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Renormalization factors for bilinear and four-quark operators with the Kogut-Susskind fermion ac-
tion are perturbatively calculated to one-loop order in the general covariant gauge. Results are present-
ed both for gauge-invariant and -noninvariant operators. For four-quark operators the full renormaliza-
tion matrix for a complete set of operators with two types of color contraction structures is worked out

and detailed numerical tables are given.
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I. INTRODUCTION

Calculation of weak matrix elements of hadrons is one
of the central subjects in numerical simulation of lattice
QCD. An important ingredient in such studies is the
value of renormalization factors that relate operators on
the lattice to those in the continuum. In this paper we
present a one-loop evaluation of renormalization factors
for bilinear and four-quark operators for the Kogut-
Susskind (KS) fermion action. The results have been used
in our recent work for the pion decay constant [1] and
the K°-K° mixing matrix [2].

Perturbative calculation of renormalization factors for
KS fermions has been developed in several previous stud-
ies [3-7]. In particular Daniel and Sheard [5,6] calculat-
ed the renormalization factors for KS bilinear operators
[5] and a subset of four-quark operators [6] in the Feyn-
man gauge. For applications in numerical simulations,
however, their results need to be extended in several
directions. (1) Weak operators for KS fermions are gen-
erally extended in space and time. The calculation of
Daniel and Sheard has been carried out for the operators
which are made gauge invariant through insertion of
gauge link variables between quark and antiquark fields.
In recent numerical simulations, however, an alternative
method of evaluating matrix elements of gauge-
noninvariant operators without link insertions on gauge-
fixed configurations has been employed [8]. In fact,
whether the two types of operators yield consistent re-
sults is the question we have recently addressed [1,2].
Analyzing this problem requires the renormalization fac-
tors for gauge noninvariant operators as well as for gauge
invariant ones. We have therefore carried out the calcula-
tions for both types of operators. (2) Four-quark opera-
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tors of form 0,=(g{g%)(g3g2) with a,b the color indices

generally mix with those of form @, =(7%g%)(g%g2) un-
der renormalization. We evaluate the full renormalization
factor for the two sets of operators, while the previous
work of Sheard [6] listed explicit results only for @, mix-
ing with itself and with O,. (3) Renormalization factors
for lattice operators generally take larger values than
those for continuum operators due to contribution of
gluon tadpoles. Lepage and Mackenzie [9] have argued
that the tadpole contributions can be removed by a re-
scaling of quark and gluon fields. We work out the renor-
malization factors for the rescaled operators and examine
to what extent their values are reduced by rescaling. (4)
In addition to the extensions above we have carried out
the calculation in the general covariant gauge which al-
lows us to check the gauge parameter independence of
the results for gauge invariant operators.

For bilinear quark operators a calculation similar to
ours has been reported recently by Patel and Sharpe [10].
Our results are in agreement with theirs and also with
those of Ref. [5] for gauge invariant operators. Patel and
Sharpe have extended their calculation to four-quark
operators [11]. For the gauge noninvariant operators
which are relevant for the K meson B parameter their
values fully agree with our results. We also find agree-
ment with the results of Sheard [6] for gauge invariant
four-quark operators when a comparison is possible.

We should mention that we do not treat penguin
operators in this paper. Calculation of their renormaliza-
tion factors is technically feasible, which should be pur-
sued in future investigations.

This paper is organized as follows. In Sec. II KS
operators whose renormalization factors we evaluate are
defined and a general strategy for one-loop calculations is
summarized following the method of Daniel and Sheard
[5,6]. Results for quark bilinear operators are given in
Sec. III. Those for four-quark operators are described in
Sec. IV where the relation between lattice and continuum
operators is illustrated for the case of AS =2 operator
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relevant for extraction of the K°K° mixing matrix.
Analytical expressions for one-loop amplitudes are sum-
marized in Appendixes A, B, and C.

II. FORMALISM

A. Quark operators

The KS fermion action is given by

S =a Enu(n X(n)U,(n)x(n +()

~X(n +p)U L (ny(n)]

+mY(n)x(n) |, (1

where a is the lattice spacmgr n) denotes the gauge

link variable, 7,(n)=(—1)" "#=1 and y and J are
the single component KS fermion ﬁelds For the con-
struction of four-component Dirac fields we employ the
coordinate-space method of taking a linear combination
of the y fields over a hypercube [12,13]. The Dirac field
Q (2N) defined for each hypercube 2N € (2Z)* is given by

QN =53 (r JuxN +4), @)
A

where a and i are the Dirac and flavor indices, and

A, A, A, 4
ATV Y s (3)
with A4 running over the vertices of a hypercube (i.e.,
A,=Corl,u=1,...,4).
The bilinear quark operator we use is defined by

Osp=0(ys®&r)Q . @)
Here ys=7:'7373'vs and &=v] 'v; 73 vs *
with the components S, and F, either O or 1. They act
on spinor and flavor indices of the Dirac field Q, and
represent the spin and flavor SU(4) content of the bilinear
operator. In terms of the y field this operator can be
written as

1 . —
@SFZEZXA(VS®§F)ABXB , (5)
4B

where we write y , instead of Y(2N + A4) for simplicity
J

and

(vs®Ep) ap="1tr(vTiysypvh) . (6)

The operator (5) is not gauge invariant. In order to
make it gauge invariant we insert the average of products
of gauge link variables along all possible shortest paths
connecting sites 2N + 4 and 2N +B. Denoting the link
factor by U 45 we then define the gauge invariant bilinear
operator by

1 g T
Osr=—-3X%(vs®Ep) s UL X% (7
16 “B

with a and b the color indices.
We consider two types of four-quark operators
differing in the color contraction structure defined by

@2=Qa(‘}’sl@>§p1 )Qaéb(Ysz‘gng )Q°, (8)

0,=0%ys ®&r )Q"0"y5,®&F 0, ©

with a and b the color indices. In the method of Ref. [14]
for calculating weak matrix elements with KS fermions
the operator @, yields an amplitude with two color con-
tractions after fermion integration and @, with a single
color contraction. For this reason we shall refer to O,
and O, as color two-loop and one-loop operators. These
two operators generally mix under renormalization.

The expression of the operators above in terms of the y
field is given by

2 Xulrs ®§F1)ABXBXC(7’S ®§F2)CDXD ’
ABCD

(10)

2

2 Xulrs ®§F1)ABXBXC(7’SZ®§F )epXD
ABCD

=L
16
where we again ignored the hypercube label 2N in

X(2N + A) for simplicity. To make these operators gauge
invariant we insert gauge link factors according to

(11

0= |76 | 2 Xulrs,®&r) 4BXBX Y5, @ XF )epXp U UE | (12)
ABCD
1
0,= 16 E X 75185171)ABXBXC(7S2®§F2)CDXDU (13)
ABCD

For the color two-loop operators the length of paths for the link factors U 45 and Uy, is fixed since (ys®£&f) 4p is non-
vanishing only for 4 +B =S + F(mod2). On the other hand, the length varies for the factors U ,;, and Ucp that appear

in the color one-loop operator.

B. Feynman rules

We adopt the general covariant gauge with a gauge parameter « in our perturbative calculations. The gluon propaga-

tor is given by
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5 5 8.~ sin(ak, /2) sin(ak, /2)
D, (k)= o —(1—a)
uv e a

zﬁ% sin(ak /2)

(14)

2 ’
EB— sinX(akz/2) ]
and the KS fermion propagator takes the form
2“—_0—1- sinap,,8(p —q +nfi/a)+m8(p —q)

S(p’ _q)ab=8¢xb 1 ’ (15)
2 2
2#;2— sin‘ap, +m

where
p—1
a=y» (16)
and
8(p)=(2m)*S8 p+l’1n (17)
n
The one-gluon vertex arising from the action is given by
V,(p,—q;Kk)g=—ig(T")y, cosa(p +k/2),8(p —q +k +n@/a), (18)
with T/ the SU(3) generators normalized by Tr(T/T/)=8,, /2, and the two-gluon vertex by
1o k,+k, _ _
VD, —q; ky,ky)gp =iag*L{T', T’} sina p+ 5 8,,0(p —q +k +ky+7p/a), (19)
u
where p, q are the incoming fermion momenta and k, k,k, the gluon momenta.
Vertices of bilinear operators (7) have the form
M, =)oy =80y 15 e 4~y 58Er).ap 20)
AB
M (p, — q;k),,,,=-—iga(T1),,,, 162 zewp A~10qB(y @Er) 4p(A —B), ftyp (ak) 1)
(2)(P, q,; k]’k )ab l(lga)zl{TI TJ ab 1623’apA_mq B('}’s@é‘[r AB(A B) (A B)vg(AB)(akl,akz), (22)
where the superscript in parentheses denotes the number of emitted gluons. The function f# 5, (ak) is defined by
4 — 4)-6P
£t 1y (ak)=e A x 1 1 2 Se i(B — A)-6.))ak) (23)
v¢pj =1
with
0L'J(ak)=%ak#ﬁ ,
6.2(ak)=1lak, p+ak,» ,
(24)

