
PHYSICAL REVIEW E 69, 026128 ~2004!
Observability of Rényi’s entropy

Petr Jizba* and Toshihico Arimitsu†
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Despite recent claims we argue that Re´nyi’s entropy is an observable quantity. It is shown that, contrary to
popular belief, the reported domain of instability for Re´nyi entropies has zero measure~Bhattacharyya mea-
sure!. In addition, we show that the instabilities can be easily emended by introducing a coarse graining into an
actual measurement. We also clear up any doubts regarding the observability of Re´nyi’s entropy in~multi!frac-
tal systems and in systems with absolutely continuous probability density functions.
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I. INTRODUCTION

Thermodynamical or statistical concept of entropy, thou
deeply rooted in physics, is rigorously defined only for eq
librium systems or, at best, for adiabatically evolving sy
tems. In fact, the very existence of the entropy in thermo
namics is attributed to Carathe´odory’s inaccessibility
theorem@1# and the statistical interpretation behind the th
modynamical entropy is then usually provided via the
godic hypothesis@2,3#. It is, however, a highly nontrivial
matter to find a proper conceptual ground for entropy
systems away from equilibrium, nonergodic systems,
equilibrium systems with ‘‘exotic’’ non-Gibbsian statistic
~multifractals, percolation, polymers, or protein folding pr
vide examples!. It is frequently said that entropy is a measu
of disorder, and while this needs many qualifications a
clarifications it is generally believed that this does repres
something essential about it. Information theory might
then viewed as a pertinent mathematical framework cap
of quantifying the ‘‘measure of disorder.’’ It is an undoubte
advantage of information theoretic approaches that when
one can measure~or control! information one can also mea
sure~or control! the associated entropy, as the latter is ess
tially an average information about a system in quest
@4,5#.

In recent years there have been many attempts to ex
the equilibrium concept of entropy to more generic situatio
by applying various generalizations of the informati
theory. Systems with~multi!fractal structure, long-range in
teractions, and long-time memories might serve as examp
Among a multitude of information entropies Shannon’s e
tropy, Rényi entropies, and Tsallis-Havrda-Charvat~THC!
nonextensive entropies@6# have found utility in a wide range
of physical problems. Shannon’s entropy is known to rep
duce the usual Gibbsian thermodynamics and is freque
used in such areas as astronomy, geophysics, biology, m
cal diagnosis, and economics~for the latest developments i
Shannon’s entropy applications the interested reader
consult Ref.@7# and citations therein!. Rényi entropies were
conveniently applied, for instance, in multiparticle hadron
systems@8#, fractional diffusion processes@9#, or in multi-
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fractal systems@10#. THC entropy was recently used in
study of systems with strong long-range correlations and
systems with long-time memories@11#.

Despite the information theoretic origin there has be
raised some doubt regarding the observability of Re´nyi en-
tropies @12#. Some authors went even as far as to cla
that instabilities in systems with large number of microsta
completely invalidate the use of Re´nyi entropies in all phy-
sical problems@13#. This is rather surprising since Re´nyi’s
entropy is routinely measured in numerous situatio
ranging from coding theory and cryptography@14# ~where it
regulates the optimality of coding!, through chaotic dy-
namical systems@10# ~where it determines the generalize
dimensions for strange attractors! and earthquake analysi
@15# ~where it is used to evaluate the distribution of ear
quake epicenters and lacunarity! to nonparametric math
ematical statistics~where it prescribes the price of constitu
ent information!. Besides, Re´nyi entropies directly provide
measurable bounds in quantum-information uncertainty r
tions @16#.

In the present paper we aim to revise Lesche’s condit
of observability. We illustrate this in various contexts: sy
tems with a finite number of microstates, systems with
infinite ~but countable! number of microstates, systems wi
absolutely continuous probability density functions~PDF’s!,
and multifractals. We show that it is not quite as simple
define the ubiquitous concept of observability. We propos
less restrictive observability condition and demonstrate t
Rényi entropies are observable in this new framework.
what follows we will give some considerations in favor
the above statement.

The paper is organized in the following way. In Sec. II w
discuss Lesche’s criterion of observability which frequen
forms a core argument against observability of Re´nyi entro-
pies. We argue that the criterion is unnecessarily restric
and, in fact, many standard physical phenomena which
observed and measured in the real world do not obey
sche’s condition. In Sec. III we present some essentials
Rényi entropies required in the main body of the paper.
Sec. IV A we argue that for the finite number of microstat
Rényi entropies easily conform with Lesche’s criterion, i.e
they are observable. In Sec. IV B we extend our analysis
countably infinite number of microstates. Here appearanc
instabilities may be observed. The latter can be traced
large sensitivity of Re´nyi entropies to~ultra!rare-event sys-
©2004 The American Physical Society28-1
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tems. We demonstrate that when the coarse graining is
cluded into realistic measurements, the instabilities get ‘
luted’’ and Rényi entropies once again obey Lesche
condition. In Sec. IV C we propose a more realistic criteri
of observability where we allow for a certain amount of i
stability points, provided the latter ones have measure z
To this extent we employ Bhattacharyya statistic
measure—i.e., natural measure on the space of nonpara
ric statistics. We prove that the Bhattacharyya measure o
above ‘‘critical’’ distributions is, in fact, zero. Finally, we
analyze in Sec. V systems with continuous probability dis
butions and multifractal systems. We find that the very nat
of the absolute continuity of PDF’s and the multifractali
prohibitsper sean appearance of instability points.

II. LESCHE’S CRITERION OF OBSERVABILITY

In order to explain fully the apparent inconsistencies
the recent claims concerning nonobservability of Re´nyi en-
tropies we feel it is necessary to briefly review the ma
points of Lesche’s observability criterion. While we hope
discuss all the salient points, a full discussion can be fo
in Ref. @12#. Our discussion will be in terms of a scala
quantity G(x). Following Ref. @12#, a necessary condition
for G(x) with the state1 variablexPX,Rn to be observable
is the following. Let

ix2x8i15(
k

n

uxk2xk8u

be the Ho¨lder l 1 metric onRn, then ; «.0 there exists (x
independent! d«.0 such that for any pairx,x8 one has

ix2x8i1<d«⇒
uG~x!2G~x8!u

Gmax
,«. ~1!

