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Abstract 

In catalytic partial oxidation of methane under isothermal conditions, a 0.3 wt% Rh/MgO 

catalyst modified with Co at a molar ratio of Co/Rh = 1 gave higher CH4 conversion, selectivities to 

CO and H2 than than the unmodified 0.3 wt% Rh/MgO. Characterization results using 

temperature-programmed reduction, extended X-ray absorption fine structure, and transmission 

electron microscopy indicate alloy formation between Rh and Co. In catalytic partial oxidation of 

methane without N2 dilution, the Rh-Co/MgO catalyst with Co/Rh = 1 suppressed the temperature 

increase near the catalyst bed inlet and yielded a flat temperature profile. This behavior can be 

interpreted by higher selectivity in the direct partial oxidation route in the presence of gas-phase 

oxygen and lower activity in steam reforming of methane in the absence of gas-phase oxygen. The 

higher performance of Rh−Co/MgO (Co/Rh = 1) than Rh/MgO can result from higher methane 

dissociation ability and higher reduction degree during the partial oxidation of methane. 
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1. Introduction 

Production of synthesis gas from natural gas is important for gas-to-liquid processes and 

methanol synthesis [1, 2]. Steam reforming of methane has been used conventionally in industry 

[2–5]. Conventional steam reformers are large and expensive because steam reforming of methane is 

a highly endothermic reaction, as shown below (Eq. (1)); the reactor must be heated from the outside. 

Much attention has recently been devoted to catalytic partial oxidation of methane (Eq. (2)) as a 

compact method for synthesis gas production. 

CH4 + H2O → CO + 3H2 ΔH0
298 K = +206 kJ⋅mol-1  (1) 

CH4 + 1/2O2 → CO + 2H2 ΔH0
298 K = −36 kJ⋅mol-1  (2) 

It has been reported that high methane conversion and syngas yield were obtained at short and 

millisecond contact times in the catalytic partial oxidation of methane [6–13]. Various supported 

metal catalysts have been tested. It has been concluded that Rh is an effective component [7, 8]. 

However, the reports on bimetallic catalysts containing Rh are so limited [14]. It has been reported 

that the alloy formation of Pt, Pd and Rh with Ni was effective to the oxidative steam reforming of 

methane in terms of the catalytic activity and the suppression of hot spot formation [15, 16]. This 

property is caused by the Ni metal species maintained even in the presence of gas-phase oxygen 

through the alloy formation between Ni and noble metals. These reports suggest that the alloying 

between a noble metal and a base metal can be connected to synergetic effects, which enable the 

substitution of a noble metal with a base metal.  

Here, the effect of addition of Co, Ni and Fe was investigated over Rh/MgO. An effective 
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modification can decrease the usage of Rh, which has high cost and limited availability. In particular, 

the effect of modifiers on the temperature profiles of the catalyst bed as well as the methane 

conversion and selectivities for synthesis gas formation were also investigated. 

Hot spot formation is a common problem in the conversion of hydrocarbons to synthesis gas 

using oxygen in catalytic partial oxidation [17–20] and the oxidative reforming of methane [15, 16, 

21, 22]. This phenomenon is attributable to the combustion reaction (Eq. (3)) over catalysts near the 

bed inlet, which can cause catalyst deactivation through sintering of support materials and 

aggregation of active metal particles. 

CH4 + 2O2 → CO2 + 2H2O ΔH0
298 K = −803 kJ⋅mol-1

.
  (3) 

This article reports that the addition of Co to 0.3 wt% Rh/MgO in a suitable amount enhanced CH4 

conversion and selectivity for syngas formation, which were beyond those of 1.0 wt% Rh/MgO in the 

partial oxidation of methane at short contact time. At the same time, results show that Rh/MgO 

modified with an optimum amount of Co was very effective for suppression of hot spot formation. 

This high performance results from alloy formation between Rh and Co based on the catalyst 

characterization. 

