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Observability of Rényi's entropy
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Despite recent claims we argue thatngis entropy is an observable quantity. It is shown that, contrary to
popular belief, the reported domain of instability forrigeentropies has zero measu@hattacharyya mea-
sure. In addition, we show that the instabilities can be easily emended by introducing a coarse graining into an
actual measurement. We also clear up any doubts regarding the observabilityyd§ Ratropy in(multi)frac-
tal systems and in systems with absolutely continuous probability density functions.
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[. INTRODUCTION fractal systemg10]. THC entropy was recently used in a
study of systems with strong long-range correlations and in

Thermodynamical or statistical concept of entropy, thoughsystems with long-time memori¢&1].
deeply rooted in physics, is rigorously defined only for equi- Despite the information theoretic origin there has been
librium systems or, at best, for adiabatically evolving sys-raised some doubt regarding the observability ohyRen-
tems. In fact, the very existence of the entropy in thermody+tropies [12]. Some authors went even as far as to claim
namics is attributed to Caratbeory’s inaccessibility that instabilities in systems with large number of microstates
theorem[1] and the statistical interpretation behind the ther-completely invalidate the use of Ry entropies in all phy-
modynamical entropy is then usually provided via the er-sical problemg13]. This is rather surprising since” Rg’s
godic hypothesid2,3]. It is, however, a highly nontrivial entropy is routinely measured in numerous situations
matter to find a proper conceptual ground for entropy ofranging from coding theory and cryptograpfy| (where it
systems away from equilibrium, nonergodic systems, oregulates the optimality of codingthrough chaotic dy-
equilibrium systems with “exotic” non-Gibbsian statistics namical system$10] (where it determines the generalized
(multifractals, percolation, polymers, or protein folding pro- dimensions for strange attractprand earthquake analysis
vide examplek It is frequently said that entropy is a measure[15] (where it is used to evaluate the distribution of earth-
of disorder, and while this needs many qualifications andyuake epicenters and lacunayitto nonparametric math-
clarifications it is generally believed that this does represenématical statistic§where it prescribes the price of constitu-
something essential about it. Information theory might beent information. Besides, Reyi entropies directly provide
then viewed as a pertinent mathematical framework capablmeasurable bounds in quantum-information uncertainty rela-
of quantifying the “measure of disorder.” It is an undoubted tions[16].
advantage of information theoretic approaches that whenever In the present paper we aim to revise Lesche’s condition
one can measur@r contro) information one can also mea- of observability. We illustrate this in various contexts: sys-
sure(or controh the associated entropy, as the latter is essentems with a finite number of microstates, systems with an
tially an average information about a system in questiorinfinite (but countablg number of microstates, systems with
[4,5]. absolutely continuous probability density functiof®DF’s),

In recent years there have been many attempts to exterahd multifractals. We show that it is not quite as simple to
the equilibrium concept of entropy to more generic situationgdefine the ubiquitous concept of observability. We propose a
by applying various generalizations of the informationless restrictive observability condition and demonstrate that
theory. Systems witlimulti)fractal structure, long-range in- Renyi entropies are observable in this new framework. In
teractions, and long-time memories might serve as examplesthat follows we will give some considerations in favor of
Among a multitude of information entropies Shannon’s en-the above statement.
tropy, Rewyi entropies, and Tsallis-Havrda-Charv@HC) The paper is organized in the following way. In Sec. Il we
nonextensive entropi¢§] have found utility in a wide range discuss Lesche’s criterion of observability which frequently
of physical problems. Shannon’s entropy is known to reproforms a core argument against observability ohi@eentro-
duce the usual Gibbsian thermodynamics and is frequentlpies. We argue that the criterion is unnecessarily restrictive
used in such areas as astronomy, geophysics, biology, medind, in fact, many standard physical phenomena which are
cal diagnosis, and economi@f®r the latest developments in observed and measured in the real world do not obey Le-
Shannon’'s entropy applications the interested reader masche’s condition. In Sec. Ill we present some essentials of
consult Ref[7] and citations therejn Renyi entropies were  Renyi entropies required in the main body of the paper. In
conveniently applied, for instance, in multiparticle hadronicSec. IV A we argue that for the finite number of microstates
systemg[8], fractional diffusion processd®], or in multi-  Renyi entropies easily conform with Lesche’s criterion, i.e.,

they are observable. In Sec. IV B we extend our analysis to a

countably infinite number of microstates. Here appearance of
*Email address: petr@cm.ph.tsukuba.ac.jp instabilities may be observed. The latter can be traced to a
"Email address: arimitsu@cm.ph.tsukuba.ac.jp large sensitivity of Reyi entropies to(ultra)rare-event sys-
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tems. We demonstrate that when the coarse graining is iffor example, systems whose statistical fluctuation&ix)
cluded into reglistic measurements, the instabilities get “diwwould change too dramatically with a small change in the
luted” and Reayi entropies once again obey Lesche’sstate variablex.

condition. In Sec. IV C we propose a more realistic criterion  WhenG(x) is bounded we can recast Lesche’s condition
of observability where we allow for a certain amount of in- of observability into an equivalent but more expedient form;
stability points, provided the latter ones have measure zergamely(inversé Lipschitz continuity conditiof17]. In this

To this extent we employ Bhattacharyya statisticalcase, a quantityc: XCR"R is observable in Lesche’s
measure—i.e., natural measure on the space of nonparamggnse if and only if for everg >0 there exists X indepen-

ric statistics. We prove that the Bhattacharyya measure of thgent and finite K, such that for any paix,x’ € X one has
above “critical” distributions is, in fact, zero. Finally, we

analyze in Sec. V systems with continuous probability distri-

butions and multifractal systems. We find that the very nature

of the absolute continuity of PDF’s and the multifractality

prohibits per sean appearance of instability points. We will practically employ the conditiof2) in Sec. IV A.
Criteria (1) and (2) get generalized in the case whan

