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Introduction

The Dirichlet theorem says that, for any coprime integers q and a, there are

infinitelymany primes which are congruent to a modulo q. See [16, Kap. IV], for

instance. Then, for (q,a) = l, let P(q,a) be the least prime in an arithmetic

progression p = a (modq). The extended Riemann hypothesis gives that

(1) P(q,a)≪q2+E

for any s > 0. However it is conjectured that this exponent 2 could be replaced

by 1.

The Linnik theorem unconditionally shows that

P(q, a) ≪ qL

with some absolute constant L, vide [16, Kap. X]. Many works have been done

to obtain an explicit value of this Linnik constant. The best known result is

L = 5.5 due to D. R. Heath-Brown [14].

The Bombieri-Vinogradov theorem, see [7,§28], has the same power as the

extended Riemann hypothesis in some sense. Indeed, it yields (1) for any given

a t^ 0 and almost all q. In 1980 E. Fouvry and H. Iwaniec [10, 11] made a

significantstep beyond the extended Riemann hypothesis. Their ideas have been

surprisinglydeveloped by E. Fouvry [8, 9] and E. Bombieri, J. B. Friedlander and

H. Iwaniec [4, 5].In particular,it follows from [5] that, for any fixed a ^ 0 and

almost all q,

(2) P(q:a)≪q2-S

where 0 < d = S(q) ―≫0 as q -^ oo
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In 1986, for the firsttime, B. Rousselet [17] proved (2) with an absolute

constant 6 = 10~100.E. Bombieri, J. B. Friedlander and H. Iwaniec [6] also got

the similar result without an explicitvalue of the exponent. Later R. C. Baker

and G. Harman [2] showed that

P(q,a)≪q25lu+E

for any fixeda ^ 0 and almost all q.

Our aim is to make a modest improvement upon it

Theorem. Let K > 32/17 and A,B > 0 be given. Let a be an integer and Q

be large with 0 < ＼a＼< (logQ)B. Then, except possiblyfor O(Q(＼ogQ)~A) integers

q with (q, a) ―＼and Q < q < 2Q, we have

P{q, a) ≪ qK

where the implied constants depend only on A, B and K.

As well as [17, 6, 2], our argument is a combination of the mean value

theorems, which are established by [8, 5], and the sieve identity methods, vide

[3, 12, 13] for instance. We add no new result on the former. Our idea is,if exists,

concerned with the latter. We introduce the incomplete sum

d＼n

d<-sfn

into the sieve of Eratosthenes, inspired by K. Alladi [1, Lemma 3] and I. M.

Vinogradov [18, Chap. 2, ex. 25].

The sieve identity methods decompose "primes" into "products". We here

count primes p < x, p = a (modq), for (q,a) = 1, Q < q < 2Q. E. Fouvry's

result,see Lemma A in section 5, says that one may manage a "product" if

its "good" factor fallsin the interval (Q2x"1,x5//6Q~4/3). So this "permissible"

interval has to be wide enough to pick a prime up. Actually our sieve procedure

requires that it should be of the form (a,/?) with a2 < /?. This imposes the

restriction(Q2x~1)2 < x5/6£T4/3 or Q < x17/32, and then the smallest "permis-

sible" interval becomes (x1/16^1/8). Thus, as far as based upon E. Fouvry's

fundamental result,the exponent K > 32/17 seems to be the limit of our argu-

ment below.
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The reader may skip the whole of section 4, in which numerical integrations

are estimated by hand computation, if one can accept the statement that a routine

calculation shows C>0.01.

We change a bit the usual notation in the sieve theory. This willbe explained

in the next section. Except these, we use the standard notation in Number

Theory. Especially, the letter p is reserved for primes, a = b(q) is short for

a = b (modq). n ~ N means N＼ < n < N2 with some TV < N＼, N2 < 2N. For

a set S, ＼S＼stands for its cardinality or measure. We use the abbreviation

jSf = logAT.

The present paper is a detailed and modified version of my talk delivered at

the Oberwolfach Institute, March 1996, and the Kansai Seminar House, May

1996. I would like to thank the organizers for kind invitation and the participants

for patience.

2. Sieve of Eratosthenes

To begin with, for z > 2, we introduce the arithmetical functions:

^
. . f 1, if p n implies p > z or n = 1
O,(≪) = < , .

[ 0, otherwise,

J 1, if /?|≪implies /?< z or ≪= 1

＼0, otherwise.

We notice that,in the usual notation in the sieve theory, S(stf,z) = ^2ne^^z(n),

and the sieve of Eratosthenes reads Oz(≪) = J2d＼n/u(d)x$*z(d).We then observe

that both <f>and T are completely multiplicative.Let p(n) denote, as usual, the

least prime factor of an integer n > 1.

Lemma 1

Oz(/i) 1

Lemma 2. For D > 2, we have

E

p＼n
p<z

o

Oz(n) = £>(</)＼,(</) + J2 ≫(d)^:(d)%{d)
Q

d<D d/p(d)<D<d
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Lemma 3. Suppose that, as x ―≫oo, z

log log x. Then we have

V^*FZ(≪)≪ xexpf

n<x V

= z(x) ―>■oo

log

log

X
)

and log x/log z >

Lemma 1 is Buchstab's identity. Lemma 2 may be produced by an iterative

usage of Lemma 1. For an elegant simple proof, see [3].Lemma 3 is [16, Kap. V,

Lemma 5.2].Lemmas 2 and 3 form a prototype of the fundamental lemma in the

sieve theory, vide [16, Kap. VI, Satz 6.1]. Lemma 4 below is the core of our

proof of Theorem and verified by a straightforward argument.

Lemma 4. For square-free n, we have

E ^ =

d＼n
d<,Jn

<

0

1

0

-2,

-20

if fi(n)= 1

if n = p

if p＼nwith yjn < p < n

if n = P1P2P3 with Pi < p2 < P＼< y/n

if v(≪)= 7 with />(≪)> w1/8.

For n having five prime factors,the above weight takes various values

depending on its prime factorization.To handle this,we define the sets

S' = {n e NI n = PxPjPiPaPs, Ps < P4 < Pi < Pi < P＼)

and, with a parameter t > 1,

(3) jT(t)= {deN＼/u2(d) = l,v(d) = 3,V~t<d< ^Jtp{d)}.

Lemma 5. For ne $'',we have

0<

d

£
d＼n K

n) d<y/n

if p2p3 < p{p5

otherwise.

Proof. Let E denote the incomplete sum of Mobius functionin question.

Our startingpoint is Yld＼nvid) = 0- We divide the sum over d＼n,d>y/n,

according as p{n)＼dor not. For p(n))(d＼n,put d' = dp(n). Then p(n)＼d'＼n,

d' > y/np(n) and ju(d)= -ju(d').We have that
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s J2 M(d)+ J2 M<0

p{n)＼d＼n p{n)＼d'＼n

d>y/n d'>＼fnp(n)

E ^

p(n)＼d＼n
＼/n<d<y/np(n)

|j22|+ |j23|-|iU

125

where

lk = {d jv(d) = k, p(n)＼d＼n,̂/n < d < y/np{n)}.

