GLOBAL SOLVABILITY FOR THE GENERALIZED DEGENERATE KIRCHHOFF EQUATION WITH REAL-ANALYTIC DATA IN R"

By

Fumihiko HIROSAWA

1. Introduction

Kirchhoff equation was proposed by Kirchhoff in 1883 to describe the transversal oscillations of a stretched string and it is expressed as follows

$$\partial_t^2 u(t,x) - \left(\varepsilon^2 + \frac{1}{2l} \int_0^l |\partial_x u(t,x)|^2 dx\right) \partial_x^2 u(t,x) = 0, \tag{1.1}$$

where t > 0, l > 0, $\varepsilon > 0$ and $x \in [0, l]$. In 1940 S. Bernstein [B] proved the global solvability for analytic initial data and local solvability for C^m -class initial data to the following initial boundary value problem:

$$\begin{cases} \partial_t^2 u(t,x) - \left(a + b \int_0^{2\pi} |\partial_x u(t,x)|^2 dx\right) \partial_x^2 u(t,x) = 0 & (t > 0, x \in [0, 2\pi]), \\ u(t,x) = 0 & (t \ge 0, x = 0, 2\pi), \\ u(0,x) = u_0(x), & \partial_t u(0,x) = u_1(x), \end{cases}$$
(1.2)

where a > 0 and b > 0. In 1971, T. Nishida [Nd] proved Bernstein's result in case of a = 0. Equation (1.2) can be regarded as the following more generalized equation:

$$\begin{cases} \partial_t^2 u(t,x) - M \left(\int_{\Omega} |\nabla_x u(t,x)|^2 dx \right) \Delta_x u(t,x) = 0 & (t > 0, x \in \Omega), \\ u(0,x) = u_0(x), \ \partial_t u(0,x) = u_1(x), \quad x \in \Omega \subset \mathbb{R}^n, \end{cases}$$
(1.3)

with boundary condition

$$u(t,x) = \varphi \quad \text{on } [0,\infty) \times \partial \Omega.$$
 (1.4)

I would like to thank Prof. Kajitani for his encourgement and many helpful conversation. Received September 4, 1995.
Revised April 1, 1996.

In case of (1.2), $\Omega=[0,2\pi]$, $\varphi=0$ and $M(\eta)=a+b\eta$. In 1975, S. I. Pohožaev [P] proved the existence and uniqueness of time global real-analytic solution for the problem (1.3)–(1.4) under the assumption of $n\geq 1$ and $M(\eta)\in C^1([0,\infty))$ where Ω is bounded and $\varphi=0.*$ On the other hand, in case that $\Omega=R^n$, Y. Yamada [Yd] proved the existence and uniqueness of global solution of (1.3) in 1980. In 1984, K. Nishihara [Nh] showed the global existence of the quasi-analytic solution in case that $M(\eta)$ is locally Lipschitz continuous and non-degenerate. In that year, A. Arosio and S. Spagnolo [AS] proved the existence of time global 2π -periodic solution for real-analytic data in case that $\Omega=[0,2\pi]^n$ under some assumptions for $M(\eta)\in C^0$. In 1992, P. D'Ancona and S. Spagnolo [DS] relaxed the assumptions in [AS] to any $M(\eta)\in C^0$. Moreover, the equation (1.3)–(1.4) can be generalized as

$$\begin{cases} \partial_t^2 u(t,x) + M((Au(t,\cdot),u(t,\cdot))_{\Omega}) Au(t,x) = f(t,x) & (t>0,x\in\Omega), \\ u(0,x) = u_0(x), \ \partial_t u(0,x) = u_1(x), & x\in\Omega\subset \mathbb{R}^n, \end{cases}$$
(1.5)

with boundary condition

$$u(t,x) = \varphi \quad \text{on } [0,\infty) \times \partial \Omega.$$
 (1.6)

Here A is a degenerate elliptic operator of second order defined as $Au(t,x) = \sum_{i,j=1}^{n} D_{x_j}(a_{ij}(x)D_{x_i}u(t,x))$, $D_{x_i} = ((1/\sqrt{-1})(\partial/\partial x_j))$. Suppose that $[a_{ij}(x)]_{i,j=1,...,n}$ is a real-analytic symmetric matrix which satisfies that

$$a(x,\xi) = \sum_{i,j=1}^{n} a_{ij}(x)\xi_{i}\xi_{j} \ge 0$$
 (1.7)

and there are $c_0 > 0$ and $\rho_0 > 0$ such that

$$|D_x^{\alpha} a_{ij}(x)| \le c_0 \rho_0^{-|\alpha|} |\alpha|!, \quad i, j = 1, \dots, n,$$
(1.8)

for $x \in \mathbb{R}^n$, $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, (Au, u) is an inner product of Au(x) and u(x) in $L_x^2(\Omega)$ and $M(\eta)$ satisfies

$$M(\eta) \in C^0([0,\infty))$$
 and $M(\eta) \ge 0$. (1.9)

If $a_{ij}(x) = \delta_{ij}$ and $f(t, x) \equiv 0$, then equation (1.5) coincides with equation (1.3), where δ_{ij} is Kronecker's delta. In 1994 K. Kajitani and K. Yamaguti [KY] proved the existence and uniqueness of time global real-analytic solution for (1.5) in case

^{*}In fact he proved the existence and uniqueness of time global solution to more general problem on some suitable Hilbert space.

that $\Omega = \mathbb{R}^n$, $u_0(x)$, $u_1(x) \in L^2(\mathbb{R}^n) \cap C^{\omega}(\mathbb{R}^n)$, $M(\eta) \in C^1([0,\infty))$, $M(\eta) \geq 0$, and $a_{ij}(x) \geq 0$ are $C^{\omega}(\mathbb{R}^n)$ functions, respectively, where $C^{\omega}(\mathbb{R}^n)$ is the set of real analytic functions in \mathbb{R}^n . In 1995 K. Yamaguti [Yg] extended the result of [KY] for quasi-analytic data under the assumption of $M(\eta) > 0$.

Our main theorem in this paper is an extention of the result of [KY] in case of $M(\eta) \in C^0$. At first we introduce some definitions in order to state our main theorem.

DEFINITION 1.1. For $s \in \mathbb{R}$ and $\rho > 0$, we define the function space H_{ρ}^{s} by

$$H_o^s = \{ u(x) \in L_x^2(\mathbb{R}^n); \ \langle \xi \rangle^s e^{\rho(\xi)} \hat{u}(\xi) \in L_\xi^2(\mathbb{R}^n) \}, \tag{1.10}$$

where $\xi = (\xi_1, \dots, \xi_n)$, $\langle \xi \rangle = (1 + \xi_1^2 + \dots + \xi_n^2)^{1/2}$, and $\hat{u}(\xi)$ stands for Fourier transform of u. If we introduce the inner product $(\cdot, \cdot)_{H_{\rho}^s}$ of H_{ρ}^s such that

$$(u,v)_{H_o^s} = (e^{\rho\langle\cdot\rangle}\hat{u}(\cdot), e^{\rho\langle\cdot\rangle}\hat{v}(\cdot))_s, \tag{1.11}$$

then H^s_ρ is a Hilbert space, where $(\cdot,\cdot)_s$ is an inner product of H^s which is the normal Sobolev space (See [Ku]). For $\rho < 0$ we define H^s_ρ as the dual space of $H^{-s}_{-\rho}$.

DEFINITION 1.2. For $\rho \in \mathbb{R}$, define the operator $e^{\rho \langle D \rangle}$ from H^s_ρ into H^s as follows:

$$e^{\rho\langle D\rangle}u(x) = \int_{\mathbf{R}_{z}^{n}} e^{ix\cdot\xi + \rho\langle\xi\rangle}\hat{u}(\xi)\tilde{d}\xi, \qquad (1.12)$$

for $u \in H_{\rho}^{s}$, where $x = (x_{1}, \dots, x_{n})$, $x \cdot \xi = x_{1}\xi_{1} + \dots + x_{n}\xi_{n}$ and $\tilde{d}\xi = (2\pi)^{-n}d\xi$. Note that $(e^{\rho(D)})^{-1} = e^{-\rho(D)}$ is a mapping from H^{s} into H_{ρ}^{s} .

Hilbert space H_{ρ}^{s} and the operator $e^{\rho\langle D\rangle}$ were introduced in [Ka] and [KY]. In this paper we define the new space $H_{\rho,\delta,\kappa}^{s}$ as a weighted subspace of H_{ρ}^{s} .

