TSUKUBA J. MATH.
Vol. 21 No. 2 (1997), 483-503

GLOBAL SOLVABILITY FOR THE GENERALIZED
DEGENERATE KIRCHHOFF EQUATION WITH
REAL-ANALYTIC DATA IN R"

By

Fumihiko HIROSAWA

1. Introduction

Kirchhoff equation was proposed by Kirchhoff in 1883 to describe the
transversal oscillations of a stretched string and it is expressed as follows

/
3%u(t, x) — (52 + %j |0u(t, x)|2dx> 8%u(t, x) = 0, (1.1)
0

where >0, />0, ¢ >0 and x € [0,/]. In 1940 S. Bernstein [B] proved the global
solvability for analytic initial data and local solvability for C™-class initial data to
the following initial boundary value problem:

2n

0%u(t,x) — (a + bj |0xu(t, x)lzdx> o*u(t,x) =0 (t>0,x€(0,2x]),

0
u(t,x)=0 (t+=0,x=0,2n),
u(0,x) = up(x), du(0,x) =ui(x), (1.2)
where @ > 0 and b > 0. In 1971, T. Nishida [Nd] proved Bernstein’s result in case

of a=0. Equation (1.2) can be regarded as the following more generalized
equation:

0%u(t, x) — M(Jﬂ |V (e, x)|2dx> Au(t,x) =0 (t>0,xeQ), (13)

u(07 x) = uo(X), 5[14(0, x) =u (X), xeQc Rna
with boundary condition

u(t,x) =¢ on[0,00) x 0Q. (1.4)
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In case of (1.2), Q =[0,27], ¢ =0 and M(n) = a+ by. In 1975, S. 1. PohoZaev
[P] proved the existence and uniqueness of time global real-analytic solution for
the problem (1.3)—(1.4) under the assumption of n>1 and M(y) e C'([0, c0))
where Q is bounded and ¢ = 0.* On the other hand, in case that Q = R", Y.
Yamada [Yd] proved the existence and uniqueness of global solution of (1.3) in
1980. In 1984, K. Nishihara [Nh] showed the global existence of the quasi-
analytic solution in case that M(y) is locally Lipschitz continuous and non-
degenerate. In that year, A. Arosio and S. Spagnolo [AS] proved the existence of
time global 2z-periodic solution for real-analytic data in case that Q = [0,2x]"
under some assumptions for M(y) € C°. In 1992, P. D’Ancona and S. Spagnolo
[DS] relaxed the assumptions in [AS] to any M(n) e C°. Moreover, the equation
(1.3)—(1.4) can be generalized as

{ O7u(t, x) + M((Au(t,),u(t, ))o)Au(t,x) = f(t,x) (1>0,xeQ), 15)
u(0,x) = up(x), Ou(0,x) = u1(x), xeQcR",
with boundary condition

u(t,x) =¢ on[0,00) x 4Q. (1.6)

Here A4 is a degenerate elliptic operator of second order defined as Au(t,x) =
2i.j=1 D (a(x) Dyult, x)), Dx, = ((1/v/~1)(8/0x;)). Suppose that [a;(x)]; iy ,
is a real-analytic symmetric matrix which satisfies that

a(x,&) = Z aij(x)f;fj >0 (1.7)
ij=1
and there are ¢y > 0 and p, > 0 such that
|D%ay(x)| < copg™|al!, i, j=1,...,n, (1.8)

for xe R", a = (a1,...,%,) € N", (Au,u) is an inner product of Au(x) and u(x) in
LY(Q) and M(y) satisfies

M(n) e C°([0,00)) and M(z) > 0. (1.9)

If a;(x) =d; and f(z,x) =0, then equation (1.5) coincides with equation (1.3),
where J; is Kronecker’s delta. In 1994 K. Kajitani and K. Yamaguti [KY] proved
the existence and uniqueness of time global real-analytic solution for (1.5) in case

*In fact he proved the existence and uniqueness of time global solution to more general problem on
some suitable Hilbert space.
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that Q = R", up(x), u1(x) € L2(R") N C*(R™), M(n) € C'([0,00)), M(5) =0, and
ajj(x) >0 are C*(R") functions, respectively, where C“(R") is the set of real
analytic functions in R". In 1995 K. Yamaguti [Yg] extended the result of [KY]
for quasi-analytic data under the assumption of M(n) > 0.

Our main theorem in this paper is an extention of the result of [KY] in case
of M(n) e C°. At first we introduce some definitions in order to state our main
theorem.