For p(n)＼d＼n,define cfl= {n/d)p(n). If d e lk then v(</t)= 6 - k, p(n)＼tf＼nand

y/n < d^ < y/np{n). Hence f is a bijectionbetween ^2 and J4, and a permutation

of J3. It follows that

|^2| = |^4|,

and that, in view of dd} = np(n),

IJ23| = 2＼{d| v(d) = 3, p{n)＼d＼n,Jn < d < JMn)}＼ = 2＼l＼＼

Since p(n)＼d＼n means p(d) ― pin), 2l＼may be written as

{d | v(d) = 3, p(n)＼d＼n,̂ <d< y/n~pjdj}

= {d＼deje(n),p(n)＼d＼n}

= {d＼de J4?(n),d＼n}＼{d|d e Jf(n),p{n) Jfd＼n)

= &＼0l, say

We therefore have that

S = 2(|4|-|^2|)

say.

= 2(|^|- ＼a＼-|j2i),

or

2|y|-X = 2(|#| + |<22|),

from which the firstpart of Lemma 5 follows.

To see the second part, for d＼n,define d* = nld. Write $* ―{d* Id e ffl＼
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Then d e $ means that v(d*)= 2, y/n/p(n/d*) < d* < ^Jn and p{n)＼d*＼n.Hence

we find that * is an injectionfrom M to ffl*,M*C＼12 ―0 and

Thus

@*U12 c=
ld＼v(d)

= 2,p(n)＼d＼n,
JjA^

<d< V^p(n)＼ = J, say.

＼&＼+ |J2| < ＼£*＼+ ＼H = W*^H < ＼a＼.

Now, we plainly write $' 3 n = PiPiP^PtPs, Ps < P4 < Pi < P2 < P＼- Then

d e J must be of the form /?;/?5,*= 1,2,3,4, because of p{n)＼d.However, unless

1, d2 = (PiPs)2 < P＼PjPaPs ―nJPi ^ nIpin Id), which contradicts the con-

dition of d e =2. Thus the possible member of 2 is d ―pxp5 only, in partic-

ular, ＼Q＼< 1. 2,3 d = /jj/jjimplies {piPs)2 = d2 > n/p(n/d) = P1P2P3P5, whence

P1P5 > PiPi- Namely, |J| = 0 unless pxp5 > p2Pi, as claimed.

We then have to count the divisorsd＼nwith de2ff{n). Put

gi = {n＼n = p{p2p3p4,p4 < P3<p2< P＼< P2P3P41P2P3 <P＼}-

Lemma 6. For square-freen, we have

E

d＼n

deJV(n)

2<

'0,

<

2,

20

0≫

if v(≪)< 4 and n $ 2

if ne <3)

if v(n) = 6

if v(n) = 7 with pin) > w1/8

Proof. Let 5^ denote the set of divisorsd＼nwith d e Jf(n) in question.

If v(n)< 3 then plainly £Pnis empty. We consider the case of v(n)= 4;

n = P＼PiPiPai Pa < Pi < Pi < Pi- Let d £fn.Obviously, pA)(d/p(d). Suppose

px＼d/p{d). Then d/p{d) = p{pj, j = 2,3. However (d/p(d))2 = {pxPj)2 >

P1P2P3P4 > n/p{d), which is impossible. Hence we have pljfd/p(d), so that

d/pid) = p2p3 and p(d) ―p4. Thus, 1^1 = 1 or 0, according as P2P3P4 e JV(n)

or not.

If v(n) = 6, then the number of divisors d＼n with v(d) ― 3 is G) In view
of the correspondence d <->n/d, the condition d > ＼/nis fulfilledby the half of

them. Hence we see that ＼S^n＼<
0 )/2=

10

Finally, if v(n) = 7 and p(n) > n1/8 then, for any divisor d＼n with v(d) = 3,

d < np(n)~4 < Jn. Hence ^fn is empty.
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3. Proof of Theorem

127

Put x = QK, y = x^~4 and Jt = {q IQ < q < 2Q, (q,a) = 1}. We shallshow

(4) ＼{p＼x-y<p<x,p = a {modq)}＼ >

with

(5)

y(l + O(^-1))

＼00<p(q)&

Y^＼R(x,y;q,a)＼≪x^-A-6

+ R(x, y;q,a)

To derive Theorem from these,let Ji! = {a e Jt IP(q,a) > qK＼. If q e M' then

since q K > QK = x, the lefthand side of (4) is zero. Namely

＼R(x,y;q,a)＼≫yQ-1^-2

uniformly for q e Ji'. Thus, (5) shows that

= xQ~ly6

xq-＼2>-6＼jf'＼ ≪X£'~A-6

from which Theorem follows.

Obviously, we may assume that K is close to 32/17, so that Q ― xl7/32~swith

some sufficientlysmall 8 = S(K) > 0. We call a function F(x, y; q,a) "admissible"

remainder term, if Ylqe u ＼F{X,y, q,a)＼≪ x^~E for any fixed E > 0, and indicate

such a function by "A.R." in a formula. To prove (4) and (5), we define

(6) 0 = 0(x, y;q,a) =

kef

k = a(q)

(

≪Mfc)

where H ―x1/8,/ = x1/2 and f = (x ―y,x＼.We begin by giving an asymp-

toticformula for 0. We postpone our proof of the following evaluationuntil

section1

Proposition 1

0 =
1

via)

£

kef

(k,q)=
,

( RH(k) + O(yq-l£?-3)+A.R..

For the sum in the right hand side of the above formula, we drop the
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condition (k,q) = 1, then restrictk e / to square-free integers and replace d <

I = xxl2 by d < ＼fk.The resulting cost is

≪

≪

£

kef

(

H<e＼q

E

Then we put

(7)

1 + £ 1 +
£

d＼k

d2ef

Z+ £ U+l) +

e L―j ＼p2 1

≪ y£e~＼

Z(k)=v2(k)

By Lemma 4, we find that

(8)

where

kef
.

<g

<s

(

')

E

d2ej

≪M*).

I

d

+

£(-2) + £s(*)

ke<6 keS

(-20) + O(yJ?-4)

= {PiPiPi £f＼H<Pi<p2<Px< P2P3},

= {P1P2P3P4P5 ef＼H<p5<p4<p2<p2<Pi}

= {P1P2P3P4P5P6P7 e /1H < p. < p6 < p5 < p4 < p3 < p2 < pA.

As well as ＼{p e f}＼, the cardinalities ＼(£＼and |^| can be evaluated by the prime

number theorem and partial summation. We leave the sum over k e $ untouched.

