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Accurate random-phase approximation calculation of low-lying states
on a three-dimensional Cartesian mesh
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We present a simple and efficient method for calculating excitation energies and transition probabilities of
low-lying states described by Hartree-FaékF) plus random-phase approximati@RPA) with Skyrme force.
The method employs conjugate gradient method to solve the RPA equations in the mixed representation of
coordinate and occupied orbitals, which was proposed recently. To obtain accurate results with coatée mesh
fm) calculation, we find a useful prescription. Performing self-consistently three-dimensional Cartesian mesh
calculation with Lagrange mesh method in solving HF and RPA equations, we take an average of quantities
calculated with even and odd mesh points in one direction. As a demonstration of our method, we show the
numerical results of energies for spurious mode of translatiolf@fand the excitation energies and reduced
transition probabilities for first 3 state of'®0 and 2°%b.
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The Skyrme Hartree-FodlSHF) method[1] has been de- selves to the spherical nuclei for the purpose of comparison
veloped with the aim of describing nuclear ground states fowith other methods.
the last several decades. The SHF method combined with the Here we briefly explain the formulation of R€fLO]. The
BCS method is known to well reproduce binding energiesRPA equations in a mixed representation of coordinate and
charge radii, and deformations throughout the Periodic Tableccupied orbitals, which were first derived by Lemmer and
[2,3]. As for the excited states, random-phase approximatioiveneroni [11], are
(RPA) with Skyrme interaction has been used in the descrip-
tion of giant resonancp4] and low-lying state$5—7].

In calculating the SHF, Bonchet al. [8] showed that the 2 Ajj 6XD XX+ B (XD Y (X)) =ho, X (X),
three-dimensiona(3D) Cartesian mesh calculation is suit- X
able to describe nuclear deformations. Baye and Heg®ien (1)
proposed Lagrange mesh method which provides an expla- 2 BX (x,x")X"(x") + A% (x,x ) Y!(X") = —hrw,Y"(X),
nation for the unexpected accuracy of Hartree-Fock calcula- 7 " ! . ! v
tions performed on the 3D Cartesian mesh.

Recently, Mutaetal. [10] reported a computational where#w, denotes the eigenvalue for the eigenmagig¢he
method for solving the RPA equations in the coordinate repsubscripts andj represent occupied states, andtands for
resentation on 3D Cartesian mesh. They succeeded in calcd-set of space coordinatespine, and isospinr. We use the
lating a few low-lying states of deformed nuclei with a sim- notation=,==>,fdr. We rewrite Eq.(1) as
plified local effective interaction. In their method, the RPA
equations are given in a mixed representation of coordinate, A B\/X 1 0)\/X
instead of unoccupied orbitals, and occupied orbitals. The ( . *)( ) = w,,( )( )
method has the following two merits. One is that 3D Carte- B* ATAY/, 0 —-1/1Y v
sian mesh calculation can be performed self-consistently in
solving both HF and RPA equations. The other is that theAs pointed out in Ref[10], Eq. (2) can be solved by means
unoccupied states are not necessary in the procedure, i.e., nbthe conjugate gradient methd@GM) [12], which is an
truncation of the unoccupied orbitals is required. Howevergefficient iterative method for calculating a few real eigenval-
their method has two difficulties. The first point is that fine ues and eigenvectors for a generalized eigenvalue equation.
mesh size is required in their calculation in order to separat&he solution with the lowest eigenvalue of EQ) usually
physical modes from spurious zero modes. The second poieprresponds to one of the spurious modes. Making use of the
is that imaginary eigenvalues of the RPA equations cannot b&chmidt orthogonalization method, we can obtain excited
treated with their method. states in order of increasing eigenvalue.