— o0, This should be expected as the uniform continuity may

not survive in the largen limit. To avoid such situations
In order to explain fully the apparent inconsistencies inLesche postulated that the mapping

the recent claims concerning nonobservability ohffeen-

|G = G(X)[<K[[x=Xl|,+e. @

Il. LESCHE’'S CRITERION OF OBSERVABILITY

tropies we feel it is necessary to briefly review the main *
points of Lesche’s observability criterion. While we hope to G: U X—R ()]
discuss all the salient points, a full discussion can be found n=1

in Ref. [12]. Our discussion will be in terms of a scalar
quantity G(x). Following Ref.[12], a necessary condition with X,CR", taken as a function of, converges to a uni-
for G(x) with the staté variablexe XCR" to be observable formly continuous function in a uniform manner, i.¥.£>0

is the following. Let there existss, >0 such thatv x,x’ e R" andV neZ*
. |G —G(x")|
Ix=x[l;= > [xe— x4 [x—=X'|;<6.= — G == (4)
k max

be the Hdder |, metric onR", thenV £>0 there exists X The uniform convergence is then reflected in the fact that

independentd, >0 such that for any paix,x’ one has is bothx andn independent.
Let us add a couple of remarks concerning the aforemen-

1G()—G(X)| tioned observgbility conditions. Lgsche’s conditio.n', as iII.us.—

= T e (1) trated above, is based on the notion of measurability. This is,
Gmax however, not the only possible way how to define observabil-

ity. It is well known that various alternative concepts exist in

From a strict mathematical standpoint Ed)) is, in fact, the literature. For instance, one may use the approach based on
definition of the uniform metric continuity o6(x) on the  distinguishability[18] or detectability{ 19]. In fact, the con-
state spacé. Informally Eq. (1) states that points fronx ~ dition based on measurability, and namely the condition of
which are close in sense H)f ||l are mapped Vi& to points uniform Continuity, mlght be often too t|ght |ndeed, there are
which are close it - | metric. Lesche’s criterion is thus noth- clearly many quantities which are not uniformly continuous
ing but the condition of stability 06(x) under a measure- in their state variablege.g., they are discontinuous in a finite
ment. In fact, the continuity criterion ensures that a smallfumber of points in the state spae@ad which are, neverthe-
error in a state variablg will not bring in repeated experi- 1€ss, perfectly detectable and well defined away from the
ments violent fluctuations in measured data. Theform  Singularity domain. Note, for instance, that although pressure
continuity in Eq.(1) is then a key ingredient to secure that @nd latent heat in first order phase transitions are discontinu-

the changes i but not onx itself. This condition excludes, der phase transitions is nonanalytic in temperature, there is
still no reason to dismiss pressure, latent heat, and suscepti-

bility as observables. Discontinuous or nonanalydtate

Here and throughout, the state spateepresents the sample fUnctions are not exclusive to phase transitions only. Actu-
space of mathematical statistics, i.e., the space over which the proflly, Such a type of behavior is common to many different
ability distributions operate. In simple situations this coincides withSituations—formation of shocks in nonlinear wave propaga-
the set of all possible outcomes in some experiment. Generally, thBon, mechanical systems involving small masses and large
elements ofX can represent probability distributions themselves,damping, electric-circuit systems with large resistance and
provided a suitable measure is defined. This fact will be used irsmall inductance, catastrophe and bifurcation theories, to
Sec. IV. name a few.

||X_ X’||l$ 58:
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. RE NYI ENTROPIES comes from the uniform distributiod,,. It was shown in

Renyi entropies constitute a one-parametric family of in- R€fS:[4,20] that in then—ce (i.e.,1—0) limit it is possible
formation entropies labeled by Rg's parametera e R* to d_eflne finite |n_format|0|_1 measure Corppa_nble with infor-
and fulfill the additivity with respect to the composition of mation theory axioms. _Thlﬂan_ormallzedRenyls entropy—
statistically independent systems. The special case with Negentropy(or information gaif, reads
=1 corresponds to ordinary Shannon’s entropy. It might be ~ L
shown that Reyi entropies belong to the class of mixing Ia(f)='!|_fjl[fa(7’n)—fa(5n)]
homomorphic function§12] and that they are analytic for

a’s which lie in U1V quadrants of the complex plah20]. N
In order to address the observability issue it is important to 1 fMdM}_ ()
distinguish three situations. = a )5092 (7)
f dulNe
A. Discrete probability distribution case M
Let X={xy, ... X} be a random variable admitting  Here V is the corresponding volume. Equati¢®) can be
different eventgbe it outcomes of some experiment or mi- yiewed as a generalization of the Kullback-Leibler relative
crostates of a given macrosysterand letP={p;, ....pn}  entropy[24]. It is possible to introduce a simpler alternative
be the corresponding probability distribution. Information prescription as
theory then ensures that the most general information mea-
sures(i.e., entropy compatible with the additivity of inde- T (F) =M [Z(Pn)—To(E)lv=1]
pendent events are those ofriye[4]: n—o
1 n =lim[Z,(P, +Dlog,l]
Z,(P)=—-—lo Kl 5 n—
P=d—a gz(gl pk) (5)
Form (5) is valid even in the limiting case wham—oo. If, - (1—a)|092< jMd'“]: )] ®)
however,n is finite then Rayi entropies are bounded both
from below and from above: 1gfp)max=Z,=<l0og,n. In ad-  In both previous cases the measprés the Hausdorff mea-

dition, Renyi entropies are monotonically decreasing func-sure[23]:

tions in «, so namely[a1<Ia2 if and only if ;> a,. One

can reconstruct the entire underlying probability distribution

knowing all Reayi distributions via Widder-Stiltjes inverse “(d;l):kt%
formula[20]. In the latter case the leading order contribution

comes fromZ,(P), i.e., from Shannon’s entropy. Typical with D being the Hausdorff dimension of the supportnige
playground of Eq(5) is in a coding theory21], cryptogra-  entropies(7) and (8) are defined if and only if the corre-
phy [14], and in the theory of statistical inferenfé]. The  sponding integraf \yduF*(x) exists. Equation$7) and (8)

parameteﬂ mlght be then related with the price of constitu- indicate that asymptotic expansion fﬁ&(’])n) has the form
ent information. It should be admitted that in discrete cases

I-0(0 if d<D,
14— .
0X o if d>D,

the conceptual connection of,(P) with actual physical Z,(Py)=—Dlog, | +Z,(F)+0o(1)
problems is still an open issue. The interested reader can find _
some further practical applications of discretenfieentro- =—=Dlog | +Z,(F)+log, Vy+0o(1). (9

pies, for instance, in Ref$20,22 ) )
HereV, is the prefractal volume and the symhfll) is the

residual error which tends to O fér—0. In contrast to the
discrete case, Rgi entropiesZ,(F) are not positive here.