From a strict mathematical standpoint Eq.~1! is, in fact, the
definition of the uniform metric continuity ofG(x) on the
state spaceX. Informally Eq. ~1! states that points fromX
which are close in sense ofi¯i1 are mapped viaG to points
which are close inu¯u metric. Lesche’s criterion is thus noth
ing but the condition of stability ofG(x) under a measure
ment. In fact, the continuity criterion ensures that a sm
error in a state variablex will not bring in repeated experi
ments violent fluctuations in measured data. Theuniform
continuity in Eq.~1! is then a key ingredient to secure th
the size of the changes inG(x) depends only on the size o
the changes inx but not onx itself. This condition excludes

1Here and throughout, the state spaceX represents the sampl
space of mathematical statistics, i.e., the space over which the p
ability distributions operate. In simple situations this coincides w
the set of all possible outcomes in some experiment. Generally
elements ofX can represent probability distributions themselv
provided a suitable measure is defined. This fact will be used
Sec. IV.
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for example, systems whose statistical fluctuations inG(x)
would change too dramatically with a small change in t
state variablex.

WhenG(x) is bounded we can recast Lesche’s conditi
of observability into an equivalent but more expedient for
namely~inverse! Lipschitz continuity condition@17#. In this
case, a quantityG: X,Rn°R is observable in Lesche’s
sense if and only if for every«.0 there exists (x indepen-
dent and finite! K« such that for any pairx,x8PX one has

uG~x!2G~x8!u<K«ix2x8i11«. ~2!

We will practically employ the condition~2! in Sec. IV A.
Criteria ~1! and ~2! get generalized in the case whenn

→`. This should be expected as the uniform continuity m
not survive in the largen limit. To avoid such situations
Lesche postulated that the mapping

G: ø
n51

`

Xn°R ~3!

with Xn,Rn, taken as a function ofn, converges to a uni-
formly continuous function in a uniform manner, i.e.,; «.0
there existsd«.0 such that; x,x8PRn and; nPZ1

ix2x8i1<d«⇒
uG~x!2G~x8!u

Gmax
,«. ~4!

The uniform convergence is then reflected in the fact thatd«

is bothx andn independent.
Let us add a couple of remarks concerning the aforem

tioned observability conditions. Lesche’s condition, as illu
trated above, is based on the notion of measurability. This
however, not the only possible way how to define observa
ity. It is well known that various alternative concepts exist
literature. For instance, one may use the approach base
distinguishability@18# or detectability@19#. In fact, the con-
dition based on measurability, and namely the condition
uniform continuity, might be often too tight. Indeed, there a
clearly many quantities which are not uniformly continuo
in their state variables~e.g., they are discontinuous in a finit
number of points in the state space! and which are, neverthe
less, perfectly detectable and well defined away from
singularity domain. Note, for instance, that although press
and latent heat in first order phase transitions are discont
ous in temperature, and similarly susceptibility in second
der phase transitions is nonanalytic in temperature, ther
still no reason to dismiss pressure, latent heat, and susc
bility as observables. Discontinuous or nonanalyticstate
functions are not exclusive to phase transitions only. Ac
ally, such a type of behavior is common to many differe
situations—formation of shocks in nonlinear wave propa
tion, mechanical systems involving small masses and la
damping, electric-circuit systems with large resistance a
small inductance, catastrophe and bifurcation theories
name a few.
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III. RÉ NYI ENTROPIES

Rényi entropies constitute a one-parametric family of
formation entropies labeled by Re´nyi’s parameteraPR1

and fulfill the additivity with respect to the composition o
statistically independent systems. The special case wita
51 corresponds to ordinary Shannon’s entropy. It might
shown that Re´nyi entropies belong to the class of mixin
homomorphic functions@12# and that they are analytic fo
a ’s which lie in I øIV quadrants of the complex plane@20#.
In order to address the observability issue it is importan
distinguish three situations.

A. Discrete probability distribution case

Let X5$x1 , . . . ,xn% be a random variable admittingn
different events~be it outcomes of some experiment or m
crostates of a given macrosystem!, and letP5$p1 , . . . ,pn%
be the corresponding probability distribution. Informatio
theory then ensures that the most general information m
sures~i.e., entropy! compatible with the additivity of inde-
pendent events are those of Re´nyi @4#:

Ia~P!5
1

~12a!
log2S (

k51

n

pk
aD . ~5!

Form ~5! is valid even in the limiting case whenn→`. If,
however,n is finite then Re´nyi entropies are bounded bot
from below and from above: log2(pk)max<Ia< log2 n. In ad-
dition, Rényi entropies are monotonically decreasing fun
tions in a, so namelyIa1

,Ia2
if and only if a1.a2. One

can reconstruct the entire underlying probability distributi
knowing all Rényi distributions via Widder-Stiltjes invers
formula @20#. In the latter case the leading order contributi
comes fromI1(P), i.e., from Shannon’s entropy. Typica
playground of Eq.~5! is in a coding theory@21#, cryptogra-
phy @14#, and in the theory of statistical inference@4#. The
parametera might be then related with the price of constit
ent information. It should be admitted that in discrete ca
the conceptual connection ofIa(P) with actual physical
problems is still an open issue. The interested reader can
some further practical applications of discrete Re´nyi entro-
pies, for instance, in Refs.@20,22#

B. Continuous probability distribution case

Let M be a support on which is defined a continuous P
F(x). We will assume that the support~or outcome space!
can be generally a fractal set. By covering the support w
the meshM ( l ) of d–dimensional~disjoint! cubesMk

( l ) (k
51, . . . ,n) of sizel d we may define the integrated probab
ity in kth cube as

pnk5F~xi !l
d, xiPMk

( l ) . ~6!