 

2. Experimental 

2.1 Catalyst preparation 

Rh/MgO catalysts were prepared by impregnating MgO with an aqueous solution of 

RhCl3•3H2O (Soekawa Chemicals). The MgO was obtained by calcining MgCO3 (Wako Pure 
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Chemical Industries Ltd.) at 1423 K for 3 h; the BET surface area of the MgO was determined to be 

6.5 m2/g. After impregnation, the solvent was evaporated at 353 K and the sample was dried at 383 K 

for 12 h and then calcined at 773 K for 3 h. Loading amounts of Rh were 0.3–3.2 wt%. Also, Rh/MgO 

modified with additive metals was also prepared. Co, Ni, and Fe were added by the co-impregnation 

method using the mixed aqueous solution of RhCl3•3H2O and corresponding nitrate. After 

co-impregnation, the solvent was evaporated at 353 K and the sample was dried at 383 K for 12 h and 

then calcined at 773 K for 3 h. Co(NO3)2•6H2O, Ni(NO3)2•6H2O and Fe(NO3)3•9H2O were obtained 

from Wako Pure Chemical Industries Ltd. Catalysts are denoted as Rh−M/MgO, and the amount of 

the additives is described by the molar ratio to Rh as in Rh−Co/MgO (Co/Rh = 1). The loading 

amount of Rh on Rh−M/MgO (M = Co, Ni, Fe) was 0.3 wt%. As a reference, 0.2 wt% Co/MgO was 

prepared using the impregnation method. A loading amount of 0.2 wt% Co corresponds to a Co 

amount on Rh−Co/MgO (Co/Rh = 1). In addition, 0.6 wt% Rh−Co/MgO (Co/Rh=1) was also 

prepared. Catalysts in powder form were pressed and crushed to be sieved into granules of 0.13–0.18 

mm. After reduction at 1123 K for 0.5 h, the BET surface area of 0.3 wt% Rh/MgO was determined to 

be 5.6 m2/g, and those of Rh−M/MgO (M = Co, Ni, and Fe, M/Rh = 1) were determined respectively 

to be 5.1, 7.5, and 5.7 m2/g. 

2.2 Catalytic performance in partial oxidation of methane under isothermal conditions 

Activity tests for partial oxidation of methane were carried out using a tubular fixed bed flow 

reactor made of quartz. A thin quartz tube was inserted in the catalyst bed as a thermowell, as 

illustrated in Figure 1(a). A thermocouple was located at the bottom of the catalyst bed to monitor and 
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control reaction temperature by furnace heating. The catalyst weight was 10 mg. Catalysts were 

reduced with hydrogen at 1123 K for 0.5 h before each activity test. To prevent temperature increase 

of the catalyst bed due to exothermic reactions, the reactant gases (CH4 + O2) were hugely diluted 

with N2 up to CH4/O2/N2 = 4/2/94. In fact, no temperature increase was observed at all by infrared 

thermography. The total flow rate of the gases was 1500 cm3 min-1, and the contact time was as short 

as 0.4 ms. Catalytic performance was examined for 0.5 h; steady-state activity and selectivity are 

shown. The effluent gas was analyzed using an FID-GC equipped with a methanator for CO, CH4, 

and CO2, and a TCD-GC (carrier gas: Ar) for H2 and a TCD-GC (carrier gas: He) for O2. Methane 

conversion and CO and H2 selectivities are calculated as  

CH4 conversion (%) = (CCO + CCO2)/(CCH4 + CCO + CCO2)×100,  

CO selectivity (%) = CCO/(CCO + CCO2)×100,  

H2 selectivity (%) = CH2/((CCO + CCO2)×2)×100,  

where C is the concentration of each component in the effluent gases. Throughout all the experiments, 

no carbon-containing product other than CO and CO2 was formed. Amount of carbonaceous 

materials, such as coke deposited on the catalyst surface, was negligible. 