4
6 )(ak)= Elak,,ﬁ—e;‘v’(ak) ,

o=

4
6.3 (ak)= zlak,,ﬁ—efv’(am .

p=
At the one-loop level the two-gluon vertex appears only through gluon tadpole diagrams. Thus we only need the ex-

pression for an equal color index @ =b and for the gluon momenta k; = —k, =k. In this case we find

gtup(ak, —ak)=1 for p=v,
=eiak-(A,,+Av) 6+2 Y eiak~AP+2exp [iak- > Ap] +H.c. for 7 v 25)
pFpv pFEpv
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with A ,=(B — 4),fi.

Vertices for four-quark operators are given by a prod-
uct of those for the bilinear operators except that the
color and site indices have to be interchanged appropri-
ately.

C. Procedure of calculation

Let us consider a one-loop diagram of a bilinear opera-
tor with two external fermion lines. The corresponding
amplitude generated by the Feynman rules above are
written in terms of momenta p taking values in the range
—m/a <p <m/a. Since the Dirac field Q(2N) is defined
on sites with even coordinates the physical momentum 7
for quarks is related to p through p =p + Cw/a where the
vector C (C, =0 or 1) represents the spin-flavor content
of quarks. We extract renormalization factors from
Feynman amplitudes evaluated at vanishing physical mo-
menta p=0 for external fermion lines. We therefore set
the external fermion momenta to p =Cw/a and D7 /a.
In this case the spin-flavor part of the tree amplitude
M takes the form

—_— 1 . D=
(‘}’s®§p)cn=l_6‘ (=AY @Ep) 45, (26)

which shows that the calculation of renormalization fac-
tors requires a conversion of spin-flavor Dirac structure
from the “single-bar” basis, in which the Feynman rules
are given, to the “double-bar” basis defined in (26).

We employ the technique developed by Daniel and

fﬂ/a d*k a* 1

~m/a (2m)* [3,4sin%(k,a/2)][3 4sin*(k,a/2)]

Sheard [5,6] to carry out the conversion. The general
form of one-loop amplitudes that results is given by
w/a d*k a*

—W/UWAMNM'N’(ak)(m)CD ,

MNM'N'
27
where Apune is a function of loop momenta k. The

product of Dirac matrices (¥ pen®Eprpnr) can be reex-
panded in terms of the basis {(ys®£¢);S,,F,=0,1}:

)= Citnmn (Ys®Ep) . (28)
S'F'

(Y MsN®Empn

The contribution of (27) to the renormalization factor of
Ogr is given by

w/a d*k a*

S Cifiiw —
—m/a (277')4

MNM'N'

AMNM'N'(ak) . (29)

In most cases the decomposition (28) is too tedious to
work out analytically. We generate tables of CMNM, N’ On a
computer and combined them with tables of one-loop in-
tegrals A,y Separately evaluated with the Monte
Carlo integration routine VEGAS, to calculate the sum
(29).

Our calculations are carried out for massless quarks.
In this case the amplitudes for the diagrams which have
counterparts in the continuum perturbation theory con-
tain infrared divergent terms of the form

(30)

where the first factor in the denominator arises from the gluon propagator and the second from the massless quark
propagator. To regularize the divergence we supply a finite mass « to the gluon propagator. The integral then takes the

value

1

f‘n’/ﬂ d4k 04 1

—n/a (2m)* [3,4sin’(k,a/2)][3,4sin’(k,a/2)+(ak)’] N

with Fgygo =4.36923(1) and y ; =0.577 216. .

The infrared regularization above is dlfferent from that
of Daniel and Sheard who added the mass term (ak)? to
both the quark and gluon propagators, in which case the
finite part of the integral is given by Fyyo—7vEg. We
prefer not to adopt their regulator since it leads to a
violation of fermion number conservation in continuum
perturbation theory. We also note that the dependence on
the gluon mass should cancel out between the renormal-
ization factors in the continuum and on the lattice as
long as one employs the same infrared regularization in
the two cases.

Evaluation of one-loop amplitudes for four-quark
operators is much more cumbersome since they contain a
product of two spin-flavor Dirac matrices. The calcula-
tional procedure, however, is essentially the same as for
bilinear operators.

62 [—2In(ak)+Fyo— Vg +1]1+0 (ka),
T

(31

II1. BILINEAR OPERATORS

The one-loop renormalization of the quark bilinear
operators Ogp on the lattice can be written as

lat(0)

OF"=73 |8ssdpr+ ZSFSF’ OsF > 32)

2
S'F' 6

where the superscript j on Q257 refers to the number of
loops. The one-loop diagrams are shown in Fig. 1 and an-
alytic expressions of the amplitudes are collected in Ap-
pendix A. Defining the coefficient z°™ for the continu-
um operators in a similar manner the one-loop relation
between the lattice and continuum operators is given by
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cont(1)
@SF

=2 |8ssOrr
S'F'

2
cont

g lat lat(1)
+ (zSom, ., —zlat )| @atl) (33)
1672 SBS'F T ZSES'F S'F

The continuum renormalization factor for massless
quarks can be expressed as

Zgg{lgvl,v = SSS'SFF"VS ln(ﬂ /K ) + 8SS:SFF:C§°m . (34)

We used the same infrared regularization as for the lat-
tice, i.e., a finite gluon mass « is given to the gluon propa-
gator. The anomalous dimension of the operator yg is
given by

ys=%os—1), (35)

with 03=(4,1,0,1,4) for the spin structure
Ys=(LYuYun¥us¥s) The finite constant C§™ de-
pends on the continuum regularization and renormaliza-
tion schemes. For the modified minimal subtraction (MS)
scheme it takes the values

ceom (1073, 0, 2/3, 0, 10/3) for NDR,
$ (1473, 0, —2/3, 0, 14/3) for DREZ
(36)
Osr
a,Cn/a (a) b, Dr/a (b)

(c) (d)

(e)

for ¥s=(L¥uYunYusvs), where NDR refers to the
naive dimensional regularization with an anticommuting
¥s and DREZ to the dimensional reduction with an easy
subtraction scheme defined in Ref. [15].

For the renormalization factor on the lattice we find

z.éapt,s'p' = —8558prv s Inlak )+C§¥,S’F' . 37)
The logarithmically divergent term arises from the dia-
grams in Figs. 1(a) and 1(d). It takes the same form for
gauge invariant and noninvariant operators, and is in-
dependent of the gauge parameter a. Comparing (34)
and (37) we find that the gluon mass x cancels out be-
tween 2§96 and zg <. as it should be.

The finite coefficient C}‘,‘% s'r has the following proper-
ties. (1) The coefficients have the same value for the two
operators with a spin-flavor structure (yg®£7) and
(Yss®&rs) (see Ref. [10]). (2) Our explicit calculation
shows that the Landau gauge part of C§'}§ s'F coming
from the (sink# /2 sink ¥ /2) term of the gluon propagator
is diagonal in spin and flavor. Their values are the same
for the gauge invariant and noninvariant operators. (3)
The remaining part of the coefficient generally mixes
different spin-flavor structures. The chiral U(1) symmetry
of the KS action, however, places a restriction that
operators of even distance with Ii_,(S,
+F# )(mod2)=0,2,4 do not mix with those having odd
distance (3_,(S,+F,)mod2)=1,3). In fact there are
only a few nonvanishing off-diagonal elements [see Table
I(b) below]. Furthermore their values are the same for

FIG. 1. One-loop diagrams for bilinear
operators. Diagrams (b) and (e) are absent for
gauge noninvariant operators.
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gauge invariant and noninvariant operators.