DeFmNiTION 1.1. For se€ R and p > 0, we define the function space H, by
Hy = {u(x) e LY(R"); (&)'e¢"a(¢) e LE(RM)}, (1.10)

where &= (£},...,¢&,), (& =(1 +é,2 +---+€,2,)1/2, and @(¢) stands for Fourier
transform of u. If we introduce the inner product (-,-) H; of H such that

(,0) g, = (?Va(),e?M3()),, (1.11)

then H is a Hilbert space, where (-,-); is an inner product of H* which is the

normal Sobolev space (See [Ku]). For p < 0 we define H,, as the dual space of HZ.

DEFINITION 1.2. For p € R, define the operator ¢”?) from H, into H* as
follows:

e”Plu(x) :J eX PO (&)de, (1.12)
R

for ue H3, where x = (X1,...,%,), x-&=x1& + -+ xa&, and d& = (2m) "dE.
Note that (e#®®)™! = ¢=7) is a mapping from H* into H;.

Hilbert space H; and the operator e?®) were introduced in [Ka] and [KY].

In this paper we define the new space H;; as a weighted subspace of Hj.

poK
DeFiNiTION 1.3, For s5,p,6 € R and « > 0, we define Hljyéy,c as
Hyp, = {u(x) € #';(D)*{(x)5e”Pu(x)} € LY(R")}, (1.13)

where (x), = (k24 x2+---+x2)"/* and &' is the dual space of the Schwartz
space & of rapidly decreasing functions in R”. And we define the inner product
() . of Hy;, as follows:

(,0) s = (()2e”Phu(), (Yoe"Pho(-)),. (1.14)

oK
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The principal method of the proof of this theorem is based on [Ka] and
[KY]. In this paper we introduce the new space H,; which is a weighted
subspace of H; for é > 0, and we consider the global solvablity for the equation
in it. For positive real numbers p and x and for non-negative real numbers s
and 8, the function spaces H, and H,;  are included the intersection of L%(R")
and C®(R"). Our main theorem in this paper is the global existence of the real-
analytic solution which has initial condition in H,;,.

MAIN THEOREM. Assume that (1.7), (1.8) and (1.9) are valid. Let 0 <
p1 < po/v/n, 8 >0, k>0 and put p(t) = pre™" for y > 0. Then there exists y >0
such that for anmy ug EH[i,é,K’ u € H/}M;’x and for any f(t,x) satisfying
(x)2ePD)f (1, x) € CO([0,00); H"), the Cauchy problem (1.5) with Q = R" has a
solution u(t,x) that satisfies (x)2e?OPlu(t,x) € ﬂj2=o C?7(]0,00); H/).

2. Preliminaries

In this section we introduce some propositions and lemmas to prove the
following lemmas and our main theorem.

PROPOSITION 2.1. Assume that a(x,&) € S* is non-negative. Then there are
positive constants Cy and Cy such that

‘B(Op(a)u, u)s = _Clllu”s (21)
and
S {l10p(aw)ully; + 10p(@®)ul2} < C{2Cul; + R(Op(a)u,u)}  (2.2)

Jet|=1
for ue H**?, where S™ is the symbol-class of pseudo-differential operator of order
m (See [Ku)), Op(a) is the pseudo-differential operator defined as
Op(a)u = J e™%a(x, &)a(E)dE

n

for u(x) € &, where ||-||; is a norm of H?.

For a proof of this proposition, refer to [FP].

ProPOSITION 2.2. (i) Let a(x,&) € C®(R}, x R}) be a ‘double order’ symbol

in the ‘double order symbol space’ SGl(m"m’):

SGI™™) = {a(x,¢) € C=(R: x RY); aff(x,£) = 0(O™ =™} (23)
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for (m1,m;) € R x R where a((;))(x, &) = 0¢Dba(x,&), and if we a(x,&) define the
operator Op(a) by

(Op(@) % D)f(¥) = | e Calndf (e, fe, (24)

¢

then Op(a) is the bounded linear operator from Hy3\ . into HJ ™ . for each
51,8 € R.

(i) If s> and 6 > &, then the embedding H;Y(,,KC—»H:Y S is compact.
(iti) Let c(x,&) be the symbol of the product Op(a)Op(b) of ae SGI(I"IZ) and

be SG{m"MZ), then c(x,&) has the asymptotic expansion:

e, &~ % a®(x, )by (x, &). (2.5)

24
This proposition is introduced in [S].

Lemma 2.3. (i) Let ue Hy, =H/f, then for p > 0,

P
| D%ully < Huliygl)"“‘ldI! (2.6)
and
|Dyu(x)| < CnIlully;p‘”“””'s')(lal +n+ |s[)! (2.7)

for xe R" and a € N”.
(ii) Let u(x) be a function in H* and s R. If u(x) satisfies

1D*ull s < copi ™o (28)

for every multi-index o€ N", then u(x) e Hy for p < p;/ Vn.
For a proof of this lemma, refer to [KY].

