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ON THE EXISTENCE OF ^-CONFORMAL CHANGES OF

RIEMANN-FINSLER METRICS

By

Csaba Vincze (Debrecen)

Abstract. The notion of ^-conformality was introduced by M.

Hashiguchi in [1].He proved for some special Finsler manifolds that

the existence of a ^-conformal change implies that the manifold is

Riemannian (at least locally).

In this note we show that Hashiguchi's result is valid without

any extra condition. This means that the existence of a ^-conformal

change of the metric can be interpreted as a new sufficientcondition

for a Finsler manifold tn he Ripmannian

1. Preliminaries

1.1. Throughout the paper we use the terminology and conventions

described in [3]. Now we brieflysummarize the basic notations:

(i) M is an n{>2)-dimensional, C00, connected, paracompact manifold,

C°°(M) is the ring of real-valued smooth functions on M.

(ii)n : TM ―>■M is the tangent bundle of M, uq : ZTM ―≫M is the bundle of

nonzero tangent vectors.

(iii)X(M) denotes the C (M)-module of vector fields on M.

(iv) ix, ^x {X e X(M)) and d are the symbols of the insertion operator, the

Lie derivative(with respect to X) and the exterior derivative,respectively.

(v) XV(TM) denotes the CX(TM)-module of vertical vector fields on TM.

C e XV(TM) is the Liouville vector field,J denotes the verticalendomorphism (for

the definitionssee e.g. [2]).

The verticalliftof a function a e CCO(M) and of a vector fieldX e X(M) is

denoted by av and Xv, respectively;we recall that ocvis nothing but the function
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1.2. HorizontalEndomorphisms

Definition. A CX(TM)-linear map h : X{TM)-^ X(TM) (i.e.a (1,1)-

tensor or a vectorl-form on TM) is said to be a horizontalendomorphism on M

ifit satisfiesthe following conditions:

(HeI) h is smooth over 3~M＼

(He2) A is a projector,i.e.A2 = /*;

(He3) KQrh = Xv{TM).

Any horizontalendomorphism h determinesa vector l-form, i.e.a mapping

F : X(TM) -* X(TM) such that

(1) Foh = -J, FoJ = h.

F is called the almost complex structure associated with h. The horizontal lift

of a vector field X e X(M) (with respect to h) is Xh := FXV.

1.3. Finsler Manifolds

Definition. Let a function E: TM ―>■R be given. The pair (M,E), or

simply M, is said to be a Finsler manifold with energy function E if the following

conditions are satisfied:

(FO)

(Fl)

(F2)

(F3)

Vu e 3TM : E(v) > 0, E(0) = 0;

E is of class C1 on TM and smooth on 3TM;

CE = 2£, i.e., E is homogeneous of degree 2;

the fundamental form co:= JJ/£'is symplectic.

The mapping

(2) ^r^xr^^r^M),

(JX,JY) -> g(JX,JY) := co(JX, Y)

is a well-defined, nondegenerate symmetric bilinear form which is called the

Riemann-Finsler metric of (M,E). If g is positive definite then we speak of a

positive definiteFinsler manifold.

It is well-known that any Finsler manifold has a canonical horizontal

endomorphism h, the so-called Barthel endomorphism. Using the prolonged metric



(3)
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gh : X(3~M) x X(FM) -> C^^M)

(X, Y) -> gh(X, Y) := g(JX,JY) + g(vX, vY)
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v := 1 ―h (the "vertical projector"), the well-known first Carton tensor <£can be

defined by the formula

(4) co{≪{X, Y),Z)=＼(&JXJ*gh){Y,Z)

(J* is the adjoint operator of /; [2]).It is easy to check that # has the following

properties:

(5) ^ is semibasic;

(6) its lowered tensor ^ defined by the formula

^{X, Y,Z) :=g(<&(X, Y),JZ) is totally symmetric;

(7) VX,Y,ZeX(M) :^{X＼ Yh,Zh) =＼Xvg(Y＼Zv).

Consider a smooth function (p: TM ―>R. Since the fundamental form co is

symplectic, there exists a unique vector field grad<pe£(^M) such that

this vector fieldis called the gradient of (p.