Numerical values of the diagonal constants Cé‘},f sF are
tabulated in Table I(a) for both gauge invariant (first
column) and noninvariant (second column) operators.
The results for the gauge noninvariant operators are
given in the Landau gauge. The nonvanishing off-
diagonal elements are tabulated in Table I(b). Numerical
accuracy is within 0.1%. For the gauge invariant opera-
tors we have numerically checked the independence of re-
sults on the gauge parameter a. Our results confirm
those of Daniel and Sheard (Tables 4 and 5 in Ref. [5])
after correcting our C:l‘?,s'p' by —8558prvs/2 to take
into account the difference in the regularization of in-
frared divergence. They are in complete agreement with
the recent calculation of the same quantity reported by
Patel and Sharpe (Tables 6 and 7 in Ref. [10]). The rela-
tionship between our -coefficients C}"F‘ s and their
CES g is

Ci s =38550pr(Cs™ +ysInm) —Cf gp ], (38)

where C$°™ are the finite continuum renormalization fac-
tor for the DREZ scheme given by (36).

We observe in Table I(a) that the coefficients for gauge
noninvariant operators have a similar magnitude while

those for gauge invariant. ones show a substantial varia-
tion from operator to operator. This stems from the fact
that the gauge invariant operators receive a contribution
of gluon tadpoles whose magnitude increases with the
distance of the operator Ag=3,(S,+F,)(mod2).
Lepage and Mackenzie [9] have argued that the tadpole
contributions can be removed by a rescaling of fields
which, for KS fermion action, takes the form

X—=Vugx , ¥T—=Vugl, U,—ug'U,, (39

where u represents the tadpole renormalization of link
variables. A gauge-invariant choice for u is given by

ug=[(TrUp)]"*=1—-1g>+0(g" (40)

with (TrU, ) the plaquette average. For gauge-invariant
bilinear operators 1t11§ rescaling amounts to a multiplica-
tion by a factor u, °°. The renormalization factors for
the rescaled operators are obtained by subtracting
47X (1—Agp)/3 from the second column of Table I(a).
The results listed in the third column of Table I(a) show
that rescaled gauge invariant operators receive much less
renormalization, and that their magnitude becomes less
dependent on the flavor of operators. For gauge nonin-
variant operators without insertion of link variables the

TABLE 1. One-loop perturbative corrections for bilinear operators. Operators of form (ys®&r) and (y 5s®§ps) receive the same
one-loop corrections. The components y, v, p, and o are all different and not summed. Values of anomalous dimension y 5 are also
listed. (a) Diagonal elements of the renormalization factor for gauge invariant (first column) and noninvariant (second column)
operators. The third and fourth columns show the values for rescaled operators as discussed in the text. (b) Off-diagonal elements of
the correction which take the same values for gauge invariant and noninvariant operators. The first and second columns of operators
specify the row and column of the mixing matrix.

(a)

Operator 14 Invariant Noninvariant Inv (rescaled) Noninv (rescaled)
1 IeI) 8 55.585 55.585 42.426 42.426
2 (I®&s) 8 —47.783 12.813 —8.304 —0.346
3 (I®E,) 8 14.844 27.077 14.844 13.918
4 (I®E,s) 8 —29.948 14.405 —3.629 1.246
5 (I®§,,) 8 —10.569 17.583 2.589 4.423
6 (y.®I) 0 0.000 12.232 0.000 —0.927
7 (Yu®&s) 0 —30.000 14.353 —3.682 1.193
8 (Yu®§&,) 0 19.693 19.693 6.533 6.533
9 (Yu®§&,) 0 —13.388 14.764 —0.228 1.605
10 Yu®&ys) 0 —13.409 14.743 —0.249 1.584
11 (Yu®&,s) 0 —45.988 14.608 —0.651 1.448
12 (Yu®&,) 0 4.519 16.752 4.519 3.593
13 (1,8&,) 0 —29.651 14.702 —3.332 1.543
14 (7 ®1) —8/3 —14.623 13.529 —1.464 0.369
15 (¥,®8&,) —8/3 —0.428 11.804 —0.428 —1.355
16 (7,,,®E0) —8/3 —29.668 14.685 —3.349 1.525
17 (Y u® ) —8/3 7.728 7.728 —5.430 —5.430
18 (Y u®Epun) —8/3 —14.200 13.952 —1.041 0.792
19 (Y1, ® o) —8/3 —45.390 15.206 —5.911 2.046
(b)
Operator Mixed operator
9 (y.®€,) (Yu®&,) —4.504
11 (7#85,‘5) (Y,u®§v5) 0.860
13 (7,®6.1) (Vu®8,): (¥, 883,) 1.980
16 (Yu® &) (Yur®6.): (v, ®E,) 0.902
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rescaling factor is universally given by u,. The rescaling
reduces the magnitude of the correction without spoiling
the weak flavor dependence already apparent for the orig-
inal operators.

IV. FOUR-QUARK OPERATORS

A. Lattice result

One-loop diagrams which contribute to the renormal-
ization of the color two-loop four-quark operators O,
defined in Sec. II are shown in Fig. 2 and those for color
one-loop operators O, in Fig. 3. In these figures horizon-
tal lines at the four-quark vertices signify contraction of
spin-flavor quantum numbers, while dotted lines
represent link factors and flow of color indices.

For the diagrams of Figs. 2(a)-2(e) for the color two-
loop operator evaluation of momentum and Dirac matrix
parts are the same as those of the diagrams in Fig. 1 for
the bilinear operator. The color factor is also the same for
these diagrams. For the diagrams of Figs. 2(f)-2(h), on
the other hand, the color factor takes the form

3/(TH (T, which has to be decomposed into the

color one- and two-loop basis. This can be done by the
SU(3) identity

ST ap TNy == 8B+ 188 - @D
I

3525

Such a rearrangement is also generally needed for the dia-
grams of color one-loop operators in Fig. 3 in addition to
manipulation of momentum and Dirac parts. Analytic
expressions for all the diagrams are summarized in Ap-
pendixes B and C.

Because of the mixing of color one- and two-loop
operators the renormalization factor for the four-quark
operators (); takes a 2 X2 matrix form

gl
Sij+ z}gt @‘liat(O) R

16m* Y

o= Lj=12. (42

Since the operators ;= Q(y s ®&5 )00 (75, ®EF,)Q fur-
ther depend on the pair
sf=(8,F,)(S,F,), each element z* is a matrix
z,-lj’.“= {2ij,s5,s}. Treating the infrared divergences as in
the case of bilinear operators we find that this matrix can
be written as

of spin-flavor indices

zi{lz'l;tsf,s'f' = _aff’yy}t;ss' In(ak)+ Cil;;tsfys'f' : 43)

In Tables II-IX we list the numerical values of the ma-
trices ¥} and C% . . for the operators with the spin-

flavor structure

FIG. 2. One-loop diagrams for color two-
loop fgur-quark operators
0°(ys®E&r)Q°0 (y5s®Er)QP. Thick horizon-
tal bars at the four-quark vertices signify con-
traction of spin-flavor quantum numbers,
while dotted lines represent link factors and
flow of color indices.
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(Y#®§5)(Y“®§5) 3 ('}/#5®§5)('}’#5@§5) (Tables II and VI) ’

(7,®85)(v,s®&;) (Tables III and VII) ,

sf= (r.®I)(y,®&;) (Tables IV and VIII) ,

(44)

(7, @ D)7 158 E5), (7,58 D(7,®E5) (Tables V and IX) .

The results for the gauge invariant operators are in
Tables II-V and those for the gauge noninvariant opera-
tors are in Tables VI-IX. The anomalous dimension ma-
trix y}‘}‘;ss, is gauge independent and takes the same value
for gauge invariant and noninvariant operators. The re-
sults of C,-lj‘-’;‘s 1,5 for the gauge noninvariant operators are
for the Landau gauge.

