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Accurate random-phase approximation calculation of low-lying states
on a three-dimensional Cartesian mesh

H. Imagawa and Y. Hashimoto
Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan

~Received 7 October 2002; published 14 March 2003!

We present a simple and efficient method for calculating excitation energies and transition probabilities of
low-lying states described by Hartree-Fock~HF! plus random-phase approximation~RPA! with Skyrme force.
The method employs conjugate gradient method to solve the RPA equations in the mixed representation of
coordinate and occupied orbitals, which was proposed recently. To obtain accurate results with coarse mesh~1
fm! calculation, we find a useful prescription. Performing self-consistently three-dimensional Cartesian mesh
calculation with Lagrange mesh method in solving HF and RPA equations, we take an average of quantities
calculated with even and odd mesh points in one direction. As a demonstration of our method, we show the
numerical results of energies for spurious mode of translation of16O and the excitation energies and reduced
transition probabilities for first 32 state of16O and 208Pb.
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The Skyrme Hartree-Fock~SHF! method@1# has been de-
veloped with the aim of describing nuclear ground states
the last several decades. The SHF method combined with
BCS method is known to well reproduce binding energi
charge radii, and deformations throughout the Periodic Ta
@2,3#. As for the excited states, random-phase approxima
~RPA! with Skyrme interaction has been used in the desc
tion of giant resonance@4# and low-lying states@5–7#.

In calculating the SHF, Boncheet al. @8# showed that the
three-dimensional~3D! Cartesian mesh calculation is su
able to describe nuclear deformations. Baye and Heenen@9#
proposed Lagrange mesh method which provides an ex
nation for the unexpected accuracy of Hartree-Fock calc
tions performed on the 3D Cartesian mesh.

Recently, Muta et al. @10# reported a computationa
method for solving the RPA equations in the coordinate r
resentation on 3D Cartesian mesh. They succeeded in c
lating a few low-lying states of deformed nuclei with a sim
plified local effective interaction. In their method, the RP
equations are given in a mixed representation of coordin
instead of unoccupied orbitals, and occupied orbitals. T
method has the following two merits. One is that 3D Car
sian mesh calculation can be performed self-consistentl
solving both HF and RPA equations. The other is that
unoccupied states are not necessary in the procedure, i.e
truncation of the unoccupied orbitals is required. Howev
their method has two difficulties. The first point is that fin
mesh size is required in their calculation in order to sepa
physical modes from spurious zero modes. The second p
is that imaginary eigenvalues of the RPA equations canno
treated with their method.

In this paper, we improve their formulation to be capab
of treating imaginary eigenvalues of the RPA equatio
Making the best use of the improved formulation, we p
pose a simple method for estimating values close to c
verged ones in a coarse mesh calculation. We apply
method to the calculation of total energies, spurious state
16O and the first 32 state of16O and208Pb, and compare ou
numerical results with the ones of Ref.@6#. Though our
method can be applied to deformed nuclei, we restrict o
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selves to the spherical nuclei for the purpose of compari
with other methods.

Here we briefly explain the formulation of Ref.@10#. The
RPA equations in a mixed representation of coordinate
occupied orbitals, which were first derived by Lemmer a
Vénéroni @11#, are

(
jx8

Ai j ~x,x8!Xj
n~x8!1Bi j ~x,x8!Yj

n~x8!5\vnXi
n~x!,

~1!

(
jx8

Bi j* ~x,x8!Xj
n~x8!1Ai j* ~x,x8!Yj

n~x8!52\vnYi
n~x!,

where\vn denotes the eigenvalue for the eigenmoden, the
subscriptsi and j represent occupied states, andx stands for
a set of space coordinater, spins, and isospint. We use the
notation(x[(st*dr. We rewrite Eq.~1! as

S A B

B* A* D S X

YD
n

5\vnS 1 0

0 21D S X

YD
n

. ~2!