Let M be a support on which is defined a continuous PDF | formation measure® () andZ,(F) have been so far
F(x). We will assume that the suppafior outcome spagde  mostly applied in the theory of statistical inferer{@s] and
can be genelrally a fractal set. By covering the sup()lg)ort Withn chaotic dynamical systenfd0]. Let us note finally that
the meshm(® of dd—d|men5|ona_|(d|510|r!t) cubesMy” (k one may view the discrete distributions as a special case of
=1... n) of sizel” we may define the integrated probabil- the continuous PDF’s, provided the outcome spdoe
ity in kth cube as sample spageis discrete. In such a situation the Hausdorff

dimensionD is zero and Eq(8) reduces directly to E(5).
Pri=FODIY, X eM. (6) “e yto Ea5)

B. Continuous probability distribution case

The latter specifies the mesh probability distributi®h C. Multifractal systems

={Pn1, - - - Pnn}- Infinite precision of measuremen(se., Multifractals can be viewed as statistical systems where
with 1—0) often brings infinite information. In fact, it is both cells in the covering mesh and integrated probabilities
more sensible to consider the relative information entropyscale as some power &f Grouping all the integrated prob-
rather than absolute one as the most “junk” information abilities according to their scaling exponentsipshitz-
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Holder exponents saya, we effectively divide the support The proof goes as followsWe first use the inequality b
into the ensemble of intertwined unifractals, each with its<x—1 and assume that,pi=3,q¢, then
own fractal dimensiorf(a). Exponentsf(a) are called the

singularity spectrum. In multifractal analysis it is customary "
to introduce yet another pair of scaling exponents, namely, 1 2’1 p
the correlation exponent(a) which prescribes scaling of |Z(P)— T (Q)|< ; -1
the partition function and “inverse temperature’. These 11—« 2
two descriptions are related via Legendre transformation <

7(a)=min(aa—f(a)). (10 n

a - - E

As in the case of continuous PDF’s, the renormalization of 11— a|2 dic

Renyi entropies is required to extract relevant finite
information—negentropy. It is possible to show that the fol-
lowing renormalized Reyi’'s entropy complies with the axi-
omatics of the information theory20]:

Zo(pup)=NM[Z(Pr) = Lo(En) |v=1]

This might be written in the invariant form as

1
|Z(P)—Z,( Q)|\W

|—0
n
—||m(z(7>n)+ ) ) = a|d(a SIPRL (14
|—0 ( 1)
1 Herec(a,P,Q)=minZ;p{,Z;q") and
== Iogz<Jd,u(“)(a)). (11)
( 1 if 0<a<l,
dla,n)=y ,_, .
Here the multifractal measure is defined[28] n if a=1.
P2 '—0(0 if d<r(a), To find the efficient estimate fd&(pg—ay)| in terms of
wdOd:h= > . |P—Q|l, we utilize the following trick. Let us define the
P
Box 19 © if d>7(a). function

Renyi entropiesZ,(up) are defined if and only if the corre-

n
sponding integrald ,du{¥(a) exist. Equation(11) implies A(s,P)= 2, [pc—f(9)10(p—f(s)). (15
the following asymptotic expansion far,(P,): k=1

Z,(Py)=—-D(a)log, | +Z,(up)+0(1). (12 Here 6(--) is the Heaviside step function and
f: [a,b]—[0,1] is some invertible function. Botli(s), a,
Here andb will be chosen at the latter stage so as to facilitate our
computations. Note also that
(a Z(P
D(a)= (@) =lim (Po) , (13)

(a=1) |, logy(1N) max0;[1—nf(s)]}<A(s,P)<1. (16)
is the, so called, generalized dimensi@8]. Note also that An important property ofA(s,P) is the following straight-
for systems of Sec. lll BD(«) is « independent. forward inequality:

Let us stress that Regi's entropy of multifractal systems
is a more convenient tool than the ordinary Shannon’s en-
tropy. It is possible to show that one can obtain Shannon's  |A(SP) = A(s, Q)|$k21 ILpk—f(s)16(pk—1(s))
entropy for any unifractal by merely changing thenigiepa-
rameter. In fact, Reyi's parameter coincides in this case —[ax—f(s)]0(qc—Tf(s))]
with the singularity spectrurf20]. N

, <2 Ip—ad=IP-Ql, 17
IV. OBSERVABILITY OF RE NYI ENTROPIES: k=1
DISCRETE PROBABILITY DISTRIBUTION
. which is valid for anyse[a,b]. Note further that
A. Finite case

It is quite simple to see that for systems with a finite
number of outcomege.g., systems with a finite number of ?For simplicity’s sake we use in this subsection a natural loga-
microstatey Lesche’s criterion of observability is fulfilled. rithm instead of log
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b MI0)
L A(s,P)ds= k; " (Pk—X) O(px—X)[f~1(x)]"dx

n

=> |e(pk—f<a>)
k=1

[f(a)—pila

+0(pk—f(b))

[Dk—f(b)]b+ff(b)f_l(X)dx)}.

Pk

Pk
+f f~1(x)dx
f(a)

X

(18)

Here we have used the fact thpt's must lie somewhere
between f(a) and f(b). If we now chose f(x)
= (x/a) Y@~ 1) with

o if O<a<l
a= and b=«

0 if a>1

[sof(a)=0, f(b)=1] we obtain

. (19

> (pE—ap)
k=1

b
f [A(s.P)— A(s,0)]ds

Applying Egs.(17) and (19) we may write fora>1,

=

C
f n(s/a)¥(@~Nds
0

+f: ds]

<n(a—1)(c/la)* 4+ (a—c)|P-Ql|;.
(20)

n
> (pE—ap)
k=1

A(s,P)—A(s,Q)

So if we takec= a(e/n®)(*~D'@ (this assures that(s,P)
=[1-nf(s)]>0 for se (0,]), then

|Z(P)—T,(Q)|<KD||P— Q|+, 1)
with K{Y=[a/(a—1)][(n"/g)(«~ D= 1]gle e,

In case when & a<<1 we may utilize Eqs(16), (17), and
(19) to obtain
f%

+f~ n(s/a)l’(“‘l)ds]
Cc

= A(s,P)— A(s,Q)|ds

n
> (pE—ap)
k=1

<(c—a)|P- Q1+ n(1—a)(c/a)¥e D),
(22

By settingc= a(s/n)(®~ Y/« (this assures thatl(s,P)=[1
—nf(s)]>0 for se[c,»)) we have

PHYSICAL REVIEW E69, 026128 (2004
1 Zo(P)—Z(Q)|<KP||P- Q|1 +e, (23)

with K®=[a/(1—a)][(e/n)@"V/*—1]. Note particularly
that lim,_; , K{Y=In(n/e) and lim,_, K{®=In(n/z). This

indicates that the Lipschitz conditiori21) and (23) can be
analytically continued toa=1. This reconfirms the well
known result that Shannon’s entropy is Lipschitz.