In this paper, we improve their formulation to be capable There is a possibility that the above formulation cannot be
of treating imaginary eigenvalues of the RPA equationsimplemented when spatial symmetries or constraints are im-
Making the best use of the improved formulation, we pro-posed. For example, if constraints for center of mass and
pose a simple method for estimating values close to conprincipal axes are imposed in the HF calculation, eigenvalues
verged ones in a coarse mesh calculation. We apply theorresponding to zero modes of translation or rotation may
method to the calculation of total energies, spurious states dfe imaginary in RPA calculation. Then CGM cannot be used
160 and the first 3 state of'0 and?°%b, and compare our for RPA calculation, because one of the conditions for the
numerical results with the ones of Rd6]. Though our application of the CGM that all of the eigenvalues of gener-
method can be applied to deformed nuclei, we restrict ouralized eigenvalue equation are real is not satisfied in the case.
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FIG. 1. Schematic illustration of two ways of setting the mesh 1.00 0.90 0.80 0.70 0.60
on space. The intersection points of broken lines represent mesh mesh size [fm]

points. Each circle represents a nucleus, whose center of mass is
marked by a crossX). The center of mass of a nucleus is located
at the middle point of the mesh points (@ and coincides with a
mesh point in(b).

FIG. 2. Mesh size dependence of HF energies'®. Open
(filled) circles denote numerical results of the evi@ud mesh
points case where 3q31%) mesh points are used. Plus sighs)
are averages of the even and the odd mesh points cases at each

. . L . _mesh size.
In order to impose spatial symmetries in the calculation,

which will be necessary in our method to obtain accurateh HE calculation's] which all iaxial def .
solution with a coarse mesh calculation, we improve the forihe calcu atlon[.], which aflows triaxia ae orma‘u_o_n. .
he same symmetris are imposed on transition densities in

mulation so that we can treat the imaginary eigenvalue of th PA calculationf 141, In oth ds. the t ition densiti
RPA equations. We introduce quantitigs™)"(x)=[X"(x) calculation{14]. In other words, the transition densities

x . . ._are even or odd with respect to reflectionxyf, yz, andzx
Y (X)]/‘./E' and we express the RPA equations in thlspIane. The solutions of the RPA equations are then classified
representation as into eight groups.
A =B\[ ¢ MG 'For the effective interaction, we use SllI for[?bﬁ]. The
( ) ( . ) =ﬁwy( B ) 3 original three-body term is changed into a density dependent
+B*  A* |\ p* ] ] two body term[16]. In the Hamiltonian density, we include
both time-even and time-odd componefi3].

These equations correspond to the RPA equationB-i@ We apply our method to two spherical nucléfO and
representatiof13]. We then write equations fop;( )”(x)  29%Pp, as illustrative examples. In HF and RPA calculations
only, for 10, we fix the number of the mesh points to>3@ven
mesh points cageand 3£ (odd mesh points caseThe cal-
A -B\f/A B A -B\[ ¢ culations are carried out with the mesh size being changed
—B* A*/|B* A*/|—B* A* | g()* from 1.0 fm to 0.6 fm by step-size 0.02 fm.
v In Fig. 2, we show the HF energies ¢fO. As is seen
A -B\[ ¢ from the figure, the total energy is rather different between
=(ﬁw,,)2( _g* A* )(¢()*) (4)  the results in the even and the odd mesh points cases. As the

mesh size goes smaller, HF energies of both the even and the
odd mesh points cases converge to a vatde8.20 MeV. If

; . ! 2 ; we take average of the even and the odd mesh points cases,
sponding to negative eigenvaluéd,)” of Eq. (4), which e converged value can be obtained for all the mesh size

means pure imaginary energyo, . _ __ranging from 1 to 0.6 fm. The fluctuation of the average is
We next explain how we can obtain accurate excitation, ey small, within 10 keV.

energies with a rather coarse mesh calculation. We perform Fig. 3, we show the squared energidawg)? of the
the RPA calculations on two types of 3D Cartesian meshe ’
(see Fig. 1 with even and odd mesh points in one-direction,
and we take an average of the two numerical results such as , , , , ,
excitation energies and transition probabilities. We use the 15+ average -
Lagrange mesh metho®] in order to approximate first- odd —@— |
order and second-order differential operators. As is shown, in

the practical examples below, this procedure provides us
with accurate results even when we employ rather coarse
mesh size.