The one-loop renormalization coefficients for the
operators having the spin-flavor structure
(Y55®&ps)(vgs®Eps) are the same as those for
(vs®Er)Nys®Ep). Hence the tables also cover the re-
normalization factor for the operators obtained by the in-
terchange v ,<>7 s, [<>§s. These operators are the most
relevant for calculation of matrix elements of the effective
weak Hamiltonian. The gauge noninvariant operators
with the spin-flavor structure (y ¢s® £ps)(y ¢® &) are re-
normalized in the same way as those for
(ys®&p )y s®E&p) at least to one-loop order, and similar-
ly for the operators (ys®&p)Nyes®Eps) and
(ys®EpNys®ER) [16]. It is not known if this property
persists at higher orders. We also note that the operators

b, Dm/a

a, Cr/a

[
of even distance do not mix with those of odd distance

due to U(1) chiral symmetry, similar to the case of bilin-
ear operators.

The numerical accuracy is within the level of £0.001
for the majority of elements in the tables, increasing to
10.01 for large elements whose magnitude is ~ 10. This
accuracy should be sufficient for practical applications.
Reducing errors is quite computer time consuming be-
cause of a very large number of lattice integrals (~360)
which have to be computed.

We have checked the results in two ways. (i) For gauge
invariant operators the Landau gauge part proportional
to 1—a has to vanish. This has been confirmed numeri-
cally. (ii) One can rewrite the color one-loop operators as
a linear combination of color two-loop operators through
the Fierz transformation given by

(Ys®Er) ag(Ys®EF) 45

| o -
= Rz(YSYD®§E§F’)AB’('VS’YD®§E§F)A’B . (45)
DE

FIG. 3. One-loop diagrams for color one-
loop four-quark operators

Q"(«/S®§F)Q”Q"(ys.egp)Q“. The meaning of
the symbols is the same as in Fig. 2.
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TABLE II. Anomalous dimensions and finite corrections for gauge invariant four-quark operators with the spin-flavor structure
VV=(y,®)y,®s) and 44 =(y,s®Es)y,.s®Es). Subscripts 1 or 2 attached to the operators refer to the number of color loops.
Operators listed at the top row mix with those on the first column with the numerical coefficients given (a common factor g2/1677 is
removed). The values after the slash are the finite corrections for the rescaled operators. The two rows of numerical values for each
operator in the first column are for the color one-loop operator (first row) and for the color two-loop operator (second column). All
indices of operators are summed with different indices not taking equal values.

vV, Vv, AA, AA,
Mixed operator Y finite Y finite Y finite Y finite
1 (ISENIRE,) 4.725 —19.114/—5.954 —5.573
—1.575 —2.412 1.857
2 (I®E,)IRE,) —0.624 —0.485 1.112
0.208 —0.208 —0.370
3 (I®&s5)I®Es) —0.052 —0.235 —0.067
—0.022 0.078 0.022
4 (I®&,5)I®E,s) —0.876 —1.310 0.565
—1.029 0.436 —0.188
5 (7s®E)Vs®E,) 20.774/7.615 —3.675 —3.150
—2.569 —1.575 1.050
6 (ys®E)(Ys®E,) 0.319 0.485 0.416
0.706 0.208 —0.138
T (7s®Es)ys®E,s) 0.052 0.044 0.130
0.022 —0.014 —0.213
8  (Ys®&,sNYs®E&,s) —0.439 —0.376 1.511
—0.188 0.125 —0.872
9 (y,8D(y,8I 0.428 —0.086 —1.107
—0.142 —0.396 0.369
10 (7,8&)(y,8E&s) 9 —18.915/7.403 -7 —5253 —6 —4.502
-3 —4.772 —60.000/—7.361 -3 —2.251 2 1.501
11 (7,8E,)(7,8€,) —1.289 —1.104 2.683
—0.552 0.368 —1.615
12 (1,86.)(7,8E,) 0.174 0.149 0.390
0.074 —0.049 —0.573
13 (y,®8,.)(y,.8¢,,) —0.051 0.402
0.153 —0.134
14 (7,8E,)(7,8E,) —1.139 —2.774 2342
—1.189 0.924 —0.780
15 (7,8E,)(7,8E,,) 0.277 0.149 0.224
—0.232 —0.049 —0.074
16 (7,58 D(y,s®1) —0.086 —0.478 0.428
—0.396 0.159 —0.142
17 (Vos®EsNY 5@ Es) -7 —5253 —6 —4.502 9 —19.513/6.805
-3 —2.251 2 1.501 -3 —2.977
18 (Yos®,)(Y0s®8,,) 2.342 —1.007 —2.774
—0.780 —1.584 0.924
19 (7,5®E,)(705®E,,) 0.224 0.174 —0.656
—0.074 0.074 0.218
20 (Vos®Eu)Vos®ELs) 0.083
—0.249
21 (¥os®Eu)Vos®Euo) 2.683 —1.289 —1.104
—1.615 —0.552 0.368
22 (Vos®Eu ) Vos®Ero) 0.224 0.174 0.149
—0.074 0.074 —0.049
23 (VW®ENYWBE,) —3.224 —2.763 21.486/8.327
—1.381 0.921 —3.157
24 (7,.@E)(y.,8E,) —0.485 —0.416 —1.465
—0.208 0.138 2.733
25 (V®ENYLBE,) —0.222 0.764
0.668 —0.254
26 (V®E)(VW®E,) —19.434/—6.274 —5.960 4.145
—3.000 1.986 —1.381
27 (Y®E)N Y W®E,) 0.485 1.944 0.624
0.208 —0.648 —0.208
28 (Y u®Eus Ny @ Eys) —0.003 —0.052 —0.044
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TABLE II. (Continued).
—0.168 —0.022 0.014
29 (Yu®8us )Y u®Eys) 0.918 —0.900 —0.771
—0.675 —0.385 0.257
30 (Yu®Ees ¥V ®Eys) 0.031
—0.095
31 (Vu®Eos) (¥ u®Eps) 0.067 0.052 —0.528
—0.022 0.022 0.176
32 (7u®Ees) ¥ u®Ess) 1.157 —0.416 —1.704
—0.385 —0.832 0.568

TABLE III. Renormalization factors for the gauge invariant operators V4 =(y,®£5)(y,s®§s). Ma-
trix elements are arranged in the same was as in Table II.

VA, V4,
Mixed operator Y finite Y finite
1 (Y,® Iy ,s®1) 0.428
—0.142
2 (¥, ®Es) Y 5@ Es) 9 —19.319/6.998
-3 —3.560 —29.999/—3.680
3 (Vu® 8V us®6,,) —1.289 —1.104
—0.552 0.368
4 (Vu®Eu Y 5@ 8,,) 0.174 0.149
0.074 —0.049
5 (7u® 8, (¥ 15®8,p) —0.051
0.153
6 (7p® §vp)( 7/.458 gyv) 0.402
—0.134
7 (7u®E.p) (7 ,586,) —1.344 —1.152
—0.576 0.384
8 (Yu® 87 us® 8,5 0.225 —0.253
—0.078 0.084
9 (Yos®D(y,1) —0.191 —0.164
—0.082 0.054
10 (Vos®EN Y ,®Es) -7 —5.253 —6 —4.502
-3 —2.251 2 1.501
11 (¥ os® 8,V o® ) 2.342
—0.780
12 (Yos®Eu )V o®E,,) 0.224
—0.074
13 (Vos®Eu NV o®E,s) 0.083
—0.249
14 (Vos®8ua (¥ o®E,0) 2412
—0.804
15 (7/:75® §ua )(708 gva) 0-307
—0.324
16 (Y u®Eu NV po®Eos) 0.174 0.149
0.074 —0.049
17 (7 w® o)V po®Eys) —0.091 0.253
—0.324 —0.084
18 (Y un®Es) (¥ poe® ) 0.173
0.078
19 (Y ur®Eos) (¥ pe®E,) —0.224

0.074
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The results for the color two-loop operators can then be
used to evaluated the renormalization factors for the
color one-loop operators. The results obtained in this
way agree with those of a direct calculation of the color
one-loop operators.

The matrix elements for the mixing of gauge invariant
color two-loop operators with color one- and two-loop
operators have been computed previously by Sheard [6].
He took a basis quite different from ours, and we found it
difficult to make a full comparison. For those cases where
we can compare, however, our results are in agreement
with his results. Also the results in Table VI for gauge
noninvariant operators agree with those of Patel and
Sharpe [11].