2.3 Temperature measurement of catalyst bed with infrared thermography 

Reaction tests for partial oxidation of methane (CH4/O2 = 2/1) without N2 dilution were carried 

out using a fixed-bed quartz reactor, as depicted in Figure 1(b) using IR thermography (TH31; NEC 

San-ei Instruments Ltd.). Since temperature profiles were strongly dependent on catalytic property 

and performance under the reaction conditions, the profiles were measured using IR thermography, as 
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reported previously [16, 23].  The catalyst weight was 10 mg and the bed length was 3.0 mm. The 

furnace temperature was controlled to be 723 K. A cooling trap was located at a reactor exit to remove 

steam contained in effluent gases. Gas analysis was the same as that used for the activity test in the 

partial oxidation of methane under isothermal conditions. In experiments for measuring the effect of 

steam addition to the partial oxidation of methane, steam was obtained by vaporizing distilled water 

supplied using a feeding pump. 

2.4 Characterization of catalysts 

Temperature-programmed reduction (TPR) profiles were measured in a fixed-bed quartz reactor. 

Before TPR measurement, catalysts were treated in O2 at 773 K for 0.5 h and then in Ar at 773 K for 

0.5 h to remove adsorbed species such as CO2. The sample weight was 50 mg, and the heating rate 

was 10 K min-1 from room temperature to 1123 K, and 5% H2 diluted in Ar (30 cm3 min-1) was used. 

A cold trap with frozen acetone (ca. 173 K) was used for the removal of steam formed. TPR profiles 

were monitored continuously using an on-line TCD-GC. Consumption of hydrogen was estimated 

from the integrated peak area of the profiles. 

Measurement of H2 chemisorption was carried out in a high-vacuum system using a volumetric 

method. Before adsorption of H2, catalysts were treated in H2 at 1123 K for 0.5 h in a fixed-bed 

reactor. After this pretreatment, the sample was transferred to a cell for adsorption measurements 

under air atmosphere. Before each measurement, H2 pretreatment at 773 K was carried out for 0.5 h in 

the cell. After evacuation at 773 K, the sample was cooled to room temperature. The total amount of 

H2 adsorption was measured at room temperature with a H2 pressure at adsorption equilibrium of 
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about 2.6 kPa. The dead volume of the apparatus was 63.5 cm3 and sample weight was 150 mg. 

Transmission electron microscope (TEM) images were taken (JEM-2010F; JEOL) with 

equipment operated at 200 kV. Catalysts were reduced by H2 pretreatment at 1123 K for 0.5 h or used 

for activity tests in the partial oxidation of methane without N2 dilution for 3.0 h. Samples were 

dispersed in 2-propanol using supersonic waves. Then they were put on Cu grids for TEM 

observation under air atmosphere. On the TEM image, small and dark spheres can be assigned to 

metal particles containing Rh and/or Co. We measured the size of more than 100 particles on several 

images. The particle sizes were distributed in the range of 1– 11 nm.  Average particle size (d) is 

calculated by d = Σnidi
3/Σnidi

2 (ni, number of pieces; di, particle size) [24]. 

Rh K-edge EXAFS were measured at BL01B1 station in SPring-8 with support from the Japan 

Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2006A1058). The storage ring was 

operated at 8 GeV. A Si (311) single crystal was used to obtain a monochromatic X-ray beam. Two ion 

chambers filled with 50%Ar+50%N2 and 75%Ar+25%Kr were used, respectively, as detectors of I0 

and I. Co K-edge EXAFS was measured at BL-9C station of the Photon Factory at the High Energy 

Accelerator Research Organization (Proposal No. 2006G095). The storage ring was operated at 2.5 

GeV. A Si (111) single crystal was used to obtain a monochromatic X-ray beam. The monochromator 

at both rings was detuned to 60% maximum intensity to avoid higher harmonics in the X-ray beam. 

Two ion chambers filled with N2 and 25%Ar diluted with N2 for Co K-edge EXAFS were used, 

respectively, as detectors of I0 and I. Samples for the EXAFS measurement were prepared by pressing 