LeMMA 24. Let § >0, ¢ >0 and e€(0,1], then ()c)c_‘S is a real-analytic
function satisfying
ID3(x) | < (867 (1 + )l )7, (29)

for x € R". Moreover if 0 <d <1, then

IDX(x) 7] < 4]t (x) 27" (2.10)

4

for xe R".
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For a proof, refer to [Ka].
Let a(x) be a real-analytic function in R” satisfies that there are co > 0 and
po > 0 such that

|D%a(x)| < copy™|a! (2.11)

for any x € R" and any multi-index « € N". Define the multiplier a- as (a- u)(x) =
a(x)u(x). Let us define a(p; x, D)u(x) = e*Pla - e~ ?Ply(x) for u(x) e L*(R") and
denote by a(p; x,&) its symbol.

PROPOSITION 2.5. (i) a(p;x, D) is a pseudo-differential operator of order 0
and its symbol has the following expansion:

a(p; x, &) = a(x) + pay (x, &) + pPax(p; x,8) +r(p; x,£), (2.12)

where

ai(x,&) = ZDa x)0¢, (¢ (2.13)

and ay and r respectively satisfy
Jaa(3)(pi %, )] < oy ()7, (2.14)
) (93 %, )1 < Cagyy ()7 2.15)

for x,CeR", |p| <py/v/n and a,fe N".
(ii) I p=p(t) € C°([0, T)) for T >0, then a(p(t); x,&) € C°([0, T); S°).

For a proof of (i), refer to [KY] and for (ii) refer to [Ka].

COROLLARY 2.6. Define the opeartior Ap by
Apu(x) = e?P)(4e P Phy(x)) (2.16)
for 4=3%70,_ Di(ay(x)D;). Then Ap and (x)ﬁAA(x);J are pseudo-differential

operators of order 2 and their symbols have the following expansions respectively;

(AN (X, 8) = Y (a() + par(x, &) + Par(pix, &) + n(pi %, e, (217)

i,j=1

(X AN ) (%, €) = D (alx) + par (x, &) + pPar(p; x,8) + a3 x, ))&,
i,j=1
(2.18)
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where o(P)(x,£) denotes the symbol of a pseudo-differential operator P(x,D),
ay=ay; and a = ay, are defined in Proposition 2.5, and both r =ry and
ro=ry, belong to S~'. Moreover, for p(f)e C°[0,T]), o(Ap)(t,x,&) and
o((x)2 AN (X)) (1, x, &) belong to C°([0, T); S2).

Proor. It is obvious by Proposition 2.2 and Proposition 2.5.

LemMMA 2.7. If u(x) e H,

0.k
whose radius of convergence is p,, where p; < min{x/8,p,} and 0 < p, < p.

Jor 0 >0, then u(x) is a real-analytic function

Proor. Note that (x>ﬁu(x) e Hy if u(x) e Hy;,.

ID%u(x)| = |DE((x)° (x)eu())]

K

x A5 i
< 30 (5 )1 2 (o))
<o
o i (K —|a—o!| ||
Sclwzg(a,>|°‘l|!|“”“|!(§) .
< Copy¥at, (2.19)

where p; < min{x/8,py}, 0 < py < p and we used Lemma 2.3, Lemma 2.4 and
the estimate;

Z( °‘,)|a'ma — oy gy < Tl (2.20)
of <o * m—-mnm

for 0 < n, <. O

3. Existence of solutions for the linear problem

In this section, we consider the local existence for the following linear
Cauchy problem:

o*u(t, x) + m(t) Au(t, x) = f(1, x), (1)
u(0,x) = up(x), 0m(0,x) = u(x), '

where m(t) is a non-negative continuous function in [0, 00).

At first we introduce a proposition to prove the existence of the linear
problem (3.1).

Let P(t) = [p;(t,x, D))

ij=1,..4 b€ a matrix consisting of pseudo-differential
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operators whose symbols pj;(t,x,&) all belong to the class ([0, T); S1). Let us
consider the following linear Cauchy problem:

{ % U(t)=PU(1) +F(), te(0,T], (3.2)
U(0) = Uy,

where U(f) = (Ui (2),. .., Ua(?)) is an unknown vector valued function, F(f) =
YFi(1),...,Fa(t)) and Uy ="(Up,...,Uos) are known vector valued functions.
Then the following proposition is concluded.