The latter specifies the mesh probability distributionPn
5$pn1 , . . . ,pnn%. Infinite precision of measurements~i.e.,
with l→0) often brings infinite information. In fact, it is
more sensible to consider the relative information entro
rather than absolute one as the most ‘‘junk’’ informati
02612
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comes from the uniform distributionEn . It was shown in
Refs.@4,20# that in then→` ~i.e., l→0) limit it is possible
to define finite information measure compatible with info
mation theory axioms. ThisrenormalizedRényi’s entropy—
negentropy~or information gain!, reads

Ĩa~F![ lim
n→`

@Ia~Pn!2Ia~En!#

5
1

~12a!
log2S E

M
dmF a~x!

E
M

dm1/Va D . ~7!

Here V is the corresponding volume. Equation~7! can be
viewed as a generalization of the Kullback-Leibler relati
entropy@24#. It is possible to introduce a simpler alternativ
prescription as

Ia~F![ lim
n→`

@Ia~Pn!2Ia~En!uV51#

5 lim
n→`

@Ia~Pn!1D log2 l #

5
1

~12a!
log2S E

M
dmF a~x! D . ~8!

In both previous cases the measurem is the Hausdorff mea-
sure@23#:

m~d; l !5 (
kth box

l d →
l→0H 0 if d,D,

` if d.D,

with D being the Hausdorff dimension of the support. Re´nyi
entropies~7! and ~8! are defined if and only if the corre
sponding integral*MdmF a(x) exists. Equations~7! and ~8!
indicate that asymptotic expansion forIa(Pn) has the form

Ia~Pn!52D log2 l 1Ia~F!1o~1!

52D log2 l 1Ĩa~F!1 log2 Vn1o~1!. ~9!

HereVn is the prefractal volume and the symbolo(1) is the
residual error which tends to 0 forl→0. In contrast to the
discrete case, Re´nyi entropiesIa(F) are not positive here.

Information measuresĨa(F) andIa(F) have been so far
mostly applied in the theory of statistical inference@25# and
in chaotic dynamical systems@10#. Let us note finally that
one may view the discrete distributions as a special cas
the continuous PDF’s, provided the outcome space~or
sample space! is discrete. In such a situation the Hausdo
dimensionD is zero and Eq.~8! reduces directly to Eq.~5!.

C. Multifractal systems

Multifractals can be viewed as statistical systems wh
both cells in the covering mesh and integrated probabili
scale as some power ofl. Grouping all the integrated prob
abilities according to their scaling exponents~Lipshitz-
8-3
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Hölder exponents!, saya, we effectively divide the suppor
into the ensemble of intertwined unifractals, each with
own fractal dimensionf (a). Exponentsf (a) are called the
singularity spectrum. In multifractal analysis it is customa
to introduce yet another pair of scaling exponents, nam
the correlation exponentt(a) which prescribes scaling o
the partition function and ‘‘inverse temperature’’a. These
two descriptions are related via Legendre transformation

t~a!5min
a
„aa2 f ~a!…. ~10!

As in the case of continuous PDF’s, the renormalization
Rényi entropies is required to extract relevant fin
information—negentropy. It is possible to show that the f
lowing renormalized Re´nyi’s entropy complies with the axi
omatics of the information theory@20#:

Ia~mP![ lim
l→0

@Ia~Pn!2Ia~En!uV51#

5 lim
l→0

S Ia~Pn!1
t~a!

~a21!
log2 l D

5
1

~12a!
log2S E

a
dmP

(a)~a! D . ~11!

Here the multifractal measure is defined as@23#

mP
(a)~d; l !5 (

kth box

pnk
a

l d
→
l→0H 0 if d,t~a!,

` if d.t~a!.

Rényi entropiesIa(mP) are defined if and only if the corre
sponding integrals*admP

(a)(a) exist. Equation~11! implies
the following asymptotic expansion forIa(Pn):

Ia~Pn!52D~a!log2 l 1Ia~mP!1o~1!. ~12!

Here

D~a![
t~a!

~a21!
5 lim

l→0

Ia~Pn!

log2~1/l !
, ~13!

is the, so called, generalized dimension@23#. Note also that
for systems of Sec. III BD(a) is a independent.

Let us stress that Re´nyi’s entropy of multifractal systems
is a more convenient tool than the ordinary Shannon’s
tropy. It is possible to show that one can obtain Shanno
entropy for any unifractal by merely changing the Re´nyi pa-
rameter. In fact, Re´nyi’s parameter coincides in this cas
with the singularity spectrum@20#.

IV. OBSERVABILITY OF RE´ NYI ENTROPIES:
DISCRETE PROBABILITY DISTRIBUTION

A. Finite case

It is quite simple to see that for systems with a fin
number of outcomes~e.g., systems with a finite number o
microstates! Lesche’s criterion of observability is fulfilled
02612
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The proof goes as follows.2 We first use the inequality lnx
<x21 and assume that(kpk

a>(kqk
a , then

uIa~P!2Ia~Q!u<
1

u12au S (
i 51

n

pi
a

(
i 51

n

qi
a

21D
5

1

u12au(
i 51

n

qk
a

(
i 51

n

~pi
a2qi

a!.

This might be written in the invariant form as

uIa~P!2Ia~Q!u<
1

u12auc~a,P,Q! U(i 51

n

~pi
a2qi

a!U
<

1

u12aud~a,n! U(i 51

n

~pi
a2qi

a!U. ~14!

Herec(a,P,Q)5min((ipi
a ,(iqi

a) and

d~a,n!5H 1 if 0,a<1,

n12a if a>1.

To find the efficient estimate foru(k(pk
a2qk

a)u in terms of
iP2Qi1 we utilize the following trick. Let us define the
function

A~s,P!5 (
k51

n

@pk2 f ~s!#u„pk2 f ~s!…. ~15!