It therefore follows from Proposition 1 and (8) that

(9) @ = (1 - 2C3 - 20C7 + 0(^~1)) ―-,
1

Y
/E{k)+A.R.,<p{q)& 9(4)hi



Z(k) + J2 (-20)

ke<0
k=a(q)

where

(10)
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C3 =
i/g

JJ2t2

dhdu

3
<
?(l-'2-f3)f2*3

t2+h>l/2

and

fU) c
=
ffffff dt2dt3dt4dt5dt6dt7

2t2+h+U +ts+t6+ti<l
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Next we shall deduce an upper bound for 0. In the definition(6) of 0, we

change the summand by S, which is given by (7). The resulting error is

≪

£

k = a(q)

(

E^E1
P2＼k

p>H

d＼k

d2ef

)

The firstterm is admissible. In fact, the averaged sum over

≪ E E

kef p2＼k,p>H

qeJt is

x(k -a)≪xE J^
("4
+
0
≪ x?/8+£

H<p<I＼P /

for any e > 0. To bound the second error term, we appeal to C. Hooiey's argu-

ment [15, Chapter 1]. We firstexpress it by means of the function i//(t)= t ―

[t]+ 1/2, then expand ij/as a Fourier series,and employ bounds for incomplete

Kloosterman sums. Thus, for any e > 0, the above second term is

(12)

d2ef V

By Lemma 4 again, we then see that

(13)

Trivially,

(14)

0 Y^ E{k) + O{yq-l^-4)+A.R.

kef
k= a(q)

k=a(q)

(+i)+ £ (-2) +

ke<6
k= a(q)

+ O(yq~l£e~A)+ A.R..

£

keS
k^a(q)

ke<$
k^a(q)
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We proceed to the sum over k e S. Put

T(k) =A<
W

d＼k

e jf{k)

in the notation of section2. Then, Lemma 5

(15) V E(k) < V T(k)
keS

k = a{q)

keg
k^a(q)

<
£

kef

k = a(q)

I d＼k

＼de.tf(

1

1
<M*)

shows that

RH(k) + O
(E £>

I kef d＼k

＼k = a{q) d2ef )

The above 0-term becomes O(yq l££4) as before in (12). We put our proof of

the following formula on the above firstterm off until section 8.

Proposition

£

Are/

k = a(q)

(
E

d＼k

deJf(x)

2

') Otf (*) =
1

<p(q)

£

(k,q)=l

E

d＼k

deJt(x)

1 ^H{k) + O{yq-l^-2)+A.R..

As for the sum in the right hand side, we take the same route as (15) in the

opposite derection. Lemmas 5 and 6 show that

(16)
E

kef

(k,q)=l

<

<

(
E

d＼k

deJf(x)

E

Are/

(k,q)=

')

.

(

<bH(k)

£

d＼k

deJf(k)

E T^ + °

kef

£

IceR

2 +

keS

1 QH(k) + O

kef

kef ef＼k

e2fef

E/E' + E

E(*) +

P2＼k

p>H

£

keg*

2 +

d＼q

d＼k

d>H

E

■))

20 + O(y^~3)
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where

^ = {P1P2P3P4 e /1 H < p4 < p3 <P2<P＼ <PiPiP4,PiPz <P＼},

$* = {P1P2P3P4P5 e /1H < p5 < p4 < p3 < p2 < px,P2P3 <PiP5},

& = {P1P2P3P4P5P6 e /1 H ^ Pe < Ps < P4 < P3 < Pi < Pi}-

As before,by the prime number theorem, (16) becomes

(17)

where

(18)

(19)

Y^ S(fc)+ (2C4 + 2C; + 20C6 + 0(j5f-1))^if-1

keS

C<＼
―

'£££5 o - ≪*- o - umu

t2+t3+t4>＼/2

dtodhdudts

l/8<r5<r4<?3<'2 (1 - t2 ~ h ~ U - h)t2t^tAts
2h+2h+U<＼

131

and Ce is similar to Cj given by (11). In conjunction with (15), Proposition 2,

(16) and (17), we have that

(20) Y, E^ <

keS
k =a{q)

(p

1

J2m + (2C4 + 2C; + 20C6 + O(^-1))--^―
(*)£*

+ A.R..

We turn to the sum over k e^ in (13). We define the subset M a < by

(21) <? = {Pip2p3 V＼p1p1 < x≫+x-u,p＼p＼< x2-s,p2p2 > xe}

with 9=11/32. Here we remember that Q = xd~s and that S = 5(K)>0 is

supposed to be sufficientlysmall. In section 9 we shall show the following

formula on the sum over &.

Proposition 3.

(22)

£

k^a(q)

It therefore turns out that

£ (-2) £

k^a(q)

1 =

1

<p( q
V l+A.R..

ik,q)=l

£ (-2)+^.*-
9

1

1 keJg
(k,q)=l

= (-2cS + O(Jr'))^_
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where

(23) c
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(S) = l/8<r3<r2

J ht2+2t3<0+l-2S

3t2+4ti<2-5
t2+h>9

dt2dt3

(＼-t2- h)t2h

Substituting (14), (20) and (22) into (13), we conclude that

(24)

(26)

p = a(q)

+

1

Y
tZ(k)+A.R..

£iMC+o(ir'))^

pef Yy^>

p = a(q)

+ A.R.

+ C0S = C; + QA say

9 (≪)ftj

We are now in the finalstep.Combining (24) with (9), we have that

where C = C{3) = 1 - 2((C3 - C'^8)) + C4 + C5* + 10C6 + 10C7). In the next

section, we shall check

(25) C=C((5)>0.01,

providing that <5= S(K) > 0 is small enough. This shows (4) and (5).

We thus get Theorem, apart from the verificationof Propositions 1,2,3 and

(25).

4. Numerical Integrations

In this section we shall verify (25). We begin with C3 ― C3'(<5).Recall the

definitions (10) and (23). For simplicity, we rewrite (t3,t2) = (≪,v) e R2. Let jVq =

{(m, v) I 1/8 < u < v,2v + u < 1,1/2 < v + u] the integral region of C3. Note that

u > 1/4 and w < 1/3. Put ^ = {(u, v) e jVq ＼3v + 2m > 6 + 1 or 3r + 4w > 2 or

v + u < 9}. Then we find that, with some absolute constant Go > 0,

c,-c^)<[[ , dvd＼
JL'(> -≪-u)vu
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We shall divide Jf into five subsets. Let

Jf = {(m, v) e jVq I 3v + 2u > 0 + 1 or 3v + 4u > 2} U {(≪,v) jV0＼v + u <6}

JV' U Jf", say

Since v + u <6 implies 3v + 2w < 30 - u < W - 1/8 < 0 + 1 and 3v + 4u < 40 - v

< 48 - 1/4 < 2, we see that yK' D ./T" = 0 and that the condition 1/2 < v + u of

jVq is absorbed by the additional condition of Jf'.