As pointed out in Ref.@10#, Eq. ~2! can be solved by mean
of the conjugate gradient method~CGM! @12#, which is an
efficient iterative method for calculating a few real eigenv
ues and eigenvectors for a generalized eigenvalue equa
The solution with the lowest eigenvalue of Eq.~2! usually
corresponds to one of the spurious modes. Making use of
Schmidt orthogonalization method, we can obtain exci
states in order of increasing eigenvalue.

There is a possibility that the above formulation cannot
implemented when spatial symmetries or constraints are
posed. For example, if constraints for center of mass
principal axes are imposed in the HF calculation, eigenval
corresponding to zero modes of translation or rotation m
be imaginary in RPA calculation. Then CGM cannot be us
for RPA calculation, because one of the conditions for
application of the CGM that all of the eigenvalues of gen
alized eigenvalue equation are real is not satisfied in the c
©2003 The American Physical Society02-1
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In order to impose spatial symmetries in the calculati
which will be necessary in our method to obtain accur
solution with a coarse mesh calculation, we improve the
mulation so that we can treat the imaginary eigenvalue of
RPA equations. We introduce quantitiesf i

(6)n(x)5@Xi
n(x)

6Yi
n* (x)#/A2, and we express the RPA equations in t

representation as

S A 6B

6B* A* D S f (6)

f (6)* D
n

5\vnS f (7)

f (7)* D
n

. ~3!

These equations correspond to the RPA equations inP-Q
representation@13#. We then write equations forf i

(2)n(x)
only,

S A 2B

2B* A* D S A B

B* A* D S A 2B

2B* A* D S f (2)

f (2)* D
n

5~\vn!2S A 2B

2B* A* D S f (2)

f (2)* D
n

. ~4!

Appling the CGM for Eq.~4!, we can obtain solution corre
sponding to negative eigenvalue (\vn)2 of Eq. ~4!, which
means pure imaginary energy\vn .

We next explain how we can obtain accurate excitat
energies with a rather coarse mesh calculation. We perf
the RPA calculations on two types of 3D Cartesian mes
~see Fig. 1! with even and odd mesh points in one-directio
and we take an average of the two numerical results suc
excitation energies and transition probabilities. We use
Lagrange mesh method@9# in order to approximate first
order and second-order differential operators. As is shown
the practical examples below, this procedure provides
with accurate results even when we employ rather coa
mesh size.

In both meshes of Figs. 1~a! and 1~b!, we employ points
inside a cube. The center of mass of the nucleus is c
strained to locate at the center of the cube. Hereafter, we
the mesh setting in Fig. 1~a! the even mesh points case, a
in Fig. 1~b! the odd mesh points case. To diminish numeri
efforts, we impose symmetries with respect to reflection
xy, yz, andzx planes~the point groupD2h) on density in

FIG. 1. Schematic illustration of two ways of setting the me
on space. The intersection points of broken lines represent m
points. Each circle represents a nucleus, whose center of ma
marked by a cross (3). The center of mass of a nucleus is locat
at the middle point of the mesh points in~a! and coincides with a
mesh point in~b!.
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the HF calculation@8#, which allows triaxial deformation.
The same symmetris are imposed on transition densitie
RPA calculation@14#. In other words, the transition densitie
are even or odd with respect to reflection ofxy, yz, andzx
plane. The solutions of the RPA equations are then class
into eight groups.

For the effective interaction, we use SIII force@15#. The
original three-body term is changed into a density depend
two body term@16#. In the Hamiltonian density, we includ
both time-even and time-odd components@17#.

We apply our method to two spherical nuclei,16O and
208Pb, as illustrative examples. In HF and RPA calculatio
for 16O, we fix the number of the mesh points to 303 ~even
mesh points case! and 313 ~odd mesh points case!. The cal-
culations are carried out with the mesh size being chan
from 1.0 fm to 0.6 fm by step-size 0.02 fm.

