak) ≤ ak′ ≤ 0} , and (6.3)
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bEk
k = inf {ak : ∃ ak′ such that (a1, a2) ∈ Ek} . (6.4)

Further we restrict Ek for ak′ by bEk′
k′ as

Fk = Ek ∩ {(a1, a2) : ak′ ≥ b
Ek′
k′ }

= {(a1, a2) ∈ Kloop : ak < 0 and max{hk(ak), b
Ek′
k′ } ≤ ak′ ≤ 0},

(6.5)

and let
bFk
k = inf{ak : ∃ ak′ such that (a1, a2) ∈ Fk}. (6.6)

Then our upper bound is defined as
η∗k = exp{bFk

k }. (6.7)

Theorem 4.1 in [5] proved that η∗k ≤ η∗k < 1. We will write as η(c1, c2) the upper bound
η�(c1, c2; η∗1, η∗2) in (6.2) using η∗k.

To describe η∗k or bFk
k more concretely, we prepare some notations. The curve ak′ = hk(ak)

on the (a1, a2)-plane intersects with Kloop at two points, at the origin (0, 0) and at a point having
negative k-th coordinate. Let (bhk

1 , bhk
2 ) be the coordinates of the latter point, namely, for example,

if k = 1,

bh1
1 = {unique negative root of equation κ(a1, h1(a1)) = 0 for a1} and bh1

2 = h1(bh1
1 ). (6.8)

Further we let b̂hk
k′ = θk′(bhk

k ). (This quantity was represented by bhk,c
k′ in [5] with a slightly different

definition.) Note that, for example, b̂h1
2 is the second coordinate of the lower intersection of the

straight line a1 = bh1
1 with Kloop. Further we denote as

ηhk
k = exp{bhk

k }, ηhk
k′ = exp{bhk

k′ } and η̂hk
k′ = exp{b̂hk

k′ }. (6.9)

In Corollary 4.2 of [5], it was shown that the pair (bF1
1 , bF2

2 ), which derives the upper bounds
η∗1 and η∗2, takes one of the following six forms depending on conditions designated in Theorem 6.2
below:

(a) (bh1
1 , bh2

2 ) (∈ R1
0 ∪R0 ∪R2

0)

(b) (bh1
1 , b̂h1

2 ) (∈ R0)

(c) (b̂h2
1 , bh2

2 ) (∈ R0)

(d) (bh1
1 , bK2

2 ) (on the boundary between R2
0 and R2

1)

(e) (bK1
1 , bh2

2 ) (on the boundary between R2
0 and R2

2)

(f) (bK1
1 , bK2

2 ) (at the corner of R2
3)

We will refer to them as “type” of the model. Then, from Lemma 5.4, we can get a concrete
expression for η(c1, c2) = η�(c1, c2; η∗1, η∗2) in each type.

Theorem 6.2 For positive integers c1, c2, d1 and d2, the decay rate η∗(c1, c2, d1, d2) of the joint
queue-length probability p(n1, n2) along line l(c1, c2, d1, d2) is bounded from above by η(c1, c2) given
below.
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(a) If max{bh1
1 , bK2

1 } < bh2
1 and max{bh2

2 , bK1
2 } < bh1

2

[
(bF1

1 , bF2
2 ) = (bh1

1 , bh2
2 )
]
, then

(a-0) if κ(bh1
1 , bh2

2 ) = 0
[
(bh1

1 , bh2
2 ) ∈ R0

]
,

η(c1, c2) = (ηh1
1 )c1(ηh2

2 )c2 , (6.10)

(a-1) if κ(bh1
1 , bh2

2 ) < 0
[
(bh1

1 , bh2
2 ) ∈ R1

0

]
,

η(c1, c2) =

⎧⎨
⎩

(ηh1
1 )c1(η̂h1

2 )c2 for − c1/c2 ≤ (b̂h1
2 − bh2

2 )/(bh1
1 − b̂h2

1 ),

(η̂h2
1 )c1(ηh2

2 )c2 for − c1/c2 ≥ (b̂h1
2 − bh2

2 )/(bh1
1 − b̂h2

1 ),
(6.11)

(a-2) if κ(bh1
1 , bh2

2 ) > 0
[
(bh1

1 , bh2
2 ) ∈ R2

0

]
,

η(c1, c2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ηh1
1 )c1(η̂h1

2 )c2 for − c1/c2 ≤ σ(bh1
1 , b̂h1

2 ),

exp{v(c1, c2)} (= exp{c1τ1(−c1/c2) + c2τ2(−c1/c2)})
for σ(bh1

1 , b̂h1
2 ) ≤ −c1/c2 ≤ σ(b̂h2

1 , bh2
2 ),

(η̂h2
1 )c1(ηh2

2 )c2 for − c1/c2 ≥ σ(b̂h2
1 , bh2

2 ).