DEFINITION 1.3. For $s, \rho, \delta \in \mathbb{R}$ and $\kappa > 0$, we define $H^s_{\rho,\delta,\kappa}$ as

$$H^{s}_{\rho,\delta,\kappa} = \{ u(x) \in \mathcal{S}'; \langle D \rangle^{s} \{ \langle x \rangle^{\delta}_{\kappa} e^{\rho \langle D \rangle} u(x) \} \in L^{2}_{x}(\mathbb{R}^{n}) \}, \tag{1.13}$$

where $\langle x \rangle_{\kappa} = (\kappa^2 + x_1^2 + \dots + x_n^2)^{1/2}$ and \mathscr{S}' is the dual space of the Schwartz space \mathscr{S} of rapidly decreasing functions in \mathbb{R}^n . And we define the inner product $(\cdot, \cdot)_{H^s_{\delta h \kappa}}$ of $H^s_{\rho, \delta, \kappa}$ as follows:

$$(u,v)_{H^s_{\sigma\delta\kappa}} = (\langle \cdot \rangle^{\delta}_{\kappa} e^{\rho\langle D \rangle} u(\cdot), \langle \cdot \rangle^{\delta}_{\kappa} e^{\rho\langle D \rangle} v(\cdot))_{s}. \tag{1.14}$$

The principal method of the proof of this theorem is based on [Ka] and [KY]. In this paper we introduce the new space $H^s_{\rho,\delta,\kappa}$ which is a weighted subspace of H^s_ρ for $\delta>0$, and we consider the global solvability for the equation in it. For positive real numbers ρ and κ and for non-negative real numbers s and s, the function spaces s and s are included the intersection of s and s and s and s are included the intersection of s and s and s and s are included the intersection of s and s and s are included the intersection of s and s and s are included the intersection of s and s are included the intersection of s and s and s are included the intersection of s and s and s are included the intersection of s and s

MAIN THEOREM. Assume that (1.7), (1.8) and (1.9) are valid. Let $0 < \rho_1 < \rho_0/\sqrt{n}$, $\delta > 0$, $\kappa > 0$ and put $\rho(t) = \rho_1 e^{-\gamma t}$ for $\gamma > 0$. Then there exists $\gamma > 0$ such that for any $u_0 \in H^2_{\rho_1,\delta,\kappa}$, $u_1 \in H^1_{\rho_1,\delta,\kappa}$ and for any f(t,x) satisfying $\langle x \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} f(t,x) \in C^0([0,\infty); H^1)$, the Cauchy problem (1.5) with $\Omega = \mathbb{R}^n$ has a solution u(t,x) that satisfies $\langle x \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} u(t,x) \in \bigcap_{i=0}^2 C^{2-j}([0,\infty); H^j)$.

2. Preliminaries

In this section we introduce some propositions and lemmas to prove the following lemmas and our main theorem.

PROPOSITION 2.1. Assume that $a(x,\xi) \in S^2$ is non-negative. Then there are positive constants C_1 and C_2 such that

$$\Re(Op(a)u, u)_{s} \ge -C_{1}\|u\|_{s} \tag{2.1}$$

and

$$\sum_{|\alpha|=1} \{ \|Op(a_{(\alpha)})u\|_{s-1}^2 + \|Op(a^{(\alpha)})u\|_s^2 \} \le C_2 \{ 2C_1 \|u\|_s^2 + \Re(Op(a)u, u)_s \}$$
 (2.2)

for $u \in H^{s+2}$, where S^m is the symbol-class of pseudo-differential operator of order m (See [Ku]), Op(a) is the pseudo-differential operator defined as

$$Op(a)u = \int_{\mathbb{R}^n} e^{ix\cdot\xi} a(x,\xi) \hat{u}(\xi) \tilde{d}\xi$$

for $u(x) \in \mathcal{S}$, where $\|\cdot\|_s$ is a norm of H^2 .

For a proof of this proposition, refer to [FP].

PROPOSITION 2.2. (i) Let $a(x,\xi) \in C^{\infty}(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi})$ be a 'double order' symbol in the 'double order symbol space' $SG_1^{(m_1,m_2)}$:

$$SG_1^{(m_1,m_2)} = \{ a(x,\xi) \in C^{\infty}(\mathbb{R}^n_x \times \mathbb{R}^n_\xi); \ a_{(\beta)}^{(\alpha)}(x,\xi) = O(\langle \xi \rangle^{m_1 - |\alpha|} \langle x \rangle^{m_2 - |\beta|}) \}$$
 (2.3)

for $(m_1, m_2) \in \mathbb{R} \times \mathbb{R}$ where $a_{(\beta)}^{(\alpha)}(x, \xi) = \partial_{\xi}^{\alpha} D_x^{\beta} a(x, \xi)$, and if we $a(x, \xi)$ define the operator Op(a) by

$$(Op(a))(x,D)f(x) = \int_{\mathbf{R}_{t}^{n}} e^{ix\cdot\xi} a(x,\xi)\hat{f}(\xi)\tilde{d}\xi, \quad f \in \mathcal{S},$$
 (2.4)

then Op(a) is the bounded linear operator from $H^{s_1}_{\rho,s_2,\kappa}$ into $H^{s_1-m_1}_{\rho,s_2-m_2,\kappa}$ for each $s_1,s_2 \in \mathbb{R}$.

- (ii) If s > s' and $\delta > \delta'$, then the embedding $H^s_{\rho,\delta,\kappa} \hookrightarrow H^{s'}_{\rho,\delta',\kappa}$ is compact.
- (iii) Let $c(x,\xi)$ be the symbol of the product Op(a)Op(b) of $a \in SG_1^{(l_1,l_2)}$ and $b \in SG_1^{(m_1,m_2)}$, then $c(x,\xi)$ has the asymptotic expansion:

$$c(x,\xi) \sim \sum_{\alpha} \frac{1}{\alpha!} a^{(\alpha)}(x,\xi) b_{(\alpha)}(x,\xi). \tag{2.5}$$

This proposition is introduced in [S].

LEMMA 2.3. (i) Let $u \in H_{\rho,0}^s = H_{\rho}^s$, then for $\rho > 0$,

$$||D^{\alpha}u||_{s} \le ||u||_{H^{s}} \rho^{-|\alpha|} |\alpha|! \tag{2.6}$$

and

$$|D_x^{\alpha} u(x)| \le C_n ||u||_{H_0^s} \rho^{-(|\alpha|+n+|s|)} (|\alpha|+n+|s|)! \tag{2.7}$$

for $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{N}^n$.

(ii) Let u(x) be a function in H^{∞} and $s \in \mathbb{R}$. If u(x) satisfies

$$||D^{\alpha}u||_{H^{s}} \le c_{0}\rho_{1}^{-|\alpha|}|\alpha|! \tag{2.8}$$

for every multi-index $\alpha \in \mathbb{N}^n$, then $u(x) \in H_\rho^s$ for $\rho < \rho_1/\sqrt{n}$.

For a proof of this lemma, refer to [KY].

LEMMA 2.4. Let $\delta \geq 0$, c > 0 and $\varepsilon \in (0,1]$, then $\langle x \rangle_c^{-\delta}$ is a real-analytic function satisfying

$$|D_{\mathbf{r}}^{\alpha}\langle \mathbf{x}\rangle_{c}^{-\delta}| \leq (8\varepsilon^{-1})^{|\alpha|} (1+\varepsilon)^{\delta} |\alpha|! \langle \mathbf{x}\rangle_{c}^{-\delta-|\alpha|},\tag{2.9}$$

for $x \in \mathbb{R}^n$. Moreover if $0 \le \delta \le 1$, then

$$|D_x^{\alpha} \langle x \rangle_c^{-\delta}| \le 4^{|\alpha|} |\alpha|! \langle x \rangle_c^{-\delta - |\alpha|} \tag{2.10}$$

for $x \in \mathbb{R}^n$.

For a proof, refer to [Ka].

Let a(x) be a real-analytic function in \mathbb{R}^n satisfies that there are $c_0 > 0$ and $\rho_0 > 0$ such that

$$|D_x^{\alpha} a(x)| \le c_0 \rho_0^{-|\alpha|} |\alpha|! \tag{2.11}$$

for any $x \in \mathbb{R}^n$ and any multi-index $\alpha \in \mathbb{N}^n$. Define the multiplier $a \cdot as$ $(a \cdot u)(x) = a(x)u(x)$. Let us define $a(\rho; x, D)u(x) = e^{\rho\langle D\rangle}a \cdot e^{-\rho\langle D\rangle}u(x)$ for $u(x) \in L^2(\mathbb{R}^n)$ and denote by $a(\rho; x, \xi)$ its symbol.

PROPOSITION 2.5. (i) $a(\rho; x, D)$ is a pseudo-differential operator of order 0 and its symbol has the following expansion:

$$a(\rho; x, \xi) = a(x) + \rho a_1(x, \xi) + \rho^2 a_2(\rho; x, \xi) + r(\rho; x, \xi), \tag{2.12}$$

where

$$a_1(x,\xi) = -\sum_{j=1}^n D_{x_j} a(x) \hat{\sigma}_{\xi_j} \langle \xi \rangle, \qquad (2.13)$$

and a2 and r respectively satisfy

$$|a_{2(\beta)}^{(\alpha)}(\rho; x, \xi)| \le C_{\alpha\beta\rho_0} \langle \xi \rangle^{-|\alpha|}, \tag{2.14}$$

$$|r_{(\beta)}^{(\alpha)}(\rho; x, \xi)| \le C_{\alpha\beta\rho_0} \langle \xi \rangle^{-1-|\alpha|} \tag{2.15}$$

for $x, \xi \in \mathbb{R}^n$, $|\rho| < \rho_0/\sqrt{n}$ and $a, \beta \in \mathbb{N}^n$.