PROPOSITION 3.1. Suppose that det(AI —p(t,x,£)) #0 for A€ CY(R™) with
RA > —co(&) for some positive constant co, t€[0,T] and |{|> 1. Take an
arbitrary real number s. Then for any er(HH")d and for any F(t)e
CO([0, T); (H*+)?), there exists a unique solution U(t)e C'([0, T); (H*)%)N
oo, T1; (H*+)%) of (3:2)

This proposition was introduced as Proposition 4.5 in [M]. For the proof of
the proposition, refer to [M].

Let v(t,x) = (x)ie’\(’)u(t, x) and transform the equation (3.1) of u(t, x) to the
equation of v(¢,x) such that

{ (X120 = AV (x), (e, %) + m(D)(x)eAa () 0(1 %) = g(8,), (33)
(0, x) = vo(x), 2,v(0,x) = v1(x),

where A = A(2) = p(£)(D), A, = Ai(t) = p,(£){D), p(t) = pre™ for p; >0, y>0
and ¢g(t,x) = (x)ﬁeA(‘)f (1,x). Then the following lemma is concluded for the
Cauchy problem (3.3).

LEMMA 3.2. Assume that v € H**2, v; € H*' and g(t,x) € C°([0, T]; H*),
then there is y, > 0 and the Cauchy problem (3.3) has a unique solution (¢, x)
such that

v(t,x) € (2\ C*([o,T}; H*Y)
j=0

for all y = y,.

Proor. Now let us put V(l) = t(Vl(I), Va(t)), Vo= ’(Vo], Voz), F(t) =
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'(0,9(7)) and

(DY(x)oA(x) (D) (D)
P(t) = . 34
) ( —m(t){(x)eda(x)°(D) ! <x>iA:<x>;"> .

Where A, is defined by (2.16). Then we consider the following linear Cauchy
problem:

dt
V(0) = Vo

d
{ V(i) = POV() +F(1), te(0,T], .

At first we show that the symbols of pseudo-differential operator P(r)
satisfies the conditions of Proposition 3.1. Clearly a((D)(x)iA,(x>;6<D)7l)-
(6,%,8), o((x)eAx) ") (6%,8) and o((x)eAda(x)"(D)7)(,x,¢) belong to
C%[0,T); S') by Corollary 2.6.

det(Al — a(P)(t,x,£))
= (A= a({DY(R2A(X) (D) ) (2, %, &) (A = a((x)2Ax) ) (8, %, 8))
+m(D)a((x) An(x) (D) ) (5 X, €)()
= (A= P (&) = P (OPY(x, ) (4 — P (1)(&) = P/ (DP3(x, ©))
+m(8)(0(An) (1, %,€) + P (1, %,8)), (3.6)

where o(P) = [a(Py)]; j=1, P} (%, &) € S°(j = 1,2) and p;(¢,x,¢) € ([0, T]; '), and
they satisfy

a((D)(x)2 ()2 (D) )(1, x,8) = p'()(&) + £/ (P (x, &) (3.7)
a((X)2Ax)) (2, %, €) = p(2)(E) + P (1)P5(x, &) (3.8)
a((X)2AN(x), (D) ) (1, %, E)(E) = a(AA)(t, %, £) + pi (1, %, 8). (3.9)

Therefore we have
det(A — a(P)(t,x,&))
= 22— P (DA(2E) + P2, €) + PY(x, )
+ 7 (070 + P (%, ) (&) + P(x, &)
+ m(1)(a(4n) (1, X, ) + p3 (2, %,£)). (3.10)
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Let det(A — o(P)(1,x,£)) = 0 and solve it in A, then we have

=P (02 +P)(x, &) +P3(x,))
+ [0 (P (=2 (P2(x, &) + PY(x,©)) — 3p}(x, E)PI(x, &) + P(x, &) + P3(x, &)}
— 4m(t Z{a (Dai(x,&) + p()ax(p(); X, &) + ra(p(2); x, &)}i¢;
+pi(t,x, 5)]”2 (3.11)

where a, a;, a; and r, are defined in (2.18). Then the order of RA is as follows:

R = —ypre70((&))  {m(t)pe70(I¢]) + 0"} (3.12)

Hence, obviously there are y, > 0 and ¢y > 0 such that det(Al — o(P)(t,x,&)) >0
for any vy satisfying y > y,, |¢| » 1 and RA > —¢p(&). Therefore equation (3.5) has
a unique solution V() = (V1(2), V>(¢)) satistying

