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CURVATURE PINCHING THEOREMS FOR MINIMAL

SURFACES IN COMPLEX GRASSMANN MANIFOLDS

By

Wu Bing-Ye

Abstract. In thispaper we study the curvature pinching property for

minimal surfaces in complex Grassmann manifolds and obtain some

results.

1. Introduction

Harmonic maps and minimal immersions of a Riemann surface M into

complex projective space CP" and complex Grassmann manifold G(m,n) have

been studied from a variety of viewpoints (see e.g.[1-5, 7]),and the basic work

of which was established by Chern and Wolfson in [3, 4]. For minimal surfaces

in CPn there is an invariant a called the Kaehler angle which is related to the

complex structure / of CPn. The Kaehler angle, whose importance in the theory

of minimal surfaces in Kaehler manifolds was pointed by Chern and Wolfson [3],

gives a measure of the failureof the immersion to be a holomorphic map. For

harmonic isometric immersions from surfacesinto complex Grassmann manifolds,

or equivalently, for minimal surfaces in complex Grassmann manifolds, there is

an analogous invariant i.e.,the Kaehler angle, and we shall use thisinvariant to

study the curvature pinching property for harmonic isometric immersions from

surfaces into complex Grassmann manifolds.

2. Preliminaries

A. The Geometry of G(m,n)

We equip C" with the standard Hermitian inner product, so that,for Z

WeCn,

Z = (zi,...,zM), W = (h'i,...,vvA

Received September 20, 1999

Revised March 13, 2000



338

we have
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<z, wy
A

zawa

here and later on we agree on the following convension of the ranges of indices:

1 < A, B, ...<≪, 1 < a,/?,...</w, m+ 1 < i,j,... < n.

A frame consists of an ordered set of n linearly independent vectors ZA so that

Z＼ A ■■■A Zn ^ 0.

It is called unitary, if

(ZA,ZBy ― Sab-

The space of unitary frames can be identified with the unitary group U(n). With

dZA = ^Jco^Ztf,

B

(2.1)

the forms coab are the Maurer-Cartan forms of U(n). They are skew-Hermitian,

i.e.,we have

coab+ coba = 0. (2.2)

Taking the exteriorderivativeof (2.1),we get the Maurer-Cartan equations of

U(n):

d(OAB =
'Y1C°AC

A C°CB-

C

(2.3)

Let G(m,n) be the complex Grassmann manifold of all w-dimensional subspace

Cm in Cn. An element Cm of G(m,n) can be defined by the multivector

Z＼ a ･･･ a Zm # 0, defined up to a factor. The vectors Za and their orthogonal

vectors Z; are defined up to a transformation of U(m) and C/(≪―m), respec-

tively,so that G(m,n) has a (/-structure, with G= U{m) x U(n ―m). In par-

ticular,the form

ds2 = ^2 MxiOJxi

a./

(2.4)

is a positive definite Hermitian form on G(m,n), which defines a canonical

Hermitian metric.It is easy to see that ds2 is infact a Kaehler metric on G(m,n).

Note that when m=＼, this induced metric on G(l,n) ― CP"~l has constant
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holomorphic sectional curvature 4. Let

co<Xi= 0<xi+ V^i0lx.i., (2.5)

i.e., 0ai and 8,x*j*are the real and imaginary parts of co^ respectively. Let

{Exi,Ex*j*} be the dual frame of {0ai,#≪;･}.The complex structure / of G{m,n) is

defined by

so that {Er,i,Erf;A is the /-canonical frame of G(m,n).