2. An Observation on Homogeneous Functions

Remark 1. Let k e Z. We recallthat a function/ : R" ―>R is called positive

homogeneous of degree k if for any vector v e R"＼{0} and positivereal number t,

we have

/(ft;)= tkf(v).

It is easy to check thatif/ : R" ― J?is positive homogeneous of degree 0 and

continuous at the point 0 e Rn then / is a constant function.

Proposition 1. Let us selecta subspace W of dimension n ―＼and a nonzero

vector q of Rn (n > 2) such that

Rn =WR {tq＼teR}=:WR &(q).

Suppose that a function f : Rn ―>R has the following properties:

(i) it is positive homogeneous of degree 0;

(ii) it is continuous at the points q, ―q;
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(iii)for any point a e W＼{0} and scalar t e R

f(a + tq)=f(a).

Then f is constant on Rn＼{0＼.

Proof. Consider the function fx :=/ ＼W＼{0}. Let c : N -> PF＼{0}, ≪-> cB

be a sequence such that

Then

lim cn = 0
n―>co

lim fx(cn)= lim/(Cw)(=} )imf{cH + q)=f(q),
n―≫oo n―>oo

since/is continuous at the point q e Rn＼{0}. This means that/(#) is the limit of

the function /, at 0 e W and, consequently, the extended function

fr.W->R, a^Ma):=

{ fM
(a = 0)

is continuous at the point 0 e W and it preserves the homogenity property of the

function/. Therefore, by Remark 1,/j is constant and in any point ae W＼{0},

(8) /(≪)=/i(≪)=/i(0) =/(*)･

Using the relation(8), with the choice b = a + tq, where a e J^＼{0}, t e R, we

have

(9) f(b)=f(a + tq)^f(a)^f(q)

To end the proof,it is enough to check that

(10)

This is almost trivial

f(q) = lim fx{c

n―>oc

f(q) =f(-q)

,) = lim f(cn)
(= lim f(cn

- q) =f{-q)

since / is continuous at the point ―q e Rn＼{0}. □

3. ^-Conformal Changes of Rlemann-FInsIer Metrics

Definition ([3]). Let (M, E) and (M, E) be Finsler manifolds with Riemann-

Finsler metrics a and a, respectively;a and a are said to be con formal equivalent
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if there exists a positive smooth function (p: TM ―>R satisfying the condition

This function <pis called the scale function or the proportionality function.

Lemma 1 (Knebelman's observation; [3]). The scale function between con-

formally equivalent Riemann-Finsler metrics is a verticallift,i.e.it can always be

written in the form

<p= exp o av := exp o a o n,

where a e C^iM).

Proposition 2 and definition ([6]). If a Finsler manifold (M,E) with the

Riemann-Finsler metric g and a function <xeCcc(M) are given, then g := <pg

{(p= expo av) is the Riemann-Finsler metric of the Finsler manifold (M,E), where

E = <pE.

In this case we speak of a conformal change of the metric g.

Definition. Consider a Finsler manifold (M,E). A conformal change

g = (pg (cp= expoa",ae C0C(M)) is said to be ^-conformal at a point p e M if

the following conditionsare satisfied:

(#1) {dv^p t^O, i.e.,a is regular at the point ^;

0*2) ^grada^ = 0,

where F is the almost complex structureassociated with the Barthel endo-

morphism of (M.E).

Proposition 3 ([4]). Let (M,E) be a Finsler manifold and a e <^CC(M). Then

the following assertions are equivalent:

(i) ^grada'^ = 0,

(ii) grada" is a vertical lift,i.e., there exists a vector field X e X(M) such that

(11) grada* = JT.

Lemma 2 and definition. Consider a Finsler manifold (M,E) and let us

suppose that the change g = (pg (<p = exp o olv,a e C00(M)) is ^-conformal at a

point p e M. Let a e X(M) be an arbitrary vector field with the property o~{p)＼"0

which obviously implies that a is nonvanishing over a connected open neighbourhood

U of p. Then the mapping
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(,}:X(U)xX(U)^C^(U),

(y,z) -><,>(r,z) =: <r,z> := 9{y＼zv) oG

is a (pseudo-) Riemannian metric. This metric is called the osculating Riemannian

metric along a.

If, in addition, grad^a e X(U) is the gradient of the function a with respect to

<,> then

(12) (gradtfoO^grada0.

