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We present a lattice calculation of L10, one of the low-energy constants in chiral perturbation theory,

and the charged-neutral pion squared-mass splitting, using dynamical overlap fermion. The exact chiral

symmetry of the overlap fermion allows us to reliably extract these quantities from the difference of the

vacuum polarization functions for vector and axial-vector currents. In the context of the technicolor

models, these two quantities are read as the S parameter and the pseudo Nambu-Goldstone boson mass,

respectively, and play an important role in discriminating the models from others. This calculation can

serve as a feasibility study of the lattice techniques for more general technicolor gauge theories.

DOI: 10.1103/PhysRevLett.101.242001 PACS numbers: 12.38.Gc

Spontaneous chiral symmetry breaking (S�SB) of
strongly interacting gauge theory may provide a natural
mechanism for electroweak symmetry breaking. A class of
new physics models based on this idea, the so-called
technicolor models, has been studied extensively [1]. In
most of those models, massless techniquarks with weak
charge are introduced; the weak gauge bosons acquire
masses from their S�SB. The S parameter may then be
sizably affected, for which those models can be strongly
constrained through the electroweak precision measure-
ments [2]. Another characteristic signal of the technicolor
models, that may be observed at the LHC experiments, is
the presence of extra Nambu-Goldstone bosons (NGBs)
which are not eaten by the weak gauge bosons. They are
called the pseudo NGBs (pNGBs), since they must be
made massive by introducing explicit breaking of the chiral
symmetry of the techniquarks in a model dependent way,
otherwise they would remain massless. Since the S pa-
rameter and the pNGB mass are consequences of strong
dynamics of the underlying theory, nonperturbative frame-
work is required for their calculation. In previous studies,
some model was involved in the calculation, e.g., [3].

In this Letter we consider two-flavor QCD as a test-
ing ground of our method and demonstrate that the
first principles calculation of those quantities are pos-
sible. In this context, the S parameter corresponds to Lr

10

(or lr5 in another convention), one of the low-energy

constants of the chiral perturbation theory (ChPT), as
S ¼ �16�½Lr

10ð�Þ � flnð�2=m2
HÞ � 1=6g=192�2� with a

renormalization scale � and the Higgs boson mass mH

[2]. Lr
10 is related to a difference of vacuum polariza-

tion functions between vector and axial-vector currents

�ð1Þ
V�Aðq2Þ � �ð1Þ

V ðq2Þ ��ð1Þ
A ðq2Þ near the zero momen-

tum insertion. [A formula will be given in (5).]
For the pNGB mass, a mass formula that is valid for a

wide range of technicolor models and breaking patterns is
known [4]. The formula contains a nonperturbative part
written in terms of the vacuum polarization functions. The
charged pions in two-flavor QCD is an example of pNGB,
as the electromagnetic interaction explicitly breaks SUð2Þ
chiral symmetry and gives a finite mass even in the mass-
less limit of up and down quarks [5]. The corresponding
mass formula is known as the Das-Guralnik-Mathur-Low-
Young (DGMLY) sum rule [6]

m2
�� ¼ � 3�

4�

Z 1

0
dq2

q2�ð1Þ
V�Aðq2Þjmq¼0

f2
; (1)

which gives the mass of charged pions at the leading order
of the electromagnetic interaction. Here f denotes the pion
decay constant in the chiral limit. Note that neutral pion is
massless in this limit.
In the continuum theory chiral symmetry guarantees that

the difference�ð1Þ
V�Aðq2Þ exactly vanishes in the absence of

both explicit and spontaneous chiral symmetry breaking.
Any remaining difference in the absence of explicit break-
ing thus signals the S�SB. Therefore, the use of exactly
chiral fermion formulation is mandatory in the lattice
calculation, in order to avoid fake contributions to

�ð1Þ
V�Aðq2Þ due to nonchiral lattice fermion formulations

such as the Wilson-type fermions. Here we use the overlap
fermion [7], which respects exact chiral symmetry at finite
lattice spacings. Employing this fermion, we have success-
fully done a precise calculation of the chiral condensate
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[8], which also requires excellent chiral symmetry to con-
trol systematic errors.