catalyst powders of 750 and 250 mg, respectively, for Rh and Co K-edge EXAFS. The catalyst 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6WHJ-4PSJT54-1&_mathId=mml25&_user=128923&_cdi=6852&_rdoc=3&_ArticleListID=643727225&_acct=C000010078&_version=1&_userid=128923&md5=ca609f742187f74a30dff5e8fdf6b103
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6WHJ-4PSJT54-1&_mathId=mml25&_user=128923&_cdi=6852&_rdoc=3&_ArticleListID=643727225&_acct=C000010078&_version=1&_userid=128923&md5=ca609f742187f74a30dff5e8fdf6b103
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6WHJ-4PSJT54-1&_mathId=mml26&_user=128923&_cdi=6852&_rdoc=3&_ArticleListID=643727225&_acct=C000010078&_version=1&_userid=128923&md5=04238746febd250ed29238feb08007fe
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6WHJ-4PSJT54-1&_mathId=mml26&_user=128923&_cdi=6852&_rdoc=3&_ArticleListID=643727225&_acct=C000010078&_version=1&_userid=128923&md5=04238746febd250ed29238feb08007fe
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TF5-4MJC1Y3-1&_user=128923&_coverDate=02%2F20%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000010078&_version=1&_urlVersion=0&_userid=128923&md5=1ea63d3618a7ca83d8f1710adef8e7f4#bib34#bib34
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powder was treated using H2 at 1123 K for 0.5 h in a fixed-bed reactor and the sample was pressed 

into a self-supporting 7-mm-diameter wafer under atmosphere, followed by treatment of the wafer 

with H2 at 773 K for 0.5 h in a cell. After this pretreatment, the sample wafer was transferred to the 

measurement cell using a glove box filled with nitrogen to prevent exposure of the sample disk to air. 

The Rh-K edge EXAFS data were collected in a transmission mode at room temperature. The Co-K 

edge EXAFS data were collected in a fluorescence mode at room temperature. For the EXAFS 

analysis, oscillation was first extracted from EXAFS data using a spline smoothing method [25]. The 

oscillation was normalized by the edge height around 50 eV.  

2.5 Titration of adsorbed oxygen during partial oxidation of methane 

To examine the reduction degree of catalysts during partial oxidation of methane, titration of 

adsorbed oxygen with H2 pulses was carried out after pulse reaction of partial oxidation of methane. 

The reactor was the same as that depicted in Figure 1(b). Pulses of CH4 + O2 (CH4/O2 = 2/1) and H2 

were supplied using six-way valves. The pulse contents were 4.06 μmol CH4 + 2.03 μmol O2 and 

0.045 μmol H2. The catalyst amount was 10 mg, where Rh amount was as small as 0.31 μmol. The 

flow rate of He carrier gas was 300 cm3 min-1. After H2 pretreatment, the CH4/O2 pulse was 

introduced 10 times. Reactants and products were analyzed using a quadrupole mass spectrometer 

(QMS, QMA200; Pfeiffer Vacuum Technology AG). Catalytic performance such as CH4 conversion, 

H2 selectivity, and CO selectivity were based on an average of 10 pulses. 

2.6 Methane dissociation ability using a pulse of CH4+D2 

To evaluate methane dissociation activity, a pulse reaction of CH4 + D2 was carried out. The 
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apparatus was the same as that for the CH4/O2 reaction. Catalysts were reduced with hydrogen at 1123 

K for 0.5 h before the CH4-D2 reaction. Pulse gases (CH4/D2 = 3.05/3.05 μmol) were introduced to the 

10 mg catalyst (Rh: 0.31 μmol) at flow rate of 30 cm3 min-1 of N2 carrier. 

 

3. Results and discussion 

3.1 Catalytic performance in partial oxidation of methane under isothermal conditions 

Table 1 shows effect of Rh loading amount on the methane conversion and selectivity over 

Rh/MgO. The conversion and selectivity increased remarkably with increasing Rh loading in the 

range of 0.3–1.0 wt%. In contrast, they were almost constant in the range of 1.0–3.2 wt% Rh. This 

activity in catalytic partial oxidation of methane is rather insensitive to the loading amount; this 

behavior agreed well with that described in a previous report [8]. It seems that turnover frequency of 

the partial oxidation of methane decreased with increasing Rh loading amount. The effect of adding 

second metals over 0.3 wt% Rh/MgO is also listed in Table 1. Addition of Fe had a negative effect on 

the catalytic performance over Rh/MgO. This tendency can be related to the fact that Rh is the most 

effective component in catalytic partial oxidation of methane, as reported previously [7, 8]. On the 

other hand, addition of Ni and Co promoted the partial oxidation of methane. In particular, an 

interesting point is that the performance on Rh−Co/MgO (Co/Rh = 1) with 0.3 wt% Rh exceeded that 

of 1.0 wt% Rh/MgO. At the same time, Rh-Co/MgO (Co/Rh = 1) gave higher turnover frequency 

than the Rh/MgO catalysts. Promoting effect of Co addition was also observed on 0.6 wt% 