B. Harmonic Maps from Surfaces into G(m, n)

Let M be an oriented Riemannian surface and / : M ―>G(m, n) be a non-

constant harmonic map. Let e＼,e2 be a local orthonormal frame of M adapted to

the orientation, and 0＼,62 be the dual frame. The structure equations of M are

de＼= pe2, de2 = ―pe＼, dp = ―kQ＼a 02, (2.7)

where p is the real connection form and k is the Gaussian curvature of M. If we

set (p = 6＼+ ＼/―T^2,then we have the following complex version of (2.7):

dcp = ―v― 1/?a 9?, <i/>= ―K"9?a (p. (2-8)

Let

f*(coxi) = axi(p+ />a/^. (2.9)

Since ds2M = (pip,itis easy to know that / is an isometric immersion if and only if

^2 a^ai = °' ^(Bz&ai + b<xib<xi)
= 1. (2.10)

In terms of aa/-and bai Chern and Wolfson defined the so-called d- and

^-transformations as follows 141.

df:M^G(mun), df(x)= span{?

df : M -> G(aw_i ,≪), 5/(x) = span{?

axiZj : 1 < a < m >

bxiZ; : 1 < oc< m

if ]TW2^0>

a,/

if

where m＼ and m_i are positive integers, called the ranks of df and df re-

spectively.For convenience we will drop /* in such formulae when its presence is



340 Wu Bing-Ye

clear from context. Taking the exterior derivative of (2.9) and using (2.3) and

(2.8), we see that there existlocally denned complex-valued functions /?≪/,#≪/,ra/

such that [4]

PaLiV + QaLiV = dan -
y~]
apical + ＼~]ay°Jji- V^laaip

p j

q<xi<P+ r^y = dbai - ^2 bPi(O^P+ 5Z b*J0JJi+ ^-^b*P- (2-11)

The quadratic differentialform p^2 + 2qXj(p(p+ ra/^2 is the complex version of

the second fundamental form of/. It is well-known that the vanishing of its trace

is the condition that/be harmonic, so that q^ = 0, c.f.[4].By [7] we know that

the quantities ^a
{＼a^＼2
and ^a, l^a/|2are globally defined invariants on M, and

we shall give the geometric meanings of them. Let

F{d^) = c^x6{+c^2e2. (2.12)

Then from (2.5) and (2.9) we get

Cm＼ =

Coiil =

<V/*1

<V/*2

1

2
(a%i + a*i + hyj + brti)

2

2

(axi - a^ - bxi + b2i)

(-aa/ + aai - bxi + bai)

I

―(a^i + axj ― Dm ― br)_i).

From (2.12) we can easily get

/*(<?i) =
5^(ca/i.Ea/ + cfl.,-*

1
£*/*)

(2.13)

f*{el) = ^{CxnExi + C^/^a'/O- (2-14)

If/is conformal, i.e.,Yl<x
ia*ibxi
= Q, then from (2.6), (2.13) and (2.14) we see

that the cosin of the angle between Jf*(e＼)and/*^) is

<JMei)J.M> _ S,.,-(KI2 - K2) ,

M/.(',)l'l/.fe)rE1,W1 + feY
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which is an invariant on M. Therefore, for conformal harmonic map

/ : M ―>G(m,n), we can define the Kaehier function cos a and Kaehler angle a

as above. In particular, when M = S2, the topological 2-sphere, all harmonic

maps from S2 into G(m,n) are always conformal [4, 7]. Thus for harmonic

2-sphere in G(m,n), there is an invariant a, called the Kaehler angle, which gives

a measure of the failure of / to be a holomorphic map. Now we assume that

/ : M ―*G(m, n) is a harmonic isometric immersion, i.e.,an isometric minimal

immersion from M into G(m,n). Then (2.10) and (2.15) yields

E,2 2
a

fla/| =cos
2

a,/ a,i

(2.16)

which gives the geometric meanings of ]Ta;. ＼a^＼2and £]a
i
|&a/|2.As in the special

case of m = 1, we call the isometric minimal immersion / : M ―≫G(m,n) is

holomorphic, anti-holomorphic and totally real if a = 0, n and 7r/2 respectively. It

is clear that / is holomorphic if and only if df = 0, while / is anti-holomorphic if

and only if df = 0. In terms of matrix notation we collect the fundamental

formulae for a minimal isometric immersion / : M ―>■G(m, n) as follows.

where

tr(AB!)