We first deal with Jf'. If u<{＼-6)/2 then 3i>+ 4w>2 means 3y + 2w

> 2 - 2h > 2 - (1 - 0) = 0 + 1, and 3u + 2m > 8 + 1 implies 3v>6+l-2u>6 +

1 - (1 - 0) = 20 > 1 > 3m. If (1 - 0)/2 < m < 2/7 then 3y + 2w > 0 + 1 means

3u + 4w > 0 + 1 + 2u > 6 + 1 + (1 - 0) = 2, and 3v + 4u > 2 implies 3v > 2 - 4u

> 3u. If 2/7 < u then u < u implies 3v + 4u> lu> 2. Hence J^' is written as the

mutually disjoint union jV＼U Jfi U Jf-x,where

Jfx = {(M,y)|l/8<M< (1 -0)/2,3i; + 2m>0+1,2i; + m< 1},

^r2 = {(M,i;)|(l -0)/2< w<2/7,3u + 4w>2,2i? + w< 1},

J^ = {(M} V)|2/7 < M < V,2V + M < 1}. .

We turn to Jf". The additional condition v + u < 6 of J^" implies 2r + u

< 20 - ≪< 20 - 1/8 < 1. If m < 1/4 then 1/2 < r?+ u implies v > 1/2 - u > u. If

m > 1/4 then w < y implies y + m > 2w > 1/2. Hence .#"" is the disjoint union

Jf* U ^5 where

JT4 = {(u, v) 11/8 < u < 1/4,1/2 < v + w < 0},

■yK5=
{(m, v) I1/4 < m < u,y + m < 0}.

Now we replace Jf the integral region of C3* by ^- (1 <j < 5) and write the

resulting integral by Nj. Then, C3* = Ylj=i fy. For y = 1,2,5, we use the simple

inequality:

Nj < ＼Jfj＼sup ((1 - v - w)yw)"!.

(m,v)g >;

We begin with 7V"i:

Then

Kil =

i: l-0)/2

J(

l-≪)/2
dvdu

0+l-2≪)/3(l ~V-U)VU

f(l-0)/21
-(u-{26-＼))du

J1/8 O

/15/64 j

A/8 12

(U~S)
= Ti
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As for the intgrand, we see that

(1 - v - u)vu > (1 - (0 + 1 - 2m)/3 - u)((0 + 1 - 2m)/3)m

= (1/9)(2-0-m)(0+1-2≪)m

> (1/9) min{(2 - 9 - l/8)(0 + 1 - l/4)/8, (3 - 0)0(1 - 0)/2}

1 . /43 41 1

= 9mml32 32 8

79 17 15 1＼

32 32 32 2J

in the intgral region Jf^. Hence, JVi < 7 ■15 ■3/(2 ･43 ･41) = 315/3526. Next

f2/7 f(

J(l-0)/2J(

As above,

l-≪)/2
dvdu

2-4≪)/3(1 ~V-U)VU

K2|=f2/7
I(5≪-l)*

=

ri(5u-
1)2 =
1 i£ ^

1 ' J(i-≫)/26^ ' 7,5/6460 607-647-64

and, in Jf2

(1 - v - u)vu > (1 - (2 - 4m)/3 - m)((2 - 4m)/3)m

= (2/9)(1+mW1-2m)

>
2 .
-mm
(11

V64

15 17 9 2 3＼

64 32'777;

Hence, Jf2 < 23 ■269 ･4/(7 ･7 ･79 ■5 ･ 17) = 24748/329035. We turn to N3

N3 =

u)/2 dvdu

(1 ― v ― u)vu

f'/3i(l-x)-≪<

2J2/7 ＼i

2 1

2u u

1 /I/3, (l
= -/ log -
2/2/7 ＼U

= 7'
2 V 2

log
V

-')

u2j

1

u
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Finally,

Then
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e-u

N4 =

<

dvdu

l/2-≪(1 - v ~ u)m

0- 1/2

1 -

/4

=
ilog3.

N5 =

^51 =

-

0

n/2-u)-u)(l/2-u)u

du

log

,8/2

J
1/4

(0 - 2k) ≪/m =

dvdu

(1 ― v - u)vu

/

/1/4

Since, in jV^, (1 ― v ― u)vu > (1 ― 2u)u2

summing up, we have that

(27) C -.
3'5
I
24?48

( ' 3 " 3526
+
329035

1

+
2

6

> 1

-'4

Next we estimate C4 given by (18):

I

du

I(≪r-2≫)2
=
I

135

/2(l/4)2, we see N5 < 1/128. On

+ - log 3 +
1

128
< 0.35696.

dwdvdu

(1 ― w ― v ― u)wvu

where F = {(u, v,w) e R3 |1/8 < u < v < w, 2w + 2v + u < 1,1/2 < w + v + u}.

We divide 3~into three mutually disjoint subsets 3~= 3~＼U^2 U^3, by adding

m>1/6, 4i;+ 2m>1; m < l/6,4y+ 2m > 1; 4u + 2i/<1.

For ^1, l/6<w<y<w implies w + u + m>3w>1/2 and 4u + 2m>6m>1.

For ^2, u < 1/6 and 4y + 2w > 1 imply 4u > 1 ―2w > 4m. And v < w and
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4v + 2m > 1 imply w + v + u > 2v + u > 1/2. For ^~3,4u + 2u < 1 and 1/2 < w +

v + u imply 2y < 1 ―2m ―2u < 2w. Hence we see that

3~＼= {(u,v,w)I 1/6 < m < u < w,2w + 2v + m < 1},

≪T2=
{(≪,u,w)| 1/8 < m < 1/6,4d + 2m > l,v < w,2w + 2v + u < 1,},

^"3= {(m,u,w) 11/8 < m < v,4v+ 2u < 1,1/2 <w + v + u,2w + 2v + u< 1}.

Let ^" the integral domain of C4 replace by ^] (j =1,2,3) and denote the

resultingintegralby 7). Then C4 = Xw=i ^}- We plainlybound each of 7} by

the supremum of the integrand times the volume of the integral domain, as

before.

To startwith.