Vi(1), Va(2) € CI([0, T); H*) N C°([0, T]; HH) (3.13)
for Vor, Vip € H. Now, if we let o(z) = (D) ' V1(¢), then o(t) satisfies
v(t,x) e C'([0, T); H**1)yn CO([0, T]; H**2) (3.14)
for v(0) = vo € H**2. Then we know that v(¢,x) satisfying
A(D)o(t, x) = (D){x)gAlx) v(t,%) + (D) Va(0), (3.15)
and obviously V,(¢) is represented by v(¢,x) such that
Va(t) = d(t, %) — (X)°A(x) ot x),  Va(0) = Voo € H. (3.16)
Then by (3.5), v(t, x) satisfies

()28, — A ()7 + m(0)(x)2 A (x) (2, x) = g(2, x). (3.17)

It shows that v(¢,x) is a solution of (3.3) satisfying

(2\ cH(o, T); HY). 0O (3.18)

By Lemma 3.2, obviously we have the following lemma.
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LEmMMA 3.3. Forupe H)'7 uie HyY; and (x x)2eM0f (1, x) € CO([0, T |; H*HY),
there exists a positive constant y, and the Cauchy problem (3.1) has a unique

solution u(t,x) such that

(x)°eA0u(1, x) € (2) ([0, T); H*¥). (3.19)

k

for all y > y,.

4. A priori estimate of solution for the linear problem

Let 0 < T < oo, m(f) be a non-negative function in C°([0,T)), p(f) a
positive function in C'([0, 7)) N C%([0, T]) such that p,(f) <0, ¢(¢) a posi-
tive function in C!([0,T]) satisfying ¢/(f) <0 for t>0 and m.(t) =
fOTxe-(t— 7)m(t)dt + ¢, where &(¢) satisfies 0 <& < ¢ and |f0T)(e~(t — T)m(t)dr —

( )| <e and y(f) =& x(e'e), x(t) e CP((0,1)) satisfying x(f) >0 and
fo t)dt=1 for 0 <t <T. Then we define E(¢) as follows:

= {1002~ AP + IOy + me()(ADY (1), (DYo(0)}.
(4.1)

for the solution v(z,x) of (3.3).

LEMMA 4.1. Assume that m(t) is a non-negative function in C°([0, T]),
p(t) = e, p(t) = pre™ and v(t,x) is a solution of (3.3) satisfying v(t,x) €
ﬂjzzo C?7([0, T); HV), then there exist positive constants &, y,, ¢ and ¢y such

that

t Nt 1 4 t
E() < Bk 4 13| o 0)g(0)), ar (42)

for t€[0,T) and for any y > y,, where

! 2 2 2
q<z>=§(|p,<z>| (0], m@?  m(@p() +me(z)|p,(t>|+c0). @3)

o)) @0l Ol T e

ProoF. Note that m,(t) — m(z) in L'([0,7]) for arbitrary ¢ e [0, 7).

Differentiating both sides in (4.1), we have



494 Fumihiko HIROSAWA

2E(0)E,() = {3100~ A0

+2 (300102,

1

+§; (5"‘6(’><A<D>Sv(t), <D>sv(t))).

(4.4) = R(()2(0 = A () 0(0), (@ = A) () o(2)),

+ R(CPALD = A) () 0(0), (900 = A () 0(0)),

=R(g(1), ()x(8 = A () 0(D));
— m(OR(eAA ) 0(0), (D@ = A) ()7 0(1),
+ RAC) @ = AN 0(0), (028 = A ()7 o(0)),
+ R(p, 27N (8 = A) ) 0(1), (00 = A) ()P 0(2)),

< llg(1)l,E:(2)
— m(OR(AN P C2ANC) o), |AD 36— M) () o(0)),
— [IlAd 2 (@ = Ao
+ Cilpi|Ey(e)?,

where pd(x, D) € Op(S°®), and we used an equality; ||Pull; < Cil|ul|;\m
positive constant C; provided P e Op(S™) and u e H® (See [Ku]).

