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Adiabatic mean-field model for dynamical collective state transitions of a nuclear system
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We propose an adiabatic mean-field model for dynamical collective state transitions of a nuclear system. The
transition process is described in terms of the nuclear mean-field wave functions which are adiabatically
determined in the course of the transition. A principal steering meson field approximation simplifies the model.

In the simplified model, the Hamiltonian is expressed by a tridiagonal matrix on the basis of the adiabatic
mean-field states, because the mean-field states are coupled by the residual interaction. The model has two
degenerate lowest mean-field states. These states are separated by a potential barrier made of intermediate
mean-field states and are coupled to each other by the interaction through the intermediate states. We solve the
eigenvalue equation for the Hamiltonian both in an exact diagonalization and in a perturbation method. The
perturbation expression for the splitting of the energies of the two almost degenerate ground states exhibits
analytically a coherent structure in favor of the dynamical transition between the two isolated lowest mean-
field states. The net current for the collective tunneling from an initial lowest mean-field state to the degenerate
counterpart through the potential barrier is much smaller than the quantum mechanically fluctuating local
currents. The energy eigenvalue equation for a tridiagonal Hamiltonian matrix leads to @iSgeraliffer-

ence equation on a finite range of integral discrete coordinates. Higher energy states on a repulsive parabolic
potential on the finite range of discrete coordinate are shown to have some features resembling the energy
states of a harmonic oscillator: equispacing energy levels and Gaussian distribution of the wave functions.

PACS numbeg(s): 21.60.Ev, 24.10.Cn

I. INTRODUCTION coordinate(SCQO method to select the “optimum” collec-
tive path in the TDHF phase space. This method uses the
A finite many-particle system has a large number of isopower series expansion in terms of dynamical collective
lated Hartree states with different symmetry. The systenvariables defined at a Hartree minimum. We select the col-
may make dynamical collective state transitions by tunnelindective subspace in the phase space where solution of the
from one Hartree state to another. Tunneling in manymnonlinear TDHF equation evolves. This is an extension of
particle systems is an interesting problem with applicationghe random phase approximatiRPA) toward the problems
in nuclear physics to spontaneous fission as well as fusioof large amplitude collective motiofi]. The method in fact
reactions. A number of methods have been developed to trebs been successfully applied to realistic problems to study
the dynamics in the classically forbidden domain. A micro-the microscopic mechanism of anharmoniwibrations|3]
scopic theory starts from a mean field or mean-field waveand of band-crossing phenomena in nuclear rotational mo-
functions, but the residual interaction which allows the bar-tions[4].
rier penetration breaks the symmetry of these wave func- The power series expansion in terms of the collective
tions. variables in the SCC method is defined in the space of one-
It has been discusséti] that the residual interaction gives Slater-determinant wave function. This is not applicable to
rise to the interplay between single-particle and collectivenuclear problems of the barrier penetration for collective mo-
motions which plays a significant role in the nuclear dynam-ion. In order to extend the applicability of the method to-
ics. The time-dependent Hartree-FO€KDHF) calculation  ward the problems of barrier penetration, we shall introduce
[2] shows that the interplay makes the nuclear system move new theoretical framework based on the adiabatic mean-
around isolated mean-field states, i.e., Hartree minima in théield theory. The expression for nuclear collective state tran-
guantum phase space. One of the central subjects in thsitions in terms of adiabatic mean-field wave functions rep-
TDHF theory for the nuclear collective dynamics has been taesenting a number of Slater determinants is exploited to
figure out the mechanism of the generation, transfiguratiorincorporate appropriately the effects of the single-particle
and dissipation of large amplitude collective motion. Thelevel crossings in the transition process.
main problem is how to select a collective path in the Before starting the description of the adiabatic mean-field
multidimensional TDHF phase space that involves a largenodel, we refer to Arveet al. who proposed a simple model
number of Hartree minima resulting from single-particle for tunneling in many-particle systems to test various meth-
level crossings. ods of treating large amplitude collective motid]. To pro-
Marumoriet al. have proposed a self-consistent collectivevide a model of barrier penetration, the energies of the Har-
tree states are low in two distinct regions of configuration
space. These are separated by a barrier region with high Har-
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the Hartree symmetries and allows the wave function tgarticipant nucleons finish changing their single-particle
spread over the entire configuration space. Each of the pastates. Therefore, in order to describe the collective state
ticles has a coordinate as well as an internal spin coordi- transitions, it is significant to take into account all of the

nate. The Hamiltonian reads participant nucleons.
N 5 N N In the adiabatic mean-field model, the nuclear transition
H=S = = +22 i process is described in terms of the mean-field wave func-
;1 2( dz,2 Z )[IEl ool )} tions which are adiabatically determined, while the nucleon

5 configuration changes itself step by step in the course of the
) nuclear transition. The changing nucleon configuration varies
the meson mean fields. The varying meson mean fields shift
in turn the energy levels of single-particle states for each
The first two terms represent a Hartree Hamiltonian and thearticipant nucleon to cross each other. Thus the nucleon
last term is a residual interaction. Their goal of the treat-configuration changes in accordance with the meson mean
ments of the Hamiltonian is to reproduce the degeneracyields in the transition process.
splitting of states of opposite parity with respect to the center In the present paper, we take the principal steering meson
of the barrier and to compare the results of several method§ield approximation, a simplified version of the adiabatic
They first diagonalize the Hamiltonian matrix in a spacemean-field model, since this visualizes the fundamental and
truncated to limited oscillator states with the parametergypical features of dynamical collective state transitions be-
physically chosen. The accuracy of the splittings and averageveen isolated Hartree minima. In the approximation, we
energies in the truncation to the lowest oscillator stat®  take only one principal meson field to steer the nuclear tran-
shows that the single-particle oscillator motion is irrelevantsition and assign two energy levels for each of the participant
for the tunneling dynamics. They next obtain eigenfunctionsucleons to change its single-particle state once in the tran-
of the constrained mean-field Hamiltonian in both &  sition process: The two single-particle states for each of the
and (o, constrained mean-field approximations. The con-nucleons are labeled as states1 and —1. The single-
strained Hartree calculations indicate that one should ngparticle energies are adiabatically determined by the meson
make ana priori choice of collective path but rather use a mean field steering the nuclear transition, so that the two
theory that selects the optimum path for the process undesingle-particle energy levels of the nucleons cross each other.
consideration. They then calculate the splitting of the degen- We make the present model system have two degenerate
eracy, solving the imaginary time mean-field equation andowest mean-field statéslartree minimaseparated by a po-
also using the continuum hopping model. It is made cleatential barrier with high mean-field energies of intermediate
that different schemes supplement each other in having difstates. The model Hamiltonian is expressed by a tridiagonal
ferent domains of validity. matrix on the basis of the adiabatic mean-field states, be-
We finally quote their following statemef]: “The dy-  cause the mean-field states are coupled by the residual inter-
namics in the barrier are governed by changing the spin ocaction. The two degenerate lowest mean-field states are
cupation, which corresponds to level crossings of singlecoupled to each other by high orders of the residual interac-
particle states of different nodal structure in the physicaltion through the intermediate states. The coupling of the two
problem. Hence constraining the spin occupation directlydegenerate states splits the degeneracy.
gives a better approximation than influencing it only indi-  The Hamiltonian in the present simplified version of the
rectly through constraining the collective variable.” adiabatic mean-field model has mathematically a same form
Extending their intuitive model, we develop a fundamen-as that in Eq(1) used for the harmonic oscillator coupled to
tal and applicable description for nuclear collective transi-the spin for nucleons in Ref5]. Since our Hamiltonian is
tions between Hartree minima in terms of the adiabatidormulated in terms of meson theory, this formulation is
mean-field approximation. In the previous papfs$ we  more fundamental and applicable than the intuitive model of
solved the mean-field problems for static properties of nuArve et al.
clei. There is a nucleus presumably composed of a number of While one usually calculates the splitting of the energies
nucleons and several kinds of mesons. We express the metaf the two almost degenerate ground states in the WKB
stable states of the nucleus in terms of the mean-field apnethod using imaginary timg3], we obtain the degeneracy
proximation. The mesons produce their mean fields to holgplitting both in an exact diagonalization and in a perturba-
the mean-fieldHartreg states of the nucleons. We expand tion method. We discuss the fact that the perturbation calcu-
the meson fields in the nucleus on oscillator basis. lation works better for the present problem than the WKB
Presently, extending the mean-field treatment of a nucleusiethod.
to the dynamical problems, we propose an adiabatic mean- Here, we remark on some aims of the present work, which
field model for nuclear collective state transitions. A nuclearis to discuss the features of the nuclear transitions between
dynamical transition from one metastable state to another imean-field minima. The energy eigenvalue equation for a
formulated in the steering meson field approximation. In thetridiagonal mean-field Hamiltonian matrix leads to a Sehro
course of the nuclear transition, we assume that each of thdinger difference equation on a finite range of integral dis-
participant nucleons changes the single-particle state at @rete coordinates. The first aim is to show that higher energy
level crossing, while the system traverses the potential baistates on the repulsive parabolic potential on the finite range
rier [7]. The nuclear transition is completed when all of theof discrete coordinates have some features resembling the
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energy states of a harmonic oscillator: equispacing energy R . .