'■

(

'■

0 ＼＼A2 COS I w＼2= sin -

dA ―4>＼＼A+ A$12 ~ V--lAp = Pq>,

dB -$nB + B<f>22+ V^lBp = R(p,

tfl,m+l

@m,m+l

Pl,m+1

Pmjn+l

(con

＼

COml

CQ＼m

COmm

Here we definethe norm ||C|

a＼n

Clmn

Phi

Pmn

)

)

･■

(

'■

(

022 =

f＼,m+l

y>n,m+l

of a matrix

(^m+＼,m+＼

Ymn

umn

)b＼n

)

: '

(Om+l.

&Vm+l " ' ' &>nn

1

(2.17)

C by ||C||2= tr(CC') in a standard

way, i is the Kaehler angle of/.
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3. Curvature Pinching Theorems for Minimal Surfaces

In this section we shall study the curvature pinching property for a minimal

isometric immersion /: M ―≫G(m,n). For this porpose let us firstprove the

following

Lemma 3.1. Let f : M ―> G(m,n) be an isometric minimal immersion from an

oriented Riemannian surface M into G{m,n). Then we have the following Gauss

equation for /:

k = 4(|Mir||2 + ||fi^||2 - WA'BW2 - ＼＼AB'＼＼2)- 2{＼＼P＼＼2+ ＼＼R＼＼2). (3.1)

Proof. By (2.3) and (2.9) we have

d(f>n = (j>u a <j)xx+ [BBl - AAl)(p a cp

d(j)22= ^22 A ^22 + (A'A ― B'B)(p A <p (3.2)

Taking the exterior derivative of (2.17)2_3 and using (2.8) and (3.2) we get

dP-(f>nP + P<f>22- isf^XPp = PA(p + P?v,

with P2 =
2kA
+ BB~'A+ AB'B

~
2AA'A]

dR-<f>nR + R</>27+ 2＼f^＼Rp = RAtp + R2(p

with Ri ^^kB + AAlB + BA'A - 2BBlB.

From (2.17)2 we can calculate out that

d(AA') - <f>nAA' + AAt(j)n = PAl(p + AP'y.

So, by taking the trace on both sides of (3.4) we get

d cos2
^
= d Xi^AA1) = tr(PA')(p + ti{AP')(p.

By virtue of (2.17), (3.3) and (3.5) we obtain

-A cos
4

2a
2
<P A W ― dd 2a

2
= d(dcos2^) =d(ti(AP')y)

(3.3)

(3.4)

(3.5)

Qcos2^-K:-2|M^||2+||JP||2+Mr5||2
+ |M^||2^ a p, (3.6)
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where A denotes the Laplacian of M. Similarlywe have

iAsin2|
=
isin2^-2||M'||2

+ ||i?||2+ ||i?5||2+|M^||2

Combining (3.6) and (3.7) we can get (3.1)immediately.

Using thisGauss equation, we can prove the following

343

(3.7)

Theorem 3.2. Let f : M ―>G(m,n) be an isometric minimal immersion

of a connected surface (not necessary complete) M into G(m,n). If k >

max{4cos2(a/2),4sin2(a/2)}, then one of the following two cases holds:

(a) k = 4, and f is either holomorphic or anti-holomorphic;

(b) k = 2, f is totally real, and f = [f + V], where f＼＼M―> G(2,n) is a

totally real isometric minimal immersion, and V is a constant complex

vector subsvace of Cn with dimension m ―2.