(ii) If
$$\rho = \rho(t) \in C^0([0, T])$$
 for $T > 0$, then $a(\rho(t); x, \xi) \in C^0([0, T]; S^0)$.

For a proof of (i), refer to [KY] and for (ii) refer to [Ka].

COROLLARY 2.6. Define the operation A_{Λ} by

$$A_{\Lambda}u(x) = e^{\rho\langle D\rangle}(Ae^{-\rho\langle D\rangle}u(x)) \tag{2.16}$$

for $A = \sum_{i,j=1}^{n} D_j(a_{ij}(x)D_i)$. Then A_{Λ} and $\langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta}$ are pseudo-differential operators of order 2 and their symbols have the following expansions respectively;

$$\sigma(A_{\Lambda})(x,\xi) = \sum_{i,j=1} (a(x) + \rho a_1(x,\xi) + \rho^2 a_2(\rho;x,\xi) + r_1(\rho;x,\xi)) \xi_j \xi_i, \qquad (2.17)$$

$$\sigma(\langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta})(x,\xi) = \sum_{i,j=1} (a(x) + \rho a_1(x,\xi) + \rho^2 a_2(\rho;x,\xi) + r_2(\rho;x,\xi)) \xi_j \xi_i,$$
(2.18)

where $\sigma(P)(x,\xi)$ denotes the symbol of a pseudo-differential operator P(x,D), $a_1=a_{1_{ij}}$ and $a_2=a_{2_{ij}}$ are defined in Proposition 2.5, and both $r_1=r_{1_{ij}}$ and $r_2=r_{2_{ij}}$ belong to S^{-1} . Moreover, for $\rho(t) \in C^0([0,T])$, $\sigma(A_\Lambda)(t,x,\xi)$ and $\sigma(\langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta})(t,x,\xi)$ belong to $C^0([0,T];S^2)$.

PROOF. It is obvious by Proposition 2.2 and Proposition 2.5.

LEMMA 2.7. If $u(x) \in H^s_{\rho,\delta,\kappa}$ for $\delta > 0$, then u(x) is a real-analytic function whose radius of convergence is ρ_1 , where $\rho_1 \leq \min\{\kappa/8, \rho_0\}$ and $0 < \rho_0 < \rho$.

PROOF. Note that $\langle x \rangle_{\kappa}^{\delta} u(x) \in H_{\rho}^{s}$ if $u(x) \in H_{\rho,\delta,\kappa}^{s}$.

$$|D_{x}^{\alpha}u(x)| = |D_{x}^{\alpha}(\langle x\rangle_{\kappa}^{-\delta}\langle x\rangle_{\kappa}^{\delta}u(x))|$$

$$\leq \sum_{\alpha' \leq \alpha} {\alpha \choose \alpha'} |D_{x}^{\alpha-\alpha'}\langle x\rangle_{\kappa}^{-\delta}| |D_{x}^{\alpha'}(\langle x\rangle_{\kappa}^{\delta}u(x))|$$

$$\leq C_{1} \sum_{\alpha' \leq \alpha} {\alpha \choose \alpha'} |\alpha'|! |\alpha - \alpha'|! {\kappa \choose 8}^{-|\alpha-\alpha'|} \rho_{0}^{-|\alpha'|}$$

$$\leq C_{2} \rho_{1}^{-|\alpha|} |\alpha|!, \tag{2.19}$$

where $\rho_1 \le \min\{\kappa/8, \rho_0\}$, $0 < \rho_0 < \rho$ and we used Lemma 2.3, Lemma 2.4 and the estimate;

$$\sum_{\alpha' \le \alpha} {\alpha \choose \alpha'} |\alpha'|! |\alpha - \alpha'|! \eta_1^{-|\alpha'|} \eta_2^{-|\alpha - \alpha'|} \le \frac{\eta_1}{\eta_1 - \eta_2} \eta_2^{-|\alpha|} |\alpha|!, \tag{2.20}$$

for $0 < \eta_2 < \eta_1$.

3. Existence of solutions for the linear problem

In this section, we consider the local existence for the following linear Cauchy problem:

$$\begin{cases} \partial_t^2 u(t,x) + m(t)Au(t,x) = f(t,x), \\ u(0,x) = u_0(x), & \partial_t u(0,x) = u_1(x), \end{cases}$$
(3.1)

where m(t) is a non-negative continuous function in $[0, \infty)$.

At first we introduce a proposition to prove the existence of the linear problem (3.1).

Let $P(t) = [p_{ij}(t, x, D)]_{i,j=1,\dots,d}$ be a matrix consisting of pseudo-differential

operators whose symbols $p_{ij}(t, x, \xi)$ all belong to the class $C^0([0, T]; S^1)$. Let us consider the following linear Cauchy problem:

$$\begin{cases} \frac{d}{dt}U(t) = P(t)U(t) + F(t), & t \in (0, T], \\ U(0) = U_0, \end{cases}$$
 (3.2)

where $U(t) = {}^{t}(U_{1}(t), \ldots, U_{d}(t))$ is an unknown vector valued function, $F(t) = {}^{t}(F_{1}(t), \ldots, F_{d}(t))$ and $U_{0} = {}^{t}(U_{01}, \ldots, U_{0d})$ are known vector valued functions. Then the following proposition is concluded.

PROPOSITION 3.1. Suppose that $\det(\lambda I - p(t, x, \xi)) \neq 0$ for $\lambda \in C^1(\mathbb{R}^n)$ with $\Re \lambda > -c_0 \langle \xi \rangle$ for some positive constant c_0 , $t \in [0, T]$ and $|\xi| \gg 1$. Take an arbitrary real number s. Then for any $U_0 \in (H^{s+1})^d$ and for any $F(t) \in C^0([0, T]; (H^{s+1})^d)$, there exists a unique solution $U(t) \in C^1([0, T]; (H^s)^d) \cap C^0([0, T]; (H^{s+1})^d)$ of (3.2).

This proposition was introduced as Proposition 4.5 in [M]. For the proof of the proposition, refer to [M].

Let $v(t,x) = \langle x \rangle_{\kappa}^{\delta} e^{\Lambda(t)} u(t,x)$ and transform the equation (3.1) of u(t,x) to the equation of v(t,x) such that

$$\begin{cases} \langle x \rangle_{\kappa}^{\delta} (\partial_{t} - \Lambda)^{2} \langle x \rangle_{\kappa}^{-\delta} v(t, x) + m(t) \langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta} v(t, x) = g(t, x), \\ v(0, x) = v_{0}(x), \qquad \partial_{t} v(0, x) = v_{1}(x), \end{cases}$$
(3.3)

where $\Lambda = \Lambda(t) = \rho(t)\langle D \rangle$, $\Lambda_t = \Lambda_t(t) = \rho_t(t)\langle D \rangle$, $\rho(t) = \rho_1 e^{-\gamma t}$ for $\rho_1 > 0$, $\gamma > 0$ and $g(t,x) = \langle x \rangle_{\kappa}^{\delta} e^{\Lambda(t)} f(t,x)$. Then the following lemma is concluded for the Cauchy problem (3.3).

LEMMA 3.2. Assume that $v_0 \in H^{s+2}$, $v_1 \in H^{s+1}$ and $g(t,x) \in C^0([0,T];H^{s+1})$, then there is $\gamma_0 > 0$ and the Cauchy problem (3.3) has a unique solution v(t,x) such that

$$v(t,x) \in \bigcap_{j=0}^{2} C^{2-j}([0,T]; H^{s+j})$$

for all $\gamma \geq \gamma_0$.

PROOF. Now let us put $V(t) = {}^{t}(V_{1}(t), V_{2}(t)), V_{0} = {}^{t}(V_{01}, V_{02}), F(t) =$

t(0,g(t)) and

$$P(t) = \begin{pmatrix} \langle D \rangle \langle x \rangle_{\kappa}^{\delta} \Lambda_{t} \langle x \rangle_{\kappa}^{-\delta} \langle D \rangle^{-1} & \langle D \rangle \\ -m(t) \langle x \rangle_{\kappa}^{\delta} \Lambda_{\Delta} \langle x \rangle_{\kappa}^{-\delta} \langle D \rangle^{-1} & \langle x \rangle_{\kappa}^{\delta} \Lambda_{t} \langle x \rangle_{\kappa}^{-\delta} \end{pmatrix}.$$
(3.4)

Where A_{Λ} is defined by (2.16). Then we consider the following linear Cauchy problem:

$$\begin{cases} \frac{d}{dt}V(t) = P(t)V(t) + F(t), & t \in (0, T], \\ V(0) = V_0. \end{cases}$$
 (3.5)

At first we show that the symbols of pseudo-differential operator P(t) satisfies the conditions of Proposition 3.1. Clearly $\sigma(\langle D \rangle \langle x \rangle_{\kappa}^{\delta} \Lambda_{t} \langle x \rangle_{\kappa}^{-\delta} \langle D \rangle^{-1}) \cdot (t, x, \xi)$, $\sigma(\langle x \rangle_{\kappa}^{\delta} \Lambda_{t} \langle x \rangle_{\kappa}^{-\delta})(t, x, \xi)$ and $\sigma(\langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta} \langle D \rangle^{-1})(t, x, \xi)$ belong to $C^{0}([0, T]; S^{1})$ by Corollary 2.6.