Here u~¯! is the Heaviside step function an
f : @a,b#°@0,1# is some invertible function. Bothf (s), a,
andb will be chosen at the latter stage so as to facilitate
computations. Note also that

max$0;@12n f~s!#%<A~s,P!<1. ~16!

An important property ofA(s,P) is the following straight-
forward inequality:

uA~s,P!2A~s,Q!u<(
k51

n

u@pk2 f ~s!#u„pk2 f ~s!…

2@qk2 f ~s!#u„qk2 f ~s!…u

<(
k51

n

upk2qku5iP2Qi1 , ~17!

which is valid for anysP@a,b#. Note further that

2For simplicity’s sake we use in this subsection a natural lo
rithm instead of log2.
8-4
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E
a

b

A~s,P!ds5 (
k51

n E
f (a)

f (b)

~pk2x!u~pk2x!@ f 21~x!#8dx

5 (
k51

n H u„pk2 f ~a!…S @ f ~a!2pk#a

1E
f (a)

pk
f 21~x!dxD 1u„pk2 f ~b!…

3S @pk2 f ~b!#b1E
pk

f (b)

f 21~x!dxD J .

~18!

Here we have used the fact thatpk’s must lie somewhere
between f (a) and f (b). If we now chose f (x)
5(x/a)1/(a21) with

a5H ` if 0 ,a,1

0 if a.1
and b5a

@so f (a)50, f (b)51] we obtain

U E
a

b

@A~s,P!2A~s,Q!#dsU5U(
k51

n

~pk
a2qk

a!U. ~19!

Applying Eqs.~17! and ~19! we may write fora.1,

U(
k51

n

~pk
a2qk

a!U<H E
0

c

n~s/a!1/(a21)ds

1E
c

aUA~s,P!2A~s,Q!UdsJ
<n~a21!~c/a!a/a211~a2c!iP2Qi1 .

~20!

So if we takec5a(«/na)(a21)/a
„this assures thatA(s,P)

>@12n f(s)#.0 for sP(0,c#…, then

uIa~P!2Ia~Q!u<K«
(1)iP2Qi11«, ~21!

with K«
(1)5@a/(a21)#@(na/«)(a21)/a21#« (a21)/a.

In case when 0,a,1 we may utilize Eqs.~16!, ~17!, and
~19! to obtain

U(
k51

n

~pk
a2qk

a!U<H E
a

c̃UA~s,P!2A~s,Q!Uds

1E
c̃

`

n~s/a!1/(a21)dsJ
<~ c̃2a!iP2Qi11n~12a!~ c̃/a!a/(a21).

~22!

By setting c̃5a(«/n)(a21)/a
„this assures thatA(s,P)>@1

2n f(s)#.0 for sP@ c̃,`)… we have
02612
uIa~P!2Ia~Q!u<K«
(2)iP2Qi11«, ~23!

with K«
(2)5@a/(12a)#@(«/n)(a21)/a21#. Note particularly

that lima→11
K«

(1)5 ln(n/«) and lima→12
K«

(2)5 ln(n/«). This
indicates that the Lipschitz conditions~21! and ~23! can be
analytically continued toa51. This reconfirms the well
known result that Shannon’s entropy is Lipschitz.

Finally note that Eqs.~21! and ~23! represent the Lesch
criterion ~2!. Hence, in cases when the state space co
sponds to the space of all possible probability distributio
assigned to a definite~finite! number of outcomes~mi-
crostates!, Rényi entropies are measurable in Lesche’s sen

B. Infinite limit case

As was already mentioned in Sec. II, the situation b
comes be more delicate in the largen limit. This is because
for the sake of uniform metric continuity at anyn one might
require that also the limiting case should obey the unifo
continuity. To tackle statistical systems with a countable
finity of microstates3 we will illustrate first that by introduc-
ing a coarse graining into a realistic measurement, alle
Lesche’s counterexamples do not apply.

In his paper@12# Lesche proposed the following example
to demonstrate the nonobservability of Re´nyi entropies. In
a.1 he picked up two distributions, namely (i
51, . . . ,n),

P5H pi5
1

n21
~12d1i !J ,

P85H pi85
d

2
d1i1S 12

d

2D S 12d1i

n21 D J ,

iP2P8i15d. ~24!

Lesche then went on to show that these two distributions
not fulfill the uniform continuity in the largen limiting case.
Let us now show that the coarse graining~which is naturally
present in any realistic measurement! will restore the uni-
form continuity for the largen limit case.

We will assume, for simplicity’s sake, that the discre
probability distributions~24! are living on the unit lattice
with equidistantly distributed lattice~i.e., support! points. In
the spirit of Lesche’s paper we assume that the true proba
ity distribution on the interval@0,1# is obtained inn→`
limit ~i.e., when the lattice spacing tends to zero!. As usually,
we will keepn@1 finite during calculations and set to infin
ity only at the very last stage. Because every actual meas
ment has a certain resolution capacity we will further assu
that a realistic measurement can sample the unit inte
through a window of width 1/k (k!n) ~so k windows will
cover the support space!. In this case one can know onl

3Such systems often appear in various physical situations.~Count-
able! Markov chains, Fermi-Pasta-Ulam lattice models, or symbo
dynamical models being examples.
8-5
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integrated probabilities, henceP→P(k) andP8→P(k)8 . As in
every window there aren/k underlying pi ’s we have (i
51, . . . ,k)

P(k)5H pi
(k)5

1

n21 S n

k
2d1i D J , ~25!
ul

fo

(

n

02612
P(k)8 5H pi8
(k)5

d

2
d1i1

~12d/2!

n21 S n

k
2d1i D J ,

iP(k)2P(k)8 i15d.