Rh−Co/MgO (Co/Rh=1).   
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Table 2 lists effect of additive amount of Co over Rh−Co/MgO. Methane conversion and 

selectivity were improved by addition of Co up to Co/Rh = 1. However, excessive addition of Co in 

the range of Co/Rh > 1 decreased the catalytic performance gradually with increasing additive 

amount of Co. An optimum amount of Co addition was determined to be Co/Rh = 1 over 0.3 wt% 

Rh/MgO from a viewpoint of conversion and TOF. The amount of H2 adsorption increased with 

increasing Co amount on Rh-Co/MgO catalysts. The turnover frequency was maximum at Co/Rh = 1. 

In addition, the results on 0.2 wt% Co/MgO were also listed in Table 2. Based on the low catalytic 

activity of the Co/MgO, an interaction between Rh and Co can be connected to higher performance of 

the Rh-Co/MgO catalysts. Furthermore, we also tested the catalytic performance over the 

Rh−Co/MgO catalyst (Co/Rh=1) after the H2 reduction at 1123 K for 3 h, and the result was almost 

the same as that after the reduction for 0.5 h (Table 2), which can be related to no H2 consumption was 

observed when the temperature was maintained at 1123 K for 0.5 h in the TPR profiles as mentioned 

below.  

3.2 Characterization of Rh−Co/MgO catalysts 

Figure 2 shows profiles of temperature-programmed reduction (TPR) with H2 of the catalysts; H2 

consumption data are presented in Table 3. Reduction of Rh species on MgO proceeds in a wide 

temperature range. According to the previous reports, the H2 consumption below 673 K is assigned to 

the reduction of Rh2O3, and the H2 consumption above 673 K is assigned to the reduction of 

MgRh2O4 [26–28]. The total amount of H2 consumption on Rh/MgO was close to the stoichiometry 

of Rh3+ + 3/2H2 → Rh + 3H+, as presented in Table 3, which indicates that almost all the Rh species 
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are present in a metallic state after the TPR experiment. On Co/MgO, the Co species on MgO were 

reduced at around 900 K [29]. For Rh−Co/MgO, a TPR peak at 500 K grew with increasing Co 

amount, where the H2 can be consumed by the reduction of Rh2O3 and Co3O4 species [30–32]. This 

behavior indicates that the Co species on Rh−Co/MgO reduced together with the Rh2O3 species on 

MgO; the presence of Rh promotes reduction of Co. In addition, the Rh and Co species interacted 

strongly with MgO such as MgRh2O4 can be reduced at higher temperature than 673 K. From the H2 

consumption amount on Rh−Co/MgO (Co/Rh = 1 and 2) considering H2 consumption on Rh/MgO 

and MgO, about 70% of Co species was reduced, based on the assumption Co3O4 + 4H2 → 3Co + 

4H2O (Table 3). The presence of unreduced Co species indicates stronger interaction between Co and 

MgO than that between Rh and MgO.   

EXAFS technique is very effective to the structural analysis of bimetallic catalysts when the 

information can be obtained from both edges of the components. Fourier transformation of the 

k3-weighted EXAFS oscillation from k space to r space was performed to obtain a radial distribution 

function. Inversely Fourier filtered data were analyzed using a curve fitting method [33, 34]. The 

Fourier transform and Fourier filtering ranges are shown for each result. For a curve fitting analysis, 

the empirical phase shift and amplitude functions for Rh–Rh, Rh–O, Co–Co, and Co–O bonds were 

extracted, respectively, from data of Rh foil, Rh2O3, Co foil, and CoO. Theoretical functions for 