Finally note that Eqs(21) and (23) represent the Lesche
criterion (2). Hence, in cases when the state space corre-
sponds to the space of all possible probability distributions
assigned to a definitéfinite) number of outcomegmi-
crostatey Renyi entropies are measurable in Lesche’s sense.

B. Infinite limit case

As was already mentioned in Sec. IlI, the situation be-
comes be more delicate in the langdimit. This is because
for the sake of uniform metric continuity at amone might
require that also the limiting case should obey the uniform
continuity. To tackle statistical systems with a countable in-
finity of microstated we will illustrate first that by introduc-
ing a coarse graining into a realistic measurement, alleged
Lesche’s counterexamples do not apply.

In his papef12] Lesche proposed the following examples
to demonstrate the nonobservability of e entropies. In
a>1 he picked up two distributions, namelyi (
=1,....)n),

1
P:[pi:m(l—%)},

1-3)(32))

IP=P"[l1= 6. (24)

2

! ! 5
Pl=1pi=50ut

Lesche then went on to show that these two distributions do
not fulfill the uniform continuity in the large limiting case.

Let us now show that the coarse grainiiwghich is naturally
present in any realistic measurementll restore the uni-
form continuity for the largen limit case.

We will assume, for simplicity’s sake, that the discrete
probability distributions(24) are living on the unit lattice
with equidistantly distributed latticé.e., suppornt points. In
the spirit of Lesche’s paper we assume that the true probabil-
ity distribution on the interval[0,1] is obtained inn—oo
limit (i.e., when the lattice spacing tends to 2e/s usually,
we will keepn>1 finite during calculations and set to infin-
ity only at the very last stage. Because every actual measure-
ment has a certain resolution capacity we will further assume
that a realistic measurement can sample the unit interval
through a window of width ¥ (k<n) (so k windows will
cover the support spaceln this case one can know only

3Such systems often appear in various physical situati@wunt-
able Markov chains, Fermi-Pasta-Ulam lattice models, or symbolic
dynamical models being examples.
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integrated probabilities, henge— P andP’HP(’k). As in , ') ) (1-6/2) [n
every window there aren/k underlying p;’s we have { Puo=|Pi =501+ — 7|~ 9u
. K)
1 /n 1Py = Piigll = 6.
Po=1pH=—|7-6 (25)
= P == ou Using the fact thaf, =109, k we have
|
= ) R
|Ia(73(k))—Ia(73('k))|_ 1 o n—1 k -1 k )((]0 k)71
T, oo T (1= '5 (1 5/2 n INEENLE %
k- D)k
1\¢ i
oo 1 - +(k 1)
|
(1—a) %| Ts (1—5/2) N /'092k
12 k ( k | .
|2 ! 4 k ’ k 5] log, k
= 1_a—m092 1+§( -1)| +(k=1) 1—5 | 00,
a (k—1)
‘(E) 2 Tk TO): (26)
|
It is now simple to see that Lesche’s condition is easily ful- Hp(k)_’p(’k)”l: (29)
filled, as for arbitrarily smalk there exists,, namely,
and so
&
8e=2\/—=1In(k)?", 27 |ZAPuy) —Za( Pl 1 sn(k—1)\*
7 o max (1-a) 2 2 k(n—1)

for which the metric proximity| P — Pl 1= 8, implies the

n [e3
proximity of outcomes, i.€.[Z,(P) —Zo(P()|/log, k<e. + (k— 1)(2 ” 1) } X (logyk) 2
This result is clearly independent ntbecause wheneveris (n=1)
finite the outcome of the preceding section applies and for - SKe1\@
n—o the validity has been just proven. — ——|log, (1—— —)
We proceed analogously far<1. In this case Lesche’s (1-a) 2 k
counterexamples were provided by two distributioris ( s\
.n) +(k_1)(ﬂ) } /Iogzk
P={pi= 1}, 8\2a (k—1)2
s(ﬂ) > Tk +0(6%). (30)
P= ’—(1 5)5 ! 51 S
|P= P R GO b Here the inequality
|P—P'||,= 6. (28) X*—ax=0 for xe[0,1],ae[0,]1]
As before, we can obtain integrated probability distributions af? use;jl on th(lal Iatsht line. Cotgsequentlly we again see that for
which read (=1, ... k) sufficiently smalle there exists, , namely,
® 2k o=
Pay={pi"' = 61}, Op< k= 1)\/8|n(k) (32)
o 1K) — l_f P 1 f 2_5 _ which satisfies Lesche’s condition. Note, that from EQ3)
= | P 2% 12k %)) and(31) it follows that our argument naturally includes also
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the casexr=1 (i.e., Shannon’s entropyas in all steps leading
to Egs.(27) and(31) we have well defined limita&&— 1, and

a—1_, respectively. Y(8)

C. Region of instability

In the preceding section we have found that Lesche’s (®)
counterexamples can be bypassed by introducing a coarsened
resolution into a measurement process. Let us now show that
even when the coarsening is not employed the Lesche insta-
bility points have zero measure in the space of all discrete
infinite distributions—Bhattacharyya’s measuf26}—and
hence they do not affect a measurement in most practical
situations.

The key observation is that Lesche’s counterexamples
single out a very narrow class of probability distributions. In ~ FIG. 1. The family of Lesche’s critical distributionsx(>1).
particular, they imply that whemr>1, only distributions A statistical system can be represented by pois on
with high peak probabilities create problems. Similarly, in@ Positive orthants™ of the unit sphereS in a real Hilbert
cases wherer<1 only distributions with an infinite number SP3c€ . l-parametiic families of Leshe's critical distri-
of microstates having a negligible overall probability exhibit °/ions__are then represented by  arcs;(9)={£i(9)

a critical type of behavior. We now demonstrate that the . ‘/55ik/2+(1_5/2)[(1_‘29/(”_1)23"(61’ - ;0<[0,2]}. De-
above probability distributions have a very small relevance’ icted example corresponds &=,

in the actual measurement. For this purpose we remind the

reader the concept of Bhattacharyya measf6s. B T ! .