(6.12)

(b) If max{bh2
1 , bK2

1 } ≤ bh1
1

[
(bF1

1 , bF2
2 ) = (bh1

1 , b̂h1
2 ) ∈ R0

]
, then

η(c1, c2) = (ηh1
1 )c1(η̂h1

2 )c2 . (6.13)

(c) If max{bh1
2 , bK1

2 } ≤ bh2
2

[
(bF1

1 , bF2
2 ) = (b̂h2

1 , bh2
2 ) ∈ R0

]
, then

η(c1, c2) = (η̂h2
1 )c1(ηh2

2 )c2 . (6.14)

(d) If max{bh1
1 , bh2

1 } ≤ bK2
1 and bh1

2 > bK1
2

[
(bF1

1 , bF2
2 ) = (bh1

1 , b
K2
2 ) ∈ R2

1

]
, then

η(c1, c2) =

⎧⎨
⎩

(ηh1
1 )c1(η̂h1

2 )c2 for − c1/c2 ≤ σ(bh1
1 , b̂h1

2 ),

exp{v(c1, c2)} for − c1/c2 ≥ σ(bh1
1 , b̂h1

2 ).
(6.15)

(e) If max{bh1
2 , bh2

2 } ≤ bK1
2 and bh2

1 > bK2
1

[
(bF1

1 , bF2
2 ) = (bK1

1 , bh2
2 ) ∈ R2

2

]
, then

η(c1, c2) =

⎧⎨
⎩

exp{v(c1, c2)} for − c1/c2 ≤ σ(b̂h2
1 , bh2

2 ),

(η̂h2
1 )c1(ηh2

2 )c2 for − c1/c2 ≥ σ(b̂h2
1 , bh2

2 ).
(6.16)

(f) If bh1
2 ≤ bK1

2 and bh2
1 ≤ bK2

1

[
(bF1

1 , bF2
2 ) = (bK1

1 , bK2
2 ) ∈ R2

3

]
, then

η(c1, c2) = exp{v(c1, c2)} (6.17)

Remark 6.1 Note that the function η(c1, c2) takes of the form ηc1
1 η

c2
2 in any case. Hence η(c1n+

d1, c2n+ d2) = ηd1
1 η

d2
2 {η(c1, c2)}n, and the result of Theorem 6.2 can be understood as

lim sup
n1,n2→∞

{
p(n1, n2)
η(n1, n2)

}c1/n1

≤ 1 (6.18)

when n1 and n2 get large along line l(c1, c2, d1, d2).
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Remark 6.2 We can easily check that Theorem 5.1 holds for case c1 = 0 and c2 > 0. However,
η(0, c2) = η∗2 for any c2 and thus the upper bound for η∗(0, c2, d1, d2) is trivial.

Remark 6.3 In the proof of Lemma 4.1, we use Lemma 4.2 instead of handling the rate matrix R

directly. To derive a lower bound of η∗(c1, c2, d1, d2) in the same manner, we need to find a vector
q satisfying qR ≥ ξq for some constant ξ. However, we presently have no way to construct such a
vector, and this is left as a future work.

7 Examples and discussions

Example 7.1 (Tandem queueing system 1) Fujimoto et al. [3] discussed decay rate of the joint
queue-length probabilities in a two-stage tandem queueing system PH/PH/s1 →/PH/s2. We com-
pare our result with theirs for the single server type s1 = s2 = 1. The tandem configuration requires
that λ2 = 0, r12 = r20 = 1 and r10 = r21 = 0. Hence φ2(a2) ≡ 0, h1(a1) ≡ 0 and h2(a2) = a2. Then
κ(a1, a2) = φ1(a1) + ψ1(−a1 + a2) + ψ2(−a2), and b-values satisfy relations bh1

1 = b01, b
h1
2 = 0 and

bh2
1 = bh2

2 . Notice that the exact decay rate η∗1 of the marginal queue-length distribution of Node 1
is given by exp{b01}.