The volume of &~＼is

fl/5

J
1/6

f(l-")/4

Ju

j.1/5 ,(1

J
1/6 Ju

≪)/4,(＼-2v-u)/2 dwdvdu

}v (1 ― w ―v - u)wvu

U{＼-u)-4v)dvdu
=

r

Jl/6

1

16
c-5"'2^^ H)

Since,in &~＼,(l-w-v- u)wvu >{＼-2v- u)v2u > (1 - 3w)w3 > (1 - 3/6

we find that Ti < 1/120. Next,

T2 =

The volume of 3h is

fl/6 r(

J 1/8 J(

1-k)/4

1-2m)/4

rl/6

J
1/8

f(l-M)/4

J(1-2m)/4

i.(1-2d-≪)/2

Jv

dwdvdu

(1 ― w ― v - u)wvu

'(

Since (1 ― w ―

(1/16)(1-1/4)2(1/

r3

)(i/6)3

s≪―■)―Co1* -a Kc"-c"

v - u)wvu > (1 - 2v - u)v2u> (1/2)(1/16)(1- lufu >

8) in &~2,we have that T2 < 37/1458. Finally,

fl/6 f(

J
1/8 Ju

1-2m)/4

The volume of ^3 is equal to

{V6u 1 -6m
J
1/82~1~

i:＼-2v-u)l2 dwdvdu

n-v-u (1-W-V-U)WVU

,1/6j
du= / ― m2(1-4m) =
A/8 16

16(W 3 W 2)

(1/2)
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Since (1 - w - v - u)wvu > (l/2)(l/2 -v- u)vu > (l/2)(l/2 - 2u)u2 > (1/8)3 in

^3, it followsthat T^,< 5/108. On summing up the above estimates,we obtain

that

(28)

r

J 1/8

c^Wo +

f 1/5 ,1/5 ,(1

J
1/8
h5
Ju

fl/5

J
1/8

/5

/8

fl/5

Jts

1

16

1

1

16

1

15

16-15-20

Since,in the domain in question

we find that

(29)

We then turn to

C6 =

(1

c;<

37 5

+ m< 0.08001.

dhdududu

dts

= 0.03375.

1458

We proceed to C5* given by (19)

/8</5</4<?3<?2 (1 - t2 - t$ - U - t5)t2ht<＼t5
2h+2h+U<l v

The volume of the integraldomain is equal to

fc,)/4p(l-2/3―/4)/2

dt2dt3dt4dt5

'4)/4I

-((1 - t4) - 4t3) dt3dt4dt5

(1 - 5t4)2dt4dt5

5<5)3

H)'

(1 - h - h - H - h)hhut5 > (1 - 2r3 -U- t5)tjt4t5

> {I - 3t4 - t5)tlt5

>(l-4r5)?54

^(i-i)@4>

27

800

Mdt2dt3dt4dt5dt6

l/8</6<r5</4<r3</2(1 - t2 ~ h ~ U - t5 - t6)t2t3t4t5t6
2t?+t＼+tA+ t'i+t(,<l
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The volume of the integraldomain equals

rl/6

J
1/8

,(l-f6)/5 .(i-,5-r6)/4

Jt6 Jt5

f -t4-t5-t6)/3

M/6 f(l-r6)/5r(l-h-t6)/4 r

J1/8
Jl6 Jt5

J

)(l-t3-U-t5-t6)/2

dtidudududtf.

(1-/4-/5 '6)/3J

- ((1 - h - h - r6) - 3*3) dtidt4dt5dt6

,1/6 |.(l-*6)/5 r(l

J1/8
Jt6

J/5

,1/6 ,(1

J1/8 h6

-fc)/5 1

3!4!

'5-'6)/4 I

xrrr ((1 - h - t6) - 4t4Y dt4dt5dt6

((I - t6) - 5t5)3 dt5dt6

f1/6 1

1

5!6!H
Since (1 - t2- h - U - t5- t6)t2hutst6 > (1 - 5r6)r|> (1 - 5/8)(l/8)5 in the

domain under consideration, we see that

(30) C6 < -^ < 0.000988.

Similarly

(31) c^M -.7(-8
86 = -£- < 0.000002.
6!7!

In conjunction with (27), (28), (29), (30) and (31), we conclude that

c; + c4 + c; + ioc6 + ioc7

< 0.35696 + 0.08001 + 0.03375 + 0.00988 + 0.00002 = 0.48062.

It follows from this and (26) that

c = c{8) = i - 2((c3 - ci(d)) + c4 + c; + ioc6 + ioc7)

> 1 -2x0.481 -C0S

= 0.038 -C0S> 0.01,

providing that S = S(K) > 0 is small enough. This shows (25), as required.
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Mean Value Estimates

139

In thissection we quote three mean value theorems from [5, 8] so as to

provide for our proof of Propositions.The followingLemma A is [8,Theoreme

1].Lemmas B and C are [5, Theorem 3] and [5, Theorem 5*],respectively.

For a sequence oc= (at), x ≪ k ≪ x, put

<?((≪);
Q)

£

Q<q<2Q

(<7,a)=l

E

k = a(q)

txk

1

(p{q)
a*

Here 0 < ＼a＼< 5£B with a constant B > 0. Let k > 2 be an integer. If oik≪ tK(k)

we call a of order /c.All sequences in this section are supposed to be of order k.

Let s > 0 be a fixed small number. Our goal is to get that

(32) S{(a);Q)≪x&-A

for any A > 0, under some assumption on a. Here the implied ≪-constant may

denend on R. k. f. and A.

Lemma A. Let x ≪ LM ≪ x; L, M ≫ x£;

Suppose that, for any d > 1, b ^ 0, r > 1, (r.b) = I and E > 0,

(33)

/= 6(r) ^^ (/,r)=l
(l,d)=l (l,d)=l

Then we have (32), provided that

Q2xe~l ≪L≪x5/6-EQ'4/3.

Lemma B. Let x ≪ LMN ≪ x; L, M, N ≫ xe;

C=(C/), I ~ L; £=(£,,), m~M; rj = (jjn), n ~ N; a = C*£*?7-

Suppose that if p＼lmn with p < exp(j^(logi?)~2) then £i£mnn= 0. Let (fulfill (33).

TAe≪ we /zaye (32), provided that

LM ≫ Qxe,

L3M2 ≪ Qxl~E,

(L + M)L2M4 ≪ x2~e.

Lemma C. Let x ≪ LMN ≪ x; L, M, N ≫ xe; 2<z ≪ exp(J^(log ^)~2)

Define



EEEE

Ue'W p'pm=l
U<p'<p<U^

■)
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Let £= (£w),m~M; r＼

that

= (in
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Oz(/), if L<l<Li<2L
0 otherwise.

),n~ N; <x= C * £* ?7.Then we have (32), provided

M≪xl-£Q-＼

MN4≪x2-EQ'＼

MN2≪x2~eQ-2.

6. Proof of Proposition1

Firstof all,we remember the definition(6) of 0. We shalldecompose the

summand of 0 into some suitableform for Lemmas A and C. To thisend, for

kef, put

3o(*0 =

Since O is completely multiplicative,we see

(34)

<M*0

dl=k

d<I

We firsthandle <£#(/).Let A = 1 + if"8 and % = (fTA"'')1:g^/o where /0 is

determined by the inequality HA~{I°~l)> exp(if(logif)~2) > HA~k = Z, say.

Then we see that [Z,H) = {JUey [U, UA) and ＼<%＼= Io ≪ ^9.