Let us finally consider improvement of four-quark
operators by factoring out tadpole renormalizations
through rescaling of fields as suggested by Lepage and

Mackenzie [9]. For the color two-loop operators the re-
scaling (39) yields a simple form for the improved opera-
tors:

. 2—A
imp —
02;5_’}'_1‘0

S Osr » (46)
where A=A s,F, T As,F, for gauge invariant operators
having the spin-flavor structure sf =(y5 ®&r )vs,®&F,)

with Agr=3 (S, +F,)(mod2) the distance of bilinear
operators, while A;,=0 for the gauge noninvariant
operators. For the color one-loop operators, on the other
hand, rescaling is not straightforward since the link inser-
tion factors have lengths ranging from 0 to 4. To handle
this case we recall the Fierz formula (45) and rewrite the
color one-loop operators in terms of color two-loop
operators as

TABLE IV. Renormalization factors for the gauge invariant operator ¥V =(y,®I)(y,®§s). Matrix

elements are arranged in the same way as in Table II.

124 Vv,
Mixed operator Y finite Y finite
1 (7,@D(7,®Es) 9 —19.319/6.999
-3 —3.560 —29.999/—3.680
2 (7u®&s )y 1) 0.428
—0.142
3 (’Vy@ §uv)( 1/;.4.8 gvas) 0051
—0.153
4 (Vu® 5 (¥ u® & u05) —0.225 0.253
0.078 —0.084
5 (Vu® & (¥ u®Eyuss) —1.344 —1.152
—0.576 0.384
6 (Y;.t@ gvp)( Y}le gpas) 0.174 0.149
0.074 —0.049
7 (Yu®Eup )V, @&, ps) —1.289 —1.104
—0.552 0.368
8 (Yu® gvp)( Ype gyps) 0.402
—0.134
9 (‘}’0581)('}’05855) -7 —5.253 —6 —4.502
-3 —2.251 2 1.501
10 (Vo5®Es)y 5@ 1) —0.191 —0.164
—0.082 0.054
11 (70585;41')(705®§v05) —0.083
0.249
12 (705®§yv)(705®§vp5) 0.307
—0.324
13 (Yo5®Eu )V 55®6uis) 2412
—0.804
14 (V5@ Eua ¥ 5@ Epos) —0.224
0.074
15 (Yuig gﬂo)(705®§#05) 2.342
—0.780
16 (Yiv®E Y pos®Ep) 0.091 —0.253
0.324 0.084
17 (7@ Ep )V pos® ) —0.174 —0.149
—0.074 0.049
18 (V@& )Y pos®Eos) 0.224
—0.074
19 (?’pv®§os)(‘ypos®§vs) —0.173

—0.078




3530 N. ISHIZUKA AND Y. SHIZAWA 49

TABLE V. Renormalization factors for the gauge invariant operator ¥4 =(y,®I)(y,s®§s) and AV=(y,s®I)y,®§;). Matrix
elements are arranged in the same way as in Table II.

VA, VA, AV, AV,
Mixed operator Y finite Y finite 14 finite Y finite
1 (IRE)ys®E,s) 1.511 —0.439 —0.376
—0.872 —0.188 0.125
2 (IRE)Ys®E,s) 0.130 0.052 0.044
—0.213 0.022 —0.014
3 (I®§,,5)(75®§,,) 0.485 0.416 0.319
0.208 —0.138 0.706
4 (IQEs)ys®E,) —3.675 —3.150 20.774/7.615
—1.575 1.050 —2.569
5 (7s®EIUIBE,s) 0.565 —0.876 —1.310
—0.188 —1.029 0.436
6 (ys®EINIBE,s) —0.067 —0.052 —0.235
0.022 —0.022 0.078
7T (ys®E)IRE,) —0.485 1.112 —0.624
—0.208 —0.370 0.208
8  (vs®&,5)IRE,) —19.114/—5.954 —5.573 4.725
—2.412 1.857 —1.575
9 (1,®D(y,s®&s) 9 —19.513/6.805 -7 —5253 —6 —4.502
-3 —2.977 -3 —2.251 2 1.501
10 (7,8E)(y,s®D) 0.428 —0.086 —0.478
—0.142 —0.396 0.159
11 (7,88, (¥ u5®840s) 0.083
—0.249
12 (7,®E)(7,5®E,05) —0.174 0.656 —0.224
—0.074 —0.218 0.074
13 (7,86 (7us®Eurs) —1.007 —2.774 2.342
—1.584 0.924 —0.780
14 (7,86, u5®Ep0s) 0.174 0.149 0.224
0.074 —0.049 —0.074
15 (7#®§Vp)(y,,5®§vp5) —1.289 —1.104 2.683
—0.552 0.368 —1.615
16 (7, ®E,)(¥ us®Epps) —0.083
0.249
17 (Yos®D(yY,®Es) -7 —5.253 —6 —4.502 9 —18.915/7.403
-3 —2.251 2 1.501 -3 —4.772 —60.000/—7.361
18 (¥,5®E)Ny,®D) —0.086 —1.107 0.428
—0.396 0.369 —0.142
19 (1os®En )V o®Eyos) 0.051 —0.402
—0.153 0.134
20 (¥,5®E,)(Yo®E,ys) 0.390 0.174 0.149
—0.573 0.074 —0.049
21 (Yos®Eu )V o®Eps) 2.683 —1.289 —1.104
—1.615 —0.552 0.368
22 (Yos®Eu )V o®Epps) —0.224 —0.277 —0.149
0.074 0.232 0.049
23 (Vo5s®Eue)(Vo®Epos) 2.342 —1.139 —2.774
—0.780 —1.189 0.924
24 (Vos®Eu (¥ o®Epps) —0.051 0.402
0.153 —0.134
25 (Y ®E) Y us®Eyus) —0.416 —1.704 1.157
—0.832 0.568 —0.385
26 (Vu®E) ¥ uus®Ers) 0.052 —0.528 0.067
0.022 0.176 —0.022
27 (Y @8 Y ps®8ss) 0.031
—0.095
28 (Yu®E )V us®Ers) 0.031
—0.095
29 (V@) (¥ ,0s®Eps) —0.900 —-0.771 0.918

—0.385 0.257 —0.675
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TABLE V. (Continued).
VA, V4, AV, AV,
Mixed operator 1% finite 1% finite Y finite Y finite
30 (Yu®E) (Y s®Eos) —0.052 —0.044 —0.003
—0.022 0.014 —0.168
31 (Y u®Es)( ¥ ,s®E,) 0.624 0.485 1.944
—0.208 0.208 —0.648
32 (Yu®8s)(¥ns®8,) 4.145 —19.434/—6.274 —5.960
—1.381 —3.000 1.986
33 (Yu®Eus) ¥V us®E,) —0.222 0.764
0.668 —0.254
34 (7®805)(V,s®E,) —0.222 0.764
0.668 —0.254
35 (Y®8es)¥us®E,) —1.465 —0.485 —0.416
2.733 —0.208 0.138
36 (Yu®80s)(V,s®Es) 21.486/8.327 —3.224 —2.763
—3.157 —1.381 0.921

@l;sfzst ,s'f’oz;s'f’ ’ (47)
s'f
with F; .. numerical constants. The rescaled color
one-loop operators can then be defined as [16]
; 2-A, .
T =2 Fysrtto T Oyep (48)
s'f'
For the gauge invariant choice (40) for the tadpole factor
u, the finite renormalization factors for rescaled four-
quark operators are listed in Tables II-IX where those
elements changed by rescaling are given after a slash

symbol. As one can see in the tables the rescaling indeed
reduces the magnitude of the renormalization correction.

B. Relation with continuum operators

In order to obtain the physical values of weak matrix
elements the renormalization factor on the lattice ob-
tained in the previous section has to be combined with
those in the continuum. In this section we illustrate the
procedure for the K meson B parameter relevant for the
K°-K° mixing matrix.

The K meson B parameter By in the continuum theory
is defined by

_ AR5y, (1—y5)d5 y,(1—y5)d|K°)

$fkmi

K (49)

In the method of Ref. [14] for calculating weak matrix
elements with KS fermions, the operator in the numera-
tor is replaced by the sum of the four operators

V,=5%y,8&)D"S"(y,8&5)D*,
V,=8%y,8&5)D°S (y @)D",
A =8y ,58&5)D*S (y ;58 £5)D° ,
A, =5y ,s8E5)DS (v ,s®E5)D? ,

(50)

where S and D are the KS quark fields introduced for s

and d quarks separately, a and b the color indices, and
the quark fields in the first current are to be contracted
with K° and those in the second current with K°. The
choice of flavor &5 in these operators corresponds to the
use of D(ys®£&)S for creating the external K° and K° in
the Nambu-Goldstone channel associated with U(1)
chiral symmetry of the KS fermion action.