(43) = 50 (Dol
+ pORUDY 26 ~ AYC)T0(0), (D)o(o),

+ p(ORUD) (YA Po(2), (DYo(2),

(4.4)

(4.5)

(4.6)

(4.7)
(4.8)

(4.9)

(4.10)

for some
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AL - A2

2
+ 1o

2
+o(0pellv()l5532

+ G E(1)%,

(4.6) = 3 (A)(A(D)*o(0), {D)*u(1),

+m(OR(A] (D) ADY 0(0), AN ()20 = A () 0()),
+ma()R(ATHDY T ADY o(2), |AL P (VoA 0(D)),

| (0)]
< i) E(1)*

+me(R(AN (DY A(D) (), |2 ()26, — A () o(0)),
+ me(£)p,R((D) '/ A(DY*u(2), (DY P u(r))
+ mo()p,R((D) " A(D)*v(1), p3o(0));

where p)(x, D) € Op(S°) and we used

(D)~ A(D)’u, v); = (u, (D) " A(D)’v),

which is verified by the symmetry of [ay]; ,_;

ij=l,...,n"

(4.18) + (4.19) < m,(D)p,R(A(DY 1 Po(r), (D) 1Pu(1))

C3me(t) |pt|

2 E(1)’,

+

495

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
(4.18)

(4.19)

(4.20)

(4.21)

(4.8) + (4.17) < |(|A] ™ my(£)(D) ° A(DY v(e), |A] ()20 — A ()P 0(D)),

— (1A Pm() (VAN P00, | A 220 — A () Po(e)), )

(4.22)
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Then, using the equality:
mo(£)(D) " A(D)* — m(1)(x)eAn(x).°
= m(1)(4a - (x >(’AA< )e%) + m(f)(4 — An)
+m(t)((D) (DY’ — A) + {m.(1) - m() (D) *A(D)’,  (4.23)

we obtain the estimate;
1AL~ {me(0)(D)* A(DY’ — m(2) ()24 () ()]

< |me(2) — m(@)|[|A]7/(D) = 4(D) v ()
+m(D){|A] (D) A(D)* - Ay (1)
+ 1AL 72 (Aa = (Ao
+ 1AL (4 = An)(0)]}

< Colme(t) = m(©)llod " 0(0) 5132
+m(@) (1AL p! (. DY) | (DA~ a1 (-, DYo(D)]

+ PO IlAd (s -, DY (D), + 1A ™2 (ps -, D)o(0)l,)

< (Calmy(8) — m(2)| + Cm(t)p()) )] ™ o)l 11372 (4.24)
+ Cam(1)|p, | |o() . (4.25)
+m()p()lp| @ (-, DYo()]l,_y s (4.26)

where pl('xa é) € Sl: &1 (X, é) = Z;:jzl alfl éj; éZ(p?xa é) = ZZj:l aZEiéj and
Flp;x, &) = szzl ri&;&;, ai, a; and r| defined in (2.17). Besides, by Proposition
2.1, (4.26) is estimated in the following:

2
@ (, DYo(D)lsy =1 D d (-, D)D*(D) ™" v(t) /
|a]=1 s—1/2
<Gs Z @) (-, D ”s 12+ Cllv (t)||s+1/2
Jor]=1

< CR(@(-, DYo(1),0(2))412 + Callo(@2112
< GRADY 1 20(0), (DY 0(1)) (4.27)

+ Cop(1) T Es(1)?, (4.28)
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where a(x, &) = a(4)(x,&). Therefore (4.8) + (4.17) is estimated as below
(4.8) + (4.17) < 2{CF|mo(1) = m(D)]* + Cim()*p*Ho| " [0 ssfy (429)
+{4Cim(1)’p(1) " + Crom(2)’pP0™ Y, T Ex()? (4.30)

+ Cm()’p?lp,| T R(A(DYH *0 (1), (D)*Hu(2)) (4.31)

2 IIAL 2026~ AN (4.32)

Note that C; (j =1,...,10) are positive constants independent of ¢ and y. Hence
combing the preceding estimates, we have the following estimate for (4.1);

2E0ES(0) < lg(0)],E() (433)
0 me)’ | mePe) | miole )
”(""(’)”mg(t)+¢<r)|p,<r>|+¢(t)|p,<z)|+ 0] *‘“’°)Es(’>2 (434
[ 90 () = m@Pm(@p(0)*,
+"(|p,(t>|+‘”(’)’"(’” PO o) )”””*‘“/2 439
+ 2 (ma(0)p,(1) + m(1)p(1) |, (1) T HR(A(D) 2o(0), (D) Po(r).  (436)

Thus, if we let y >0 and ¢ > 0 satisfying
M3 2
e<e T 2Zmax{ su {pl 0},—+M2 2}, 4.37
Y 05157‘ ms(l) p% 0P1 ( )

where My = maxo<,;<7m(?), then the third and the fourth terms are non-
positive. O

LeEMMA 4.2. Assume that m(t) is a non-negative function satisfying m(t) €
C%0, T))NLY([0, T]) and v(t,x) ﬂ 0 C*7([0,T); H**/). Then there are p(1)
and (1) in C'([0,T)) with p,(?) eLl([O T)), p(0) = p, and ¢ > 0 such that the
estimate (4.2) is established for (4.3).