Proof. It is clear that

|Mi'||2<|M||4 = cos4^ (3.8)

and the equality holds if and only if rank(^l) = rank(<3/) < 1. Similarly,

||2tt'||2<||2*||4= sin4|, (3.9)

and the equality holds if and only if rank(5) = rank(^/) < 1. Therefore, from

(3.1), (3.8) and (3.9) we have

0 = k - miAA'f + IM'II2) +4(||i'5||2 + ＼＼AB'＼＼2)+ 2(||i>||2+ ＼＼R＼＼2)

> cos - (K"- 4cos -J + sin - Ik - 4sin -j

+ 4(＼＼A!B＼＼2+ H^'H2) + 2(||i>||2+ ||i?||2), (3.10)

and the equality holds if and only if rank(5/) < 1, rank(d/) < 1. By (3.10) and

the curvature condition it is clear that if / is not totally real, then / must be

holomorphic or anti-holomorphic with k = 4, which is contained in case (a) of

the theorem. Now we consider the case when/is totallyreal. Then by (3.10) we

have k = 2, and

A!B = 0, AB' = 0, P = R = 0, rank(d/)=rank(<J/) = 1. (3.11)

So we can choose the local unitary frame Z＼,...,Zn of Cn along / suitably so
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that / = [Zi a ･･･ a Zm], df = [Zm+＼] and ker(5/) = [Z2 a ･･･ a Zm＼. Fur-

thermore, since AB' = 0 implies that df J_ df, we can require that df = [Zm+2]

and ker(3/) flker(df) = [Z3 a ･･･ a Zm＼. In summary, the pull back of the

Maurer-Cartan form of U(n) by / is given by

1 1

(ojab) =

C0＼2

CO22

0

― b2,m+2(P

0

m ―2

Ol3

^23

O33

0

0

0

a＼

1

,m+＼<P

0

0

&>m+2.m+＼

Q64

By virtue of (2.17)2_3,(3.11) and (3.12) we get

{

{

a＼,m+＼ 0 0

0

0

*

0 0

0 0

≪l,w+l

0

0

-y^lp

0 0

0 b2,m+2

0

(

0

0

(

)-(

0 0

0 0

0 0

tfl.m+1

0

0

COM CO12 On

a>2＼

n3i

CO22

O32

o23

o33

)(

1

0

:)-(

0

0 b2,m+2

0

+ V^iP

(

0

0

0

(&m+＼.m+2

&>m+2.m+2

^65

)

n―m ―2

0

0

0

n46

H66

fll.w+1 0

0

0

Rm+l,≫i+l (^m+＼,m+2

tt>m+2.m+＼ ^>m+2,m+2

^64 ^65

0 0

0 0

0 0

)-
COU C012

(021

n3i

D(

0

ft>22

^32

n13w

O33/ ＼

0

0

0

0 0

n46＼

n66

)

0 0 0

0 b2,m+2 0

0 0 0

(&m+＼,m+＼ U>m+＼,m+2

&>m+2,m+＼ (L>m+2,m+2

^64 ^65

0

0 62,m+2 0

0 0 0

)

o,

O46＼

o66/

m

In-

)

1

1

1

1

2

m ―

(3-

2

12)

(3.13)
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from which it follows that

n3i o32
0

345

(3.14)

Put fi = [Zx a Z2] : M -> G(2,≪) and V = [Z3 a ･･■a Zw]. Then by (3.12) and

(3.14), we can get the conclusion of the theorem easily.

The following theorem is a generalization of Theorem 2.1 of [71.

Theorem 3.3. Let f : M ―>･G(m,n) be an isometricminimal immersion of

a compact surface M into G(m,n) which is not anti-holomorphic(resp. not

holomorphic). If k > 4cos2(a/2)/rank(d/) (resp. k > 4sin2(a/2)/rank(^/)),

then /c= 4cos2(a/2)/rank(5/) (resp.k = 4sin2(a/2)/rank(5/)).