The renormalization factor for these operators can be
read off from Table II for gauge invariant operators and
from Table VI for gauge noninvariant operators. As can
be seen, the four operators not only mix among them-
selves but also with a large number of others having
different spin-flavor structures. We note that the extra
operators all have the flavor matrix £z7£;. Since the K°
and K° mesons are created with the flavor £, the matrix
element of the extra operators should vanish in the con-
tinuum limit where a restoration of SU(4) flavor symme-
try is expected. The renormalization factor for some of
the extra operators is numerically not small, however.
Whether they yield negligibly small contributions at the
current range of inverse lattice spacing 1/a ~2-3 GeV
has to be checked through actual simulations. For sim-
plicity we disregard the mixing with the extra operators
in the following. Extensions to the general case are
straightforward.

Denoting the four operators (50) as
(0%a=1,...,4}={YV,,...,A,}, we find that the
4 X4 anomalous dimension matrix yﬁ’,‘; is given by

9 -3 -7 -3
0 —6 2
lat —
Vo™ |—7 —3 9 —3/|°
-6 2 0 0

(51)

which takes the same form for the gauge invariant and
noninvariant cases. The finite part C 2‘5 takes the values
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TABLE VI. Renormalization factors for the gauge noninvariant operators V'V =(y,®&;)(v,®&s) and A4=(y,s®&5)(7,s®&s) in
the Landau gauge. Matrix elements are arranged in the same way as in Table II.

Vv, vy, A4, AA,
Mixed operator Y finite Y finite Y finite Y finite
1 (I®§,)I®E,) 4.725 —3.774 —3.235
—1.575 —1.617 1.078
2 (I®ENIBE,) —0.624 —0.485 —0.416
0.208 —0.208 0.138
3 (U®E)IBE,s) —0.052 —0.044 —0.067
—0.022 0.014 0.022
4  (I®E,NI®E,s) —1.466 —1.257 0.565
—0.628 0.419 —0.188
5 (ys®E)Ys®E,) 4.853 —3.675 —3.150
—1.617 —1.575 1.050
6 (7s®E)Ys®E,) 0.624 0.485 0.416
—0.208 0.208 —0.138
7 (5@ Eos)(¥s®E,s) 0.052 0.044 0.067
0.022 —0.014 —0.022
8 (¥s®Es)yYs®Eys) —0.439 —0.376 1.885
—0.188 0.125 —0.628
9 (yu®D(y 1) 0.428 —0.538 —0.461
—0.142 —0.230 0.153
10 (y,®&)(7,8E) 9  37.446/11.127 -7 —5253 —6 —4.502
-3 —2.913 28.706/2.387 -3 —2.251 2 1.501
11 (Yu® Ny, ®E,) —1.289 —1.104 3.016
—0.552 0.368 —1.005
12 (1,86.)(7,8E,) 0.174 0.149 0.224
0.074 —0.049 —0.074
13 (7,8E,)7,8E,) —1.813 —1.554 2.342
—0.777 0.518 —0.780
14 (7,8E,)7,8€E,) 0.174 0.149 0.224
0.074 —0.049 —0.074
15 (Yos®I)(y,5s01) —0.538 —0.461 0.428
—0.230 0.153 —0.142
16 (74s®Es)(¥ys®Es) -7 —5253  —6 —4.502 9  37.976/11.657
-3 —2.251 2 1.501 -3 —4.504 24.464/—1.854
17 (Vos®Eu) (¥ os®E,) 2.342 —1.813 —1.554
—0.780 —0.777 0.518
18 (¥os®E)(Vos®Ey,) 0.224 0.174 0.149
—0.074 0.074 —0.049
19 (Y5588, (V6s®E,5) 3.016 —1.289 —1.104
—1.005 —0.552 0.368
20 (Yos®Eu )V os®E,0) 0.224 0.174 0.149
—0.074 0.074 —0.049
21 (Y@ ENY 1 ®E,) —3.224 —2.763 5.433
—1.381 0.921 —1.811
22 (7WBENYLBE) —0.485 —0.416 —0.624
—0.208 0.138 0.208
23 (YW®E)(VWBE,) —4.226 —3.622 4.145
—1.811 1.207 —1.381
24 (VW®ENYWSE,) 0.485 0.416 0.624
0.208 —0.138 —0.208
25 (Y u®Es) Y@ ELs) —0.067 —0.052 —0.044
0.022 —0.022 0.014
26 (Y®Es)VW®Eys) 1.293 —0.900 —0.771
—0.431 —0.385 0.257
27 (Yu®Ees)(V®Eps) 0.067 0.052 0.044
—0.022 0.022 —0.014
28 (Y®Ees) ¥ ®Eys) 1.157 —1.005 ~0.862

—0.385 —0.431 0.287
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—18.915 —4.772 —5.253 —2.251

0 —60.000 —4.502 1.501
ca=1 _ _ _ _ (52)
B 5.253 2.251 19.513 —2.977
—4.502  1.501 0 0

for the gauge invariant operator, and

37.446 —2.913 —5.253 —2.251

0  28.706 —4.502 1.501
—5.253 —2.251 37.976 —4.504 (53)
—4.502  1.501 0  24.464

lat —
Cop=

for the gauge noninvariant operator in the Landau gauge.
The result for the gauge noninvariant operator (53) is in
agreement with those of Ref. [11]. The second and the
fourth rows of (52) have previously been calculated by
Sheard, with which our results agree. For the rescaled
operators discussed in Sec. IV A the diagonal elements of
cf;:,; changes to (7.403, —7.361,6.805,0) for the gauge in-
variant operators and to (11.127, 2.387, 11.657, —1.854)
for the gauge noninvariant operators (off-diagonal ele-

ments are not affected).

The AS =2 continuum operators are given by

.£1=§“y#(1—y5)d”§byu(l—ys)d“ ,

L,=5%,(1—y5)ds’y (1—y5)d"®,

with the one-loop renormalization taking the form

(D=
L=

8+

2
(y<
1602 |

+Cgpont

In(p /k)

Lgp) ,

where the anomalous dimension matrix y$™

cont —
Yi =

—6

)

For the finite part C;°™ we find that

cont —
Cij =CYij

with

TABLE VII. Renormalization factors for the gauge noninvariant operators VA =(y,®£s)(y,s®§&s)

in the Landau gauge. Matrix elements are arragned in the same way as in Table II.

VA, VA,
Mixed operator Y finite Y finite
1 (7,8 D(y,s®1) 0.428
—0.142
2 (Y, ®Es) 7 us®Es) 9 37.711/11.392
-3 —3.708 26.585/0.266
3 (Vu®E )V us®Epn) —1.289 —1.104
—0.552 0.368
4 (Yu®Eu )V us®Epp) 0.174 0.149
0.074 —0.049
5 (Yu®Ep )7 ,u5®8yp) —1.813 —1.554
—0.777 0.518
6 (7u®§vp)(‘y“5®§w) 0.174 0.149
0.074 —0.049
7 (Yos®D(y 1) —0.538 —0.461
—0.230 0.153
8 (Yo5®E5) (7 ,®E5) -7 —5.253 -6 —4.502
-3 —2.251 2 1.501
9 (V5@ Eu N (Vo® L) 2.342
—0.780
10 (Yo5s®Eu ) (Vo®E,p) 0.224
—0.074
1 (705®§ua)(708§u0) 3.016
—1.005
12 (Yo5®Eua)(Vo®E,0) 0.224
—0.074
13 (V@ 8.V s ®Es) 0.174 0.149
0.074 —0.049
14 (Y iv®Ep XY po®Es) —0.174 —0.149
—0.074 0.049
15 (Yir® sV po® &) 0.224
—0.074
16 (Yl.w® gus X Y;w@ gp) —0.224

0.074

3533

(54)

(55)

is given by

(56)

(57
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11/12 for NDR [17],
c= (58)

7/12 for DREZ .