We perform a two-flavor QCD calculation on a 163 � 32
lattice at a lattice spacing a ¼ 0:118ð2Þ fm determined
with the Sommer scale r0 ¼ 0:49 fm as an input [9]. The
quark mass in the lattice unit is m̂q ¼ amq ¼ 0:015, 0.025,

0.035, and 0.050, which roughly cover the range between 1
6

to 1
2 of the strange quark mass. The global topological

charge Q is fixed to ensure the exact chiral symmetry
[9]. The main simulations are done in the Q ¼ 0 sector,
using 10 000 trajectories. At m̂q ¼ 0:050, the simulations

are also performed in other two sectors (Q ¼ �2 and �4)
to estimate the finite volume effect due to fixingQ [10]. For
each sea quark mass, the measurements are made at every
50 trajectories. Statistical errors are estimated from a jack-
knife analysis with 100 jackknife bins each containing two
consecutive measurements. Details of our configuration
generation and the pion spectrum and decay constant
analysis are found in [9,11], respectively.

We calculate the current-current correlators for vector
and axial-vector currents to obtain the corresponding vac-
uum polarization functions. We use as the vector current

Vð12Þ
� ¼ Z �q1��ð1� aD=2m0Þq2, where q1 and q2 repre-

sent different flavors of quarks, D the overlap-Dirac op-
erator in the massless limit, andm0 ¼ 1:6. The axial-vector

current Að12Þ
� is the same but �� is replaced by ���5. The

factor (1� aD=2m0) is necessary to make the V and A
form an exact multiplet under the axial transformation.
Because of this exact symmetry, then leading to the strong
correlation, even the lattice artifacts and statistical fluctua-
tions cancel between VV and AA correlators except for the
effects of S�SB. Indeed, the statistical errors are much
smaller than those of the previous calculations of the VV
correlator [12]. The common renormalization constant
Z ¼ 1:3842ð3Þ is determined nonperturbatively [11].

Since the continuous rotational symmetry is violated on
the lattice at Oða2Þ and the currents we use are not con-
served (cf. [13]), the general form of the current-current
correlator reads

�J��ðq̂Þ¼
X
x

eiq̂�xh0jT½Jð21Þ� ðxÞJð12Þ� ð0Þ�j0i

¼X1
n¼0

BðnÞ
J ðq̂�Þ2n���

þ X1
n;m¼1

Cðn;mÞ
J ðq̂�Þ2n�1ðq̂�Þ2m�1; (2)

where J ¼ V or A. BðnÞ
J and Cðn;mÞ

J are scalar functions of
lattice momentum q̂� ¼ 2�n�=L with n� an integer rang-

ing from �L=2þ 1 to L=2 (L ¼ 16 or 32 for spatial or
temporal direction, respectively). In the continuum limit,

only Bð0Þ
J and Cð1;1Þ

J survive. Bð0Þ
J could contain a power

divergent contribution due to a contact term, but the exact
symmetry present between the vector and axial-vector
currents guarantees that this contribution cancels in the

difference �V�� ��A��. Coefficients other than Bð0Þ
J

and Cð1;1Þ
J represent lattice artifacts. In the difference

�V�� ��A��, these lattice artifacts are negligible as

numerically confirmed below.
We define a measure of the Lorentz-violating lattice

artifacts by

�J ¼
X
�;�

q̂�q̂�

�
1

q̂2
� q̂�P

�

ðq̂�Þ3
�
�J��; (3)

which contains all of BðnÞ
J and Cðn;mÞ

J but Bð0Þ
J nor Cð1;1Þ

J .
Figure 1 shows �J for J ¼ V and A (top) and their differ-
ence (bottom) as a function of q̂2 at m̂q ¼ 0:015. While we

observe statistically significant nonzero values of �J de-
pending on q̂2, the difference is orders of magnitude
smaller than the individual �J. Similar plot is obtained
for m̂q ¼ 0:050. This indicates that the Lorentz-violating

lattice artifacts indeed cancel in the difference �V�� �
�A�� and are insensitive to S�SB or mq. Neglecting the

Lorentz-violating terms, we analyze the difference

�V�� ��A�� ¼ ðq̂2��� � q̂�q̂�Þ�ð1Þ
V�A � q̂�q̂��

ð0Þ
V�A;

(4)

where �ð1Þ
V�A and �ð0Þ

V�A represent the transverse and lon-

gitudinal contributions, respectively.