Their results are roughly summarized as follows1.

(i) Under the condition b
K(1)
2 < 0, the decay rate η∗(c1, c2, d1, d2) along line l(c1, c2, d1, d2) is

given by (ηh1
1 )c1(η̂h2

2 )c2 when −c1/c2 is sufficiently small (Theorem 3.1 of [3]).

(ii) Under the condition max{bh1
1 , b

K(2)
1 } < bh2

1 , the decay rate is given by (η̂h1
1 )c1(ηh2

2 )c2 when
−c1/c2 is sufficiently close to 0 (Theorem 3.2 of [3]).

Consider the case (i) and assume that bK(1)
2 < 0. Then, when −c1/c2 is very small, the boundary

curve V between regions W+ and W− (see Figure 5.3) is near the upper left arc of Kloop from
(b01, 0) to (bK1

1 , bK1
2 ) as indicated in Figure 5.5. Since η∗1 = exp{b01}, this implies that the point

(b∗1, b∗2) = (log η∗1 , log η∗2) is in W+ irrespective of the value of η∗2 . Hence our upper bound for
η∗(c1, c2, d1, d2) in Theorem 5.1 is given by exp{c1b∗1 + c2b̂

∗
2} = (η∗1)c1(η̂∗2)c2 = (ηh1

1 )c1(η̂h2
2 )c2 from

Lemma 5.3, and this coincides with the exact decay rate given in [3]. For the bound using η∗k,
among the eight types of Theorem 6.2, five types, (a-0), (a-1), (a-2), (b) and (d), may occur under
the condition b

K(1)
2 < 0. In types (a-1), (a-2), (b) and (d), we can easily check that our upper

1Theorem 3.1 of [3] is rigorously stated in the following manner. Here we use our notations. Note that i2, the

phase of the exogeneous arrival process of Node 2, is always equal to 0 from the tandem assumption. If b
K(1)
2 < 0,

for fixed n2, i1, j1 and j2, the stationary state probability decays geometrically with rate ηh1
1 as n1 → ∞:

p(n1, n2)i1,0,j1,j2 ∼ G1(n2; i1; j1, j2) (ηh1
1 )n1 .

The multiplicative constant G1(n2; i1; j1, j2) decays geometrically with rate η̂h2
2 as n2 → ∞:

G1(n2; i1; j1, j2) ∼ G2 C0(i1) C1(j1) C2(j2) (η̂h2
2 )n2 ,

where C0(i1), C1(j1) and C2(j2) are constants determined from the vector � and G2 is a constant independent of

n2, i1, j1 and j2. The original condition of the theorem is the one similar to η̂h2
2 < 1, but their definition of the

corresponding quantity to η̂h2
2 is slightly different from ours and the condition is equivalent to b

K(1)
2 < 0.
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Table 7.1: Corresponding types of models listed in Table 1 of [2]

no. model ρ1 ρ2 type no. model ρ1 ρ2 type
11 M/H2/1 → /E2/1 0.60 0.40 (b) 15 E4/M/1 → /H2/1 0.60 0.40 (b)
12 E2/E2/1 → /E2/1 0.60 0.40 (b) 16 M/E2/1 → /E2/1 0.60 0.35 (b)
13 M/H2/1 → /H2/1 0.60 0.40 (b) 17 H2/E2/1 → /E2/1 0.60 0.40 (b)
14 E2/H2/1 → /E2/1 0.60 0.40 (b) 18 M/E2/1 → /H2/1 0.60 0.20 (b)

bound for small −c1/c2 is given by (ηh1
1 )c1(η̂h1

2 )c2 . In type (a-0), we see that b̂h1
2 = bh2

2 . Hence the
upper bound is given by (ηh1

1 )c1(ηh2
2 )c2 = (ηh1

1 )c1(η̂h1
2 )c2 . Thus in each of the five types, our bound

is equal to (ηh1
1 )c1(η̂h1

2 )c2 and coincides with the exact decay rate.
Next consider the case (ii) and assume that max{bh1

1 , b
K(2)
1 } < bh2

1 . When −c1/c2 is close to 0,
the boundary curve V is near the lower right arc of Kloop from (0, b02) to (bK2

1 , bK2
2 ). However, in

this type, we cannot discuss our upper bound given in Theorem 5.1 since we don’t know the value
of η∗2 . For the upper bound using η∗k, the condition max{bh1