Proof. We will give the proof for the case k > 4cos2(a/2)/rank(d/) only

because the other can be shown similarly.As in the proof of Theorem 3.2,we can

choose a local unitary frame Z＼,...,Zn of C" along / suitably so that the pull

back of the Maurer-Cartan form of U(n) by / is given by

(coAB)

where k

/

-A

＼

Q2i

u9-Bu<P

-B[2<p

!=rank(5/). (2.17)2

JA"

-y/^ip

(

m ― k＼

O12

n22

-B'2l(p

-B'22(p

Au<p + BuV

Bi＼<P

^33

O43

and (3.15) yields

On

O21

V 0

≪12

Q22

0
=
V

i
0＼ (AU

P22)

n ― m ― k＼

Buy ＼

B22(p

Q44 J

:)( Q33

^43

m-k＼ ,

kx

n ―m ―k＼

(3.15)

O34＼

^44

)

(3.16)

from which it follows that

dAn - fin/In + ^nO33 - V^lpAn = P＼＼(p,

AnQ34 = Pl2(p, Q2lAn = P2KP, P22 = 0. (3.17)

It is easy to see that |detv4n| is a scalar invariant of/ [7]. Noticing that for

a nonsingular matrix-valued function C we have Jlog(detC) = tr(dC ■C~l), we

get, from (3.17),
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d{logdet^n) - tr(Qn) + tr(Q33) - V^lkip = ＼x{PnA^)q>,

aiog|det^n|2 = ti(PnA-x})(p. ' (3.18)

Taking the exterior derivative of (3.18)2 and using (2.3), (2.8),(3.15) and (3.17)

we obtain

Alog|det^n|2

= 2M^ + 4^-2cos2^+2||51i||2 + ||512||2+ ||52i||2+ IM7/i?i2||2+ ||JP2i^7/l|2)

(3.19)

It should be pointed out that (3.19) holds only in points of det^n ^ 0. However,

when k > 4cos2(a/2)/k＼, by (3.19) and the continuity of |det^4n|2 we can deduce

that jcletv4i112is a subharmonic function on M, it must be a constant. Therefore,

K ― 4 cos2(ct12)lk＼,so we are done.

Corollary 3.4J7^ Let f : M ―>■G(m,n) be a harmonic isometricimmersion

of a compact surface M into G(m,ri) which is not anti-holomorphic(resp. not

holomorphic).If k> 4/rank(d/) {resp. k > 4/rank(5/)), then k = 4/rank(d/)

{resp.k = 4/rank(5/)),and f is holomorphic {resp.anti-holomorphic).

Example. Let / : S2 ―>･G{m,n) be defined by

k＼ ki m ―k＼―k2

':: -

^0

1

2ki

2k2

0

1

m ―k＼ ― kj

n ― m ― k＼ ―ky
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then in the induced metric from that of G(m,n), S2 has constant curva-

ture k = 4/(A:i+£2). Also, we have k＼―rank(d/), £2= rank(df), cos2(a/2) =

ki/(ki+k2), and sin2(a/2) = A:2/(A:i+ k2), so /c= 4cos2(oc/2)/rank(5/) =

4sin2(a/2)/rank(5/'). Moreover, if k＼=k2― 1, then k = 2 and f is totally real.

4. Minimal 2-spheres in G(2,4) with Constant Curvature and

Kaehler Angle

In this section, we look at minimal 2-sphere S2 in G(2,4) with constant

curvature and Kaehler angle. Let f : S2 ―>G(2,4) be a minimal isometric im-

mersion. By [4, 7] we know that at least one of the ^-transformation and the d-

transformation is degenerate. For simplicity we assume that / is neither holo-

morphic nor anti-holomorphic. Let us say rank(<3/) = 1 and ra.nk(df) > 1.

Choosing a suitablelocal unitary frame Zi, Z?, Z3, Za alone f as before, we have

A
fan , _ ( bn bi4

V b23 b24

)

(4.1)

By (2.17)2 and (4.1) we get

da＼T,+ ≪i3(CO33 ― con ― V―lp) = 0 mod 9?,

&>34 = cup, CO21 = bcp. (4.2)

(4.2)i and a result of Chern [2] show that a＼iis a function of analytic type. Since

rank(d/) = 1, ci＼ihas only isolated zeros. But tr(AB') = a^bu = 0, so bu = 0,

and consequently,

≪13 = aU(p, CO[4 = b＼A(p, CO23 = ^23^, CO24 = &24^- (4.3)

Now from (2.17)3 and (4.2)2 we have

db＼4 + b＼4(a>44― co＼＼+ v―lp) = 0 mod^,

db23 + &23(&>33 - ≪22 + y/―lp) = 0 mod^, (4.4)

db24 + b24(co44 - CO22 + a/―T/?) + (a&23 ― bb＼/＼)cp= 0 mod^.