Proor. If we choose p(t) and ¢ > 0 suitably, we can prove that (4.35) and
(4.35) are non-positive. Indeed, put ¢(r) and p(7);

o(t) = plze—Zc{H»J;) m(@)(1+1/ mz(r))dr}, (4.38)

o) = (pie = ¢ [ Lsime) = (o e~ brOman/miee, ()
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then ¢(z) and p(f) belong to C!([0,T)) with p,e L'([0,T]) and p(z) >0 for
sufficientry small ¢ > 0, and they satisfy

p(O) =P

me(1) = m(D)] |, m(p(®)®  m(p(®) (4.40)
P,(t) < -—C( \/W + \/— + W (D(I))

for te(0,T). Hence we obtain (4.2). O

LeEmMA 4.3.  Assume that m(t), ¢(t) and p(t) satisfy the conditions of Lemma

4.1 and that u(t,x) is a solution of the Cauchy problem (3.1) satisfying (3.19)
then u(t,x) has the inequality as

(e 2|1 2ePOPu ()2, + || 2e”OP du(e) | 1)

‘td‘[
< celiat @wwmmm+mwmwm

+@me%mwﬂ, (4.41)

for t€[0,T), where q(t), y and ¢ are given by Proposition 4.1, and the positive
constant ¢ is independent of 7.

Proor. It is obvious by Lemma 4.1.

5. Local existence of solutions for the nomlinear problem

Let 0 <t < Ty. For T € (z,T1] we consider the Cauchy problem:

O*u(t, x) + M((Au(?),u(2)))du(t,x) = f(t,x), t<t<T, (5.1)
u(t,x) = up(x), du(t,x) = ui(x). '

THEOREM 5.1. Assume that (1.4), (1.5) and (1.6) are valid. Let 0 < p; <

po//n. Then for any uy(x)e H/ftszk, u(x) e H;“:}x and (x)‘se”(’) Dif(t,x) e
CO([0, Ty ); H**Y) with p(t) = pe "), there exist T € (v, Ti] and yy > O such that
the Cauchy problem (5.1) has a solunon satisfying

(x)2ePP (2\ C*([r, T); H*Y) (5.2)

for any y = y,.



Global solvability for the generalized 499

Proor. We may assume 7 = 0 without loss of generality. We shall prove
the existence of the solution of (5.1) by Schauder’s fixed point theorem. For
T >0 and se R, we introduce a space of functions;

Fox = 1wt %); (x)e?OPhw(t,x) € CO([0, T HY N CH([0, T HY)}  (5.3)

equipped with its norm || - || x;, as
1 P p(1)(D) N
Wllx;, = Sop 5 1) e 0Pz e + 1C)ee” P amw()|17) (5-4)

for every we X35, . Let B R) be a convex subspace of X! such that
ry T8,k T,0,x P T,6,x

2 . .
B} 5.(R) = {ueX%T;,x; (e’ OPhu(t,x) e () (0, T H), [lull o < R},

=0
(5.5)

for R>» 1. We now define the two functions
m(t) =m(t;w) = M(n(t;w)), n(tw) Z(ayD w(t),Dyw(1)),  (5.6)

for each we X;:’gylx, where s’ < 5. Note that m(r) = M(y(¢; w)) e C%([0, T']), and
if we By o (R) for R > 0, then for arbitrary fixed v > 0, there exists a positive
constant ¢ independent of w such that

JT |mg(t; w) — m(t; w)|dt < v, (5.7)
0

where m,(t; w) fo X:(t — ©)m(t;w)dr + ¢ and yx,(¢) is defined in section 4. Then
we define the mapping ® from we X;?Lol,x into ue X;"Tol,x such that

7u(t,x) + M (n(t; w)) Au(t, x) = £ (2, x). (5.8)

We shall prove that ¥ is a compact mapping from BT 0.x(R) into itself for s’ < s
and sufficiently small 7. By Lemma 3.3, u(¢,x) in (5.8) satisfies

(x)2e?OP)y(t, x) ﬁ C*([0,T]; HV) (5.9)
=0

for up e Hy*; ., wie H'}  and every fixed w e B o (R). Then by Lemma 4.1,
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we have

1 1/2
B0l + e 2uol?)
1 1/2
< e”{z (e I1(Yee? P51 + ||<->ie"<'><l’>atu<z>||f)}

’ t
< ew{cefo a0 (u<->:ie"1 Pl 1 + I)e” Pl + Jo II<~>i6”(”(">f(f)llsdf>}

T
< c’efo (‘I(f)ﬂ')d‘f, (510)

where ¢’ is independent of T and R. Therefore for sufficiently large R, we can find
T(R)=T > 0 such that