levels and Gaussian distribution of the wave functions. A1) =2 {Bnim@nim(1) + a5 m@rim(N)}, 5
We calculate the nuclear transition probability from one nim

of the two degenerate lowest mean-field states to the degeWiiy the annihilation and creation operatars,,, and a’rl '

erate counterpart. The second aim is to show that the nepgpheciively. mm

current for the collective tunneling through the potential bar- 14 yescribe a dynamical collective state transition be-

rier is typically small compared with quantum mechanically \yeen Hartree minima with different symmetries, we first

fluctuating Io_cal currents: the trans_ition probability oscillatesgyye the static nuclear problems for the initial and final Har-

in the two mixed modes of tunneling and of quantum fluc-yee states in the mean-field approximation. A metastable

tuation. _ o _ nuclear state is expressed as
The tridiagonal mean-field Hamiltonian matrix has a co-
herent structure in favor of dynamical collective state transi- |U)=|To)*| Do), (6)

tions. The third aim is to discuss that the adiabatic mean-field
Hamiltonian matrix for physical problems in a more generalwith a coherent state of mesons,
case may be transformed into a tridiagonal matrix, which

selects the optimum collective transition path between Har- |¢0>:H (ean|ma;|me—\an|m|2/2)|0> (7)
tree minima with the transformation matrix providing the nim
path.

In Sec. I, the principal steering meson field approxima-a&nd a Slater determinant state of the nucleons:
tion of the adiabatic mean-field model is described for dy- 1Woy=c --.cOT |0y ®)
namical collective state transitions between isolated Hartree 0 1 I
minima. In Sec. lll, we solve the eigenvalue equation for the ) S o
Hamiltonian on the basis of the adiabatic mean-field statedn the mean-field approximation, both quantum fieidg
In Sec. IV, we solve the evolution problem for the dynamical@nd ¢ are expressed by a sum of the mean field and quantum
collective state transitions of the nuclear system. Conclufluctuation,

sions and discussion are given in Sec. V. P
(W—V2+m2)((¢>+¢):g(<¢¢/x>+:1/11//:), 9
1. ADIABATIC MEAN-FIELD MODEL
i ; . At 1% A
A. Principal steering meson field approximation {”‘W—'— M—g((#)+d) | y=0, (10)
)

The relativistic mean-field theory of a nucleus has been
successfully applied to describe static properties of nucléjyhere the mean fields are defined to be the expectation value
[9]. A nucleus is presumably composed of a number ofyf the fields in the nuclear state,
nucleons and some kinds of mesons. In this paper we start
with the relativistic mean-field expression for a nucleus in () ={(D| ()| Do) = (T, (12)
terms of the nucleon fielgh and scalar meson field, where
we do not express explicitly other meson degrees of free- . L iN R R
dom, for simplicity. (py=(To| (1) (D)W o) = 2, yL(N)y(r). (12)

The Hamiltonian for the system reads 1=

o . 1 Solving the simultaneous mean-field equations
H=f rw(y-V+M)l/f—gl/f<//¢+§(H2+V¢~V¢ in
(~VZ+md)eo(N)=g2, (DY), (13
+m2¢2))d3r, (2) 1=
Bly- VEM=geoDIY(N=eyf(r), (14

with the momentum field = ¢ for the meson. The quantum with the meson mean field expanded on an oscillator basis,

fields satisfy the equation of motion,

92 @O(r):E {anim@nim(1) + afim@nim(1)}
— —V2+m? nim
at*

¢=9y, )
we obtain the mean-field expressipW)=|Wy)* |Dy) for
the static nuclear state.
¥=0. (4) We now turn to a dynamical collective state transition
from the initial nuclear mean-field statg; to the finalV;,
for which we have solved the static mean-field equations.
The meson fields in a finite nuclear system is expanded on The two nuclear mean-field statés and W are specified by
oscillator basisp,m [6], the mean field values!,, and o', respectively, of the

d
(naﬂ\ﬂ—gcﬁ

034315-3



T. KOHMURA, Y. HASHIMOTO, H. OHTA, AND M. MARUYAMA PHYSICAL REVIEW C 61 034315

meson operatora,,,,. In the principal steering meson field . . . R
approximation for the dynamical collective state transition ¢(f)=k21 {akek(r) +agei (1}, (19
between these states, we assume that the transition proceeds N

with the meson mean fielda,, varying along a straight \ith the operators, anda] . The residual interaction which
line, motivates the nuclear transition from the state to W is
described by the nucleon-nucleon interaction exchanging one

meson in the principal steering sta¢q(F). The principal

in the range Gx=<1, starting withx=0 for ¥, and termi-  steering meson field may be a linear combination of scalar

nating atx=1 for ¥;. and vector meson fields in the and @ meson mean-field
We can obtain the single-particle states of the nucleons impproximation for the nucleus. We discuss further the steer-

the meson mean fields,;(x) at givenx. When the param- ing meson field approximation in the relativistic mean-field

eterx is varied, the single-particle levels of valence nucleongheory in Sec. V.

shift to cross each other. This assigns two single-particle In the principal steering meson field approximation of the

states for each of the participant nucleons to change the stagliabatic mean-field model, we take into account only the

while the nuclear system makes a transition from the initialsteering meson fie|¢1(F) in the fluctuation field in Eq(19).

state¥; to the final'¥¢. We label the two single-particle A more general treatment to take into account other fields

an|m(X)=(l—X)ain|m+X(1L|m, (15

states as=1 and —1 for each of the participant nucleons. with k=2,3, ... in thefluctuation field is also discussed in
The participant nucleons occupy the single-particle state Sec. V.