Suppose thaf’ is a discrete random variable withdif- Vi-1(P)=Vo -1 (8" 9)7)= EJ' dQ"=
ferent values]P,, is the probability space affiliated with, 2”‘11“(5)
and P={p4, ....pn} is a sample probability distribution
from P, . BecauseP is non-negative and summable to unity,
it follows that the square-root likelihoog, = \/E exists for

Y(8)

H

n/2

(34)

The Bhattacharyya measure of any s&t (S" )" is then

alli=1,...n, and it satisfies the normalization condition
n
Vi-1(A)
)2=1. 2 A= 35
2, (&) (32 pe(A) =G5 (35)

and so particularly the normalizatiqug(l’,,) =1 holds. The
reader may see that the Bhattacharyya measure is indeed a
very natural concept. In fact, Eq35) implies that the latter
is just the Haar measure @~ 1. One could possibly adopt
some othefnot sphericalmetric on the the probability space
(8" 1), but because all nonsingular metric measures are on
n 10 compact manifolds equivalefite., they differ only by finite
cosp=>, {NeP=1--> (£H-2)2 (33  multiplicative functions—Jacobiahthe Bhattacharyya mea-
i=1 2151 sure will be fully satisfactory for our purpose. Actually the
exclusiveness of Bhattacharyya measure in nonparametric
statistics was already emphasized, for instance, in [Ré&f.
The naturalness and simplicity of Bhattacharyya’s measure
have been also appreciated in various areas of physics and
engineering ranging from quantum mecharji28] to statis-
tical pattern recognition and signal processjag].

We see that can be regarded as a unit vector in the Hilbert
spaceH=R". Now, let V) andP?) denote a pair of prob-
ability distributions andg®) and &) the corresponding ele-
ments in Hilbert space. Then the inner product

defines the anglep that can be interpreted as a distance
between two probability distributions. More precisely, if
S"1 is the unit sphere in the-dimensional Hilbert space,
then ¢ is the sphericalor geodesit distance between the
points onS"" ! determined by&Y) and £2). Clearly, the
maximal possible distance, corresponding to orthogonal dis-
tributions, is given by¢= /2. This follows from the fact
that &Y and &2 are non-negative, and hence they are lo- Let us now look at the Bhattacharyya measure of the fam-
cated only on the positive orthant 6f 1. Spherical geom- ily of Lesche’s critical distributions corresponding ao>1.

ety on S"! then naturally induces the measure— In this case the relatiof24) suggests that the critical distri-
Bhattacharyya measure. The corresponding geodestmutions form the 1-parametric family of distributions param-
distance¢ is the, so called, Bhattacharyya distance. We re-etrized byé. Figure 1 indicates that there are cleamnlguch
mark that the surface “area” of the orthar§( %), i.e., the  families. In contrast to the orthant surface which has dimen-
volume of the probability spack,, is sion D=n—1, the countable set of linelike 1-parametric

1. a>1 case
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families has the topological dimensi@h=1 and hence the n

Bhattacharyya measure of Lesche’s critical distributions is > |§i|2“d,u(§)=nf |€1]%9d (&)

plainly zero. ST s
We wish to ask whether some extension of Exfl) might -

have the nonzero measure. We will illustrate now that the nf |cog 6)|24[sin(6)]""%d e

answer is negative. In fact, we will show that with Bhatta- _ 70

charyya measure approaching(ifh the limit of largen) all . n-24
distributionsP< P, inevitably fulfil Lesche’s conditior(4). oSO 7do
Inasmuch, all distributions which exhibit the critical behav-
ior encountered in Refl12] haveug—0 asn—c. To prove _ nI'(ni2)I'(a+1/2)
this we employ the following isoperimetric inequalifglso - T(n/2+
known as Levy's lemma[30]. Let f: S" %>R be a v ( @)
K-Lipshitz function, i.e., for any paig®), &2 e "1, I'(a+1/2)2¢
~ Tnl_“. (41)
a
I () = F(&2)|<K[| &P - &2, (36)
[Note that Eq.(41) is true for all «>0.] Using Jensen’s

Then inequality we then have

2</ )

v es e [l El8= | Jden=n] [ (18e07dn

<4e” ﬂCzn/K'

V, (S"Y) - e IT(a+1/2)2¢ o112
37) = —\/; n . (42

where is the Haar measure af' ! and 9 is an absolute  On the other hand, because all distributions frimfulfill
(i.e., n-independentconstant whose precise form is not im- the condition
portant heré.

Let us choosd (&) =|4,,. Using the triangle inequality o Y
we have nt a<21 pi=<l, a=1, 43
1D 20— 16220l <[ E5 = EP 2o <[ E5 = E2) 2, we have tha€(||4l,,)=n"*""2 Thus the mean value of
38 &2« goes to zero ab(n¥2*~ 1) whereb=b(n,a) is some
bounded function oh. Collecting resultg41) and (42) to-
so||4,, is 1-Lipshitz function. In addition, gether we can recast Levy’s lemma into form
re(lllél2a—E([|&l24)[<C)
1= Qli=2 [(&)2= ()7 1 4e-9C%

= g (|[| €l 20— E(ll ll20) | < e[ E([| §l20)17)

_ (1) @) #D 4 g2y = | 4D — g2))2.
Z |§| §| |(§| §| ) ||§( g( ”2 21—4exr{—062b2n{17p[(“71)/“]}), (44)

(39 for somee>0. Note that due to symmetry ¢f &) we were

) o _allowed to exchange in Eq37) the averaging over the sur-
So particularly when two distributions areclose then their  t3ce of S™ 1 for the averaging over the positive octant

representative points on the sphere fulfil the inequality (S"1)*. Result(44) implies that for anye>0 and any 1
<p<al(a—1) the inequalities

1EV 20— 1162 20l < V5. (40 )
1€l 20=E(l|&ll2){1— e[ E([|&24) 1P}
The next step is to calculate the mefm-1f(&)du. As it ;E(”ﬂ|2a)e—2e[E(llﬁ\za)]p*1’
stands, this is a quite difficult task but fortunately we may
take advantage of the fact that [l 2a=<E(|l20){1+ e[EC &)1}