It follows that b＼4 and Z?23 are functions of analytic type. By taking the exterior

derivative of (4.2)2 we obtain

da + a(a>44 ― CO33 - V―lp) = ^23^24^ modcp,

db + b{co＼＼― CO22 ― V―lp) = ―b]4b24(p mod (p. (4.5)

From (4.2), (4.3) and (4.4)!_2 we can calculate out as in the proof of Lemma 3.1,
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-Alog|ai3|2

-Alog|614|2

-Al0g|/)23|2
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=

l-K-2＼an＼2
+ ＼b＼A＼2+ ＼b2i＼2+ ＼a＼2+ ＼b＼2

=

i*

- 2|Z>14|2 + |ai3|2 - |£24|2 + M2 - |6|2

from which it follows that

(4.6)

l
-Mog＼b{,b2,＼2 = K + 2(＼au＼2- |Z>14|2- |/>23|2- ＼b24＼2)= /c+ 2cosoe. (4.7)

Since both /c and a are constant, if &14&23 t^ 0, then by Lemma 4.1 of [6], there is

a nonnegative integer TV such that

-nN = (k- + 2cosoc) -Atz/k, (4.8)

and consequently, k = ―8 cos a/(TV + 4), and of course this is possible only if

cos a < 0. If &14&23 = 0, we can assume that 614 = 0 without loss of generality.

Then in this case (4.5)2 yields

-Alog|d|2 =
2K+
＼bl^ + l^24'2+ lai3l2

~
2'/?|2

Combining (4.6) and (4.9) we get

-AIog|a]3Z>23^|2 =

(4.9)

3

2K

so &&23 = 0 and consequently b ―0 or Z?23= 0. If b = 0, then

-Alog|ai3623|2 = K- 1

(4.10)

(4.11)

which yieldsthat 623 = 0 or as in (4.8),

-nN' = {k- 1) -4n/K, (4.12)

where N' is a nonnegative integer.In the lattercase,k = 4/(N' + 4). Now we

consider the case bu = &23 = 0- Then by (4.4)3,(4.5) and (4.6)1we have

0 = -Alog|≪i3|2=2K~ 2lai3l2+ la!2+ l^l2'
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0 = -Alog|Z>24|
2

=

l^K-2＼b24＼2
+ ＼a＼2+ ＼b＼2,

^Alog|fl|2
=
^+l-2|a|2

-Mog＼b＼2 =
l-K+＼-2＼b＼2

349

(4.13)

It is easy to see from (4.13)1_2 that |a1312 = |&24|2 = 1/2, i.e.,/is totally real. Now

(4.131 vields

-Alog|ai3^24^|2 2k (4.14)

so ab = 0. Without loss of generality we assume that a = 0, then we have

-Alog|fl13^24^|2 I- (4.15)

Consequently, we have b ―0 or as in the above argument, k = 4/(N" + 6),

where TV" is a nonnegative integer.In the case where a = b = 0, by (4.13) we get

k ―2. In summarv. we have shown

Theorem 4.1. Let f : S2 ―> G(2,4) be an isometric minimal immersion from

S2 into (7(2,4) with constant curvature k and constant Kaehler angle a, and a # 0,

ft.77ze≪ /c= 8|cos cc＼/(N+ 4) or /c = 4/(N + 4) or k = 2, where N is a nonnegative

integer. In the last case, f is totally real.

Corollary 4.2. Let f : S2 ―*(7(2,4) &e a totally real isometric minimal

immersion from S2 into G(2,4) with constant curvature k. Then K"= 4/(7V + 4) or

k = 2. where N is a nonneaative inteaer.
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