= —1 in the nuclear mean-field stalg and the stats=1 in We take a nuclear system which is composedlafucle-
the state¥. They change the single-particle state while theons (=1, ... N), interacting with the mesons occupying

final afﬂm in the transition process. The energies of the twopne of their two individual statess€1, —1). The Hamil-
single-particle states are adiabatically determined by the meonian for the system is reduced to

son mean field in the course of the nuclear transition, so that

the two single-particle energy levels of the nucleons cross i (91N)?
each other. Each nucleon changes the single-particle state at H=E(anm)+ e
the level crossing.

Using the mean fieldoy(r) in the nuclear statel;, we

+Ho+H,, (20)

—ata_ te t
express the meson field operator as Ho=sa'a 91% SGsCis(atal, 2D
$(1)=p(F) + (), (16 g2 S (@ , , .
=——=> (chei_1+cljci)(elici_1+cljci),
where the mean field is expanded on an oscillator basis, 2 g (G182 €= 160) (€282 € 18j0)
(22
‘Pl()(r)zgm{alnlmqonlm(r)+aI:Im‘P:Im(r)}' where the operatorg;s and cf; are for the nucleong

=1,2,... N in the states=—1, 1 and the operatoand

In order to quantize the meson fluctuation figldr), we  a' stand fora; anda] for the steering fieldpy(r), respec-
define the principal meson field to steer the nuclear transitively. The energyE(«y,,) is the nuclear mean-field enegy

tion, for the state¥; and the energy correctiorg{N)? ¢ is to
cancel the mean-field energy frary . The HamiltoniarH
=N £ 0, 1 provides the meson mean field varying with nucleon con-
ea(1) 1% (@him ™ @nim) Prim( 1) a7 figurations andH, is for the residual interaction exchanging

ith lization f N hich h one meson in the statel(F) to steer the nuclear collective
with a normalization factoN,, which expresses the meson 46 transitions between the mean-field minima. We assume

field anim, varying from ey, 0 apy, in the course of  hat the two lowest mean-field states are degenerate.
nuclear transition. The other orthogonal basis functions are Tp¢ present HamiltoniatH,+H, has the same form

defined to be mathematically as that in Eql) used in Ref[5]. The au-
thors of Ref[5] choose the parameters for their Hamiltonian
(’DK(F):NK% (ak = a i) enim(F), (18)  appropriate to the nuclear tunneling in spontaneous fission.

They chooseN= 40 for the number of level crossing below
f ; . L the barrier. For the energy of collective single-particle mo-
where the vector,,— @nim for the principal steering field jon, they identify the single-particle frequency with the giant
and the other vectorsy,—an, for k=2,3,... are as- quadrupole vibration, which is of the order of 10-15 MeV.
sumed to be orthogonal to each other in the meson mean typical value for the barrier height for spontaneous fission
field a,m, space. On the basis of the functioag(r) for k  from the ground state is 5 MeV. The matrix element for the
=1,2,..., wequantize the meson quantum fluctuation fieldresidual interaction connecting adjacent configurations is of
in Eq. (16) as the order of magnitude of 2—3 MeV. In the numerical calcu-
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lations in the present work, we use the set of parametgers
=0.006 403/20, g,= /0.001, ande=1 in the unit scale of
the order of magnitude of 10—15 MeV ahd=40, which are g; 2
adjusted to reproduce the parameters that in [Béfare cho- =8( a— ;(ZH— N)] -
sen from the above considerations, for comparison’s sake.

The values of the parameters derived from the relativistiGyhere we have substituted the expectation value of the bilin-
mean-field approximation are discussed in Sec. V. ear nucleon operator,

E(n,a)=(T¥|Ho|¥)=ea?—2g,(2n—N)a

9

&

(2n—N)2, (29

B. Adiabatic mean-field approximation (W (n,N— n)|2 sch st|‘I’(n N— n)>= 2n—N. (30
i) 4 JS ’ .
s

Now we apply the adiabatic meson mean-field approxi-

mation to the HamiltoniarH,. The nuclear system oN ) .
nucleons is described in terms of the symmetric nucleon Con'[herefore, for each of the nucleon configuratioit¢n,N

—n), the meson mean field

figurations

1 T _— 1 a=an=%(2n—N) (31
|¥(n,N—n))= \/T; Pciy-+ CnaChy1 17 Cn-1/0), €

NCn

(23 is adiabatically determined to minimize the nuclear mean-
) ) field energyE(n,«). Substituting this valuer, of « into the
wheren nucleons occupy the single-particle statel and  npuyclear mean-field state in E428) and into the nuclear

the otheN—n nucleons the state=—1. The permutations mean-field energ(n,«), we obtain the adiabatic nuclear
P stand for those between some of the nuclegns mean-field state

=1, ..., occupying the state=1 and the counterpart of

the nucleong=n+1, ... N occupying the state=—1. |\if(n)>=|\lf(n,N—n)>-|<I>(an)> (32)
The HamiltonianH, is diagonal on the basis of the

nucleon configurations¥’(n,N—n) so that these nuclear and the adiabatic energy

states are the eigenstatesHy in the meson mean-field ap-

proximation. In the approximation, the meson states are de- gf 5
scribed by a coherent staft&0] en=E(N,ap)=——(2n=N)%, (33
|<D(a)>=e“aT|O>/e‘“|2’2, (24)  respectively, for each of the nucleon configurations
|\I}(n, N-— n)>
which is an eigenstate of the annihilation operatosatisfy- The present nuclear system has two ground states in the
ing the eigenequation adiabatic meson mean-field approximation lfy: one is the
nuclear mean-field stat#(0) and the other i¥ (N), whose
a|®(a))=a|P(a)), (25  energies are degenerate:
with its conjugate equation 1
g q 80=8N=—%N2. (34)
(B(a)|a’=a*(P(a)]. (26)

The two degenerate lowest mean-field statieéO) and
We assume that the meson coherent state takes a real val\lil,(? . . S
of the mean-field parameter. The parametet for the co- N) are coupled to each other by the reS|duaIV|nteract|on in
herent state reproduces the expectatimean-field value of ~ the HamiltonianH, through intermediate state¥(n) and
the meson operatomanda’ in the nuclear state, make the two nuclear ground state energies slightly split in
the case of a nuclear system of an even nunhbef nucle-
a=(®(a)la|®(a))=(P(a)|a’|®(a)). (27)  ons. _ o _
On the basis of the adiabatic mean-field states, we solve
In terms of nucleon configuratiof (n,N—n) and meson the energy eigenvalue equation for the Hamiltoniegp

coherent staté(a), we express the nuclear mean-field statest Hi In Sec. I_II anq calculat_e the trans@tion probabilities be-
as tween the adiabatic mean-field states in Sec. IV.