<E(| gz, el FIE", (45)
“The metric||---|, appearing in the lemma represents the Euclid- ) _
ean distance inherited frof" (this is also called the chordal met- hold for almost all§e I’ (their Bhattacharyya measure is
ric). Note that||&P— £2),=2 sin@/2)< ¢, with ¢ representing arbitrarily close to 1 as increases The fact that “well
the Bhattacharyya distance. behaved” functions are at largepractically constant on al-
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most entire sphere is known as thencentration measure
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To prove this we utilize once again Levy’s lemma. In this

phenomenofi30—37. In passing, the reader may notice thatcase we make identificatior (&) = &2, /E(||£?)5.)-

the relation(44) is a variant of Bernstein-Hoeffding’s large Similarly as in the previous case we must determine first the

deviation inequality{ 31,33
Using now Minkowski’s triangle inequality

11ED 0= 1220l <[V 20— E(I &l20)]
+1EPN 20— E(1€20)]

<26 E([|&ll24)1",

and bearing in mind Eq.(40) we can choose/§
=2¢[E(||&|,,)]°. Consequentlyfor n=3)

|Ia(P)_Ia( Q)| _ 2a |Og ||§(1)||2a
T max (a=Dlogan| 22| || £2),

20 eelE(l 821"
< In —

(a—1)| | g~ 2¢lE(I&122)1°

6ae

ZW[E(”ﬂba)]p_l

6a ( 5) (p—1)/2p

Se-Dla

4

(46)

Thus we see that one can always find an appropdéattor
everye, namely,

e(a—1) 2p/(p—1)
—) : (47

58$4( 6a

and so the observability conditigd) is satisfied in all cases

for which inequalitieg45) hold.

2. <a<l1 case

A similar analysis can be performed for critical distribu-
tions in the a<1 case. The corresponding 1l-parametric

asymptotic behavior of the mea&(|4|,,). This can be
achieved by employing Jensen’s inequality

F(a+l/2)2°‘ 11 / /
2f 2 AT D S pEaTz = 2@ o 2o, < ol ,
i/ N n Sn_l(||€||2 yedp < sn_1”£“2 i

(48)
together with the inequality
n
1<, pi=nl"? 0O<a<l. (49)
=1

Therefore E(||4|,,) is unbounded at large and it ap-
proaches infinity as(n*?*~'?) [a=a(n,a) is some func-
tion with lower and upper bounds im. Employing now the
estimate

1EM 20— £l 20| <[ £V = €2 20
< ||§(1)— §(2)||2nl/2a71/2$ \/3n1/2a71/2
(50)

(where the triangle and Hier inequalities were successively
applied we obtain thatf(&) is l/a-Lipshitz. Herea is the
lower bound of a. Levy’s lemma then implies that

(F3P

“( E([&L.)

for any e>0. Result(51) suggests that for a sufficiently
smalle (e<1,59...) theinequality

>1—4e dac’n (51)

1‘$€

18] 24
E(ll&l2a)

e 2<]1—e< <l+e<e€ (52)

families of Lesche’s critical distributions are represented byhoIdS for almost alge P, (ug—1 asn—). So we again
n B '

arcs

5
St

o
siw):[fk(a):\/(l—i

keﬁ;ae[o,z]}.

1- 6\
n—-1)/’

These arcs are identical to argg 6) depicted in Fig. 1, only

encounter the concentration of measure phenomenon—at
largen almost all Bhattacharyya measure is concentrated on

£&'s fulfilling the condition||&|,,~E(||&l,.). Using now

o s P R s P O
E(l&l2o) Edl&l20)] |E(&l20) E(ll&24)
<Ze, (53

the orientation is reversed. Consequently the Bhattacharyya

measure is again zero in this case.

and bearing in mind Eq50) we can sets=4¢e°a®. Conse-

We may now ask whether there exists some generalizatioauenﬂy (for n=3)

of Eq. (25 such that the corresponding measusg is non-

zero. The answer is again negative. We show now that this is

a consequence of the fact that almost all distributihs
e IP, fulfill Lesche’s observability conditiod), while Bhat-

tacharyya’s measure of those distributions which do not 501€arly a > za/F(a+\}§2)2‘x > 0.529....

comply with the condition(4) tends to O at large.
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Superscriptr denotes renormalized quantities. Note particu-

|Ia(P)_Ia(Q)| _ 2a ||§(1)||2a r . .. . .
T ={I=a)logn log, £ larly thatZ', are by construction finite and (i.e., ) !nde-
a max 2 1820 pendent. Using the fact that ks<(x—1) together with Htder
20 oc inequality and Eq(39) we have for twos-close distributions
< In
(1=a)inn (e-zf) ;o 2ak [ [EY 0= €72l
|-,ch(,73r‘l)_Z(I(,Pn)l$ ;
bea 11—« min(|[&l2.)
T (1-a)l 2ak ma N
(1—a)lnn - .>(||§'1|2 )\/5 57
3\oa 11— af min([|&],.)
=—. . . .
(1-a)a (54) with k=1/In 2. Realizing that Eq49) and(12) imply
As in the previous case we can conclude that it is always 1€, :e[(l—a)/Za][—D(a)Iogz|+I;+0(l)]’ (58)
possible to find an appropriai® for everye, namely, *
a(l—a)e\? we can straightforwardly write that
S, < '—) . (55
3 T, -T,'|+o(1)
So the observability conditiot¥) is satisfied in all cases for 2 ak r r
which Eq.(52) holds. In passing, we should mention that the =< Joell=@)/2el(Z ) max (T minl +0(1)
underlying reason behind the relatio@s!) and (51) lies in 11—«
the fact thatn-spheresS" equipped with the Bhattacharyya 20k
distanceg, and Haar measure, form the so callechormal E|l_ alg\/E_ (59)

Levy family[30,34. It can be show30] that the concentra-

tion measure phenomenon is an inherent property of anx| . )
Levy family. ere3 is an absolute constant representing the upper bound

The moral of this section can be summarized in the fol-for the exponential. Gathering resui6) and(59) together
lowing way. Whenever one selects as the state space for R&e can finally write(for n=2)
nyi entropies the space of all discrete statistics then a non-
uniform continuity behavior[i.e., violation of Lesche’s | Zo(Pr) = Zo(Py)]
condition (4)] can be observed for a certain set of distribu- T max
tion functions in the limit of largen. We demonstrated that (60)
the cardinality of such critical distributions is of zero Bhat-
tacharyya measure in the space ofrat probability dis- It is then clear in this case that one can easily find an appro-
tributions. One may relate those zero measure distributiongriate 5, for everye, namely,
to the so called ,-bounded distributionsi.e., distributions
whosel , norm has a nonzero lower bound fae>1 and a e(l-—a)\?
finite upper bound fow<<1). This can be plainly seen from e 2akB |’
the fact that forl ,-bounded distributions the critical condi-
tions (41) and (52) cannot be satisfied.