Using the fact thatIa max5log2 k we have
uIa~P(k)!2Ia~P(k)8 !u
Ia max

5U 1

~12a!
log2F S 1

n21D aS n

k
21D a

1~k21!S 1

n21D aS n

kD a

Fd2 1
~12d/2!

n21 S n

k
21D Ga

1~k21!S 12d/2

n21 D aS n

kD aGU3~ log2 k!21

→
n→`U 1

~12a!
log2F S 1

kD a

1~k21!S 1

kD a

S d

2
1

~12d/2!

k D a

1~k21!S 12d/2

k D aG Y log2 kU
5U 1

12a
2

1

12a
log2F S 11

d

2
~k21! D a

1~k21!S 12
d

2D aG Y log2 kU
5S d

2D 2a

2

~k21!

ln k
1O~d3!. ~26!
t for

o

It is now simple to see that Lesche’s condition is easily f
filled, as for arbitrarily small« there existd« , namely,

d«<2A «

k21
ln~k!2/a, ~27!

for which the metric proximityiP(k)2P(k)8 i1<d« implies the
proximity of outcomes, i.e.,uIa(P(k))2Ia(P(k)8 )u/ log2 k<«.
This result is clearly independent ofn because whenevern is
finite the outcome of the preceding section applies and
n→` the validity has been just proven.

We proceed analogously fora,1. In this case Lesche’s
counterexamples were provided by two distributionsi
51, . . . ,n)

P5$pi5d1i%,

P85H pi85S 12
d

2D d1i1
1

n21

d

2
~12d1i !J ,

iP2P8i15d. ~28!

As before, we can obtain integrated probability distributio
which read (i 51, . . . ,k)

P(k)5$pi
(k)5d1i%,

P(k)8 5H p8 i
(k)5S 12

d

2D d1i1
1

n21

d

2 S n

k
2d1i D J ,
-

r

s

iP(k)2P(k)8 i15d, ~29!

and so

uIa~P(k)!2Ia~P(k)8 !u
Ia max

5U 1

~12a!
log2F S 12

d

2

n~k21!

k~n21! D
a

1~k21!S d

2

n

k~n21! D
aGU3~ log2k!21

→
n→` 1

~12a!
U log2F S 12

d

2

k21

k D a

1~k21!S d

2kD aGUY log2 k

<S d

2kD 2 a

2

~k21!2

ln k
1O~d3!. ~30!

Here the inequality

xa2ax>0 for xP@0,1#,aP@0,1#

was used on the last line. Consequently we again see tha
sufficiently small« there existd« , namely,

d«<
2k

~k21!
A« ln~k!2/a, ~31!

which satisfies Lesche’s condition. Note, that from Eqs.~27!
and~31! it follows that our argument naturally includes als
8-6
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the casea51 ~i.e., Shannon’s entropy! as in all steps leading
to Eqs.~27! and~31! we have well defined limitsa→11 and
a→12 , respectively.

C. Region of instability

In the preceding section we have found that Lesch
counterexamples can be bypassed by introducing a coars
resolution into a measurement process. Let us now show
even when the coarsening is not employed the Lesche in
bility points have zero measure in the space of all discr
infinite distributions—Bhattacharyya’s measure@26#—and
hence they do not affect a measurement in most prac
situations.

The key observation is that Lesche’s counterexamp
single out a very narrow class of probability distributions.
particular, they imply that whena.1, only distributions
with high peak probabilities create problems. Similarly,
cases wherea,1 only distributions with an infinite numbe
of microstates having a negligible overall probability exhi
a critical type of behavior. We now demonstrate that
above probability distributions have a very small relevan
in the actual measurement. For this purpose we remind
reader the concept of Bhattacharyya measure@26#.

Suppose thatX is a discrete random variable withn dif-
ferent values,Pn is the probability space affiliated withX,
and P5$p1 , . . . ,pn% is a sample probability distribution
from Pn . BecauseP is non-negative and summable to unit
it follows that the square-root likelihoodj i5Api exists for
all i 51, . . . ,n, and it satisfies the normalization condition

(
i 51

n

~j i !
251. ~32!

We see thatj can be regarded as a unit vector in the Hilb
spaceH5Rn. Now, let P(1) andP(2) denote a pair of prob-
ability distributions andj(1) andj(2) the corresponding ele
ments in Hilbert space. Then the inner product

cosf5(
i 51

n

j i
(1)j i

(2)512
1

2 (
i 51

n

~j i
(1)2j i

(2)!2 ~33!

defines the anglef that can be interpreted as a distan
between two probability distributions. More precisely,
Sn21 is the unit sphere in then-dimensional Hilbert space
then f is the spherical~or geodesic! distance between th
points on Sn21 determined byj(1) and j(2). Clearly, the
maximal possible distance, corresponding to orthogonal
tributions, is given byf5p/2. This follows from the fact
that j(1) and j(2) are non-negative, and hence they are
cated only on the positive orthant ofSn21. Spherical geom-
etry on Sn21 then naturally induces the measure
Bhattacharyya measure. The corresponding geod
distancef is the, so called, Bhattacharyya distance. We
mark that the surface ‘‘area’’ of the orthant (Sn21)1, i.e., the
volume of the probability spacePn , is
02612
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Vn21~Pn![Vn21„~Sn21!1
…5

1

2nE dVn5
pn/2

2n21GS n

2D .

~34!

The Bhattacharyya measure of any setA#(Sn21)1 is then

mB~A!5
Vn21~A!

Vn21~Pn!
, ~35!

and so particularly the normalizationmB(Pn)51 holds. The
reader may see that the Bhattacharyya measure is inde
very natural concept. In fact, Eq.~35! implies that the latter
is just the Haar measure onSn21. One could possibly adop
some other~not spherical! metric on the the probability spac
(Sn21)1, but because all nonsingular metric measures are
compact manifolds equivalent~i.e., they differ only by finite
multiplicative functions—Jacobians! the Bhattacharyya mea
sure will be fully satisfactory for our purpose. Actually th
exclusiveness of Bhattacharyya measure in nonparam
statistics was already emphasized, for instance, in Ref.@27#.
The naturalness and simplicity of Bhattacharyya’s meas
have been also appreciated in various areas of physics
engineering ranging from quantum mechanics@28# to statis-
tical pattern recognition and signal processing@29#.