Now, Lemma 1 shows that

^(/) = Oz(/)-2E°≫-

Z<p<//

For />e [?7,UA), U <=%, we change >,(≪)by Oj/(≪) with the cost of

Rp(n)-Ru(n) = y2y2%>(m)

by Lemma 1. Thus we have that

(35)

p m=n
U<p'<p

*h{i) = *z(/) - E EE *^(≫) + °

Ue<% pn=l
U<p<UA

(



(

EEEEE^te)
)

U<G

Ue<W pn=lU>G u<p<UA

5

J^PjWi say-

7=1

C/e*
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When Z < U < G := x1/16,we decompose O[/(≪)one more. Lemma 2 shows that

(36) <W≪) = Oc/(/i)Oz(n)

= £X>＼l/Oz(e)<&z(/') + J2J2 f^uOz{e)d>p{e)(l')
el'=n
e<4G/U

el ―n
4G/U<e

e/p{e)<4G/U

In the above second term, we see that Z < p(e) < U, because of xPj7 >z(e).Then,

for p(e)e[V,VA) with V e <% and V < U, we replace Op(c)(/')by OK(/')- %

Lemma 1

(37)

the resulting error in (36) is

≪

el'―n
v<u

EE *-･(≫)

p"m=V
V<p"<p(e)<VA

≪EEEEE^(/).
v<u

which contributes to (35)

(38) ≪EEEEE EEEw)
VeW

EE

U,Ve%
V<U<G

p'fp"m=n
V<p"<p'<VA

p'p"mg=l
V<p"<p'<VA

pel'=l

U<p<UA
e<4G/U

£££

pel'=l
U<p<UA

4G/U<e<4G/Up{e)
V<p(e)<VA

(

< up (/)EE

Pf=9U<p<UA

inner sum ISSince the above

(39)

UeW pf=g
U<p<UA

H*＼u<I>z(e)($>v(l')

)

p'pmg=l
U<p'<p<UA

EEw)^"(0)

Pf=9
Z<p<H

the O-term in (35) is absorbed by (38), with g = 1. It therefore follows from (35)

(36), (38) and (39) that

(40) <**(/) = ≪DZ(/)- EEEE^^(^C')
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Substituting this into (34), we have that So(fc) = Ylf=i ^v'(^) where

E,{k) =

dl=k
d<I

First we deal with S2. Put pe = g. Then we observe that g < UA ■4G/U =

4AG < 8G, and that the coefficientof g has the same property as (39). Thus H2 is

written as

(41)

Ue<W dgl=k

d<I

0<8G

where J2ueR ＼au{g)＼≪ ^HRz(g), in particular,av(g) ≪ *＼HRz(g). Also Si has

the same expression as above, with g = 1.

We turn to S3. Put dV = m and pe = I. The coefficientof m is O(r(m))

simply. For given V < U < G, we see that 4G = U ■AG/U < I = pe < UA-

4G/U ■VA < 4UAG < 4G2 = 4H. Let wv(n) denote the characteristicfunction

of primes e [U, UA). Then the coefficientof / is written as the convolution

(42) ( u*<*u,v){l)

with some a.u.v{e)≪*Ft/(e). Hence S3 is put into the form

(43) EEEE^w≪vc≪)

U,VeW lm=k
G<l<4H

where Cu,v(I)≪ 1 has the expression(42) and £y{m)≪x{m)

S4 has also the same form as (43), with (,= w. Next,

by

(44) ≪

H5(A:) is bounded

EEEEEEv*(≫)*≫w≪ EEEE^≫)
Ue% p'pmgd=k

U<p'<p<UA
Ue% p'pn=k
U<p'<p<UA

Thus Ho(fc) is written as the sum of (41), (43) and (44).

We have to rearrange (41) furthermore. We shall splitup /i(d)<&H(d) in (41).

Since if d > 1 then x1/8 = H < d < I = x1^2, d has at most three prime factors.

Thus, for d > 1, we have that

(45)

p'p=d

H<p',p

( E

P2＼d

H<p<xxlA=H2

')
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Lemma 2 shows, as in (36) and (37), that

(46) RH(d) = Y,J2^HRz(e)Rz(f) +

ef=d
e<H

+ 0
(

EEEE'M
Ve'V p'pn=d

V<p'<p<VA

In the above second sum, we see that

)

E EE a≪z(c)*f(/)
Ke* ef=d
H<e<Hp{e)

V<p(e)<V&

143

H <e<Hp{e) <H2, becauseof *＼H(e)
Combining (46) with(45),we have that

(47) fi(d)<s>H{d)= Y.Y.P^zd) + E E
ef=d
e<H

T,fiv(e)7vW) + r(d)
Ve<% ef=d

H<e<H2

where j3,fiv,yv≪ <1>Zand r consists of 0-terms in (45) and (46). Here we notice

that the second term in the right hand side of (45) is put into that in (47), since

min(p' p)2 < p'p < I = H4. By substituting(47), (41) becomes

(48) E EEEE^*)0^)0^)0^7)
Ue% efgl=k

e<H
ef<I,q<8G

+ E E E E EE^w^(/)^(^^)
U,VeW

･(
The above O-term is

(49) ≪

≪

efgl=k

H<e<H2
ef<I,g<%G

EEEEwim^zO
Ue<W dql=k

VV|r(J)|T(m)
dm=k

EE

P1-n=k

H<p<H2

)

^w + EEEE^(≪),

Ket p'pn=k
V<p'<p<VA

which is larger than (44).As for the second term of (48),we writefg = m and

e = n. Then Hm < em = efg < 8/G = SIHG~l or m < SIG'1, and H <n< H2.

We treatthe conditionnf = ef < I by using

1
1/2

1/2

p―2nitn Jlnitm
＼ f1/2
)dt=＼ ―Initn

T(t;f)dt, say
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Since T{t;f) ≪

(50) EE

U.Ve%

Hiroshi Mikawa

min(7,1/1 l), the second term in (48) is

1
1/2

1/2

(

£ J2 J2 °z(l)tt, u, v{m)f}ttv{n)
lmn=k
m<8/G~1

H<n<H2

)

written as

rain(I,＼t＼~l)dt

where £t,u,v(m) = T,Y,fg=myv(f)<*u(g)T{t;f)/mm{I,＼t＼ 1)≪r(m) and f]uV{n)

= Pv{n)e-2nitn≪ 1.