$$\det(\lambda I - \sigma(P)(t, x, \xi))$$

$$= (\lambda - \sigma(\langle D \rangle \langle x \rangle_{\kappa}^{\delta} \Lambda_{t} \langle x \rangle_{\kappa}^{-\delta} \langle D \rangle^{-1})(t, x, \xi))(\lambda - \sigma(\langle x \rangle_{\kappa}^{\delta} \Lambda_{t} \langle x \rangle_{\kappa}^{-\delta})(t, x, \xi))$$

$$+ m(t)\sigma(\langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta} \langle D \rangle^{-1})(t, x, \xi) \langle \xi \rangle$$

$$= (\lambda - \rho'(t) \langle \xi \rangle - \rho'(t) p_{1}^{0}(x, \xi))(\lambda - \rho'(t) \langle \xi \rangle - \rho'(t) p_{2}^{0}(x, \xi))$$

$$+ m(t)(\sigma(A_{\Lambda})(t, x, \xi) + p_{1}^{1}(t, x, \xi)), \tag{3.6}$$

where $\sigma(P) = [\sigma(P_{ij})]_{i,j=1,2}$, $p_j^0(x,\xi) \in S^0(j=1,2)$ and $p_3^1(t,x,\xi) \in ([0,T];S^1)$, and they satisfy

$$\sigma(\langle D \rangle \langle x \rangle_{\kappa}^{\delta} \Lambda_{t} \langle x \rangle_{\kappa}^{-\delta} \langle D \rangle^{-1})(t, x, \xi) = \rho'(t) \langle \xi \rangle + \rho'(t) p_{1}^{0}(x, \xi)$$
(3.7)

$$\sigma(\langle x \rangle_{\kappa}^{\delta} \Lambda_{t} \langle x \rangle_{\kappa}^{-\delta})(t, x, \xi) = \rho'(t) \langle \xi \rangle + \rho'(t) p_{2}^{0}(x, \xi)$$
(3.8)

$$\sigma(\langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta} \langle D \rangle^{-1})(t, x, \xi) \langle \xi \rangle = \sigma(A_{\Lambda})(t, x, \xi) + p_3^1(t, x, \xi). \tag{3.9}$$

Therefore we have

$$\det(\lambda I - \sigma(P)(t, x, \xi))$$

$$= \lambda^2 - \rho'(t)\lambda(2\langle\xi\rangle + p_1^0(x, \xi) + p_2^0(x, \xi))$$

$$+ \rho'(t)^2(\langle\xi\rangle + p_1^0(x, \xi))(\langle\xi\rangle + p_2^0(x, \xi))$$

$$+ m(t)(\sigma(A_{\Lambda})(t, x, \xi) + p_3^1(t, x, \xi)). \tag{3.10}$$

Let $\det(\lambda I - \sigma(P)(t, x, \xi)) = 0$ and solve it in λ , then we have

$$\lambda = \rho'(t)(2\langle\xi\rangle + p_1^0(x,\xi) + p_2^0(x,\xi))$$

$$\pm \left[\rho'(t)^2 \{-2\langle\xi\rangle(p_1^0(x,\xi) + p_2^0(x,\xi)) - 3p_1^2(x,\xi)p_2^0(x,\xi) + p_1^0(x,\xi)^2 + p_2^0(x,\xi)^2\}\right]$$

$$-4m(t)\sum_{i,j=1}^n \{a(x) + \rho(t)a_1(x,\xi) + \rho(t)^2a_2(\rho(t);x,\xi) + r_2(\rho(t);x,\xi)\}\xi_j\xi_i$$

$$+ p_3^1(t,x,\xi)^{1/2},$$
(3.11)

where a, a_1 , a_2 and r_2 are defined in (2.18). Then the order of $\Re \lambda$ is as follows:

$$\Re \lambda = -\gamma \rho_1 e^{-\gamma t} O(\langle \xi \rangle) \pm \{ m(t) \rho_1 e^{-\gamma t} O(|\xi|) + O(|\xi|^{1/2}) \}. \tag{3.12}$$

Hence, obviously there are $\gamma_0 > 0$ and $c_0 > 0$ such that $\det(\lambda I - \sigma(P)(t, x, \xi)) > 0$ for any γ satisfying $\gamma > \gamma_0$, $|\xi| \gg 1$ and $\Re \lambda > -c_0 \langle \xi \rangle$. Therefore equation (3.5) has a unique solution $V(t) = (V_1(t), V_2(t))$ satisfying

$$V_1(t), V_2(t) \in C^1([0, T]; H^s) \cap C^0([0, T]; H^{s+1})$$
 (3.13)

for V_{01} , $V_{02} \in H^{s+1}$. Now, if we let $v(t) = \langle D \rangle^{-1} V_1(t)$, then v(t) satisfies

$$v(t,x) \in C^1([0,T]; H^{s+1}) \cap C^0([0,T]; H^{s+2})$$
 (3.14)

for $v(0) = v_0 \in H^{s+2}$. Then we know that v(t, x) satisfying

$$\partial_t \langle D \rangle v(t, x) = \langle D \rangle \langle x \rangle_{\kappa}^{\delta} \Lambda_t \langle x \rangle_{\kappa}^{-\delta} v(t, x) + \langle D \rangle V_2(t), \tag{3.15}$$

and obviously $V_2(t)$ is represented by v(t, x) such that

$$V_2(t) = \partial_t v(t, x) - \langle x \rangle_{\kappa}^{\delta} \Lambda_t \langle x \rangle_{\kappa}^{-\delta} v(t, x), \qquad V_2(0) = V_{02} \in H^{s+1}. \tag{3.16}$$

Then by (3.5), v(t, x) satisfies

$$\langle x \rangle_{\kappa}^{\delta} (\partial_{t} - \Lambda_{t})^{2} \langle x \rangle_{\kappa}^{-\delta} + m(t) \langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta} v(t, x) = g(t, x). \tag{3.17}$$

It shows that v(t,x) is a solution of (3.3) satisfying

$$v(t,x) \in \bigcap_{j=0}^{2} C^{2-j}([0,T]; H^{s+j}).$$
 \square (3.18)

By Lemma 3.2, obviously we have the following lemma.

LEMMA 3.3. For $u_0 \in H^{s+2}_{\rho_1,\delta,\kappa}$, $u_1 \in H^{s+1}_{\rho_1,\delta,\kappa}$ and $\langle x \rangle_{\kappa}^{\delta} e^{\Lambda(t)} f(t,x) \in C^0([0,T];H^{s+1})$, there exists a positive constant γ_0 and the Cauchy problem (3.1) has a unique solution u(t,x) such that

$$\langle x \rangle_{\kappa}^{\delta} e^{\Lambda(t)} u(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([0, T]; H^{s+j}).$$
 (3.19)

for all $\gamma \geq \gamma_0$.

4. A priori estimate of solution for the linear problem

Let $0 < T < \infty$, m(t) be a non-negative function in $C^0([0,T])$, $\rho(t)$ a positive function in $C^1([0,T]) \cap C^0([0,T])$ such that $\rho_t(t) < 0$, $\varphi(t)$ a positive function in $C^1([0,T])$ satisfying $\varphi'(t) \le 0$ for $t \ge 0$ and $m_\varepsilon(t) = \int_0^T \chi_{\bar{\varepsilon}}(t-\tau)m(\tau)d\tau + \varepsilon$, where $\tilde{\varepsilon}(\varepsilon)$ satisfies $0 < \tilde{\varepsilon} < \varepsilon$ and $|\int_0^T \chi_{\bar{\varepsilon}}(t-\tau)m(\tau)d\tau - m(t)| < \varepsilon$, and $\chi_{\varepsilon}(t) = \varepsilon^{-1}\chi(\varepsilon^{-1}t)$, $\chi(t) \in C_0^\infty((0,1))$ satisfying $\chi(t) \ge 0$ and $\int_0^1 \chi(t)dt = 1$ for $0 \le t \le T$. Then we define $E_s(t)$ as follows:

$$E_{s}(t)^{2} = \frac{1}{2} \left\{ \| \langle \cdot \rangle_{\kappa}^{\delta} (\partial_{t} - \Lambda_{t}) \langle \cdot \rangle_{\kappa}^{-\delta} v(t) \|_{s}^{2} + \varphi(t) \| v(t) \|_{s+1}^{2} + m_{\varepsilon}(t) (A \langle D \rangle^{s} v(t), \langle D \rangle^{s} v(t)) \right\}. \tag{4.1}$$

for the solution v(t, x) of (3.3).