In order to relate the lattice operators to those in the
continuum let us define a 2 X4 matrix M,, by

1010
0101

(59)

with which one can write £{¥=M, 0%, Using the in-
tertwining property M, ¥ eg=y{""M,g it is easy to see
that the one-loop renormalization relation between the

continuum and lattice operators is given by

2
8.5t —‘g——[’y""t In(ua)+cy™

(1) —
Li =M, 1672

—CH 5 |OF . (60)

The numerator of the By parameter with one-loop renor-

malization correction equals the sum
(KOLLPIK) +(KOILVIKO).
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APPENDIX A: ONE-LOOP AMPLITUDES
FOR BILINEAR OPERATORS

The one-loop amplitudes corresponding to the dia-
grams of Fig. 1 for the external quark momenta
p =Cm/a,D1/a and color indices a,b are as follows [the
common factor 4/38,,g?/(16?) is not included]:

TABLE VIII. Renormalization factors for the gauge noninvariant operators V'V =(y,®I)(y,®§&s) in
the Landau gauge. Matrix elements are arranged in the same way as in Table II.

Vv, 148
Mixed operator Y finite Y finite
1 (7,8 D(7,8&5) 9 37.711/11.392
-3 —3.708 26.585/0.266
2 (Y, ®Es)y,®1) 0.428
—0.142
3 (Y u®Eu )Y u®Epuos) —0.174 —0.149
—0.074 0.049
4 (Vu®Eu )V u®Epys) —1.813 —1.554
—0.777 0.518
5 (Yu® &NV, ®Eps) 0.174 0.149
0.074 —0.049
6 (Yu®Eup) (¥ u®&ops) —1.289 —1.104
—0.552 0.368
7 (Vos® (Y o5s®Es) -7 —5.253 —6 —4.502
-3 —2.251 2 1.501
8 (Vos®Es) Y os®I) —0.538 —0.461
—0.230 0.153
9 (V5@ 84 )V 558 €, ps) 0.224
—0.074
10 (Vos®Eu ¥ 55®Epuus) 3.016
—1.005
11 (705®§p0)(705®§p05) —0.224
0.074
12 (705®§ua)(705®§u05) 2.342
—0.780
13 (Y iv®E Y pos®8,) 0.174 0.149
0.074 —0.049
14 (Y;w®§p)(7p05®§y) —0.174 —0_149
—0.074 0.049
15 (7@ Eys ) (¥ pos®Eos) 0.224
—0.074
16 (7@ 805 ) (¥ pos®Es) —0.224

0.074
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TABLE IX. Renormalization factors for the gauge noninvariant operators VA =(y,®I)(y,s®&s) and AV =(y,®I)(y,8&s) in
the Landau gauge. Matrix elements are arranged in the same way as in Table II.

VA, VA, AV, AV,
Mixed operator Y finite Y finite Y finite Y finite
1 (IRE)(ys®E,s) 1.885 —0.439 —0.376
—0.628 —0.188 0.125
2 (I®ENYs®E,s) 0.067 0.052 0.044
—0.022 0.022 —0.014
3 (I&s)ys®E,) 0.485 0.416 0.624
0.208 —0.138 —0.208
4 (I®&,5)ys®E&,) —3.675 —3.150 4.853
—1.575 1.050 —1.617
5 (ys®E)UIRE,s) 0.565 —1.466 —1.257
—0.188 —0.628 0.419
6 (ys®E,)IBE,s) —0.067 —0.052 —0.044
0.022 —0.022 0.014
T (ys®&,sMI®E,) —0.485 —0.416 —0.624
—0.208 0.138 —0.208
8  (ys®&,5)I®E,) —3.774 —3.235 4.725
—1.617 1.078 —1.575
9 (7, 8D(y,s®Es) 9 37.976/11.657 -7 —5253 -6 —4.502
-3 —4.503 24.464/—1.854 —3 —2.251 2 1.501
10 (7,8E5)(y,s®0) 0.428 —0.538 —0.461
—0.142 —0.230 0.153
11 (7, @)Y s®E,,s) —0.174 —0.149 —0.224
—0.074 0.049 0.074
12 (7,@E,,)(Vus®E,.s) —1.813 —1.554 2.342
—0.777 0.518 —0.780
13 (7,8E,)(¥us®E0s) 0.174 0.149 0.224
0.074 —0.049 —0.074
14 (1,8E,)(¥,us®E,,s) —1.289 —1.104 3.016
—0.552 0.368 —1.005
15 (Yos®D(y,®E&s) -7 —5253 —6 —4.502 9  37.446/11.127
-3 —2.251 2 1.501 -3 —2913 28.706/2.387
16 (Y,s®Es)y,81) —0.538 —0.461 0.428
—0.230 0.153 —0.142
17 (7o5®Eu)(Yo®E,ps) 0.224 0.174 0.149
—0.074 0.074 —0.049
18 (¥o5s®Eu )V o®Epss) 3.016 —1.289 —1.104
—1.005 —0.552 0.368
19 (Yo5®Eu NV o®EL0s) —0.224 —0.174 —0.149
0.074 —0.074 0.049
20 (Yos®Eu NV o®Ep0s) 2.342 —1.813 —1.554
—0.780 —0.777 0.518
21 (Y@ (Y urs®Eps) —1.005 —0.862 1.157
—0.431 0.287 —0.385
22 (V@ EN Y us®E s) 0.052 0.044 0.067
0.022 —0.014 —0.022
23 (V@) (¥ ,s®Eps) —0.900 —0.771 1.293
—0.385 0.257 —0.431
24 (V@) (V,us®Ess) —0.052 —0.044 —0.067
—0.022 0.014 0.022
25 (Yu®Es) Y ,s®E,) 0.624 0.485 0.416
—0.208 0.208 —0.138
26 (V®Es)NV,0s®E,) 4.145 —4.226 —3.622
—1.381 —1.811 1.207
27 (Yuw®Eos)¥,us®E,) —0.624 —0.485 —0.416
0.208 —0.208 0.138
28 (Vu®Eus) ¥ ,s®E,) 5.433 —3.224 —2.763

—1.811 —1.381 0.921
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G'"=[os—(1—a)x(ys®&p)cpt+ 3 X (¥ uomsnou®Enrn)cp — (1= ) ZXng (¥ sy ® Everne Vo (AD)
upo MN M
Gl(b)=M% YERIS +FLY upusmsn® Eusmrn TV usmsvpu® Eusmrn )cp
up
—4(1—a) 2 Y;:!N]S +Fiy(7u5MSN®§u5MFN )CD ’ (A2)
MNu
G'=1(34a)Z 0¥ s®EF)cp > (A3)
G =[—xa—L(1+a)Zyp—R(ys®&r)cp > (A4)
Gl(e)z[—%(3+a)ASFZoooo_2(l“‘a)TASF](?’s®§F)CD ) (AS)
where 05=(4,1,0,1,4) for ys=(LY ¥V pus¥s) X =—2Inak+Foo—vg+1, |S+F|,=(S,+F,)mod2), and
Agp=3 IS +Fl,
We use the following notation to simplify the expressions for the loop integrals which appear in the amplitudes
above:
-1
s“——smq&u » S, sm¢u/2 B= 42?%, , C —cos¢u s cos¢“/2
I
1 J (A6)
F=|3s2| , [=t16r2" 42
u ¢ -7 (2m)

where ¢ is the loop momentum and B and F originate from gluon and fermion propagators. In terms of these symbols

the loop integrals are defined as

Xiypo = f¢{c‘~f‘sps,,EM(¢)EN(—¢)BF2—%BP‘,8M08NOBZ] , (A7)
xy=[ ds[EM<¢>EM —$)=8y01B , (A8)
Yigg=[ je,s B~ S S Ey(00)EN(—60) , (A9)
j=lo#p
Yiy= f i3, gL z S Ey(60)EN(—64) , (A10)
12 j=lo# #
m
Zoow = f B, (A11)
f2-23532(0,0,1,2+c3,3+2c3+c3c4) for A=(0,1,2,3,4), (A12)
1
R = - —25}+— |BF*—B?
f ¢ S+ 25 B (A13)
[
where Ey(¢) and 6,,, are given by Table 3. For the calculation of the integral we employed
1 —is,n i i the Monte Carlo integration routine VEGAS.
M(¢)=H3[e +(—1) ke *], (A14)
Iz APPENDIX B: ONE-LOOP AMPLITUDES FOR COLOR
_ TWO-LOOP FOUR-QUARK OPERATORS
M,=3M,, (A15)
vER Analytic expressions for one-loop diagrams in Fig. 2
1 o) are listed below for color two-loop four-quark operators
Oy =389, 6y =3¢0+¢9 of a general spin-flavor structure (ys® £z )y ¢®&p). The
. . amplitudes for the diagrams Figs. 2(a)-2(e) are products
efv)z 21 $p— G‘F n E,L«tv)z 21¢, W 6;}3 ) (A16) of tree and one-loop bilinear amplitudes. The diagrams
p= p=