1 , b
K(2)
1 } < bh2

1 may not be violated
in five types, (a-0), (a-1), (a-2), (c) and (e), among the eight types of Theorem 6.2. In types
(a-1), (a-2), (c) and (e), we can easily check that our upper bound for −c1/c2 being near to 0 is
given by (η̂h1

1 )c1(ηh1
2 )c2 . In type (a-0), we see that b̂h2

1 = bh1
1 . Hence the upper bound is given by

(ηh1
1 )c1(ηh2

2 )c2 = (η̂h1
1 )c1(ηh1

2 )c2 . Thus in each of the five types, our bound is equal to (η̂h1
1 )c1(ηh1

2 )c2

and coincides with the exact decay rate.

Example 7.2 (Tandem queueing system 2) Fujimoto et al. [2] reported results of an extensive
numerical experiment on the joint queue-length probability p(n1, n2) for tandem queueing systems
PH/PH/1→/PH/1, and gave a conjecture on the decay rate. We shall see their results from our
point of view of types given in Theorem 6.2 with numerical results for the function

γ(n1, n2) =
p(n1, n2)
η(n1, n2)

. (7.1)

Note that the function γ(n1, n2) is the quantity in the braces of (6.18).

Models of type (b): In Table 1 of [2], numerical results were presented for eight models listed
in Table 7.12 on the ratio

g(n1, n2) =
p(n1, n2)

(ηh1
1 )n1(η̂h1

2 )n2
(7.2)

when n1 and n2 run along lines l(20,5, 15, 5) and l(5, 20, 5, 15). The results of [2] shows that the
ratio converges to a common limit in each model. By the classification in Theorem 6.2, all the
models are of type (b) and η(c1, c2) = (ηh1

1 )c1(η̂h1
2 )c2 . Hence the function g(n1, n2) coincides with

2As for model representation, we use a similar notation to the Kendall’s one. For inter-arrival and service time

distributions, M stands for an exponential distribution, E2 for an Erlang distribution with 2 phases, and H2 for a

hyper exponential distribution with 2 phases having distribution function of the form F (x) = 0.2(1 − e−3.4νx) +

0.8(1 − e−0.85νx).
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Figure 7.1: Graph of γ(n1, n2) for the Model 16
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Figure 7.2: Graph of γ(n1, n2) for the Model 21

Table 7.2: Corresponding types of models listed in Table 2 of [2]

(group 1)
no. model ρ1 ρ2 type (b̂h1

2 − bh2
2 )/(bh1

1 − b̂h2
1 )

21 M/H2/1 → /E2/1 0.60 0.80 (a-1) −0.901
22 E2/E2/1 → /E2/1 0.60 0.70 (a-0) NAN
23 M/H2/1 → /H2/1 0.60 0.75 (a-1) −0.912
24 E2/H2/1 → /E2/1 0.60 0.85 (a-1) −1.050
25 E4/M/1 → /H2/1 0.60 0.77 (a-1) −0.965

(group 2)
no. model ρ1 ρ2 type σ(bh1

1 , b̂h1
2 ) σ(b̂h2

1 , bh2
2 )

26 M/E2/1 → /E2/1 0.60 0.71 (a-2) −2.506 −0.216
27 H2/E2/1 → /E2/1 0.60 0.70 (a-2) −3.403 −0.050
28 M/E2/1 → /H2/1 0.60 0.70 (a-2) −2.786 −0.593

γ(n1, n2). The authors draw graphs of γ(n1, n2) for these models, and see that all the graphs are
almost flat except near the axes as designated in Fig. 7.1 for Model 16. From the numerical results
and the graphs, we may expect that, in a model of type (b), there exists a common limit C such
that the joint state probability p(n1, n2) decays geometrically in the sense that, for any positive
integers c1, c2, d1 and d2,

lim
n→∞

p(c1n+ d1, c2n+ d2)
(ηh1

1 )c1n+d1(η̂h1
2 )c2n+d2

= C. (7.3)

Of course this is only a conjecture, and it is an open problem whether this property generally holds
or not.