LEMMA 4.1. Assume that m(t) is a non-negative function in $C^0([0,T])$, $\varphi(t) = e^{-2\gamma t}$, $\rho(t) = \rho_1 e^{-\gamma t}$ and v(t,x) is a solution of (3.3) satisfying $v(t,x) \in \bigcap_{j=0}^2 C^{2-j}([0,T];H^{s+j})$, then there exist positive constants ε , γ_0 , c and c_0 such that

$$E_s(t) \le E_s(0)e^{\int_0^t q(\tau)d\tau} + \frac{1}{2}\int_0^t e^{\int_{\tau}^t q(\mu)d\mu} \|g(\tau)\|_s d\tau, \tag{4.2}$$

for $t \in [0, T)$ and for any $\gamma \ge \gamma_0$, where

$$q(t) = \frac{c}{2} \left(|\rho_t(t)| + \frac{|m_{\varepsilon}'(t)|}{m_{\varepsilon}(t)} + \frac{m(t)^2}{\varphi(t)|\rho_t(t)|} + \frac{m(t)^2 \rho(t)^2}{\varphi(t)|\rho_t(t)|} + \frac{m_{\varepsilon}(t)|\rho_t(t)|}{\varphi(t)} + c_0 \right). \tag{4.3}$$

PROOF. Note that $m_{\varepsilon}(t) \to m(t)$ in $L^{1}([0,t])$ for arbitrary $t \in [0,T]$.

Differentiating both sides in (4.1), we have

$$2E_s'(t)E_s(t) = \frac{d}{dt} \left\{ \frac{1}{2} \|\langle \cdot \rangle_{\kappa}^{\delta} (\partial_t - \Lambda_t) \langle \cdot \rangle_{\kappa}^{-\delta} v(t) \|_s^2 \right\}$$
(4.4)

$$+\frac{d}{dt}\left(\frac{1}{2}\varphi(t)\|v(t)\|_{s+1}^{2}\right) \tag{4.5}$$

$$+\frac{d}{dt}\left(\frac{1}{2}m_{\varepsilon}(t)(A\langle D\rangle^{s}v(t),\langle D\rangle^{s}v(t))\right). \tag{4.6}$$

$$(4.4) = \Re(\langle\cdot\rangle_{\kappa}^{\delta}(\partial_{t} - \Lambda_{t})^{2}\langle\cdot\rangle_{\kappa}^{-\delta}v(t), \langle\cdot\rangle_{\kappa}^{\delta}(\partial_{t} - \Lambda_{t})\langle\cdot\rangle_{\kappa}^{-\delta}v(t))_{s}$$

$$+ \Re(\langle\cdot\rangle_{\kappa}^{\delta}\Lambda_{t}(\partial_{t} - \Lambda_{t})\langle\cdot\rangle_{\kappa}^{-\delta}v(t), \langle\cdot\rangle_{\kappa}^{\delta}(\partial_{t} - \Lambda_{t})\langle\cdot\rangle_{\kappa}^{-\delta}v(t))_{s}$$

$$= \Re(g(t), \langle\cdot\rangle_{\kappa}^{\delta}(\partial_{t} - \Lambda_{t})\langle\cdot\rangle_{\kappa}^{-\delta}v(t))_{s}$$

$$- m(t)\Re(\langle\cdot\rangle_{\kappa}^{\delta}A_{\Lambda}\langle\cdot\rangle_{\kappa}^{-\delta}v(t), \langle\cdot\rangle_{\kappa}^{\delta}(\partial_{t} - \Lambda_{t})\langle\cdot\rangle_{\kappa}^{-\delta}v(t))_{s}$$

$$+ \Re(\Lambda_{t}\langle\cdot\rangle_{\kappa}^{\delta}(\partial_{t} - \Lambda_{t})\langle\cdot\rangle_{\kappa}^{-\delta}v(t), \langle\cdot\rangle_{\kappa}^{\delta}(\partial_{t} - \Lambda_{t})\langle\cdot\rangle_{\kappa}^{-\delta}v(t))_{s}$$

$$+ \Re(\rho_{t}p_{1}^{0}\langle\cdot\rangle_{\kappa}^{\delta}(\partial_{t} - \Lambda_{t})\langle\cdot\rangle_{\kappa}^{-\delta}v(t), \langle\cdot\rangle_{\kappa}^{\delta}(\partial_{t} - \Lambda_{t})\langle\cdot\rangle_{\kappa}^{-\delta}v(t))_{s}$$

$$\leq \|g(t)\|_{s}E_{s}(t) \tag{4.7}$$

$$-m(t)\Re(|\Lambda_t|^{-1/2}\langle\cdot\rangle_{\nu}^{\delta}A_{\Lambda}\langle\cdot\rangle_{\nu}^{-\delta}v(t),|\Lambda_t|^{1/2}\langle\cdot\rangle_{\nu}^{\delta}(\partial_t-\Lambda_t)\langle\cdot\rangle_{\nu}^{-\delta}v(t)), \tag{4.8}$$

(4.8)

$$-\||\Lambda_t|^{1/2}\langle\cdot\rangle_{\nu}^{\delta}(\partial_t - \Lambda_t)\langle\cdot\rangle_{\nu}^{-\delta}v(t)\|_{s}^{2}$$

$$\tag{4.9}$$

$$+ C_1 |\rho_t| E_s(t)^2, \tag{4.10}$$

where $p_1^0(x, D) \in Op(S^0)$, and we used an equality; $||Pu||_s \le C_s ||u||_{s+m}$ for some positive constant C_s provided $P \in Op(S^m)$ and $u \in H^s$ (See [Ku]).

$$(4.5) = \frac{1}{2} \varphi'(t) \|v(t)\|_{s+1}^{2}$$

$$+ \varphi(t) \Re(\langle D \rangle \langle \cdot \rangle_{\kappa}^{\delta} (\partial_{t} - \Lambda_{t}) \langle \cdot \rangle_{\kappa}^{-\delta} v(t), \langle D \rangle v(t))_{s}$$

$$+ \varphi(t) \Re(\langle D \rangle \langle \cdot \rangle_{\kappa}^{\delta} \Lambda_{t} \langle \cdot \rangle_{\kappa}^{-\delta} v(t), \langle D \rangle v(t))_{s}$$

$$\leq \frac{\varphi'(t)}{\varphi(t)} E_s(t)^2 \tag{4.11}$$

$$+\frac{1}{2}\||\Lambda_t|^{1/2}\langle\cdot\rangle_{\kappa}^{\delta}(\partial_t-\Lambda_t)\langle\cdot\rangle_{\kappa}^{-\delta}v(t)\|_s^2$$
(4.12)

$$+\frac{\varphi(t)^2}{2|\rho_t|}\|v(t)\|_{s+3/2}^2\tag{4.13}$$

$$+ \varphi(t)\rho_t ||v(t)||_{s+3/2}^2 \tag{4.14}$$

$$+ C_2 E_s(t)^2,$$
 (4.15)

$$(4.6) = \frac{1}{2} m_{\varepsilon}'(t) (A\langle D \rangle^{s} v(t), \langle D \rangle^{s} v(t))_{s}$$

$$+ m_{\varepsilon}(t) \Re(|\Lambda_{t}|^{-1/2} \langle D \rangle^{-s} A\langle D \rangle^{s} v(t), |\Lambda_{t}|^{1/2} \langle \cdot \rangle_{\kappa}^{\delta} (\partial_{t} - \Lambda_{t}) \langle \cdot \rangle_{\kappa}^{-\delta} v(t))_{s}$$

$$+ m_{\varepsilon}(t) \Re(|\Lambda_{t}|^{-1/2} \langle D \rangle^{-s} A\langle D \rangle^{s} v(t), |\Lambda_{t}|^{1/2} \langle \cdot \rangle_{\kappa}^{\delta} \Lambda_{t} \langle \cdot \rangle_{\kappa}^{-\delta} v(t))_{s}$$

$$\leq \frac{|m_{\varepsilon}'(t)|}{m_{\varepsilon}(t)} E_{s}(t)^{2} \tag{4.16}$$

+
$$m_{\varepsilon}(t)\Re(|\Lambda_{t}|^{-1/2}\langle D\rangle^{-s}A\langle D\rangle^{s}v(t), |\Lambda_{t}|^{1/2}\langle \cdot \rangle_{\kappa}^{\delta}(\partial_{t}-\Lambda_{t})\langle \cdot \rangle_{\kappa}^{-\delta}v(t))_{s}$$
 (4.17)

$$+ m_{\varepsilon}(t)\rho_{t}\Re(\langle D \rangle^{1/2}A\langle D \rangle^{s}v(t), \langle D \rangle^{s+(1/2)}v(t))$$
(4.18)

$$+ m_{\varepsilon}(t)\rho_{t}\Re(\langle D\rangle^{-s}A\langle D\rangle^{s}v(t), p_{2}^{0}v(t))_{s}, \tag{4.19}$$

where $p_2^0(x, D) \in Op(S^0)$ and we used

$$(\langle D \rangle^{-s} A \langle D \rangle^{s} u, v)_{s} = (u, \langle D \rangle^{-s} A \langle D \rangle^{s} v)_{s}$$

which is verified by the symmetry of $[a_{ij}]_{i,j=1,...,n}$.