IIl. ENERGY EIGENSTATES FOR ADIABATIC

[W)=|W(n,N=n))-|B(a)). (28) MEAN-FIELD HAMILTONIAN

The nuclear mean-field energy for the stpe) depends on A. Diagonalization of the Hamiltonian matrix

the nucleon configuratio® (n,N—n) and the meson mean In a nuclear system of an even numb¢rof nucleons,
field «, the N/2+1 adiabatic nuclear mean-field states
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¥ ¥ ~ . . _ TABLE I. The calculated energy eigenvalug for the Hamil-
W(0),¥(2), ... W(N) are coupled by the residual interac tonianH=Hy+H, . In the calculation, we use the set of the param-

tion. Using these adiabatic mean-field St&ié@’l) for basis  eters defined in the texsee Sec.
states, we make alN/2+1 by N/2+1 tridiagonal matrix

expression for the Hamiltoniad =Hy+H,, K Ex
;0 ho 0 20 —1.33662612166792
h - h 19 —1.33662612166779
20 &z T4 18 —1.18228737438742
hi &, hae 17 —1.18228737312892
H= L : 16 —1.04733247693704
~ 15 —1.04733115893980
n-an-a en-z Pn-an 14 —0.93395197245745
0 hun-2 EN 13 —0.93364759115588
(39 12 —0.85329429700537
The diagonal matrix elements are 1 —0.:84130974773678
10 —0.79386466621058
~ M M 9 —0.74954840522423
8n=8n+hnn=<\P(n)|(H0+H|)|‘P(n)> ) —0.69543553240875
92 92 N 7 —0.63510081460674

_ 1 2 2

——;(Zn—N) —;[H(N—n)-i-g , 6 —0.56871237327018
5 —0.49656399116752
(36) 4 —0.41882154872403
. 3 —0.33559694990056
and the nondiagonal elements are > 0.24696826771199
. . 1 —0.15299183527178
hn—2n=hn n2=(¥(M[H,|¥(n—2)) 0 ~0.05370935801928

2
—— C,\/ NCn %e—ng/sz (37) .. . .
"2 N\ Cos e : more indirectly coupled to each other by the interaction
through more intermediate mean-field states, the splitting of

—8g2/e2 ; . he two nuclear ener igenval is smaller. The two low-
The factore 2974 in the nondiagonal elements comes fromt e two nuclear e ergy eigenvalues 1s smafle etwolo

the overlap integral between the meson mean-field states, €st mean-field stateg (0) andW (N), which are degenerate
in the mean-field approximation, are coupled to each other

<(I)(an72)|(I)(an)>:<q)(an)|q)(a,n72)>:e*(an*an_z)zlz through the largest number of intermediate mean-field states
2, 2 V¥ (2n) to yield a very slight splitting of the energies of the
=e 801", (38)  two almost degenerate nuclear ground states. In the present

numerical calculation, the two almost degenerate ground
The other nondiagonal elements vanish. This adiabatigtate energieB,q andE,, are split as slightly as by the order
mean-field Hamiltonian matrixH is characterized by of 1.29x10° 13 as is seen in Table I.
the reflection symmetriese,=en_5, Np_2n=hp o2 The two almost degenerate ground states are mainly of a
=hn_nio Nen=NNCn Nenso - symmetric and antisymmetric linear combination of the two

We solve numerically the energy eigenvalue equatiomjegenerate lowest mean-field basis Stalt€®) andW(N).
HW,=E, ¥, using the set of the parameters shown in SecThese two mean-field states are coupled to each other
Il, which are adjusted to reproduce the parameters used fahrough the intermediate statds(2n) to make a complete
their Hamiltonian in Ref.[5]. We show the calculated mixing of themselves. This is analytically shown in the per-
nuclear eigenenergies, for the Hamiltonian matrixH in turbation theory in the following subsection.

Table | and the calculated coefficients,, of the nuclear The energy eigenvalue equatidﬁ\isz Ek\i’k for the

energy eigenstated = c,,¥(2n) expanded in terms of tridiagonal Hamiltonian matrix! leads to a Schdinger dif-

the adiabatic mean-field statés(Zn) in Table II. ference equatiofb] on the finite range of discrete coordinate
~ of even integral numbersr2from O to N,

Note that the pair of nuclear mean-field statieén) and
W (N—n) are degenerate in the adiabatic meson mean-field EiCon
approximation for the Hamiltoniatd, and that they are
coupled to each other by high orders of the residual interac-
tion in H,, which makes a splitting of the two concerned
nuclear eigenenergies. However, since a pair of adiabatic

mean-field statesi’(n) and \if(N—n) with smallern are (39

=é&onCont Em: N2n2mCaom

An thHCzn+ (820t N2n2n— 2+ Nan2ni2)Can,
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TABLE Il. The expansion coefficients,, of the nuclear energy eigenstati!§=2nc2n\if(2n) in terms

of the adiabatic mean-field statéE(Zn), which are calculated in the diagonalization method. The upper and
lower signs in the double signs are for the smaller and larger of the tvi®, Pespectively. The ellipses
indicate a value smaller than 0.001. The parameters used in this calculation are shown in the text.

2n\ k 20 19 18 17 16 15 14
0,40 0.697 +0.697 —-0.117 *+0.117 0.027 *0.027 —0.007
2,38 0.117 *0.117 0.630 +0.630 —0.275 +0.275 0.106
4,36 0.024 +0.024 0.281 +0.281 0.463 +0.463 —0.366
6,34 0.005 +0.005 0.098 +0.098 0.393 +0.393 0.193
8,32 0.001 +0.001 0.032 +0.032 0.211 +0.211 0.388
10,30 0.010 +0.010 0.095 +0.095 0.323
12,28 0.003 +0.003 0.039 +0.039 0.207
14,26 0.001 +0.001 0.015 +0.015 0.118
16,24 0.006 +0.006 0.065
18,22 0.003 +0.002 0.040
20 0.002 0.000 0.032
2n\ k 13 12 11 10 9 8 7
0,40 +0.007 0.002 +0.003 —0.001 +0.001 0.001
2,38 +0.106 —0.041 +0.045 0.028 +0.021 —0.013 +0.008
4,36 +0.368 0.192 +0.220 —0.158 +0.135 0.096 +0.063
6,34 +0.196 —0.272 +0.341 0.325 +0.340 —0.298 +0.235
8,32 +0.390 —0.120 +0.101 —0.068 +0.216 0.336 +0.388
10,30 +0.323 0.144 +0.222 —0.293 +0.287 0.131 +0.099
12,28 +0.205 0.281 +0.344 —0.194 +0.017 —0.259 +0.335
14,26 +0.113 0.306 +0.312 0.027 +0.279 —0.302 *+0.035
16,24 +0.056 0.285 +0.216 0.223 +0.336 —0.054 +0.290
18,32 +0.023 0.260 +0.107 0.343 +0.214 0.227 +0.288
20 0.000 0.249 0.000 0.381 0.000 0.343 0.000
2n\ k 6 5 4 3 2 1 0
0,40 A . .
2,32 —0.004 +0.002 0.001 e .
4,36 0.037 +0.020 —0.009 +0.004 —0.001 .
6,34 —0.164 +0.102 0.055 +0.026 0.010 +0.003 —0.001
8,32 0.365 +0.288 —0.192 +0.108 —0.050 +0.018 0.004
10,30 —0.303 +0.403 0.381 +0.279 0.160 +0.070 —0.020
12,28 —0.179 +0.108 —0.349 *+0.422 —0.338 +0.189 0.067
14,26 0.274 +0.327 —0.070 +0.273 0.438 +0.359 —0.168
16,24 0.261 ¥0.111 0.357 +0.165 —0.253 +0.462 0.320
18,22 —0.120 +0.336 0.001 +0.360 —0.162 +0.342 —-0.471
20 —0.337 0.000 —0.350 0.000 0.389 0.000 0.535
for the coefficientsc,,, of the eigenstat&V' == ,c,, ¥ (2n) A B
- A C2n+17 Can+27 Con- (41)

expanded in terms of the adiabatic mean-field std#téan),

where we have defined the differences
The nondiagonal elements of the Hamiltonian matrixH

play the role of the factor-1/(2m) with massm in the

AhZHACZn:h2n2n+2_02n+1_h2n2n72_C2n71 kinetic energy term in Schdinger equation. The negative
An “"An An An h’s in the present model are equivalent to a positive nmass
(40) It may be interesting to see in Tables | and Il that higher
energy states on the repulsive parabolic potentigk
and —(g7/e)(2n—N)? in Schrainger difference equation on the
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08 ' ' ' ' ' tion theory to calculate the degenerate mean-field energies
perturbed by the residual interaction and show that the per-
turbation method works for the present problem, in calcula-
tion of the splitting of the two almost degenerate ground
state energies, better than the WKB method.