2ak
s|1;—1;'|+o(1)<m6\/3.

(61)

represents a correct choice. So for all pasand?;, which
lead inn— oo limit to continuous PDF’for multifractalg the
Leshe conditior{4) applies. It is therefore the very definition
of systems with absolutely continuous PDF’s/ multifractals
[incorporated in Eqs(8) and (11)] that naturally avoids the
Let us briefly illustrate here that the conditions of abso-situations with instability points confronted in the preceding
lutely continuous PDF’s or multifractality are themselvessection.
sufficiently restrictive to ensure that the instabilities dis-
cussed in the preceding section do not occur. To see this let

V. OBSERVABILITY OF RE NYI ENTROPIES:
CONTINUOUS PROBABILITY DISTRIBUTIONS
AND MULTIFRACTALS

VI. CONCLUSIONS

us consider Eq99) and (12). The latter imply that for any
P, and P;, for which the renormalized Rwi entropy exists
the following identity holds:
|Ia(,Pn) _Ia(,Pr’1)|
Id max
|-D(a)logy | +Z!,+D(a)log, | —Z!'+0(1)|
- D(a)log,(11)

T T4

~Dlaylogyim oL

(56)

In this paper we have attempted to make sense of the
recent claims concerningtatal nonobservability of Reyi’s
entropy. We have found that problems have arisen from un-
critical use of Lesche’s observability criterion. We have
proved that the latter criterion, as it stands, does not rule out
observability of Rayi entropies in a large class of systems,
systems with a finite number of microstates or multifractals
being examples. This is so because the structure of the space
of distribution functiongor PDF’s over which such systems
operate essentially prohibits the existence of “critical” situ-
ations considered by Lesche. In cases where such situations
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are encountered, namely, in systems wibuntablg infinity Let us finally stress that there is also a conceptual reason
of microstates, we argue that Lesche’s uniform continuitywhy the observability in the manner of Lesche should be
condition is too tight to serve as a decisive criterion for theviewed with some hint of scepticism. This is because the
observability. observability treated in such a framework is not a unique
In previous works the uniform continuity condition was concept. Indeed, Lesche’s condition can brand a quantity as
used to force observability upon state functions. As we havebservable under one choice of state variables and as nonob-
shown, it is not just unnecessary to do this but it also causeservable under a different choice, even if two such choices
the Lesche criterion to produce incorrect results in certairoverlap in the scope of physical situations they describe. A
cases. By identifying the probability distribution with a state typical example is the Gibbs-Shannon entropy. Here, accord-
variable, this has led to confusion about the observability oing to the above criterion, the entropy is observable if the
Renyi's entropy. Once the uniform continuity condition is probability distribution is chosen as the state variable
dropped, we can clear up these confusing points. For thigl3,12. On the other hand, if temperature and pressure are
purpose we present a more intuitive concept of observabilitptate variables then entropy develops discontinuity in any
by allowing the quantity in question to have a certain amounsystem which undergoes first order phase transition
of “critical” points provided that the cardinality of the criti- (Clausius-Clapeyron equatipand hence it is not for such
cal points in the state space is of zero measure. systems a uniformly continuous function of state variables,
It is definitely interesting to know what the “critical re- and according to Eq(l) [or Eq. (2)] it is doomed to be
gions” correspond to. In case of R@ entropies we offer a nonobservable. In this connection it is interesting to notice
partial reply to this question. Namely, for systems withthat because the parameterplays formally the role of in-
(countable infinity of microstates we show that the critical verse temperaturf22,35 one may expect that various limits
regions correspond to th&vicinity of | ,-bounded distribu- may not commute similarly as in Gibbsian statistical physics.
tions. Basically such distributions correspond(ttira) rare  Namely, we may anticipate that Iyn4lim,_ .
events which are frequently encountered, e.g., in particle de#lim,,_ . lim,_ ;. In fact, Lesche[12] and other authors
tection (double B or tritum decays being exampleswWe  [13] applied the sequence of limits ljm.. lim,_.4. In such a
have proved that the Bhattacharyya measure of these distitase they concluded that ®e entropy of order 1(Shan-
butions must be zero. Ak,-bounded distributions are not non’s entropyis observable while the rest of Rg entropies
existent in(coarse-grainedmultifractals or in systems with is not (despite the fact that Rgi entropies are analytic in
continuous PDF’s, neither in systems at thermal equilibriuma e R", see Ref[20]). On the other hand, when one utilizes
there is noa priori reason to disregard Rgi entropies as the “thermodynamical” order, i.e., lip.;lim, .., then
observable in the aforementioned instances. On the othellso Reyi's entropy of order 1 develops instability points
hand, it is known that many systems undergo “statistics tran{this may be easily checked by noticing that unobservability
sitions” (stock market bidding and continuous phase transiargument presented in R¢l.2] is continuous ine=1). The
tions with their exponential-law—power-law distribution latter seems to support our previous comment that Shannon’s
“transitions” may serve as exampledt might be also ex- entropy should not be uniformly continuous in the space of
pected that in dynamical systems away from equilibrium,discrete distribution functions in order to account, for in-
transitions td ,-bounded statistics may play a relevant role.stance, for the first-order phase transitions.
In any case, one can turn the sensitivity ofigieentropies to
a virtug as it could be used as a diagno§ti9 instrument fc_)r an ACKNOWLEDGMENTS
analysis of (ultrarare-event systems, similarly as, for in-
stance, temperature sensitivity of the susceptibility is used as P.J. would like to gratefully acknowledge discussions with
a diagnostic tool in continuous phase transitions. We believ€. Isham and D. S. Brody. P.J. would also like to thank the
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value. support.