$$(4.18) + (4.19) \le m_{\varepsilon}(t)\rho_{t}\Re(A\langle D\rangle^{s+(1/2)}v(t), \langle D\rangle^{s+(1/2)}v(t))$$
(4.20)

$$+\frac{C_3 m_{\varepsilon}(t) |\rho_t|}{\varepsilon(t)} E_s(t)^2, \qquad (4.21)$$

$$(4.8) + (4.17) \leq |(|\Lambda_{t}|^{-1/2} m_{\varepsilon}(t) \langle D \rangle^{-s} A \langle D \rangle^{s} v(t), |\Lambda_{t}|^{1/2} \langle \cdot \rangle_{\kappa}^{\delta} (\partial_{t} - \Lambda_{t}) \langle \cdot \rangle_{\kappa}^{-\delta} v(t))_{s}$$

$$- (|\Lambda_{t}|^{-1/2} m(t) \langle \cdot \rangle_{\kappa}^{\delta} A_{\Lambda} \langle \cdot \rangle_{\kappa}^{-\delta} v(t), |\Lambda_{t}|^{1/2} \langle \cdot \rangle_{\kappa}^{\delta} (\partial_{t} - \Lambda_{t}) \langle \cdot \rangle_{\kappa}^{-\delta} v(t))_{s}|.$$

$$(4.22)$$

Then, using the equality:

$$m_{\varepsilon}(t)\langle D \rangle^{-s} A \langle D \rangle^{s} - m(t)\langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta}$$

$$= m(t)(A_{\Lambda} - \langle x \rangle_{\kappa}^{\delta} A_{\Lambda} \langle x \rangle_{\kappa}^{-\delta}) + m(t)(A - A_{\Lambda})$$

$$+ m(t)(\langle D \rangle^{-s} A \langle D \rangle^{s} - A) + \{m_{\varepsilon}(t) - m(t)\}\langle D \rangle^{-s} A \langle D \rangle^{s}, \qquad (4.23)$$

we obtain the estimate;

$$\| |\Lambda_{t}|^{-1/2} \{ m_{\varepsilon}(t) \langle D \rangle^{-s} A \langle D \rangle^{s} - m(t) \langle \cdot \rangle_{\kappa}^{\delta} A_{\Lambda} \langle \cdot \rangle_{\kappa}^{-\delta} \} v(t) \|_{s}$$

$$\leq |m_{\varepsilon}(t) - m(t)| \| |\Lambda_{t}|^{-1/2} \langle D \rangle^{-s} A \langle D \rangle^{s} v(t) \|_{s}$$

$$+ m(t) \{ \| |\Lambda_{t}|^{-1/2} (\langle D \rangle^{-s} A \langle D \rangle^{s} - A) v(t) \|_{s}$$

$$+ \| |\Lambda_{t}|^{-1/2} (A_{\Lambda} - \langle \cdot \rangle_{\kappa}^{\delta} A_{\Lambda} \langle \cdot \rangle_{\kappa}^{-\delta}) v(t) \|_{s}$$

$$+ \| |\Lambda_{t}|^{-1/2} (A - A_{\Lambda}) v(t) \|_{s} \}$$

$$\leq C_{2} |m_{\varepsilon}(t) - m(t)| |\rho_{t}|^{-1/2} \| v(t) \|_{s+3/2}$$

$$+ m(t) (\| |\Lambda_{t}|^{-1/2} p^{1}(\cdot, D) v(t) \|_{s} \rho(t) \| |\Lambda_{t}|^{-1/2} \tilde{a}_{1}(\cdot, D) v(t) \|_{s}$$

$$+ \rho(t)^{2} \| |\Lambda_{t}|^{-1/2} \tilde{a}_{2}(\rho; \cdot, D) v(t) \|_{s} + \| |\Lambda_{t}|^{-1/2} \tilde{r}(\rho; \cdot, D) v(t) \|_{s}$$

$$\leq (C_{2} |m_{\varepsilon}(t) - m(t)| + C_{3} m(t) \rho(t)^{2}) |\rho_{t}|^{-1/2} \| v(t) \|_{s+3/2}$$

$$+ C_{4} m(t) |\rho_{t}|^{-1/2} \| v(t) \|_{s+1}$$

$$(4.25)$$

+ $m(t)\rho(t)|\rho_t|^{-1/2}||\tilde{a}_1(\cdot,D)v(t)||_{s-1/2},$ (4.26)

where $p^1(x,\xi) \in S^1$, $\tilde{a}_1(x,\xi) = \sum_{i,j=1}^n a_1 \xi_1 \xi_j$, $\tilde{a}_2(\rho,x,\xi) = \sum_{i,j=1}^n a_2 \xi_i \xi_j$ and $\tilde{r}(\rho;x,\xi) = \sum_{i,j=1}^n r_1 \xi_i \xi_j$, a_1 , a_2 and r_1 defined in (2.17). Besides, by Proposition 2.1, (4.26) is estimated in the following:

$$\|\tilde{a}_{1}(\cdot, D)v(t)\|_{s-1/2}^{2} = \left\| \sum_{|\alpha|=1} \tilde{a}_{(\alpha)}(\cdot, D)D^{\alpha}\langle D\rangle^{-1}v(t) \right\|_{s-1/2}^{2}$$

$$\leq C_{5} \sum_{|\alpha|=1} \|\tilde{a}_{(\alpha)}(\cdot, D)v(t)\|_{s-1/2}^{2} + C_{6}\|v(t)\|_{s+1/2}^{2}$$

$$\leq C_{7}\Re(\tilde{a}(\cdot, D)v(t), v(t))_{s+1/2} + C_{8}\|v(t)\|_{s+1/2}^{2}$$

$$\leq C_{7}\Re(A\langle D\rangle^{s+1/2}v(t), \langle D\rangle^{s+1/2}v(t)) \qquad (4.27)$$

$$+ C_{9}\varphi(t)^{-1}E_{s}(t)^{2}, \qquad (4.28)$$

where $\tilde{a}(x,\xi) = \sigma(A)(x,\xi)$. Therefore (4.8) + (4.17) is estimated as below

$$(4.8) + (4.17) \le 2\{C_2^2 | m_{\varepsilon}(t) - m(t)|^2 + C_3^2 m(t)^2 \rho^4\} |\rho_t|^{-1} ||v(t)||_{s+3/2}^2$$

$$(4.29)$$

+
$$\{4C_4^2m(t)^2\varphi(t)^{-1} + C_{10}m(t)^2\rho^2\varphi^{-1}\}|\rho_t|^{-1}E_s(t)^2$$
 (4.30)

$$+ C_7 m(t)^2 \rho^2 |\rho_t|^{-1} \Re(A \langle D \rangle^{s+1/2} v(t), \langle D \rangle^{s+1/2} v(t))$$
 (4.31)

$$+\frac{1}{2}\||\Lambda_t|^{1/2}\langle\cdot\rangle_{\kappa}^{\delta}(\partial_t-\Lambda_t)\langle\cdot\rangle_{\kappa}^{-\delta}v(t)\|_{s}^{2}.$$
(4.32)

Note that C_j (j = 1, ..., 10) are positive constants independent of t and γ . Hence combing the preceding estimates, we have the following estimate for (4.1);

$$2E_s'(t)E_s(t) \le ||g(t)||_s E_s(t) \tag{4.33}$$

$$+ c \left(|\rho_t(t)| + \frac{|m_{\varepsilon}'(t)|}{m_{\varepsilon}(t)} + \frac{m(t)^2}{\varphi(t)|\rho_t(t)|} + \frac{m(t)^2 \rho(t)^2}{\varphi(t)|\rho_t(t)|} + \frac{m_{\varepsilon}(t)|\rho_t(t)|}{\varphi(t)} + c_0 \right) E_s(t)^2$$
 (4.34)

$$+ c^{2} \left(\frac{\varphi(t)^{2}}{|\rho_{t}(t)|} + \varphi(t)\rho_{t}(t) + \frac{|m_{\varepsilon}(t) - m(t)|^{2}}{|\rho_{t}(t)|} + \frac{m(t)^{2}\rho(t)^{4}}{|\rho_{t}(t)|} \right) \|v(t)\|_{s+3/2}^{2}$$

$$(4.35)$$

$$+ c^{2} (m_{\varepsilon}(t)\rho_{t}(t) + m(t)^{2}\rho(t)^{2}|\rho_{t}(t)|^{-1})\Re(A\langle D\rangle^{s+1/2}v(t), \langle D\rangle^{s+1/2}v(t)). \tag{4.36}$$

Thus, if we let $\gamma > 0$ and $\varepsilon > 0$ satisfying

$$\varepsilon \le e^{-2\gamma T}, \quad \gamma^2 \ge \max \left\{ \sup_{0 \le t \le T} \left\{ \frac{\rho_1 M_0^2}{m_{\varepsilon}(t)} \right\}, \frac{2}{\rho_1^2} + M_0^2 \rho_1^2 \right\},$$
 (4.37)

where $M_0 = \max_{0 \le t \le T} m(t)$, then the third and the fourth terms are non-positive. \square

LEMMA 4.2. Assume that m(t) is a non-negative function satisfying $m(t) \in C^0([0,T)) \cap L^1([0,T])$ and $v(t,x) \in \bigcap_{j=0}^2 C^{2-j}([0,T);H^{s+j})$. Then there are $\rho(t)$ and $\varphi(t)$ in $C^1([0,T))$ with $\rho_t(t) \in L^1([0,T])$, $\rho(0) = \rho_1$ and $\varepsilon > 0$ such that the estimate (4.2) is established for (4.3).