PuttingE for the eigenvalues of the Hamiltonian matkix
in Eqg. (35) andl for N/2+1 by N/2+ 1 unit matrix, we have
the eigenvalue equation det(-El)=0 with the notation
det standing for determinant. The determinant of the tridi-
agonal matrixd — EI may be decomposed in terms of minor
determinantg\ (2n,2m) which are composed of the elements
from line 2n and column 2 to line 2m and column 2n of
the matrixH—EI. Generalizing this minor determinant ex-
pression, we may notate det-EIl) asA(O,N).

We can prove the following two formulas for the minor
determinants\ (2n,2m) of a tridiagonal matrix:

-1 Ca2y

A(2n,N—-2n)A(2n+2N—-2n—-2)

-0.5 : . : ' ' ' ‘ —A(2n,N—2n—-2)A(2n+2,N—-2n)
2n

FIG. 1. The calculated distribution{1)"c,, of the eigenstates

\ifk=2n02n\if(2n) for k=0-3 with a sign factor £ 1)" depending
on even and odd. The parameters used in this calculation are
shown in the text.

=h2n2n+ 220+ 220NN 20— 28— 2nDN- 20N 20— 2
X{A(2n+2N—-2n—2)A(2n+4N—-2n—4)

—A(2n+2N-2n—4)A(2n+4N-2n—2)}

(42)
finite range of integral discrete coordinates have some fea-
tures resembling the energy states in an attractive parabol@nd
(harmonic oscillator potential. Note that the energy eigen-
states¥, from k=0 roughly up to 5 shown in the tables A(2n2m) - N2n2n+2N2n+ 220
have features similar to the energy states of a harmonic os- A(2n+2,2m) =&~ E- A(2n+2,2m) (43
cillator: They haveg(1l) equispacing eigenenergi&gs and(2) A(2n+4,2m)

Gaussian distribution- 1)"c,,, of the eigenstate wave func-

tions ¥, =3 ,c,,¥(2n) on the discrete coordinaten2 In Using the first formula recursively, we obtain the following
Fig. 1, we show the calculated amplitudes®)"c,, of the  relation:

eigenstatedV, for k=0 to 3 with a sign factor £ 1)" de-

pending on even and odg which is equivalent to changing A(2n,N—2n)A(2n+2N—-2n—-2)

the sign of the nondiagonal elemertisof the tridiagonal

Hamiltonian matrixH. The amplitudes look very much like =A(2n,N—2n—-2)A(2n+2N—-2n)

the harmonic oscillator wave functions. This is because the

absolute values of the elements of eigenvectors of a tridiago- —Nonont2Non+2on+4° - Nn—2n—2n-2n

nal matrix are not changed, even if the signs of all diagonal

elements of the matrix are changed. Xhn—onn—2n—2° " Nontoon - (44)

B. Perturbation theory for almost degenerate ground states . .
y g g Applying the above formula, Eq44), to the eigenvalue

The two degenerate lowest mean-field stafe0) and ~ €quation detfi —EI)=0, we decompose the eigenequation
W (N), which are separated by a potential barrier of the en-

ergiese,, of N/2—1 intermediate mean-field statés(Zn), O=de(H—-EI)=A(0N)
are coupled to each other through the intermediate states by _ _ _
the residual interaction iR, . The coupling of the two states ={A(ON=2)A(2N)~TonI'no}/A(2N—-2)
splits their degenerate mean-field energies. While one usu-
ally calculates the splitting of the energies of the two almost —A(2N-2) A(ON=2) A(2N) _ TonI'no

’ A(2N—-2) A(2N-2) [A(2N-2)}2]

degenerate ground states in the WKB method using imagi-
nary time[8], we calculated it in an exact diagonalization in
the last subsection. In this subsection we apply the perturba- (45
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where ~ hozhzo r
0" Ay(2N—2) N
RyaN—z) N7
Fon=hoohog - -hy-ons Tno=hnn-2Pn-2n-47 - - Dao- ' o(4, )
(46) T ~  hnn-2hn-an
N0 ENTA(2N-2)
The energy eigenvaluds are obtained from the second fac- Ao(2N=2) AN (ON—24)
. . ; Ao(2N—4)
tor on the right hand side of the above equation: (50)
A(ON—2) A(2N) Tonl'no This perturbation expression for the Hamiltonian matrix

(47 H indicates that the two degenerate lowest mean-field ener-

A(2N—2) A2N-2) “opz s ) .
( ) AC ) {A(2N=-2)} gieseg andey are perturbed by, with an energy shift

Applying the second formula, Eg43), to the two fractional

factors in the first term on the left hand side of the above E.o—— hoahzo __ Pnn- 2N -2n (51)
eigenvalue equation, we obtain the following expression for sh Ag(2N—-2) Ag(2N—-2)
the equation: Ao(4N—2) Ao(2N—4)
~ hgohoo ~ han—2hN—2on and an energy splitting
€0 E——i ENTET Y AN A
A(2N-2) A(2N-2)
A(4N-2) A(2N—-4) 20N

Esm v o 50 (52
TonI'no Ao(2N=2)

- {—A(Z,N—Z)}2 =0. (49

The latter shows that the energy splitting is twice the pertur-
bational energy for a hopping process on a direct path from

Using the perturbation theory for degenerate unperturbeﬂqe mean-field statel(0) to the degenerate counterpart

energies, we solve the above eigenvalue equation foHdet(
—EI1)=0 in order to obtain the energy eigenvalieslose W (N) through the intermediate mean-field staeg2n) for
to the degenerate lowest unperturbed mean-field energie=2,4,...N—2. Collective tunneling takes place as a
go=en. In perturbation theory, the energy eigenval@ieim  quantum mechanical hopping process along a series of inter-
the diagonal matrix elements in detC E1) except fors, me_dlate states. We see that the trl_dlggonal me_an-fl_eld Hamil-
_E and%,—E in the diagonal (0,0) and\,N) elements tonian matrixH in the present principal steering field ap-

N 9 ' ! ' proximation has a coherent structure in favor of dynamical
respectively, are replaced by an appropriate vakue