1. aÌ1 case

Let us now look at the Bhattacharyya measure of the fa
ily of Lesche’s critical distributions corresponding toa.1.
In this case the relation~24! suggests that the critical distri
butions form the 1-parametric family of distributions param
etrized byd. Figure 1 indicates that there are clearlyn such
families. In contrast to the orthant surface which has dim
sion D5n21, the countable set of linelike 1-parametr

FIG. 1. The family of Lesche’s critical distributions (a.1).
A statistical system can be represented by pointsj on
a positive orthantS1 of the unit sphereS in a real Hilbert
space H. 1-parametric families of Leshe’s critical distri
butions are then represented by arcsg i(d)5$jk(d)
5Add ik/21(12d/2)@(12dik)/(n21)#;kP1, . . . ,n;dP@0,2#%. De-
picted example corresponds toS5S2.
8-7
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families has the topological dimensionD51 and hence the
Bhattacharyya measure of Lesche’s critical distributions
plainly zero.

We wish to ask whether some extension of Eq.~24! might
have the nonzero measure. We will illustrate now that
answer is negative. In fact, we will show that with Bhatt
charyya measure approaching 1~in the limit of largen) all
distributionsPPPn inevitably fulfil Lesche’s condition~4!.
Inasmuch, all distributions which exhibit the critical beha
ior encountered in Ref.@12# havemB→0 asn→`. To prove
this we employ the following isoperimetric inequality~also
known as Levy’s lemma! @30#. Let f: Sn21°R be a
K-Lipshitz function, i.e., for any pairj(1),j(2)PSn21,

i f ~j(1)!2 f ~j(2)!i<Kij(1)2j(2)i2 . ~36!

Then

Vn21S jPSn21;U f ~j!2E
Sn21

f dmU.CD
Vn21~Sn21!

<4e2qC2n/K,

~37!

wherem is the Haar measure onSn21 andq is an absolute
~i.e., n-independent! constant whose precise form is not im
portant here.4

Let us choosef (j)5iji2a . Using the triangle inequality
we have

uij(1)i2a2ij(2)i2au<ij(1)2j(2)i2a<ij(1)2j(2)i2 ,

~38!

so iji2a is 1-Lipshitz function. In addition,

iP2Qi15(
i

u~j i
(1)!22~j i

(2)!2u

5(
i

uj i
(1)2j i

(2)u~j i
(1)1j i

(2)!>ij(1)2j(2)i2
2 .

~39!

So particularly when two distributions ared close then their
representative points on the sphere fulfil the inequality

uij(1)i2a2ij(2)i2au<Ad. ~40!

The next step is to calculate the mean*Sn21f (j)dm. As it
stands, this is a quite difficult task but fortunately we m
take advantage of the fact that

4The metrici¯i2 appearing in the lemma represents the Euc
ean distance inherited fromRn ~this is also called the chordal me
ric!. Note thatij(1)2j(2)i252 sin(f/2)<f, with f representing
the Bhattacharyya distance.
02612
s

e

E
Sn21(i

n

uj i u2adm~j!5nE
Sn21

uj1u2adm~j!

5

nE
0

p

ucos~u!u2a@sin~u!#n22du

E
Sn21

@sin~u!#n22du

5
nG~n/2!G~a11/2!

ApG~n/21a!

;
G~a11/2!2a

Ap
n12a. ~41!

@Note that Eq.~41! is true for all a.0.# Using Jensen’s
inequality we then have

E~ iji2a![E
Sn21

iji2adm<
aA2 E

Sn21
~ iji2a!2adm

5
aA2 G~a11/2!2a

Ap
n1/2a21/2. ~42!

On the other hand, because all distributions fromPn fulfill
the condition

n12a<(
i 51

n

pi
a<1, a>1, ~43!

we have thatE(iji2a)>n1/2a21/2. Thus the mean value o
iji2a goes to zero asb(n1/2a21/2) whereb5b(n,a) is some
bounded function ofn. Collecting results~41! and ~42! to-
gether we can recast Levy’s lemma into form

mB~ iuji2a2E~ iji2a!u<C!

>124e2qC2n

⇒mB„uiji2a2E~ iji2a!u<e@E~ iji2a!#p
…

>124 exp~2qe2b2n$12p[(a21)/a] %!, ~44!

for somee.0. Note that due to symmetry off (j) we were
allowed to exchange in Eq.~37! the averaging over the sur
face of Sn21 for the averaging over the positive octa
(Sn21)1. Result~44! implies that for anye.0 and any 1
,p,a/(a21) the inequalities

iji2a>E~ iji2a!$12e@E~ iji2a!#p21%

>E~ iji2a!e22e[E(iji2a)] p21
,

iji2a<E~ iji2a!$11e@E~ iji2a!#p21%

<E~ iji2a!e[ eE(iji2a)] p21
, ~45!

hold for almost alljPPn ~their Bhattacharyya measure
arbitrarily close to 1 asn increases!. The fact that ‘‘well
behaved’’ functions are at largen practically constant on al-

-
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OBSERVABILITY OF RÉNYI’S ENTROPY PHYSICAL REVIEW E69, 026128 ~2004!
most entire sphere is known as theconcentration measure
phenomenon@30–32#. In passing, the reader may notice th
the relation~44! is a variant of Bernstein-Hoeffding’s larg
deviation inequality@31,33#.

Using now Minkowski’s triangle inequality

uij(1)i2a2ij(2)i2au<uij(1)i2a2E~ iji2a!u

1uij(2)i2a2E~ iji2a!u

<2e@E~ iji2a!#p,

and bearing in mind Eq.~40! we can chooseAd
>2e@E(iji2a)#p. Consequently~for n>3)

uIa~P!2Ia~Q!u
Ia max

5
2a

~a21!log2 nU log2S ij(1)i2a

ij(2)i2a
D U

<
2a

~a21! U lnS ee[E(iji2a)] p21

e22e[E(iji2a)] p21D U
5

6ae

~a21!
@E~ iji2a!#p21

<
6a

~a21! S d

4D (p21)/2p

. ~46!