PROOF. If we choose $\rho(t)$ and $\varepsilon > 0$ suitably, we can prove that (4.35) and (4.35) are non-positive. Indeed, put $\varphi(t)$ and $\rho(t)$;

$$\varphi(t) = \rho_1^2 e^{-2c \left\{ t + \int_0^t m(\tau)(1+1/\sqrt{m_{\epsilon}(\tau)})d\tau \right\}},\tag{4.38}$$

$$\rho(t) = \left(\rho_1 e^{-ct} - c \int_0^t \frac{\rho_1}{\varphi(T)} |m_{\varepsilon}(\tau) - m(\tau)| d\tau\right) e^{-c \int_0^t m(\tau)(1+1/\sqrt{m_{\varepsilon}(\tau)}) d\tau}, \tag{4.39}$$

then $\varphi(t)$ and $\rho(t)$ belong to $C^1([0,T])$ with $\rho_t \in L^1([0,T])$ and $\rho(t) > 0$ for sufficientry small $\varepsilon > 0$, and they satisfy

$$\begin{cases}
\rho(0) = \rho_1, \\
\rho_t(t) \le -c \left(\frac{|m_{\varepsilon}(t) - m(t)|}{\sqrt{\varphi(t)}} + \frac{m(t)\rho(t)^2}{\sqrt{\varphi(t)}} + \frac{m(t)\rho(t)}{\sqrt{m_{\varepsilon}(t)}} + \sqrt{\varphi(t)} \right)
\end{cases}$$
(4.40)

for $t \in (0, T)$. Hence we obtain (4.2).

LEMMA 4.3. Assume that m(t), $\varphi(t)$ and $\rho(t)$ satisfy the conditions of Lemma 4.1 and that u(t,x) is a solution of the Cauchy problem (3.1) satisfying (3.19), then u(t,x) has the inequality as

$$(e^{-2\gamma t} \|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} u(t) \|_{s+1}^{2} + \|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} \partial_{t} u(t) \|_{s}^{2})^{1/2}$$

$$\leq c e^{\int_{0}^{t} q(\tau) d\tau} \left(\|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho_{1}\langle D \rangle} u_{0} \|_{s+1} + \|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho_{1}\langle D \rangle} u_{1} \|_{s} + \int_{0}^{t} \|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho(\tau)\langle D \rangle} f(\tau) \|_{s} d\tau \right), \tag{4.41}$$

for $t \in [0, T]$, where $q(\tau)$, γ and ε are given by Proposition 4.1, and the positive constant c is independent of γ .

Proof. It is obvious by Lemma 4.1.

5. Local existence of solutions for the nonlinear problem

Let $0 \le \tau < T_1$. For $T \in (\tau, T_1]$ we consider the Cauchy problem:

$$\begin{cases} \partial_t^2 u(t,x) + M((Au(t),u(t)))Au(t,x) = f(t,x), & \tau < t < T, \\ u(\tau,x) = u_0(x), & \partial_t u(\tau,x) = u_1(x). \end{cases}$$
(5.1)

THEOREM 5.1. Assume that (1.4), (1.5) and (1.6) are valid. Let $0 < \rho_1 < \rho_0/\sqrt{n}$. Then for any $u_0(x) \in H^{s+2}_{\rho_1,\delta,\kappa}$, $u_1(x) \in H^{s+1}_{\rho_1,\delta,\kappa}$ and $\langle x \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} f(t,x) \in C^0([0,T_1];H^{s+1})$ with $\rho(t)=\rho_1 e^{-\gamma(t-\tau)}$, there exist $T \in (\tau,T_1]$ and $\gamma_0 > 0$ such that the Cauchy problem (5.1) has a solution satisfying

$$\langle x \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} u(x,t) \in \bigcap_{i=0}^{2} C^{2-i}([\tau,T];H^{s+i})$$
 (5.2)

for any $\gamma \geq \gamma_0$.

PROOF. We may assume $\tau = 0$ without loss of generality. We shall prove the existence of the solution of (5.1) by Schauder's fixed point theorem. For T > 0 and $s \in \mathbb{R}$, we introduce a space of functions;

$$X_{T,\delta,\kappa}^{s} = \{ w(t,x); \langle x \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} w(t,x) \in C^{0}([0,T]; H^{s+1}) \cap C^{1}([0,T]; H^{s}) \}$$
 (5.3)

equipped with its norm $\|\cdot\|_{X^s_{T,\delta,\kappa}}$ as

$$\|w\|_{X^{\delta}_{T,\delta,\kappa}} = \sup_{0 \le t \le T} \left\{ \frac{1}{2} (\|\langle \cdot \rangle^{\delta}_{\kappa} e^{\rho(t)\langle D \rangle} w(t) \|_{s+1}^{2} + \|\langle \cdot \rangle^{\delta}_{\kappa} e^{\rho(t)\langle D \rangle} \partial_{t} w(t) \|_{s}^{2}) \right\}^{1/2}$$
(5.4)

for every $w \in X^s_{T,\delta,\kappa}$. Let $B^s_{T,\delta,\kappa}(R)$ be a convex subspace of $X^{s+1}_{T,\delta,\kappa}$ such that

$$B_{T,\delta,\kappa}^{s}(R) = \left\{ u \in X_{T,\delta,\kappa}^{s+1}; \langle x \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} u(t,x) \in \bigcap_{j=0}^{2} C^{2-j}([0,T]; H^{s+j}), \|u\|_{X_{T,\delta,\kappa}^{s+1}} \leq R \right\},$$

$$(5.5)$$

for $R \gg 1$. We now define the two functions

$$m(t) = m(t; w) = M(\eta(t; w)), \quad \eta(t; w) = \sum_{i,j=1}^{n} (a_{ij}D_iw(t), D_jw(t)),$$
 (5.6)

for each $w \in X_{T,0,\kappa}^{s'+1}$, where s' < s. Note that $m(t) = M(\eta(t;w)) \in C^0([0,T])$, and if $w \in B_{T,0,\kappa}^s(R)$ for R > 0, then for arbitrary fixed v > 0, there exists a positive constant ε independent of w such that

$$\int_0^T |m_{\varepsilon}(t;w) - m(t;w)| dt < v, \tag{5.7}$$

where $m_{\varepsilon}(t;w) = \int_0^T \chi_{\varepsilon}(t-\tau)m(\tau;w)d\tau + \varepsilon$ and $\chi_{\varepsilon}(t)$ is defined in section 4. Then we define the mapping Φ from $w \in X_{T,0,\kappa}^{s+1}$ into $u \in X_{T,0,\kappa}^{s+1}$ such that

$$\hat{\sigma}_t^2 u(t, x) + M(\eta(t; w)) A u(t, x) = f(t, x).$$
 (5.8)

We shall prove that Ψ is a compact mapping from $B_{T,0,\kappa}^{s'}(R)$ into itself for s' < s and sufficiently small T. By Lemma 3.3, u(t,x) in (5.8) satisfies

$$\langle x \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} u(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([0, T]; H^{s+j})$$
 (5.9)

for $u_0\in H^{s+2}_{\rho_1,\delta,\kappa}$, $u_1\in H^{s+1}_{\rho_1,\delta,\kappa}$ and every fixed $w\in B^{s'}_{T,0,\kappa}(R)$. Then by Lemma 4.1,

we have

$$\left\{ \frac{1}{2} (\|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} u(t) \|_{s+1}^{2} + \|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} \partial_{t} u(t) \|_{s}^{2}) \right\}^{1/2}$$

$$\leq e^{\gamma t} \left\{ \frac{1}{2} (e^{-2\gamma t} \|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} u(t) \|_{s+1}^{2} + \|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} \partial_{t} u(t) \|_{s}^{2}) \right\}^{1/2}$$

$$\leq e^{\gamma t} \left\{ c e^{\int_{0}^{t} q(\tau) d\tau} \left(\|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho_{1}\langle D \rangle} u_{0} \|_{s+1} + \|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho_{1}\langle D \rangle} u_{1} \|_{s} + \int_{0}^{t} \|\langle \cdot \rangle_{\kappa}^{\delta} e^{\rho(\tau)\langle D \rangle} f(\tau) \|_{s} d\tau \right) \right\}$$

$$\leq c' e^{\int_{0}^{T} (q(\tau) + \gamma) d\tau}, \tag{5.10}$$

where c' is independent of T and R. Therefore for sufficiently large R, we can find T(R) = T > 0 such that

$$c'e^{\int_0^T (q(\tau)+\gamma)d\tau} = R. \tag{5.11}$$

On the other hand, by Proposition 2.2, we have obviously that the embedding $B_{T,\delta,\kappa}^s(R) \hookrightarrow B_{T,0,\kappa}^{s'}(R)$ is compact for s' < s and $\delta > 0$. Hence the mapping Ψ defined (5.8) is a compact mapping from $B_{T,0,\kappa}^{s'}(R)$ into itself. Then by Schauder's fixed point theorem, Ψ has a fixed point u(t,x) in $B_{T,0,\kappa}^{s'}$. Further by Lemma 3.3, the fixed point is a solution of (5.1) satisfying

$$\langle x \rangle_{\kappa}^{\delta} e^{\rho(t)\langle D \rangle} u(t, x) \in \bigcap_{j=0}^{2} C^{2-j}([0, T]; H^{s+j})$$
 (5.12)

for
$$u_0 \in H^{s+2}_{\rho,\delta,\kappa}$$
 and $u_1 \in H^{s+1}_{\rho,\delta,\kappa}$.