First we calculate Lr
10ð�Þ from �ð1Þ

V�A. At the next-to-

leading order, ChPT predicts [14]

�ð1Þ
V�Aðq2Þ ¼ � f2�

q2
� 8Lr

10ð�Þ �
lnðm2

�

�2 Þ þ 1
3 �HðxÞ

24�2
; (5)

HðxÞ ¼ ð1þ xÞ
� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ x
p

ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p þ 1

�
þ 2

�
; (6)

where x � 4m2
�=q

2, and � is a renormalization scale set
equal to the physical 	 meson mass m	. Using the mea-

sured values of m̂� and f̂�, we fit the data of q̂2�ð1Þ
V�A at

four quark masses with (5) to obtain Lr
10ðm	Þ varying fit
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FIG. 1. q̂2 dependence of �J (J ¼ V or A) (top) and their
difference (bottom). The result for m̂q ¼ 0:015 is shown.
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range of q̂2. Correlation among the data points are ignored
since each of all the data comes from different sea quark
ensemble (also see below). It turns out that the fit including
only the smallest q̂2 point [q̂2 ¼ 0:038, which corresponds
to ð320 MeVÞ2] gives an acceptable �2=dof (�0:5). The fit
is shown in Fig. 2 as a function of m̂q (circles and solid

curve). Once the second smallest q̂2 [�ð650 MeVÞ2 in the
physical unit) is included the fit becomes unacceptable
(�2=dof �Oð40Þ]. This may indicate the breakdown of
the chiral expansion at such a large q2. Our result from
the smallest q̂2 data is Lr

10ðm	Þ ¼ �5:22ð17Þ � 10�3.

Here, the error is statistical only.
We estimate the systematic error due to higher order

effects of the chiral expansion using a modified fit function
to cover a wider range of q̂2 (see below). We obtain a slight
negative shift, 0:3� 10�3, which is added to the system-
atic error. The finite size effect may be sizable in the pion-
loop effects, which is the third term in (5), since the lattice
volume ð1:9 fmÞ3 is not large enough. We estimate its
magnitude by replacing the momentum integral with a

sum. f̂� and m̂� are also corrected following [15]. Tak-
ing these corrections into account, we fit the data at the
smallest q̂2 to (5) and obtain Lr

10ðm	ÞjV¼1 ¼ �5:74ð17Þ �
10�3 with �2=dof ¼ 2:3 as shown in Fig. 2 (triangles and
dashed curve). We take the difference between these two
results as an estimate of the systematic errors. We then
quote

Lr
10ðm	Þ ¼ �5:2ð2Þðþ0

�3Þðþ5
�0Þ � 10�3; (7)

where the first error is statistical, and the second and third
are the estimated systematic uncertainties due to higher
order effects in q2 and the finite size effect, respectively.
Since only one value of q̂2 is included in the fit, the error
from the chiral fit may be underestimated. Furthermore,
other sources of uncertainty, e.g., finite lattice spacing and
lack of a dynamical strange quark, exist. Nevertheless, (7)
is already consistent with the experimental value
�5:09ð47Þ � 10�3 [16].

Next, we consider the squared-mass splitting between
charged and neutral pions. The splitting in the chiral limit
solely comes through the electromagnetic interaction and

is written by the integral of q̂2�ð1Þ
V�A as given in (1). In

order to avoid possibly large discretization effects in the
large q̂2 region, we separate the whole integral region into
two parts at q̂2 ¼ 2:0, and estimate each part as follows.
For the lower q̂2 region (�2:0), we fit the data to an

ansatz

q̂2�ð1Þ;fit
V�A ðq̂2Þ ¼ �f̂2� þ q̂2f̂2V

q̂2 þ m̂2
V

� q̂2f̂2A
q̂2 þ m̂2

A

� q̂2

24�2

Xðq̂2Þ
1þ x5ðQ2

	Þ4
; (8)

whereQ2
	 ¼ q̂2=m̂2

	 with m̂	 the physical 	meson mass in

lattice unit. Here and in the following xi denotes a fit
parameter. We introduce poles of the lowest-lying state
for both vector and axial-vector channels with masses

m̂V;A and decay constants f̂V;A. We put the constraints

f̂2� ¼ f̂2V � f̂2A and f̂Am̂A ¼ f̂Vm̂V among them so that
they satisfy the first and second Weinberg sum rules [17].