~ o~ collective state transitions from the stabg0) to W (N).
—Noohao/ (82— 0) + - - - expanded up to an order necessary  Aqquming that the nondiagonal elements of the Hamil-
for the perturbation calculation. Therefore, we replace thg,hian matrixH are smaller than the diagonal elements, we
minor - determinantsa(2n,2m) (0<2n, 2m<N) in the gy nang the shifEg, and splitingEq, of the two almost de-
above energy eigenvalue equatidd8) by Ao(2n,2m),  generate ground state energies in terms of the nondiagonal
where Ao(2n,2m) are the minor determinant&(2n,2m)  glements, Then up to second order kf higher than the
with thf’ energy e'%e”"f"“fs replaced by the approximate lowest order contribution we obtain the expression for the
value eo—hghyp/(e;—gg)+---. Thus, the eigenvalue shift,

equation (48) for the two almost degenerate ground state

energies leads to a quadratic equation for their perturbational

energy eigenvalueg, hgoh
Esh:_ 02120 ’ (53)
= _ hashsa | = ho2h20
~ hoah2o ~ hyn-2hn-2n 2 ea—7%0 ® E—%o
eo—E——————=| | en"E— e
Ap(2N—-2) Ap(2N—-2)
Ao(4N—2) Ao(2N—4) and that for the splitting,
FONFNO
T on_onz % (49 2r
{Ao(2N-2)} u (54)

WIS

which is equivalent to the eigenvalue equation for the two by
two Hamiltonian matrix where

034315-9



T. KOHMURA, Y. HASHIMOTO, H. OHTA, AND M. MARUYAMA PHYSICAL REVIEW C 61 034315

Ao(2N—=4) Ag(4N—=2) hahge - -hy_an-—2hn-on-a a2
Apg(4N—4) Ap(4N—4) {Ag(4N—4)}?

)~ PV PP ~ hozh2o ~ haehes ~ Nozh2o ~ hn—an-4hn-—an-2
= Er— = ~ || €™ < ~ Epg— == | | o7 == EN-2T ~ ~
€67 €0 €27 € EN-4" €0

€47 € €27 &

(~ hozhzo”
- 80_~ = .
€27 &g

This explicit expression for the energy splitting Qf the o e adiabatic mean-field staté&(Zn) exactly calculated in
almost degenerate ground states yields an estimate of thge giagonalization in Table Il are compared with those from

inverse of collective tunneling time scale, as is discussed i, perturbation calculation. We see that the two almost de-
Sec. V. . '

The above expressions for the shift and splitiing of thedénarate ground states;q and W5, calculated in the exact
two almost degenerate ground state energies indicate thg{ggonalization are very close to those in E8f) obtained

when an appropriate valug,+ Eg, for the eigenvalué us- from the perturbation calculation.

ing an approximate shifEg, obtained in Eq(53) in a lower

order perturbation expansion is substituted into the unper- V. DYNAMICAL COLLECTIVE STATE TRANSITIONS
turbed energy in the expression for the splitting in Esf),

it tely determi hiah q | £ th | In this section, we solve the time evolution problems of
It accurately determines a nigher order vajue of the Sm.a{he nuclear system. We calculate the transition probabilities

@nd discuss the features of dynamical collective state transi-
Table Il shows that the perturbationally calculated valuestions of the system y

for the shift and splitting reproduce well the values from the . ' _ .
exact diagonalization calculation. It shows that the present In terms of N/2+1 adiabatic mean-field stateB(2n),

perturbation calculation works in a better precision than thd2n=0,2, ... N), we describe the time evolution of the
WKB calculation[5]. nuclear system. We defineNV2+1 by N/2+ 1 orthogonal

The structure of the two by two Hamiltonian matt in  matrix U of the overlap integraléW | ¥ (2n)) between the

Eq. (5(3) indicates that the two degenerate lowest mean_ﬂeldeigenstatesi'k of H and the adiabatic mean-field states

states¥(0) and\if(N) are coupled to each other through a L L . .
number of intermediate mean-field states by the residual m\_If(Zn) with its inverse matrixJ . The tr_ansmf)n ampli-
teraction inH, to yield a very slight splittingE, of the two  tudes of the system from a nuclear mean-field statén) to

almost degenerate ground state energies. The two by twanother at timet are expressed by ~'e™'"'U, where the

. . . . . . s —iHt .
Hamiltonian matrixH’ causes the two degenerate mean-fieldtime evolution matrixe™'"" is expressed by a diagonal ma-

Ao(z,N_ 2) = Ao(4,N - 4)

states‘if(O) and\i’(N) to completely mix themselves in each trix,
of the two nuclear ground states: e iEot 0
5 1 . 5 e iEat
\PFE{\I’(O)i‘P(N)}. (55 e Hl= ) (56)
_ieN
The expansion coefficients,, of the two almost degenerate 0 e 5

ground statest';o andWyo, W= ZnC2n'¥(2N), in terms of Let us assume that the nuclear system starts the time evo-

TABLE Ill. The shift Ey, and splittingEq, of the energie€,q lution with one of the two degenerate lowest mean-field
andE, of the two almost degenerate ground states calculated up tQtates,|\If(0)) at timet=0. The nuclear state at tintas
first and second orders éf, higher than the lowest order contribu-
tion are compared with those obtained from the exact diagonaliza-
ton calculation. The mean-field energiesso=2¢40=
—1.331949 088. The parameters used in this calculation are sho

[W(0),ty=e""|w(0)). (57)

"he transition amplitude to an adiabatic mean-field state

in the text. .
|W(2n)) at timet is
Shift and splitting First order Second order Exact
N/2
Esn (10°2) —4ah —4.66 —4.68 (W (2m[¥(0),ty= 2 (¥(2n)| ¥ )e "E(¥ | ¥ (0)).
Esp (10719 0.53 1.27 1.29 k=0

(58
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A
=
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Ry () )
- P (7 P (t j
° 2 ( ) 4 ( ) 0.2 . K J
l/ Py (1)
0 ildaoaaneos S — sellies /. \\\ R XU
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!n 5
(10 )
FIG. 2. The calculated transition probabilitiBg(t) (solid line), N N .
P,(t) (dotted ling, and P,(t) (dashed ling from a lowest mean- FIG. 3. The calculated transition probabilitig®,(t) (solid

field state¥ (0) to the stateeif(O), \if(Z), and\if(4), respectively, line), P_O(t) (dottgd ling, and P(t) (anhEd Ilnb from a I9west
in a short time evolution @t<2/(E;s—E,)=13.0m. The pa- Mean-field state?’(0) to the states¥’(40), ¥(0), and W¥(2),
rameters used in this calculation are shown in the text. respectively, in a long time evolution<0t<2/(E;g— E5g) = 1.55