The integrals X4%” and Yj;§ were evaluated numeri-
cally by Daniel and Sheard [5]. We have confirmed their
results except for some sign reversals for Y,y in their

in Figs. 2(f)-2(h) cannot be factorized in this way. They
take the followmg form, where we drop the common fac-
tor 3,(T7)y(T?),, and g*/167. External fermion lines
have momenta p=Cw/a, Dw/a,C'w/a, D'm/a and
color indices a,b,a’,b’ as specified in Fig. 2:
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1
G*N=— ;xz( Yups®EF YV spu®EF)cD (¥ ps®Er — ¥V s:pu®Er )
up

— 3 XUV uors®Emr — ¥ smpu®Erm ) (¥ pons® ENE — Y sNop®EFN o
ppoMN

+(1=a) 3 Xp (Y s ®Epr — Y smu®Erm )Y s ®Emr — Y sM®Erm)cp (B1)
M

6= 5 Uty
upLMN

x{ls +F|u( Y usMsL® SusmrL ) (VY s'Npu® EFN Y upns'® ENF ) 'y

+|S’+F'lp(YSpr®§FN_?//.tpNS®§NF)CD(Y;;SMS’L®§;L5MF’L Jop}—(1—a) 3 Upyy

uLMN
x{ls +Flp(7p5MSL®§y5MFL )ep (Y sn®EpN — Y Ns'®EnF D
+ |S’+F’lu(7’SN® Ern— Y Ns®ENF)ep Y usms'L ®EpsmrL )ep (B2)
GW=— 3 Vi ,wlS +F|, |8+ F'| (¥ usksz ® Euskrr ) op (¥ usms'n® Eusmr v o
uKLMN
+(1=a) 3T VKiun|S +FI (S +F )Y uskse ® Euskrr )op (Y vsusn® Evsurn )op (B3)
pvKLMN
where |S + F] p=(S,+F,)(mod2). The four types of loop integrals are defined by
I 1 : () ()
Utin= [ JTusoBF 17 VEMEIEL(G,{V)EMW—O’{V)EN( —4), B4)
e 1 3 . .
Ubun=[ 25,821 3 3 EL(O0E(6—0DEN(=¢), B5)
v#Euj =1
4 . . 4 . )
Vkimun= f B~ >3 EK(e;:\)/)EL(‘p“eﬂ\)/)L S 3 Eu(—60)EN(—¢+64) , (B6)
¢+ 12 vEpi =1 12 A#pj=1
4 i . 4 ) )
Vit = [ 4558755 S S Ex(6E =00 75 3 3 Byl —6Ey(—¢+6%) . (B7)
¢ 12 A#pi=1 12 gFvj=1

The numerical values of the last three integrals reported in Tables 4 and 5 in Ref. [6] have some minus signs missing.
We have corrected the sign and evaluated the values of U}y which are not listed in Ref. [6].

APPENDIX C: ONE-LOOP AMPLITUDES FOR COLOR ONE-LOOP FOUR-QUARK OPERATORS

Analytic expressions for one-loop diagrams in Fig. 3 are listed below for color one-loop four-quark operators of a
general spin-flavor structure (yg®&r)(y ¢® & ). We set the momenta of the external fermion lines to p =Cw/a, D /a,
C'm/a, D'mr/a and assign the color indices a,b,a’,b’ as shown in Fig. 3. The amplitudes of the diagrams Figs. 3(a), 3(c),
and 3(d) are the same as those for the color two-loop operators except for the color factor which takes the form
3 (T (T?),., for diagram (a) and 8,8, for diagrams (c) and (d). Other amplitudes take the following form, where
we drop the common factor g2/16m*:

4
G¥P= Esab’sa'b

1
N > E(Y#f’fusw]"’yﬁ’ﬁtsm)

upMN

XY upms®Emr)cp (Y sn®Epn)crprt( Y smpu®Erm ) cp (Y ns'®Enp ) cpr

T (Y sn®ErN ) (Y upms® Emr ) op T (Y Ns®Enp )ep (Y s'mpu®Erm ) crp}

—41—a) 3 Yuspyml(—1 YSHP 4 (—1 )ﬂ'(S'+Fl}](YSM® Erm)ep(Ysmu®Erm)cp | > (C1)
uM
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o 4
G* )_?Sab’aa’b —2Z 4000 (Ys®EF)cp (Y s®EF ) cop

S+F)#+ (S'+F')

1 (
+Ezzoooo[(“” (—1) “17 uss®8usr ) ep (¥ pss®E sk ) cpy
m

+( 1 _a)%ZOOOO(YS®§F)CD(’}/S'®§F')C'D’

(S+F) (S"+F")

—(I1=a) ¥ Zooz[(—1) F+(—1) “10Y uss®Eusr)ep (¥ uss®Epusr ) op

n

1 ) .. -
+(1—a)3 S T —[(=DMEO (=M (y @ Err ) ep (¥ ms® Emr e

uFEv,M

(S+F) +M-(S+F) (S'+F') +M-(S'+F')

+2[(—1) » +(—1) " 1Y usms ® Eusmr ) op (¥ usms'® Eusmrr ) cpr

(S+F) +(S+F) +M«S+F) (S'+F) +(S'+F) +M-(S'+F)
—[(—=1) K v +(—1) # v ]

X( 7’;.wMS® gvaF )CD ( viMS'® g,uvMF’ )C'D' } ’ (C2)

4
GV= 3 (Xjf+ %6p08M08N0) B—Sab’sa’b (Y uors®Emr)cp ¥V snop®EFN ) copr
ppoMN

(¥ smpu® Erat ) (¥ pons®Enr )op'}

— 2 T g (T gy { Y upms®Emr ) cp (¥ pons'® NF ) crpr
I

(¥ smpu®Erm )oY snou®EFN ) op'

+(1—a) 3 ( Xy +x8p0) ¥ sy ®Erm )V sm®Epm)cp | — %Sab’aa’b [(—DHASHR 4 (—)MS+F
M

’

+2( Tl)ab'( Tl)a'b[1+( —1 )M-(S+F+S'+F')]
I

(C3)

1
2 3( UtBoimn — UfiSamen l( Y LsNop®SLEN )ep (Y s ®Epa ) crpr
MN

G3(g)=2( TI)ab'( Tl)n'b
I ppL

T (Y sm®Erm)ep Y Ls'Npu®ELFN ) orp

(¥ yons ® Enrr ) ep (Y Ms'® Emr ) crpr

(Y ms®Epmr)cp (Y upons'L ® NFL VoD

1
—(1—a) %NE( Uﬁ;SL]MN - Uﬁ;SM]LN (Y su®Erm)cp Y Lsn®ELrn)cp
I

+ (Y ms®Emr)cp (VY Ns'L®ENFL )

+(7LSN®§LFN )CD(‘VS'MQ gF’M )C’D’

+ (¥ ns. ®Enrr )ep (Y us®Emr)op) | > (C4)
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GS(h)= 2( Tl)ab'( Tl)a’b
I uKLMN

1
> Y (Y ksn®Exrn )ep (Y ms'L ®Empr )op {[(—1)

+(1-—a) 3 1
wvkimn 4

The new integral T} is defined by

T= [ ff;z 2

13 i i
'3" ZIEM( ¢Ht)v) Ep(— d)Hl)V))
j=

) (C6)

1
+58M0

(S+F) (S'+F'
b (—1)

(—1 )"]Vf?LMN

(S+F+S'+F

)
—[1+(=1) “IWHiskiL pusmin '}

(Y Lsm®ELrm ) ep (Y nsk @ Enrk Voo { VR usLimivsny T VE uskiv vsm)

—Vklusivivsm — VEluskimivsny ) | -

(C5)

—

where

Y =00, V2=6,0, ¥3,=¢p+¢,6, (CD

the components u, v, p, and o are all different.
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