In Fig. 2, we show the HF energies of16O. As is seen
from the figure, the total energy is rather different betwe
the results in the even and the odd mesh points cases. A
mesh size goes smaller, HF energies of both the even and
odd mesh points cases converge to a value2128.20 MeV. If
we take average of the even and the odd mesh points ca
the converged value can be obtained for all the mesh
ranging from 1 to 0.6 fm. The fluctuation of the average
very small, within 10 keV.

In Fig. 3, we show the squared energies (\v0)2 of the
spurious modes of translation for16O. In the figure, we can

sh
is FIG. 2. Mesh size dependence of HF energies of16O. Open
~filled! circles denote numerical results of the even~odd! mesh
points case where 303 (313) mesh points are used. Plus signs~1!
are averages of the even and the odd mesh points cases at
mesh size.

FIG. 3. Mesh size dependence of calculated squared energie
spurious modes of16O. Notations are the same as in Fig. 2.
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again see the strong mesh size dependence of the sq
energies in accordance with that in Fig. 2: There is a la
difference between the results in the even and the odd m
points cases. As the mesh size goes smaller, the square
ergies of both the even and the odd mesh points cases
verge to zero. The average of the even and the odd m
points cases is close to the converged value for all over
displayed mesh size. The fluctuation of the average is wi
0.2 MeV2, even with a mesh size of 1 fm.

In Figs. 4 and 5, we show the excitation energies and
reduced electric-octupole transition probabilities for first 32

state of 16O. Because of the symmetries with 3D Cartes
mesh, seven degenerate eigenvalues of 31

2 state split into the
following three groups. In the first group~a!, there are three
components, where each transition probability is prop
tional to r 3Y30dr;z(5z223r 2)dr, and its permutations o
x, y andz, i.e., x(5x223r 2)dr andy(5y223r 2)dr. In the
second group~b! there are three components, where ea
transition probability is proportional tor 3(Y321Y322)dr
;z(y22x2)dr and its permutations ofx, y, and z. In the
third group ~c! there is one component, where transiti
probability is proportional tor 3(Y322Y322)dr;xyzdr. In
Fig. 4 ~Fig. 5!, as the mesh size goes smaller, excitat
energies~reduced transition probabilities! of the even and the
odd mesh points cases converge to a value 6.75 MeV~6.93
Weisskopf unit!. In all of the cases of~a!, ~b!, and ~c!, the
averages of the results in the even and the odd mesh p
cases are close to the converged value for all mesh size in
figures. The fluctuation of the averages is within 10 k
~0.04 Weisskopf unit!. In Blaizot and Gogny’s calculation
@6#, where the RPA equations in particle-hole representa
were diagonalized in an spherical harmonic oscillator ba

FIG. 4. Mesh size dependence of excitation energies for the
32 state of16O. Notations are the same as in Fig. 2. Energy lev
for 32 state with sevenfold degeneracy split into three groups~a!,
~b!, and~c! because of symmetry of 3D Cartesian mesh. Each of~a!
and ~b! has threefold degeneracy and~c! has one component.
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the excitation energy is 6.77 MeV and the reduced transit
probability is 6.23 Weisskopf unit. The excitation energy
their calculation coincides accurately with ours, but the
duced transition probability of their calculation is rath
smaller than our result. Blaizot and Gogny pointed out tha
is necessary to use a large particle-hole configuration sp
in order to get reliable values of the transition probabiliti
for their calculation. Although we do not understand clea
the origin of the difference, one of the possible origin is t
fact that our calculation does not impose any truncation
the particle orbitals, whereas Blaizot and Gogny did.