X 10%7. We use large steps of time interval of X807 for the
We see that all the eigenenergg contribute to the transi- Plot. If we were to take small time intervals of the order of

tion amplitude. The nuclear state at timmay be expanded 7/(Eis~Ezq) =6.57, we might see small fluctuations of the transi-
tion probabilities. The parameters used in this calculation are shown

in terms of the nuclear mean-field stati!$2n), in the text.
5 N/2 5
|\P(O)’t>:n§o Can(1)[W(20)), (59 ering the two isolated mean-field minim&(0) and W (40)
in a periodT=27/(E1g— E5p). The transition probabilities
with the coefficients Po(t) and P,(t) almost satisfy the unitarity,Py(t)
+Py(t)=1, at any timet. In Fig. 3, we plot the calculated
Con(t) = (¥ (2n)| ¥ (0),t). (60) transition pr9babll|tlg$340(t), Po(vt), andP,(t) to the mean-
5 field statesW(40), ¥(0), and ¥ (2), respectively, in the
The transition probabilities to mean-field stakg2n) are |°q%13 periodic time evolution t<2m/(E9— Ezg) =1.55
X .
Pn(t) =] Can(t)|2= (W (2) | W (0),1)|2. 61) Generally speaking, a nuclear system oscillates in a num-

ber of oscillation modes with period=2#/(E—E,/).
The transition amplitudes in E¢58) show that in a short When starting with the stat&’(0), however, it oscillates
mainly in the two modes with the peridd=27/(E 19— E»)
andt=2m/(E1g— E,): the former is a time scale for tunnel-
919 and the latter is for local quantum fluctuation. Note that
the state between the mean-field stalg®) and¥(2) ina the transition probabilitiedy(t), P,(t), and P,o(t) make
periodT=2m/(E3— E»o) and gradually widens the configu- small fluctuations in a short periobi=27/(Eg— E,o) even

ration space toward the mean-field stateg4), ¥ (6), . . . after a long time evolution. For the plot of the transition

successively. In Fig. 2, we show the calculated transitiorProPabilities in Fig. 3, we actually use large steps of time
interval of 7.8x 10%7. If we were to take small time inter-

probabilitiesP,,(t) to Fhe adiabatic mgan-field statég2n) vals of the order ofr/(E,g— E,q) = 6.5 for the plot, Fig. 3
for 2n=0, 2, and 4 in the short periot<2m/(E15—Ez0)  might show the small fluctuations of the transition probabili-
=13.0m. The nuclear system cannot reach the degeneralgss. |n Fig. 4, we show the calculated small fluctuations of
counterpart (40) in the short time evolution. However, in a the transition probabilities in the short peridd=2=/(Eqg
long time evolution, the nuclear system gets to oscillate, cov— E,o) =13.0r after a long time evolutiori=3t, with t,,

time evolution, starting with the mean-field staizE(O), the
nuclear system oscillates quantum mechanically changin
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0.6 T T

Py (1)

04

P2n(t)

03 -

01 -

FIG. 5. The calculated logarithmic absolute values; dfmg,(t)|

FIG. 4. The calculated fluctuating transition probabilitieg(t) of the expansion coefficients of the nuclear Stéﬁ'fvb(o),t)

(solid ling), Py(t) (dotted ling, and P,(t) (dashed Ilnba from a - ) ) -
=Enc2n(t)|\lf(2n)> in terms of the mean-field stat¢§f(2n)> at

lowest mean-field statdf(O) to the stateS\If(40) \If(O) and time t=t,= 1t (solid line), t,= 1t (dotted ling, t3—4t (short

‘I’(Z), respectively, in the short periodl =2m/(Eig— Ejg) dashed Iin}: and ty=tm (dashed Im)z where t,,= 7/(E1g— E2p)

=13.0r after a long time evolutiont=3t,, with t,=/(E;q =7 750981924 75943. The parameters used in this calculation

—E,g) =7 750981924 75948. The parameters used in this calcu- are shown in the text.

lation are shown in the text.

=7/(E19— E5) =7 750981 924 7593, when the transition

probability to the degenerate counterp#t40) is predicted
to be maximum. We show above the detailed valug,of
because the transition probabilities shown in Fig. 4 are very
sensitive to the value. The detail of the value is necessary to
reproduce the curves.

In order to see how the nuclear state propagates from the +N2n2n+2)Can(t) (62)

J
|EC2n(t) =&onCon(t) + % Nan2mCam(t)

A ~
= EhanCZn(t) +(&ganthonon—2

initial mean-field stateif(O) to the degenerate counterpart

\If(40) we show in Fig. 5 the calculated absolute valueén the finite range of integral discrete coordlna[eee Eq.
|c2n(t)| of the expan5|on coefficients of the nuclear state(39)] with the matrix elements hy, o= (\If(2n)|
|\If(0) H=3 CZn(t)|\If(2n)> at timet=t,=3t,,, t,=3t,, H |\If(2m)) of the interaction Hamiltonian. Therefore the
t;=2t,,, andt,=t,,. The calculated values,,(t) of the transition probabilities,,(t) = |c2n(t)|2 of the nuclear sys-

coefficients show that the state arhplitudgg(tz with 2n o |q,(0) t) to the mean-field statbP(Zn)} at timet sat-
=0 and 40 for the mean-field statds(0) andW¥(40), re- isfy the equation
spectively, oscillate with an amplitude close to unity but that

those for the intermediate mean-field staté¢2n) for n

d
=1-19 are very small at any time, a general feature of tun- —Po(t)=—i, {3, (1)NopomCam(t)
neling processes. This indicates that the physical transition of m
the nuclear system starting with the mean-field s#(@) to = C5m()NomanCan(t)}. (63

any intermediate mean-field statée(Zn) for n=1-19 is
very rare because it breaks the energy conservation.
The expansion coeff|C|ent62n(t) of the nuclear state The currents for the nuclear systerlﬂt(O) ,t) to change the

|‘l’(0) H== CZn(t)|\If(2n)> satisfy the Schidinger differ-  state from the mean-field statIe(Zn) to \If(2n+2) at time
ence equation t are defined to be
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FIG. 6. The calculated fluctuating currerjtg{(t) (dotted ling and j;,(t) (solid line), the current flowing out from the initial lowest
mean-field statel'(0) and that flowing into the degenerate counterpB(40), respectively, in the short periol=27/(Eg— E5g)
=13.0r after timet=0, 3t,,, andt,, i.e., (8 0<t<T, (b) it,<t<3t,+T, and(0) t,<t<t,+T, respectively, witht,=/(Eq
—E5p) =7 750981 924 7598. The parameters used in this calculation are shown in the text.

jons2 an(t)=—i{C% . o(t)Nons2 2nCan(t) In Fig. 6, we show the calculated currenig,(t)
=], o(t) andj;,=]403dt), the current flowing out from the

Ak
Con(Nzn 2n+ 2C2n+2(0)} (64) initial mean-field stata’ (0) and that flowing into the degen-
so that they satisfy the continuity equation erate counterpart’ (40), respectively, in the short periad
=2m/(E 15— Epg) = 13.0r after timet=0, 3t,, andty,, i.e.,
B jp =] -] t) 65 (@ 0<t<T, (b) it <t<it,+T, and(c) t,,<t<t,,+T, re-
ot 2ntt) = Jant22n(D) 7 2n 20 -2(0)- spectively, witht,=/(E;o—E,q) =7 750 981 924 7593
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FIG. 7. The net tunneling currerj_(t) from the initial lowest
mean-field statelV(0) to the degenerate counterpdri(40) in a
long time evolution G<t<2/(Ejq— E,q)=1.55x10%7 calcu-
lated in the two-eigenenerg¥(y andE,g) approximation. The pa-
rameters used in this calculation are shown in the text.

We see that the currenjg,(t) andj;,(t) fluctuate quantum
mechanically in the short perio@l even after a long time
evolution, except for the vanishing currepigt) in Fig. 6(a)
andj,(t) in Fig. 6c).

The currentg 5,42 2n(t) involving the quantum mechani-

PHYSICAL REVIEW C 61 034315

V. CONCLUSIONS AND DISCUSSION

We develop a fundamental description for nuclear collec-
tive transitions between Hartree minima. In our description
we express nuclear metastable states in terms of the mean-
field approximation. The nuclear transition from one of the
metastable states to another is formulated in the steering me-
son field approximation. This model is more fundamental
and applicable than the intuitive model of Argeal. We can
extend the present model to a more physical model, taking
into account the meson fields,, k=2,3, ..., in Eq.(18),
orthogonal to the principal steering fiels) .