Thus we see that one can always find an appropriated« for
every«, namely,

d«<4S «~a21!

6a D 2p/(p21)

, ~47!

and so the observability condition~4! is satisfied in all cases
for which inequalities~45! hold.

2. 0ËaË1 case

A similar analysis can be performed for critical distrib
tions in the a,1 case. The corresponding 1-paramet
families of Lesche’s critical distributions are represented
arcs

§ i~d!5H jk~d!5AS 12
d

2D d ik1
d

2 S 12d ik

n21 D ;

kPn̂;dP@0,2#J .

These arcs are identical to arcsg i(d) depicted in Fig. 1, only
the orientation is reversed. Consequently the Bhattacha
measure is again zero in this case.

We may now ask whether there exists some generaliza
of Eq. ~25! such that the corresponding measuremB is non-
zero. The answer is again negative. We show now that th
a consequence of the fact that almost all distributionsP
PPn fulfill Lesche’s observability condition~4!, while Bhat-
tacharyya’s measure of those distributions which do
comply with the condition~4! tends to 0 at largen.
02612
t

y
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To prove this we utilize once again Levy’s lemma. In th
case we make identificationf (j)5ij(2)i2a /E(ij(2)i2a).
Similarly as in the previous case we must determine first
asymptotic behavior of the meanE(iji2a). This can be
achieved by employing Jensen’s inequality

~48!

together with the inequality

1<(
i 51

n

pi
a<n12a, 0,a,1. ~49!

Therefore E(iji2a) is unbounded at largen and it ap-
proaches infinity asa(n1/2a21/2) @a5a(n,a) is some func-
tion with lower and upper bounds inn]. Employing now the
estimate

uij(1)i2a2ij(2)i2au<ij(1)2j(2)i2a

<ij(1)2j(2)i2n1/2a21/2<Adn1/2a21/2

~50!

~where the triangle and Ho¨lder inequalities were successive
applied! we obtain thatf (j) is 1/aI -Lipshitz. HereaI is the
lower bound5 of a. Levy’s lemma then implies that

mBS U iji2a

E~ iji2a!
21U<e D>124e2qaI e2n ~51!

for any e.0. Result ~51! suggests that for a sufficientl
small e (e<1,59 . . . ) theinequality

e22e<12e<
iji2a

E~ iji2a!
<11e<ee ~52!

holds for almost alljPPn (mB→1 asn→`). So we again
encounter the concentration of measure phenomenon
largen almost all Bhattacharyya measure is concentrated
j’s fulfilling the condition iji2a'E(iji2a). Using now

U ij(1)i2a

E~ iji2a!
2

ij(2)i2a

E~ iji2a!
U<U ij(1)i2a

E~ iji2a!
21U1U ij(2)i2a

E~ iji2a!
21U

<2e, ~53!

and bearing in mind Eq.~50! we can setd54e2aI 2. Conse-
quently ~for n>3)

5
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P. JIZBA AND T. ARIMITSU PHYSICAL REVIEW E69, 026128 ~2004!
uIa~P!2Ia~Q!u
Ia max

5
2a

~12a!log2 nU log2S ij(1)i2a

ij(2)i2a
D U

<
2a

~12a!ln nU lnS ee

e22eD U
5

6ea

~12a!ln n

<
3Ada

~12a!a
. ~54!

As in the previous case we can conclude that it is alw
possible to find an appropriated« for every«, namely,

d«<S aI ~12a!«

3a D 2

. ~55!

So the observability condition~4! is satisfied in all cases fo
which Eq.~52! holds. In passing, we should mention that t
underlying reason behind the relations~44! and ~51! lies in
the fact thatn-spheresSn equipped with the Bhattacharyy
distancefn and Haar measuremn form the so callednormal
Levy family@30,34#. It can be shown@30# that the concentra
tion measure phenomenon is an inherent property of
Levy family.

The moral of this section can be summarized in the f
lowing way. Whenever one selects as the state space for´-
nyi entropies the space of all discrete statistics then a n
uniform continuity behavior@i.e., violation of Lesche’s
condition ~4!# can be observed for a certain set of distrib
tion functions in the limit of largen. We demonstrated tha
the cardinality of such critical distributions is of zero Bha
tacharyya measure in the space of alln→` probability dis-
tributions. One may relate those zero measure distribut
to the so calledl a-bounded distributions~i.e., distributions
whosel a norm has a nonzero lower bound fora.1 and a
finite upper bound fora,1). This can be plainly seen from
the fact that forl a-bounded distributions the critical cond
tions ~41! and ~52! cannot be satisfied.

V. OBSERVABILITY OF RE´ NYI ENTROPIES:
CONTINUOUS PROBABILITY DISTRIBUTIONS

AND MULTIFRACTALS

Let us briefly illustrate here that the conditions of abs
lutely continuous PDF’s or multifractality are themselv
sufficiently restrictive to ensure that the instabilities d
cussed in the preceding section do not occur. To see thi
us consider Eqs.~9! and ~12!. The latter imply that for any
Pn andPn8 for which the renormalized Re´nyi entropy exists
the following identity holds:

uIa~Pn!2Ia~Pn8!u
Ia max

5
u2D~a!log2 l 1I a

r 1D~a!log2 l 2I a
r 81o~1!u

D~a!log2~1/l !

5
uI a

r 2I a
r 8u

D~a!log2~1/l !
1o~1!. ~56!
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Superscriptr denotes renormalized quantities. Note partic
larly that I a

r are by construction finite andn ~i.e., l ) inde-
pendent. Using the fact that lnx<(x21) together with Ho¨lder
inequality and Eq.~39! we have for twod-close distributions

uIa~Pn!2Ia~Pn8!u<
2ak

u12au
u ij(1)i2a2ij(2)i2au

min~ iji2a!