In both meshes of Figs.(d and 1b), we employ points
inside a cube. The center of mass of the nucleus is con-
strained to locate at the center of the cube. Hereafter, we call
the mesh setting in Fig.(4) the even mesh points case, and
in Fig. 1(b) the odd mesh points case. To diminish numerical
efforts, we impose symmetries with respect to reflection in  FIG. 3. Mesh size dependence of calculated squared energies for
Xy, yz, andzx planes(the point groupD,,) on density in  spurious modes ot°0. Notations are the same as in Fig. 2.

Appling the CGM for Eq.(4), we can obtain solution corre-

Spurious modes of translation f3fO. In the figure, we can
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FIG. 4. Mesh size dependence of excitation energies for the first FIG. 5. Mesh size dependence of reduced electric-octupole tran-
3~ state of'®0. Notations are the same as in Fig. 2. Energy levelssition probabilitiesB(E3;3; —0;) of %0 in Weisskopf unit. The
for 3™ state with sevenfold degeneracy split into three gro@s  notations are the same as in Fig. 4.
(b), and(c) because of symmetry of 3D Cartesian mesh. Eada)of
and (b) has threefold degeneracy afe] has one component.

the excitation energy is 6.77 MeV and the reduced transition

probability is 6.23 Weisskopf unit. The excitation energy of
again see the strong mesh size dependence of the squafg@ir calculation coincides accurately with ours, but the re-
energies in accordance with that in Fig. 2: There is a larggjuced transition probability of their calculation is rather
difference between the results in the even and the odd mes§imaller than our result. Blaizot and Gogny pointed out that it
points cases. As the mesh size goes smaller, the squared @gnecessary to use a large particle-hole configuration space
ergies of both the even and the odd mesh points cases Cofir order to get reliable values of the transition probabilities
verge to zero. The average of the even and the odd mesfr their calculation. Although we do not understand clearly
points cases is close to the converged value for all over thghe origin of the difference, one of the possible origin is the
displayed mesh size. The fluctuation of the average is withifact that our calculation does not impose any truncation on
0.2 Me\?, even with a mesh size of 1 fm. the particle orbitals, whereas Blaizot and Gogny did.

In Figs. 4 and 5, we show the excitation energies and the |n order to illustrate the feasibility of our method in the
reduced electric-octupole transition probabilities for first 3 heavier nuclei, we show the numerical results of excitation
state of °0. Because of the symmetries with 3D Cartesianenergies and the reduced electric-octupole transition prob-
mesh, seven degenerate eigenvalues,o$tate split into the  abilities for the first 3 state 0f?°Pb in Table I. The calcu-
following three groups. In the first group), there are three |ations are achieved with four different settings of mesh size
components, where each transition probability is proporand box size, i.e/i) large mesh size and small box sizi)
tional to r3Yzodp~2z(522—3r?) p, and its permutations of small mesh size and small box siZ#i,) large mesh size and
X, y andz, i.e.,x(5x*—3r?)8p andy(5y>—3r?)dp. In the  large box size, andiv) small mesh size and large box size.
second groupb) there are three components, where eachlhe converged value of excitation energgduced transition
transition probability is proportional ta3(Yz,+Ys_,)dp probability) obtained from the calculation is 2.245 MeV
~2(y?—x?)8p and its permutations of, y, andz In the  (44.1 Weisskopf unjt The computational size is the smallest
third group (c) there is one component, where transitionfor the calculation(i). Even in this calculation, the averages
probability is proportional ta3(Y3,— Y3_,) p~xyzdp. In  for the excitation energies and reduced transition probabili-
Fig. 4 (Fig. 5, as the mesh size goes smaller, excitationties of the even and the odd mesh points cases are about 2.2
energiegreduced transition probabilitiesf the even and the MeV and about 44 Weisskopf unit, respectively. Thus, we
odd mesh points cases converge to a value 6.75 Me93  conclude that our simple method of averaging gives us the
Weisskopf unit. In all of the cases ofa), (b), and(c), the  converged excitation energy and transition strength even
averages of the results in the even and the odd mesh pointgth the coarse mesh size of 1 fm and small box size of
cases are close to the converged value for all mesh size in t{€0 fm)® is used. In Blaizot and Gogny'’s calculatipsl, the
figures. The fluctuation of the averages is within 10 keVexcitation energy is 2.82 MeV and the reduced transition
(0.04 Weisskopf unjt In Blaizot and Gogny’s calculation probability is 33 Weisskopf unit. The excitation energy of
[6], where the RPA equations in particle-hole representatiomheir calculation is somewhat larger than that of our calcula-
were diagonalized in an spherical harmonic oscillator basistion and the reduced transition probability of their calcula-
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TABLE I. Excitation energy and reduced transition probability of first&ate of?°®Pb. Ah is mesh size.
N is the number of mesh points of the edge of the cubic bbis. volume of cubic box. “av.” in the column
of N represents average value of upper two lines of “even” and “odd” caé®s(b), and(c) are the same
as in Figs. 4 and 5.