Proof. Let XeX(M) be the vector field determined by the formula (11).

Then for any vector field YeX(U),

<X, F> := g{X＼ Yv) o a
(=}
<?(gradav, Yv) o a

= w(grad ol＼Yh)oa={ Yhav) o a

= {Ytx)voo=(Ya)onoG= Fa,

hence X = grad^ a, and consequently

(gradt/a)1" = grada''. □

Remark 2. In the sequel we shall fix the vector field X determined by the

formula (11) as a in Lemma 2. (Note that the regularity property (#1) implies

that X(p) # 0.)

Therefore, the osculating Riemannian metric <, > will be considered as a

mapping

(Y,Z) -≫<,>(r,Z) =: (Y,Z) :=g{Y＼Zv)oX,

where U is a fixed connected open neighbourhood of the point p such that for

any qeU, X(q) * 0.

Proposition 4. Consider a Finsler manifold (M, E) with the Riemann-Finsler

metric g and let us suppose that the change g ― <pg {cp= exp oa^ae CaD(M)) is

%7-conformal at a point p e M. If W a TpM is a subspace of dimension n―＼ such

that TpM = W c <£{X(pj) then for any tangent vector w e W＼{0} and te R,

g{Y＼Zv){w + tX(p)) = g{Y＼Zv){W).
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Consequently, for any vector fields Y,Z eX(M), the function g(Yv,Zv) is

constant on TpM＼{0}.

Proof. For the sake of brevity, consider the parametric line

S:teR-> t(i):= w + tX(p) e TpM,

where w e W＼{0} is an arbitrary fixed tangent vector. Now let us define a

function c as follows:

Q:teR^ R(t) := g{ Y＼ Zv) o t{t) e R.

If (n-l(U), {x＼yl)f=l) is the chart induced by a chart (17,(w'^ii) on M then

wp havp

0M^
J

≪t)

(g(Y＼Zv)).(x'o^(t)+(^-) (0(r＼Z")).(/oO'(O

＼°yjf(t)

Here, for any / e {1,...,≪} and t e R,

xl o f(t) = 11*0710 £{t) = m''o tt(w + rJT(p)) = u＼p)

i.e., x'o/ is constant, and so for any t e R, (Vo/)'(>) = 0.

On the other hand

/ o /(/) = /(w + tX{p)) = wl + tXl(p),

therefore

R'(t)
(
~

)
(g(Y＼ZV)).{yio{)＼t) = X＼p)

X'onUit)) (-w

= 2^(Xh,Yh Zh)

(g(Yv,z°))

)
(g{Y°,Z°)) = (Xvg(Y°iZ°))ot(t)
Mo

o /(?) = 2< dFX＼ Y＼ Zh) o ≪f(r)

(= 2%b(Fgradot＼ Yh,Zh) o/(r) (=2)0

and, consequently, 0 is also a constant function.

Thus for any real number te R,

c(0 = 0(0) :≪≫g( Y＼ Zv)(w + tX{p)) = g{ Y＼ Zv)(w).

According to Proposition 1, this means that the function g(Yv,Zv) is

constant on TpM＼{0}, namely for any tangent vector v e TpM＼{0},

g( Y＼ Zv)(v) = g( Y＼ Zv)(X(p)) = < Y, ZMp). □
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Remark 3. Without loss of generality we can obviously assume that

a(p) = 0 under a ^-conformal change g = <pg (q> = exp o ccv,a e C^iM)) at the

point p. If,in addition, the Finsler manifold (M,E) is positive definite,then it is

natural to consider the tangent space TpN, N := ol~1(Q),as the subspace W in

Proposition 4.

Theorem 1. Let (M, E) be a Finslermanifold.If thereexistsa ^-conformal

change g = <pg{(p= exp o^ae CCO(M)) at a pointp e M, then(M,E) islocally

Riemannian, more precisely,

g(Yv,Zv) = (Y,Z}on=(Y,Zy,

where (,) is the osculatingRiemannian metric definedover U.

Proof. It is enough to mention that if g = (pg is a ^-confonnal change

at the point p e M then it is also such a change for any point qe U. (Note that

the assumption X(q) =£0 implies the regularity property {doc)q＼=0 for any point

qeU.)

Therefore, the theorem is a direct consequence of Proposition 4. □
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