T
dedy 6OME _ g (5.11)

On the other hand, by Proposition 2.2, we have obviously that the embedding
BsT,&,K(R)L)B;:,O,K(R) is compact for s’ <s and J > 0. Hence the mapping ¥
defined (5.8) is a compact mapping from B‘T"O’K(R) into itself. Then by Schauder’s
fixed point theorem, ¥ has a fixed point u(z, x) in B‘;}Qr Further by Lemma 3.3,
the fixed point is a solution of (5.1) satisfying

2
(x)2ePOP)y(z,x) e () CZ((0,T]; H) (5.12)
j=0
for ug eH;;;?;c and u € H;‘“;’IK. O

6. Global existence of solution for the nen-linear problem

In this section we shall prove our main theorem. Now we introduce the
following energy:

E(t) = %(H@zu(t) +u(t)|* + ()| + F(n(1))), (6.1)

where F(n) = [f M(A)dA and #(r) = (Au(t),u()). Then for the energy E(),
according to [DS] and [KY], the following energy estiamte is concluded.

PROPOSITION 6.1. Assume that M(n) is a non-negative continuous function in
[0,00) and f(t,x) € C°([0, T); L?). If u(t,x) is a solution of the Cauchy problem
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(1.3) in (0,T) such that u(t,x) ﬂ 0 C?7([0,T); H'), then we have the energy
estimate:

E(1)* + j e

M@ < E0P +3 [ Sk (62)
0 0

for te0,T).
Proor. Differenting (6;1), from the equation (1.3) we get,
2E'(0E(t) = RS (1) + 0u(2), 0u(e) + u(2)) + R(Beu(t), u(2)) — M (5(1))n(2)

< IO +3EGY ~ Mi)n(o) (63)

for 1€ [0,T), which yields (6.2). O
COROLLARY 6.2. If (6.2) holds and T < oo, then M(y(t)) e L([0,T]).

ProoF. From (6.2), it is evident that M(5(¢))n(¢) € L'([0, T']). On the other
hand

t
| maas= | M)+ | Mn(z))de
0 [0.4N{zn(z)>1} 040 {rn(z) <1}
t
< j M(n(0))np(r)dt+ sup M(y)t (6.4)
0 0<n<1
for all 1€ [0,T), which implies that M(y(t)) e L'([0, T]). O

Now we can prove our main theorem. Let A(z,y) = p,e (D) and T* the
real number defined by

T = max{ T > 0; there exist y > 0 and a solution u(z, x) satisfying (1.3)

2
in (0, T') such that (x)2eA"y(y, m Hf')}.

Theorem 5.1 ensures T* > 0. We shall claim T* = oo. Suppose that T* < 0. Then
it follows from Proposition 6.2 that m(r) = M (Au(z),u(r)) belongs to L'([0, T*]).
Hence, Proposition 3.2 and the fact that m(z) e C%([0,T*)) N L'([0, T*]) yield
that v(¢,x) = (x)ie"(’)u(t, x) which satisfies (3.19) with s=0,1 and T = T*,
where A(f) = p(¢)(D) and p(¢) is introduced in (4.39). Let us take y > 0 such that
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pre " <p(t) for te[0,T*). Then the definition of T* and (4.2) imply
(x)2eMENy(2, x) ﬂ C*7([0,T*); H/), where A(t,y) = pe (D). Hence we
have the limits w(T*—-0)eH?> and Ju(T*—0) which satisfy
(x)2eMT* Ny(T* — 0) e H'. Therefore, applying Theorem 5.1 with p, = pe’”", we
have a solution i(t,x) of the Cauchy problem (5.1) in (T*,T), T > T* with
initial data #(T*) = u(T* —0) and 9,u(T*) = d,u(T* — 0), which satisfies

(x)2exp(pe 7" T(D))i(1, x) € (21 ([T, T); HY). (6.5)
j=0

Then A(t,y) = pye?T-T)(D) implies that

(x)oe D2, x) mocz‘f (T, T} 7). (6.6)

Now let us define

_ Ju(t,x), te(0,T7)
W("")—{a(t,fc), (e T T) (6.7)

Then w(t,x) has to satisfy (1.3) in (0,7) and

(x)2eMM (1, x) (g\ c*([0, T); H'). (6.8)
j=0

This result contradicts the definition of T*. Thus, we have proved that 7" = co
U
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