Models of type (a-1): In Table 2 (a) of [2], numerical results were presented for five models listed
in Table 7.2 (group 1) on the ratio g(n1, n2) in (7.2) when n1 and n2 run along line l(20,5, 15, 5)
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Figure 7.3: Graph of γ(n1, n2) for the Model 26

 0

 50

 100

 150

 200

 0
 50

 100
 150

 200

 0

 0.1

 0.2

 0.3

 0.4

 0.5

n1

n2

Figure 7.4: Graph of γ(n1, n2) for the Model 28

and on the ratio
g(n1, n2) =

p(n1, n2)
(η̂h2

1 )n1(ηh2
2 )n2

(7.4)

when n1 and n2 run along line l(5, 20, 5, 15). Both ratios seem to converge. Figure 7.2 shows
a graph of γ(n1, n2) for Model 21. Note that this model is of type (a-1) of Theorem 6.2, and
hence γ(n1, n2) = g(n1, n2) for −n1/n2 ≤ u and γ(n1, n2) = g(n1, n2) for −n1/n2 ≥ u, where
u = (b̂h1

2 − bh2
2 )/(bh1

1 − b̂h2
1 ). The value of u for this particular model is −0.901 as presented in

Table 7.2. The graph of γ(n1, n2) in Fig. 7.2 is almost flat in the region −n1/n2 < u and is
also almost flat with another value in the region −n1/n2 > u except for the neighborhood of the
boundary. Hence we may expect that, for −c1/c2 ≤ u, the geometric convergence (7.3) holds, and
for −c1/c2 ≥ u, the geometric convergence

lim
n→∞

p(c1n+ d1, c2n+ d2)
(η̂h1

1 )c1n+d1(ηh1
2 )c2n+d2

= C (7.5)

holds with another constant C. Models 23, 24 and 25 of Table 7.2 (group 1) exhibit similar behaviors
in γ(n1, n2). On the contrary, Model 22 is of type (a-0), and its behavior in γ(n1, n2) is rather
similar to those of type (b).

Models of type (a-2): In Table 2 (b) of [2], numerical results were presented for g(n1, n2) in (7.2)
when n1 and n2 run along line l(20,5, 15, 5) and for g(n1, n2) in (7.4) when n1 and n2 run along
line l(5, 20, 5, 15) for Models 26, 27 and 28 of Table 7.2 (group2). The paper [2] said that the values
of these functions seemed converging but the convergence speed was very slow. In the classification
of Theorem 6.2, these three models are all of type (a-2), and the values of thresholds σ(bh1

1 , b̂h1
2 )

and σ(b̂h2
1 , bh2

2 ) are as shown in Table 7.2 (group 2). For the line l(20,5, 15, 5), −c1/c2 is equal to
−4.0, and for the line l(5, 20, 5, 15) it is equal to −0.25. Hence in Models 26 and 27, the latter
gradient −c1/c2 = −0.25 is in between σ(bh1

1 , b̂h1
2 ) and σ(b̂h2

1 , bh2
2 ). Therefore, the estimated decay

rate (η̂h2
1 )n1(ηh2

2 )n2 used in (7.4) is clearly larger than the exact decay rate (if it exists), and the
ratio cannot converge to a positive limit. In Figs. 7.3 and 7.4, the graph of γ(n1, n2) is presented
for Models 26 and 28, respectively, and they seem curving. Our numerical results also show some
slow convergence or non-convergence in these models. So, to understand the decay property of
p(n1, n2) for models of type (a-2), we need further study.
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Table 7.3: Two-node Markovian queueing system M/E2–M/E2

no. model ρ1 ρ2 type σ(bh1
1 , b̂h1

2 ) σ(b̂h2
1 , bh2

2 )
31 M/E2-M/E2 0.7 0.7 (a-2) −2.216 −0.4500
32 M/E2-M/E2 0.65 0.5 (d) −0.537 −
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Figure 7.5: Graph of γ(n1, n2) for the model 31
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Figure 7.6: Graph of γ(n1, n2) for the model 32

Example 7.3 (Two-node Markovian queueing system M/E2–M/E2) Finally, we show two exam-
ples of a two-node Markovian queueing system which is not a tandem queueing system. The models
are listed in Table 7.3, and in both models λ1 = λ2 = 1 and r12 = r21 = 0.4. The graph of γ(n1, n2)
is presented in Figs. 7.5 and 7.6. Model 31 is of type (a-2), and the graph is similar to the one for
Model 28 in Fig. 7.4. On the other hand, Model 32 is of type (d), and the graph is almost flat in
the region −c1/c2 < σ(bh1

1 , b̂h1
2 ) and is curving in the region −c1/c2 > σ(bh1

1 , b̂h1
2 ). For details of the

decaying behavior of p(n1, n2), we need further study.
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