<
2ak

u12au
max~ iji2a!

min~ iji2a!
Ad ~57!

with k51/ln 2. Realizing that Eqs.~9! and ~12! imply

iji2a5e[(12a)/2a][ 2D(a)log2 l 1I a
r

1o(1)], ~58!

we can straightforwardly write that

uI a
r 2I a

r 8u1o~1!

<
2ak

u12au
Ade[(12a)/2a] u(I a

r )max2(I a
r )minu1o(1)

[
2ak

u12au
BAd. ~59!

HereB is an absolute constant representing the upper bo
for the exponential. Gathering results~56! and ~59! together
we can finally write~for n>2)

uIa~Pn!2Ia~Pn8!u
Ia max

<uI a
r 2I a

r 8u1o~1!<
2ak

u12au
BAd.

~60!

It is then clear in this case that one can easily find an app
priated« for every«, namely,

d«<S «~12a!

2akB D 2

, ~61!

represents a correct choice. So for all pairsPn andPn8 which
lead inn→` limit to continuous PDF’s~or multifractals! the
Leshe condition~4! applies. It is therefore the very definitio
of systems with absolutely continuous PDF’s/ multifracta
@incorporated in Eqs.~8! and ~11!# that naturally avoids the
situations with instability points confronted in the precedi
section.

VI. CONCLUSIONS

In this paper we have attempted to make sense of
recent claims concerning atotal nonobservability of Re´nyi’s
entropy. We have found that problems have arisen from
critical use of Lesche’s observability criterion. We ha
proved that the latter criterion, as it stands, does not rule
observability of Re´nyi entropies in a large class of system
systems with a finite number of microstates or multifract
being examples. This is so because the structure of the s
of distribution functions~or PDF’s! over which such system
operate essentially prohibits the existence of ‘‘critical’’ sit
ations considered by Lesche. In cases where such situa
8-10
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OBSERVABILITY OF RÉNYI’S ENTROPY PHYSICAL REVIEW E69, 026128 ~2004!
are encountered, namely, in systems with~countable! infinity
of microstates, we argue that Lesche’s uniform continu
condition is too tight to serve as a decisive criterion for t
observability.

In previous works the uniform continuity condition wa
used to force observability upon state functions. As we h
shown, it is not just unnecessary to do this but it also cau
the Lesche criterion to produce incorrect results in cert
cases. By identifying the probability distribution with a sta
variable, this has led to confusion about the observability
Rényi’s entropy. Once the uniform continuity condition
dropped, we can clear up these confusing points. For
purpose we present a more intuitive concept of observab
by allowing the quantity in question to have a certain amo
of ‘‘critical’’ points provided that the cardinality of the criti-
cal points in the state space is of zero measure.

It is definitely interesting to know what the ‘‘critical re
gions’’ correspond to. In case of Re´nyi entropies we offer a
partial reply to this question. Namely, for systems w
~countable! infinity of microstates we show that the critica
regions correspond to thed-vicinity of l a-bounded distribu-
tions. Basically such distributions correspond to~ultra! rare
events which are frequently encountered, e.g., in particle
tection ~double b or tritium decays being examples!. We
have proved that the Bhattacharyya measure of these d
butions must be zero. Asl a-bounded distributions are no
existent in~coarse-grained! multifractals or in systems with
continuous PDF’s, neither in systems at thermal equilibriu
there is noa priori reason to disregard Re´nyi entropies as
observable in the aforementioned instances. On the o
hand, it is known that many systems undergo ‘‘statistics tr
sitions’’ ~stock market bidding and continuous phase tran
tions with their exponential-law–power-law distributio
‘‘transitions’’ may serve as examples!. It might be also ex-
pected that in dynamical systems away from equilibriu
transitions tol a-bounded statistics may play a relevant ro
In any case, one can turn the sensitivity of Re´nyi entropies to
a virtue as it could be used as a diagnostic instrument fo
analysis of ~ultra!rare-event systems, similarly as, for in
stance, temperature sensitivity of the susceptibility is use
a diagnostic tool in continuous phase transitions. We beli
that further investigation in this direction would be of a gre
value.
d
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Let us finally stress that there is also a conceptual rea
why the observability in the manner of Lesche should
viewed with some hint of scepticism. This is because
observability treated in such a framework is not a uniq
concept. Indeed, Lesche’s condition can brand a quantit
observable under one choice of state variables and as no
servable under a different choice, even if two such choi
overlap in the scope of physical situations they describe
typical example is the Gibbs-Shannon entropy. Here, acc
ing to the above criterion, the entropy is observable if t
probability distribution is chosen as the state varia
@13,12#. On the other hand, if temperature and pressure
state variables then entropy develops discontinuity in a
system which undergoes first order phase transit
~Clausius-Clapeyron equation! and hence it is not for such
systems a uniformly continuous function of state variabl
and according to Eq.~1! @or Eq. ~2!# it is doomed to be
nonobservable. In this connection it is interesting to not
that because the parametera plays formally the role of in-
verse temperature@22,35# one may expect that various limit
may not commute similarly as in Gibbsian statistical physi
Namely, we may anticipate that lima→1 limn→`

Þ limn→` lima→1. In fact, Lesche@12# and other authors
@13# applied the sequence of limits limn→` lima→1. In such a
case they concluded that Re´nyi entropy of order 1~Shan-
non’s entropy! is observable while the rest of Re´nyi entropies
is not ~despite the fact that Re´nyi entropies are analytic in
aPR1, see Ref.@20#!. On the other hand, when one utilize
the ‘‘thermodynamical’’ order, i.e., lima→1 limn→` , then
also Rényi’s entropy of order 1 develops instability poin
~this may be easily checked by noticing that unobservabi
argument presented in Ref.@12# is continuous ina51). The
latter seems to support our previous comment that Shann
entropy should not be uniformly continuous in the space
discrete distribution functions in order to account, for i
stance, for the first-order phase transitions.
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