[1] C. Caratheodory, Math. Anrg7, 355(1909; H.A. Buchdahl, [6] C. Tsallis, J. Stat. Phys2, 479 (1988; J.H. Havrda and F.
Am. J. Phys17, 212(1949. Charvat, Kybernetika, 30 (1967).

[2] R. Balian,From Microphysics to Macrophysics, Methods and [7] http://astrosun.tn.cornell.edu/staff/loredo/bayes/
Applications of Statistical Physic&Springer-Verlag, Heidel-  [8] A. Bialas and W. Czyz, Acta Phys. Pol. &L, 2803 (2000);

berg, 1991, Vol. 1. Phys. Rev. D61, 074021(2000; M.K. Suleymanov, M. Sum-
[3] A.l. Khinchin, Mathematical Foundations of Statistical Me- bera, and I. Zborovsky, e-print hep-ph/0304206.

chanics(Dover, New York, 1948 [9] C. Essex, C. Schultzky, A. Franz, and K.H. Hoffmann, Physica
[4] A. Renyi, Probability Theory (North-Holland, Amsterdam, A 284, 299 (2000.

1970; Selected Papers of Alfred Rg (Akademia Kiado, [10] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, |. Procaccia, and B.I.

Budapest, 1976 Vol. 2. Shraiman, Phys. Rev. 83, 1141 (1986; M.H. Jensen, L.P.

[5] P. Jizba, inDecoherence and Entropy in Complex Systems Kadanoff, A. Libchaber, I. Procaccia, and J. Stavans, Phys.
edited by H.-T. Eltze, Lecture Notes in Physics Vol. 633 Rev. Lett.55, 2798(1989; K. Tomita, H. Hata, T. Horita, H.
(Springer-Verlag, Berlin, 2003p. 362. Mori, and T. Morita, Prog. Theor. Phy80, 963(1988; H.G.E.

026128-11



P. JIZBA AND T. ARIMITSU

Hentschel and I. Procaccia, Physica8P435(1983.

[11] S. Abe and Y. OkamotolNonextensive Statistical Mechanics
and Its ApplicationgSpringer-Verlag, New York, 2001

[12] B. Lesche, J. Stat. Phy&7, 419(1982.

[13] S. Abe, Phys. Rev. B6, 046134(2002.

[14] C. Cachin, Ph.D. thesis, ETH Zurich, 1997, ftp://
ftp.inf.ethz.ch/pub/publications/dissertations/th12187.ps.gz

[15] D. Harte, Multifractals Theory and ApplicationéChapman
and Hall/CRC, New York, 2001 M.B. Geilikman, T.V. Gol-
ubeva, and V.F. Pisarenko, Earth Planet. Sci. Le%. 127
(1990.

[16] H. Maassen and J.B.M. Uffink, Phys. Rev. Lef0, 1103
(1988.

[17] See e.g., W. Rudinf-unctional AnalysigMcGraw-Hill, New
York, 1991).

[18] See, e.g., F. Berthier, J.-P. Diard, and L. Pronzato, Automatica

35, 1605(1999.

[19] See, e.g., E.D. Sontag and Y. Wang, Syst. Control 2&t279
(1997.

[20] P. Jizba and T. Arimitsu, Ann. Phy&N.Y.) (to be publisheg
e-print cond-mat/0207707.

[21] L.L. Campbell, Inf. Control8, 423 (1965.

[22] H. Sakaguchi, Prog. Theor. Phy&il, 732(1989.

[23] J. FederFractals (Plenum Press, New York, 1988

[24] S. Kullback and R. Leibler, Ann. Math. St&t2, 79 (195J).

[25] T. Arimitsu and N. Arimitsu, Physica 295 177 (200; J.
Phys. A33, L235 (2000; 34, 673E) (2001; Physica A305
218 (2002; J. Phys.: Condens. Mattel4, 2237 (2002; ,
e-print cond-mat/0306042.

[26] A. Bhattacharyya, Bull. Calcutta Math. So85, 99 (1943;

D.C. Brody and L.P. Hughston, Proc. R. Soc. London, Ser. A

457, 1343(2009).

PHYSICAL REVIEW E69, 026128 (2004

[27] N. Thacker, F.J. Aherne, and P.l. Rockett, Kyberne8ka363
(1997; D.C. Brody and L.P. Hughston, ibisordered and
Complex Systemedited by Peter Sollich, A.C.C. Coolen, L.P.
Hughston, and R.F. Streater, AIP Conf. Proc. No. %88,
Melville, NY, 2001), pp. 281-288; S.S. Dragomir, e-print
math.PR/0304240.

[28] W.K. Wootters, Phys. Rev. 23, 357 (1981); H. Araki and G.
Raggio, Lett. Math. Phys, 237(1982; D.C. Brody and L.P.
Hughston, Phys. Rev. Letf7, 2851 (1996; Proc. R. Soc.
London, Ser. A454, 2445(1998.

[29] K. Kukunaga,Introduction to Statistical Pattern Recognition
(Academic Press, New York, 199(R.O. Duda, P.E. Hart, and
D.G. Stork,Pattern ClassificationWiley, London, 2000 T.
Kailath, IEEE Trans. Commurd5, 52 (1967).

[30] V.D. Milman and G. Schechtmaisymptotic Theory of Finite

Dimensional Normed SpaceSpringer-Verlag, New York,

1980.

[31] K.M. Ball, An Elementary Introduction to Modern Convex Ge-
ometry edited by Silvio Levy(Cambridge University Press,
New York, 1997.

[32] R.J. Gardner, Bull. Am. Math. So89, 355 (2002.

[33] D. Williams, Probability with MartingalegCambridge Univer-
sity Press, Cambridge, 1991

[34] M. Ledoux, Concentration of Measure and Logarithmic Sobo-
lev Inequalities edited by J. Azma, M. Emery, M. Ledoux,
and M. Yor, Lecture Notes in Mathematics Vol. 1709
(Springer, Berlin, 1999

[35] P. Jizba and T. Arimitsu, ifNonequilibrium and Nonlinear

Dynamics in Nuclear and Other Finite Systeneslited by

Zhuxia Li, Ke Wu, Xizhen Wu, Enguang Zhao, and Fumihiko

Sakata, AIP Conf. Proc. No. 59AIP, Melville, NY, 2001,

pp. 341.

026128-12