Our formulation for nuclear transitions is characterized by
a real time treatment instead of the usual imaginary time
expressior8]. In this formulation we can describe the real
time evolution of the system.

In terms of the creation and annihilation operators of
nucleons and the steering field, the Hamiltonian for the
nuclear system in the steering field approximation reads

H:E(ain,m)+; gj:c/c; i +eajay

_9; Vjj 3CiTCji(al+aD, (66)
where the overlap of the wave functions

vn=f P (D (N ey(r)dBr. (67)

In the picture of relativistic mean-field theory, the scalar
(o) and vector ) meson fields produce the mean fields in
the nucleus. The steering field is a linear combination of the
two meson fields and here we express it to reproduce their
mean-field values as

cally fluctuating local currents are very large compared with a.=c.a +c.a (69)
. . 1 %o %o
the net current for collective tunneling of the nuclear system

from the initial mean-field state?(0) to the degenerate aj=c,al+c,a, (69
counterpart¥ (40) in a long time evolution. We calculate the

net tunneling currenj(t) in a long time evolution which is ag=NUE (af,mm— @) im)@onim s (70
defined to be the fluctuating total curref{$) averaged in a nim

short time evolution. For the calculation of the net tunneling

current, we take into account only the two terms with a,=N,> (@ =l i) aunim. (72)
=19 and 20(two-eigenenergy approximatipin the transi- nim

tion amplitude of the nuclear state’(0),t) in Eq. (58), \/—3-

neglecting the random phase terms in a long time evolution c = £u9¢ (72)
of the system. In this approximation the net tunneling current 7 ‘/sigiJrgfogi’

Eut(t) is equal toj;,(t). In Fig. 7, we show the net tunneling

currentj_(t) from the mean-field statﬁf(O) to \if(40) in a
long time evolution G<t<2/(Eqg— Eyg)=1.55x10" 7

calculated in the two-eigenenergy approximation. The net

tunneling current (t) of the order of 1023 is smaller by a
factor of 10 1° than the fluctuating total currenjs,(t) and

Jelg,

Cop= . (73)

3.7, 3.7

Using the best-fit values of the parameters in the relativistic
mean-field modelg6], we can estimate the values of the

jin(t) of the order of 10°. The calculated currents at the top parameters in the present model. The enesgyf steering

of the potential barrierj,, »{t), for example, are also fluc-
tuating, to be of the order of 16 at any timet.

field quanta is related to the energiesande , of the scalar
and vector mesons, respectively,
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e=Cle,~Cle,~100 MeV, (74 mean-field state?(0) to the degenerate counterpdf(N),
o . the nuclear state is dominated by lower energy eigenstates:
and the nucleon-steering field coupling constants are the state is so much affected by the edges of the limited

configuration space that the system does not make a har-
vi)=1 MeV monic oscillation. Of a number of time scales, the two time
) ' scales t=7/(E19— E,9) and t=/(Eg—E,g concerned
(75)  With the lowest energy eigenvalues are dominant: the former
is an estimate of the collective tunneling time scale and the
1 1 latter is of local quantum fluctuation. The system evolves
g,= ( Co_gzr_cw—gw) vij=1 MeV, (76) oscillating mainly in the two modes with these time scales.
\/ga' \/Zw Our perturbation expression yields an explicit estimate,
) ] ) ] Eq. (54), for the energy splitting=, of the two almost de-
wherei and] stand for typical particle and hole states, re-generate ground states. This estimate of the splitting, feasible
SpeCtiVEIy. In the above relations for the Steering field energyo evaluate by using physica| parameters for the residual in-
and the coupling constants, we have shown their typical eseraction and for the unperturbed energies, determines a time
timated values. These meson theoretical values @f;, and scalety,= 7/ (E 19— E;q) = m/Eg, 0f tunneling or of fission for
g% are nearly one order of magnitude larger than the valuea particular system.
of the parameters in the model of Aret al. But it is inter- There are several nuclear states for a given nucleon con-
esting to see that the meson theoretical values, qﬁ, and figuration,n nucleons in the state=1 and the otheN—n
gg reproduce the values of the potential barrier heighthucleons in the state=—1, because any combination of the
(9:N)?/& and of the residual interaction strengi/e ob- ~ nucleons can be chosen for the configuration. Since the
tained from the phenomenological observation by Aeval.  Single-particle energies of the nucleons are degenerate in the
Therefore, even if we use these meson theoretical values 6RSe of the present symmetric Hamiltontiwith respect to
the parameters in the present mean- and steering-field calcQucleons, the nuclear transition proceeds through the nuclear
lation, we shall obtain the same results as the present one$tates in Eq(23), which are symmetric under the permuta-
The eigenstates in a repulsive parabolic potential for 4ions among the nucleons, in tt]e nuclear transition starting
finite dimensional matrix have similar features to those ofwith the nuclear mean-field stat(0).
harmonic oscillator. The amplitudes of the eigenstates in the We can extend the present model to a more physical
repulsive parabolic potential in Fig. 1 look very much like model. In a more physical model which takes nondegenerate
harmonic oscillator wave functions. This is because the absingle-particle states, several nucleon configurations for a
solute values of the elements of eigenvectors of a tridiagonajiven number of particles and holes may take part in dy-
matrix are not changed, even if the signs of all diagonahamical collective state transitions. Then, the adiabatic
elements of the matrix are changed. The eigenstates of @ean-field Hamiltonian matriH for the system may be
matrix are, however, affected by the edges of the limitedmore complicated than a tridiagonal matrix.
space for the finite dimensional matrix. Therefore the simi- When one takes several meson fielgsin the quantum
larity of the eigenstates for a finite dimensional matrix tofluctuation field expansion, Eq19), it makes also a more
those of a harmonic oscillator is broken in lower energycomplicated Hamiltonian matrix than a tridiagonal one. The
states in the repulsive parabolic potential. present approximation for the nuclear collective state transi-
The nuclear system oscillates in a number of oscillationtions in terms of the principal steering meson field suggests a
modes with a period of the inverse of the eigenenergy difway to solve the physical problems of the nuclear transitions.
ferenceE,— E, so that the transition probability in Eq$8) It may be instructive to note that the adiabatic mean-field
and (61) depends on eigenenergy differendgs—E,.. In  Hamiltonian matrix for physical systems in a general case
the case of the harmonic oscillator, the differefite-E,,  can be transformed into a tridiagonal matrix, which selects
=(n—n")w of any pair of eigenenergies, andE,, is an  the optimum collective transition path between Hartree
integern—n’ times the classical angular frequensyso that  minima with the transformation matrix providing the path
the system oscillates with classical peribd27/w. In the  that a nuclear system takes in the course of a dynamical
present case of a nuclear system with a finite configuratiotransition. This technique of making a tridiagonal matrix is
space, a number of nonresonating frequenEigsE,,, the  widely used in the first step of the computational diagonal-
difference of eigenenergiels, and E,,, contribute to the ization calculus of symmetric matricé41]. We will study
transition. In the nuclear collective tunneling from the lowestthis problem in another context.

1 1 1
0:= ( CU\/Z_TQU_Cw\/Z—Tgw)E(U” -
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