We proceed to the firstterm in (48). Lemma 2 shows that

<DZ(/)
dm=f
d<F

EE^≪

dm=f
F<d<FZ

where F ―xn with a fixedsmall number rj> 0. We also

composition of >z(/)-Then we replace $>z(f)^>zO) by

^^M^z(^)VV//(r)Tz(r)
dm=f

d<F

m=l
r<F

The resulting error term contributes to (48)

(51) ≪ ]T]T＼z(J)T5(m)

dm=kF<d<FZ

■

)

have the similar de-

Write ed = h. Then h < HF and hm = edm = ef < I. Therefore the firstterm in

(48) becomes

(52)

where

EEEEE^w
Ue<W ghmn=k

g<WF
h<HF,hm<I

tu(g)＼≪E EEm*')^)≪ EE^')^)≪i
Ue'% g'r=g a'r=g

*co≪EEi^)i^(rf) ≪EE^w^w ≪i
ed=h

On summing up the above decomposition,

ed=h

Ho is written as the sum of "type I"

(52), (50), "type II" (43) and "error" (51), (49). Consequently,

(53)

kef VW> he/
k = a{q) {k,q) = ＼

£>//i+DI/2 + Dn + Din.
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Here Djn comes from "type I" (52)

(54) Dw≪ E E

g<SGH h<HF

£
fn &ghmn e /

ghmn = a(q)

hm<I

1

EE≫(a) /-^ Z_-
yn> ghmnej

{ghmn,q)=＼

hm<I

The contribution of "type I" (50) is Dj/2, which will be found admissible

(55) Sj := Y, l^//21

ae Jl

≪ J^19sup

Q<q<2Q

EEE*^)^

Imne
f/lmn=a{q)

m<BIG-1
H<n<H2

1

(p(q)

145

Imnej

{lmn,q)=＼

w<8/G-'

H<n<H2

= J^19sup£;, say,

where the supremum is over all £ and rj satisfying£m≪ z(m) and rjn≪ 1. Next

Djj arises from "type II" (43).

(56) 5//:=^|D//|≪^18sup J2
qeJi Q<q<2Q

(<7,≪)=1

EE≪≫-^EE≪
lm = a(q)

G<I<4H

if18 sup S'n, say,

(lm,q) = ＼

G<l<4H

where the supremum is taken over all£having the expression (42) and all£,with

<t,m≪ r(m). Finally Dm, which corresponds to "error" (51) and (49), is divided

into three parts.

Dm ― D m jX + Dm/2 + ^////3

where

(57) Dmn≪ vvTz(^)T5w+^)-1^y;^z^)T5(≪),
dnef

dn = a{q)

F<d<FZ

(58) Djjjn ≪

(59) Sm

UeW p'pnejf

p'pn = a{q)

U<p'<p<UA

qeJl

≪

F<d<FZ

T4(n)+(p(q) l J2 EEE^w
p'pnej
U<p'<p<UA

p2nef

H<p<H2

We shall estimate these sums in the next section.
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7. Proof of Proposition 1, Continued

In remains to show that Dt ≪ yq'1^'4, (i = 1/1,111/1,111/2), and that, for

any A > 0, St≪x^~A, (i = 1,11,111). We begin with Sm given by (59). We

have that, for any e > 0,

Sni ≪xe E

H<p<H2

xp 2≪x1+£if-1≪x7/8+£

which is negligible.The firstterm of Dm/2 given by (58) is

≪ £ E £
y^3

UeW U<p'<p<UA^P P

≪yq -!^3

≪ yq~1^3

UeJi/ U<p'<UA

E
1

z^<Hplogp

≪ yq-l^~5

1

y- log/?

P'l°SP'u£tuA P

log A

which is also acceptable. The second term of Dnij2 is easier to treat and bounded

similarly. The firstpart of Din/i given by (57) is

≪

F<d<FZ

≪yq

Vzid)

1^4exp(-logi^/logZ)

≪yq~l£?4exp(-rJg?2)

by Lemma 3. This is satisfactory as well. The second part is similar. Hence

(60) Dm = O(yq-lg>-4) + A.R..

Next we handle Dj/＼ given by (54). Since ＼{ne J |(n,q) = 1}| = (p{q)/q＼^＼+

O(r(q)) for any interval
≪/,
we have that

g<%GF h<HF

(gh,g)=i

E

hm<I

{m,q) = ＼
I (x-y)/ghm<n<x/ghm

＼ n = ghma(q)

1 -

y J)

qghm
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It follows from the method deriving (12) that the sum inside the absolute value

symbol is bounded by

for any e > 0. Since q

(61)

V qgh) V

≪ x17/32, we have that

Din ≪ ql/2GHxe+2>1 + xl-e/2q-] + Glx^q'1

<<c^1/2^3/16+6+2?? + x＼-E/2
-＼

≪ X
'-'V1

providing that both rj> 0 and e > 0 are small enough.

We proceed to Sj given by (55). Lemmas 2 and 3 yield that, for any interval

J and (b,q) = 1,

J2 Rz(l)-<p(q)-1

IeJ
l=b(q)

E Oz(0 ≪ £>z(<0
d<F

+

F<d<FZ

≪

d<F

E '- ni)-' E i
leJ,d＼l

l = b{g)

Vz(d)

1 + E

F<d<FZ

leJ,d＼l

(/･<7)=1

1 leJ,d＼l I

＼l= b{g) (

Vz{d) GH
≪ FZ + ＼J＼q~xexp(-logF/logZ)

≪ x2??+ l^l^1 exp(-^(log^)2).

Hence, the part of Si with m < H is

(62)
(

≪*" E EE'M *
Q<q<2Q m<H
{q,a)=＼ H<n<H2

exp(-^(log^)2)
2r,
j
X

qmn

)

≪yl9{QH3^x2ri + x^3exp(-//(log^)2))

≪ x29/32+3fl+ x£?2]exp(-?/(logJT)2),

which is satisfactory.

When m > H, we appeal to Lemma C, on taking 0 < s < 5. We have to

remove the condition Imn e / from Si. To this end, we divide the summa-
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tion ranges into short intervals, as a standard way. Write k k X for k e [X,

X(l + y~w)), where W>＼ is a constant. This splittingargument shows that

Sj ≪ J?l9((J?l+w)3 supS'l + x^A^'w)

where S" is the same expression as S'},except for the new condition /≪L,

m ≪ M, ≪≪TV in place of Imn e f, and the supremum is additionally taken ovei

L, M, N such that

x ≪ LMN ≪ x, H≪M ≪ /G"1, H ≪N ≪H2.

For given E > 0, we choose H7 = E + 23. Then 5/ satisfiesall assumptions of

Lemma C, since

X1/8≪M≪X7/16<X15/32,

MNA ≪ IG~lHg ≪ xl+1'Xb < x1+15/32,

M7V2≪/G-1/f4 = x15/16

and N≫xx^. It therefore follows that

(63) Sj ≪ x^"£,

together with (62).

To estimate Sn given by (56), we use Lemma A. Since ((/) contains the

characteristic function of primes in the interval [U, U(l + J^~8)) with U≫

exp(j£?(logi?)~2)as its convolution factor, the Siegel-Walfisz theorem [16, Kap.

IV, Satz 8.3] ensures that ((/) fulfillesthe assumption (33) of Lemma A. After

removing the condition Ime f as above, we have that

Si, ≪ JSf18((jgf̂+1)2sup5;j + x^3J?~w)

where " in S'/jindicates the condition Im e / of S'n is replaced by /% L, m ≪ M,

and the supremum is taken, in addition, over L, M such that

x ≪ LM ≪ x, G ≪ L ≪ H.

For given E > 0, we choose W ―E + 21. And we take 0 < s < 6 in Lemma A.