6. Global existence of solution for the non-linear problem

In this section we shall prove our main theorem. Now we introduce the following energy:

$$E(t)^{2} = \frac{1}{2} (\|\partial_{t} u(t) + u(t)\|^{2} + \|u(t)\|^{2} + F(\eta(t))), \tag{6.1}$$

where $F(\eta) = \int_0^{\eta} M(\lambda) d\lambda$ and $\eta(t) = (Au(t), u(t))$. Then for the energy E(t), according to [DS] and [KY], the following energy estiamte is concluded.

PROPOSITION 6.1. Assume that $M(\eta)$ is a non-negative continuous function in $[0,\infty)$ and $f(t,x) \in C^0([0,T];L^2)$. If u(t,x) is a solution of the Cauchy problem

(1.3) in (0,T) such that $u(t,x) \in \bigcap_{j=0}^2 C^{2-j}([0,T);H^j)$, then we have the energy estimate:

$$E(t)^{2} + \int_{0}^{t} e^{3(t-\tau)} M(\eta(\tau)) \eta(\tau) d\tau \le E(0)^{2} e^{3t} + \frac{1}{2} \int_{0}^{t} e^{3(t-\tau)} \|f(\tau)\|^{2} d\tau$$
 (6.2)

for $t \in [0, T)$.

PROOF. Differenting (6.1), from the equation (1.3) we get,

$$2E'(t)E(t) = \Re(f(t) + \partial_t u(t), \partial_t u(t) + u(t)) + \Re(\partial_t u(t), u(t)) - M(\eta(t))\eta(t)$$

$$\leq \frac{1}{2} \|f(t)\|^2 + 3E(t)^2 - M(\eta(t))\eta(t)$$
(6.3)

for
$$t \in [0, T)$$
, which yields (6.2).

COROLLARY 6.2. If (6.2) holds and $T < \infty$, then $M(\eta(t)) \in L^1([0, T])$.

PROOF. From (6.2), it is evident that $M(\eta(t))\eta(t) \in L^1([0,T])$. On the other hand

$$\int_{0}^{t} M(\eta(\tau))d\tau = \int_{[0,t]\cap\{\tau;\eta(\tau)>1\}} M(\eta(\tau))d\tau + \int_{[0,t]\cap\{\tau;\eta(\tau)\leq1\}} M(\eta(\tau))d\tau$$

$$\leq \int_{0}^{t} M(\eta(\tau))\eta(\tau)d\tau + \sup_{0\leq\eta\leq1} M(\eta)t \tag{6.4}$$

for all $t \in [0, T)$, which implies that $M(\eta(t)) \in L^1([0, T])$.

Now we can prove our main theorem. Let $\Lambda(t,\gamma)=\rho_1 e^{-\gamma t}\langle D\rangle$ and T^* the real number defined by

$$T^* = \max \left\{ T > 0; \text{ there exist } \gamma > 0 \text{ and a solution } u(t, x) \text{ satisfying } (1.3) \right.$$
$$\text{in } (0, T) \text{ such that } \langle x \rangle_{\kappa}^{\delta} e^{\Lambda(t, \gamma)} u(t, x) \in \bigcap_{j=1}^{2} C^{2-j}([0, T); H^{j}) \right\}.$$

Theorem 5.1 ensures $T^*>0$. We shall claim $T^*=\infty$. Suppose that $T^*<0$. Then it follows from Proposition 6.2 that m(t)=M(Au(t),u(t)) belongs to $L^1([0,T^*])$. Hence, Proposition 3.2 and the fact that $m(t)\in C^0([0,T^*])\cap L^1([0,T^*])$ yield that $v(t,x)=\langle x\rangle_\kappa^\delta e^{\Lambda(t)}u(t,x)$ which satisfies (3.19) with s=0,1 and $T=T^*$, where $\Lambda(t)=\rho(t)\langle D\rangle$ and $\rho(t)$ is introduced in (4.39). Let us take $\gamma>0$ such that

 $\rho_1 e^{-\gamma t} \leq \rho(t)$ for $t \in [0, T^*)$. Then the definition of T^* and (4.2) imply $\langle x \rangle_{\kappa}^{\delta} e^{\Lambda(t,\gamma)} u(t,x) \in \bigcap_{j=0}^{2} C^{2-j}([0,T^*];H^j)$, where $\Lambda(t,\gamma) = \rho_1 e^{-\gamma t} \langle D \rangle$. Hence we have the limits $u(T^*-0) \in H^2$ and $\partial_t u(T^*-0)$ which satisfy $\langle x \rangle_{\kappa}^{\delta} e^{\Lambda(T^*,\gamma)} u(T^*-0) \in H^1$. Therefore, applying Theorem 5.1 with $\rho_2 = \rho_1 e^{\gamma T^*}$, we have a solution $\tilde{u}(t,x)$ of the Cauchy problem (5.1) in (T^*,T) , $T>T^*$ with initial data $\tilde{u}(T^*) = u(T^*-0)$ and $\partial_t \tilde{u}(T^*) = \partial_t u(T^*-0)$, which satisfies

$$\langle x \rangle_{\kappa}^{\delta} \exp(\rho_2 e^{-\gamma(t-T^*)} \langle D \rangle) \tilde{u}(t,x) \in \bigcap_{j=0}^{2} C^{2-j}([T^*,T];H^j). \tag{6.5}$$

Then $\Lambda(t,\gamma)=\rho_2 e^{-\gamma(T-T^*)}\langle D\rangle$ implies that

$$\langle x \rangle_{\kappa}^{\delta} e^{\Lambda(t,\gamma)} \tilde{u}(t,x) \in \bigcap_{i=0}^{2} C^{2-j}([T^*,T];H^j). \tag{6.6}$$

Now let us define

$$w(t,x) = \begin{cases} u(t,x), & t \in (0,T^*) \\ \tilde{u}(t,x), & t \in [T^*,T). \end{cases}$$
(6.7)

Then w(t,x) has to satisfy (1.3) in (0,T) and

$$\langle x \rangle_{\kappa}^{\delta} e^{\Lambda(t,\gamma)} w(t,x) \in \bigcap_{j=0}^{2} C^{2-j}([0,T); H^{j}). \tag{6.8}$$

This result contradicts the definition of T^* . Thus, we have proved that $T^* = \infty$.

References

- [AS] A. Arosio and S. Spagnolo, Global solution to the Cauchy problem for a nonlinear equation, Nonlinear PDE's and Their Applications, Collége de France Seminar, H. Brezis and J. L. Lions, eds., Pitman, Boston (1984), 1-26.
- [B] S. Bernstein., Sur une class d'équations fonctionnelles aux dérivées partielles, Izv. Akad. Nauk SSSR, Ser. Mat. 4 (1940), 17-26.
- [DS] P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 (1992), 247-262.
- [FP] C. Fefferman and D. H. Phong, On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. USA 75 (1978), 4674-4677.
- [Ka] K. Kajitani, Global real analytic solution of the Cauchy problem for linear differential equations, Comm. P.D.E. 11(13) (1986), 1489–1513.
- [Ku] H. Kumano-go, Pseudo-Differential Operator, MIT Press, 1981.
- [KY] K. Kajitani and K. Yamaguti, On Global Real Analytic Solutions of the Degenerate Kirchhoff Equation, Ann. Scuola Norm. Sup. Pisa. Sci. Fis. Mat. Serie IV, Vol. XXI.Fasc.2 (1994), 279-297.

- [M] S. Mizohata, Le problème de Cauchy pour les systèmes hyperboliques et paraboliques, Mem. Coll. Sci. Univ. Kyoto, Ser. A XXXII 2 (1959), 181-212.
- [Nd] T. Nishida, A note on the nonlinear vibrations of the elastic string, Mem. Fac. Engrg. Kyoto Univ., XXXIII 4 (1971), 329-341.
- [Nh] K. Nishihara, On a Global Solution of Some Quasilinear Hyperbolic Equation, Tokyo J. Math. 7 (1984), 437-459.
- [P] S. I. Pohožaev., On a class of quasilinear hyperbolic equations, Math. USSR-Sb. 96 (1975), 152-166.
- [S] E. Schrohe, Spaces of weighted symbols and weighted Sobolev spaces on manifolds, Lecture notes in Math. 1256, Springer-Verlag, 360-377.
- [Yd] Y. Yamada, On a quasilinear wave equation, Suriken Kokyuroku 386, Kyoto Univ. (1980).
- [Yg] K. Yamaguti, On global quasi-analytic solution of the degenerate Kirchhoff equation, Thesis, Univ. of Tsukuba (1995).

Institute of Mathematics University of Tsukuba Tsukoba-city, Ibaraki 305 Japan