We also assume a linear dependence on m̂2
�: f̂V ¼ x1 þ

x3m̂
2
� and m̂V ¼ x2 þ x4m̂

2
�. The function Xðq̂2Þ is either

ln

�
m̂2

�

m̂2
	

�
þ 1

3
�Hð4m̂2

�=q̂
2Þ þ x6Q

2
	; (9)

or

x6Q
2
	 lnðQ2

	Þ: (10)

Then, the function (8) behaves asOðq�6; q�6 lnq2Þ at large
q2 in the chiral limit, which is consistent with the asymp-
totic scaling predicted by the operator product expansion

(OPE) [18]. Taking (9) for Xðq̂2Þ,�ð1Þ;fit
V�A ðq̂2Þ reduces to the

ChPT prediction (5) when Q2
	 	 1, while (10) gives a

logarithmic term in the large Q2
	 region as expected by

OPE.
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FIG. 2 (color online). q̂2�ð1Þ
V�Ajq̂2¼0:038 as a function of quark

mass. The fit results with (solid) and without (dashed) finite
volume correction are shown.
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FIG. 3 (color online). The fit results with (9) (dashed curves)
and (10) (solid curves). The results in the chiral limit are also
shown. The statistical errors shown are smaller than the symbol
size.
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We fit the data at q̂2 � 2:0 using the measured values of

f̂� and m̂� as shown in Fig. 3. We have only attempted an
uncorrelated fit since the full covariance matrix is likely ill-
determined for many data points and free parameters in
this fit. Both (9) and (10) fit the data quite well and indeed
give a reasonable �2=dof, though the latter is slightly
better. Integrating over q̂2 in the chiral limit, we obtain
m2

��jq̂2�2:0 ¼ 676ð50Þ and 811ð12Þ MeV2 for (9) and (10),

respectively. The difference arises from the chiral extrapo-
lation around q̂2 ¼ 0:1–0:2, since (9) contains the chiral
logarithmic term. Recalling that in the determination of
Lr
10 the ChPT formula fits the data only at the smallest q̂2

and (10) fits the data better than (9), we take the central
value from the fit with (10) and the difference as a system-
atic error due to the chiral extrapolation.

Expanding q̂2�ð1Þ;fit
V�A around q̂2 ¼ 0 in the chiral limit

and comparing with (5), we obtain Lr
10ðm	Þ ¼ �f̂2ð2x21 �

f̂2Þ=ð8x21x22Þ. With the fit results for (9), this gives
Lr
10ðm	Þ ¼ �4:9� 10�3. The difference from the central

value is added to the systematic error from the higher order
effect, and included in (7) as already mentioned.

The remaining part of the integral (q̂2 
 2:0) is esti-

mated based on the OPE, which predicts �ð1Þ
V�Aðq2Þ �

a6=ðq2Þ3 in the chiral limit for large q2 up to a logarithmic

term. Assuming �ð1Þ
V�Ajm̂q¼0 ¼ a6=ðq̂2Þ3 at q̂2 ¼ 2, the fit

result with (10) gives a6 ¼ �0:0035. In the estimate of the
final result, we use a phenomenological value in the range
[�0:001,�0:01]GeV6 [19] to be conservative. An integral
then gives m2

��jq2
2:0 ¼ 182ð149Þ MeV2.

Summing up the two parts, we obtain

m2
�� ¼ 993ð12Þðþ0

�135Þð149Þ MeV2; (11)

as the pion squared-mass splitting in the chiral limit. The
first error is statistical; the second and third ones are due to
the chiral extrapolation and the uncertainty in a6. The
result is reasonably consistent with the experimental value
at the physical quark mass [1261 MeV2]. In addition to
the errors quantified above, other sources of systematic
errors may still remain. We do not expect, however, sub-
stantial systematic errors other than those estimated
above, since the integral is dominated by the q̂2 � 0 region

where the integrand q̂2�ð1Þ
V�A=f̂

2 in the chiral limit is

strongly constrained by the first Weinberg sum rule

½q̂2�ð1Þ
V�A�q̂2¼0=f̂

2 ¼ 1.

In this Letter, we have demonstrated that the S parameter
and the pNGB mass can be calculated using the lattice
QCD technique. Since these quantities are generated solely
through S�SB, the exact chiral symmetry on the lattice
plays an essential role to prohibit contaminations from the
explicit breaking. The method is general and the applica-
tion to other vectorlike gauge theories with arbitrary num-
ber of colors and flavors is straightforward. Thus with this
method the lattice technique is able to directly investigate
physical quantities relevant for the LHC phenomenology.

In addition to these quantities, we can also calculate a6 and
the strong coupling constant using the data in the large q2

region. The results will be reported in a subsequent paper.
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