Since

e2x£-1≪x'/16 = G and x5/6'£Q-^3≫xl^=H,

Lemma A shows

(64) Sn ≪ x£?~E.

Therefore Proposition 1 follows from (60), (61), (63) and (64).
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8. Proof cf Proposition 2

We remember the definition

To(fc) = (

.
d＼k

eJf(x)

where * indicates the condition:

(65)

(3) of jf(x). Put, for kef

■

)

RH(k) =

H <p3< p2< Pi, I

EEEE*≫w

p＼p2p-,l=k

= X1/2 < plp2p3, {PiP2)2P3<X
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We decompose >//(/)into the same form as (40) or the combination of (41), (43)

and (44) to obtain that

(66) To(*) = E E E E* E E m^zW+y2 (*)+ T3w
Ue-W P＼PiPi9l=k

g<EG

where T2 and T3 are written as the form (43) and (44), respectively. Then, as

before, T2 and T3 are handled in the same way as Sjj and Dm/2, respectively.

Let Ti denote the firstterm in (66). Put pxp2 ― m and p3g = n. Then, since

(65) implies p＼ < {p＼P2)2P3 < x and />3> H, we see that

We treat

H2 < m = PlP2 < (x/P3)l/2< (x/H)1/2 = IG~＼

mn = Plp2p3g = {Pxp2p＼l2)p＼l2g< xl/2(x^5)l/2SG= Sx3/5G

H <n = p3g < 8x1/5G.

the condition(65) on /?3by the integration

fl/2

J

―1/2

( £

H<h<p2
I<PiP2h
(pxp2)2h<x

e2nith＼
e~2nitpi dt

fl/2

J

―1/2

T(t;pup2)e~2ni'^dt, say.

Here note that T(t;pl,p2) ≪ min(7, ＼t＼
*).
To deal with the boundary condition

k e /, we splitup the summation ranges into short intervals. Let n k N denote

the condition n e [TV,Nil + £f~n)).Therefore, Y＼(k), kef, is written as

UeW L M N J-l/2

(

EEE^^w^i/W
lmn=k

l^Lm^MnvN

min(/, ＼t＼~x)dt
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where L, M, N run through the powers of A = (1 + if~n) satisfying

(67)

and

Urn)

x≪LMN≪x, H2≪M≪IG~＼ H≪N≪xl/5G, MN≪x3/5G

J2J2 T(t;Pl,p2)/min(I, ＼t＼~l)≪ 1

pxp2=m
Pi<P＼

Here we notice that, by (41),

nt.uin) =
EE

Pi9=nH<p,

Mg)e-2nitp'

[/e* pg=≪ H<p Ue<& pg=n H<p

Let T' be the part of Ti restrictedby the conditionx ―y < LMN and LMN A3

< x, thatimpliesImn e f. Let Y" be the part of Yi with the conditionLMN <

x ―y or x < LMN A3, that means Imn < (x - y)A3 or Imn > xA~3.Then we have

that

TTr＼k)≪^
kef
k^alq)

£

x-y<k<(x-y)Ai

or xATl<k<x
k = alq)

which is acceptable. Similarly,

T3(k) ≪£ex^-nq~x<e2 ≪ xq-x£e~*=

V(q)~l E ^＼k)≪y<p{q)-xS£-A

kef
(k,g)=l

which is also acceptable.Moreover we have that

£

Q<q < 1Q
(q,a)=l

Are/

k = a(q)

≪J^9(J^12)3^

･ sup

Q<q<2Q

1

£ T'(fc)

EEE0^)^
/≪ Lm m Mn ≪TV
lmn = a{q)

yq lJ?-4

<p

1

EEE^w^""(a＼ £-^ Z_^ L-j

(lmn,q)=l
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where the supremum is taken over (£m) with £m≪ r(m), (rjn)with rjn≪ 1 and L,

M, N satisfying(67). We take 0 < e < S in Lemma C. Then all assumptions of

Lemma C are satisfied.Indeed, by (67),

M≪/G"1=x7/16<x15/32

MN4 ≪ X3/5G(xl/5G)3 = ^6/5^4 =
^1+9/20 < ^1

+ 15/32

MN2 ≪ x3/5Gxl/5G = x"5G2 = x37/40 < x15/16.

Thus Proposition 2 follows.

9. Proof of Proposition 3

We recall the definition (21) of J1. To make the variables pj (j = 1,2,3)

separated, we define the sequence

^=(^no^Mo; A=1 + STW, M0 = (l/2)^+1

where W > 1 is a constant. For P e &, we write n k P for P <n < PA. We

divide ^ by the restrictionpj ≪Pj e 0> (j = 1,2,3). Let 0t denote the set of

(PUP2,P3) e^3 such that

(x-y)< P1P2P3, P＼P2P3A3 < x, P3<P2<P{< P2P3i

(P2A)3(P3A)2 < x0+l^, (P2A)＼P3A)4 < x2~s, P2P3 > x9.

If (P＼,P2,P3) e $ then /7y≪Pj (j = 1,2,3) implies all conditions of PiP＼P^ e $.

Ffpnnp

(68)
£

q e M
k = a{q)

V

1
5)
E

ks31

≪vrvv
Z_^ Z / Z rf Z 1
Pj 0=1,2,3) ?e^T

+ EEL

P] (7=1,2,3)

(puPi,PiHa

= S＼+$2, say

(

1

EEE l

PjkPj 0=1,2,3)

P＼PiPi=a{q)

1

(p{q)

EEE

PjxPj (7=1,2,3)

{p＼PiP-i,q)=i

1

ZEE

Plp2p2 cg

Pj*Pj (7=1,2,3)

plp2pie&
I

Pj*Pj (7=1,2,3) j
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If (Pi,P2,P3) $ &, Pj^Pj (j =1,2,3) and p{p2p3 e & then at leastone of the

following eight conditionsholds:

x-y< P1P2P3 <(x- j)A3; xA"3 < pxp2ps < x;

(69) P3<P2< i?3A; P2< Pi < Pib P＼< P2P3 < ^iA2;

x0+l-23A-S<p3p2^xe+l-2S. X2SA-1 <plp4^x2-S. J < p^ < x^2

Thus it is not hard to see that

EEE EEE
Pj (y=l,2,3) Aftfte*

(P,.P2,P3)^* /V*^ 0=1,2.3)

1≪
££E

x-y<P＼PiPi<x
one of (69)

1 ≪x5£~w

Hence Cauchy's inequality shows that

(70) S2≪x^2-W/2.

As for Si, we appeal to Lemma B, by taking 0 < e < S, L = P2, M = P3 and

N = P＼.Then all conditions of Lemma B are fulfilled.Actually the set $ e %> is

determined in this way. Hence we have that

(71) Si ≪(^w+lfx^-D

for any D > 0.

For given E > 0, we choose W = 2E + 2 and D = IE + 9. Then Proposition

3 follows from (68), (70) and (71).

This completes our proof of Theorem.
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