Ah N \Y Energy(MeV) B(E3) (W.u.)
(fm) (fm?) @ (b) (0 (@ (b) (0
19 19.06 2.140 2.224 2.205 454 44.4 44.5
(i) 1.00 20 20.09 2.302 2.246 2.263 41.6 44.2 43.9
av. 2.221 2.235 2.234 43.5 44.3 44.2
24 19.26 2.263 2.253 2.264 43.7 43.8 43.8
(ii) 0.80 25 20.09 2.224 2.233 2.226 44.0 44.4 44.4
av. 2.243 2.243 2.245 43.8 44.1 44.1
29 29.08 2.191 2.246 2.240 45.8 44.0 44.1
(iii) 1.00 30 30.09 2.290 2.238 2.250 42.0 44.4 44.2
av. 2.240 2.242 2.245 43.9 44.2 44.1
39 29.25 2.246 2.245 2.245 44.1 44.1 44.1
(iv) 0.75 40 30.09 2.245 2.246 2.245 44.2 44.1 44.1
av. 2.245 2.245 2.245 44.1 44.1 44.1

tion is considerably smaller than that of our calculation. Weoften employed in the ground state calculation, we can ob-
do not understand the origin of this discrepancy. Since wéain accurate results of excitation energies and reduced tran-
noticed a sizable difference in the transition strength even fosition probabilities. We have demonstrated the feasibility of
light nucleus'®0, one may expect a difficulty to obtain con- the method in the calculations of HF energies, spurious
verged results in the calculation of particle-hole basis. Wemodes, the excitation energies, and reduced transition prob-
would like to point out that our results presented here is clos@bilities for first 3” state of*®0 and *°®b with Skyrme Sl
to converged values. force_. Altho_ugh they are sphencal_nuclel, our me;thod is

In summary, we have shown a simple and efficientreadily applicable to deformed nug:le|. Th(=T systematlc.analy—
method for accurately calculating low-lying states properties€S Of the other kinds of low-lying excited states in the
of nuclei in the framework of HF and RPA with Skyrme spherical as well as deformed nuclei will be given in suc-
force. There are two essential points in our method: The firs‘feedlng papers.

is that, in solving the HF and RPA equations we have self- The authors are grateful to Professor Yabana for continu-
consistently performed the 3D Cartesian mesh calculatiogus encouragement and stimulating discussions. They would
with Lagrange mesh method. We have checked that ouike to thank Professor Matsuyanagi and Professor Sakata
method is less successful if a finite difference mettde-  for encouragement and fruitful suggestions. They also thank
point formula is used instead of the Lagrange mesh methodProfessor Tajima, Dr. Mizutori, Dr. Nakatsukasa, and
The second is that we have taken the average of the quanfdr. Hagino for valuable discussions and comments. The
ties calculated with the even and the odd mesh points in oneomputational calculations were performed by YITP, Kyoto
direction. Then even with the mesh size of 1 fm, which isUniversity.
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