In order to illustrate the feasibility of our method in th
heavier nuclei, we show the numerical results of excitat
energies and the reduced electric-octupole transition p
abilities for the first 32 state of208Pb in Table I. The calcu-
lations are achieved with four different settings of mesh s
and box size, i.e.,~i! large mesh size and small box size,~ii !
small mesh size and small box size,~iii ! large mesh size and
large box size, and~iv! small mesh size and large box siz
The converged value of excitation energy~reduced transition
probability! obtained from the calculation is 2.245 Me
~44.1 Weisskopf unit!. The computational size is the smalle
for the calculation~i!. Even in this calculation, the average
for the excitation energies and reduced transition probab
ties of the even and the odd mesh points cases are abou
MeV and about 44 Weisskopf unit, respectively. Thus,
conclude that our simple method of averaging gives us
converged excitation energy and transition strength e
with the coarse mesh size of 1 fm and small box size
(20 fm)3 is used. In Blaizot and Gogny’s calculation@6#, the
excitation energy is 2.82 MeV and the reduced transit
probability is 33 Weisskopf unit. The excitation energy
their calculation is somewhat larger than that of our calcu
tion and the reduced transition probability of their calcu

st
s

FIG. 5. Mesh size dependence of reduced electric-octupole t
sition probabilitiesB(E3;31

2→01
1) of 16O in Weisskopf unit. The

notations are the same as in Fig. 4.
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TABLE I. Excitation energy and reduced transition probability of first 32 state of208Pb. Dh is mesh size.
N is the number of mesh points of the edge of the cubic box.V is volume of cubic box. ‘‘av.’’ in the column
of N represents average value of upper two lines of ‘‘even’’ and ‘‘odd’’ cases.~a!, ~b!, and~c! are the same
as in Figs. 4 and 5.

Dh N V Energy~MeV! B(E3) ~W.u.!
~fm! (fm3) ~a! ~b! ~c! ~a! ~b! ~c!

19 19.003 2.140 2.224 2.205 45.4 44.4 44.5
~i! 1.00 20 20.003 2.302 2.246 2.263 41.6 44.2 43.9

av. 2.221 2.235 2.234 43.5 44.3 44.2
24 19.203 2.263 2.253 2.264 43.7 43.8 43.8

~ii ! 0.80 25 20.003 2.224 2.233 2.226 44.0 44.4 44.4
av. 2.243 2.243 2.245 43.8 44.1 44.1
29 29.003 2.191 2.246 2.240 45.8 44.0 44.1

~iii ! 1.00 30 30.003 2.290 2.238 2.250 42.0 44.4 44.2
av. 2.240 2.242 2.245 43.9 44.2 44.1
39 29.253 2.246 2.245 2.245 44.1 44.1 44.1

~iv! 0.75 40 30.003 2.245 2.246 2.245 44.2 44.1 44.1
av. 2.245 2.245 2.245 44.1 44.1 44.1
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tion is considerably smaller than that of our calculation. W
do not understand the origin of this discrepancy. Since
noticed a sizable difference in the transition strength even
light nucleus16O, one may expect a difficulty to obtain con
verged results in the calculation of particle-hole basis.
would like to point out that our results presented here is cl
to converged values.

In summary, we have shown a simple and efficie
method for accurately calculating low-lying states propert
of nuclei in the framework of HF and RPA with Skyrm
force. There are two essential points in our method: The
is that, in solving the HF and RPA equations we have s
consistently performed the 3D Cartesian mesh calcula
with Lagrange mesh method. We have checked that
method is less successful if a finite difference method~nine-
point formula! is used instead of the Lagrange mesh meth
The second is that we have taken the average of the qu
ties calculated with the even and the odd mesh points in
direction. Then even with the mesh size of 1 fm, which
at
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often employed in the ground state calculation, we can
tain accurate results of excitation energies and reduced t
sition probabilities. We have demonstrated the feasibility
the method in the calculations of HF energies, spurio
modes, the excitation energies, and reduced transition p
abilities for first 32 state of16O and 208Pb with Skyrme SIII
force. Although they are spherical nuclei, our method
readily applicable to deformed nuclei. The systematic ana
ses of the other kinds of low-lying excited states in t
spherical as well as deformed nuclei will be given in su
ceeding papers.
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