Rh–Co and Co–Rh bonds were calculated using the FEFF8.2 program [35]. Analyses of EXAFS data 

were performed using a software program (REX2000, Version 2.3.3; Rigaku Corp.). Error bars for 

each parameter in the curve fitting procedure were estimated by stepping each parameter, while 
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optimizing the other parameters, until R factor became two times its minimum value [36]. Figure 3 

shows Rh K-edge EXAFS results of catalysts after H2 reduction; curve fitting results are presented in 

Table 4. On the Rh−Co/MgO catalysts, Rh−Co bonds as well as the Rh−Rh bonds were required for 

obtaining a good curve fitting result. The coordination number (CN) of the Rh−Co bond increased 

and the CN of the Rh−Rh bond decreased with increasing Co amount. The bond distance of the 

Rh−Co bond is 0.257–0.263 nm, which is located between Rh−Rh bond (0.268 nm) in Rh metal and 

Co−Co bond (0.251 nm) in Co metal. A similar bond length was described in a previous report [30]. 

At the same time, the Rh-Rh bond distance on the Rh−Co/MgO catalysts is 0.262–0.264 nm, which is 

shorter than that in Rh metal (0.268 nm). The curve fitting results suggest alloy formation of Rh and 

Co [30-32, 37-39]. 

Figure 4 shows Co K-edge EXAFS results of catalysts after H2 reduction; curve fitting results are 

presented in Table 5. For curve fitting of Co/MgO, both Co−Co and Co−O bonds are needed. In 

addition, the Co−Rh bond was also contributed on Rh−Co/MgO. The presence of the Co−O bond and 

its CN are supported by the Co-based reduction degree obtained from the TPR in the case of 

Rh−Co/MgO (Co/Rh = 1 and 2). As a result, EXAFS analysis and TPR results support the Rh-Co 

alloy formation. As reported previously, Ni was also alloyed with Rh easily [23]. On the other hand, it 

is expected that Fe is not alloyed with Rh easily, and this is why decreased performance was seen on 

Rh-Fe/MgO [40, 41].  

From the TEM observation, the average particle size of Rh/MgO and Rh−Co/MgO (Co/Rh=1) 

after reduction is determined to be 5.5±0.3 nm and 7.6±0.3 nm, respectively. In the EXAFS analysis, 
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the difference in particle size between Rh/MgO and Rh−Co/MgO (Co/Rh = 1) cannot be detected 

clearly because both sizes are too large to distinguish using EXAFS analysis. Increase of the particle 

size by Co addition can be associated with Rh−Co alloy formation because number of metallic atoms 

in a particle increases. In the reduction pretreatment, Rh species are reduced before the reduction of 

Co, and the reduced Co species are gradually incorporated into the Rh metal particles, which can 

explain the larger particle size of Rh−Co/MgO. The adsorption amount of H2 and the metal dispersion 

on Rh/MgO and Rh−Co/MgO (Co/Rh = 1 and 2) are also presented in Table 1, where the 

stoichiometry of adsorbed hydrogen to surface metal Rh and Co atoms is assumed to be 1 [42, 43]. 

Metal dispersion decreased with increasing amount of Co addition; this tendency agrees well with 

results obtained from TEM observations. 

3.3 Catalytic performance in CH4/O2 = 2/1 without N2 dilution 

Regarding the partial oxidation of methane without dilution, the catalyst bed temperature is 

strongly influenced by the catalytic performance. Therefore, bed temperature profiles were measured 

using IR thermography. Figure 5 shows the thermographical results over Rh−Co/MgO and Rh/MgO, 

at a fixed contact time. A very high temperature profile was detected near the bed inlet. The order of 

the highest bed temperature was as follows: Rh−Co/MgO (Co/Rh = 1) < 0.3 wt% Rh/MgO < 1.0 wt% 

Rh/MgO < Rh−Co/MgO (Co/Rh = 2). According to the previous report [8], H2 and CO are formed in 

the presence of gas-phase oxygen by partial oxidation and in the absence of oxygen by steam 

reforming over the Rh catalyst. A similar interpretation is applicable to the profiles of 0.3 wt% and 1.0 

wt% Rh/MgO. In addition, methane combustion as a side reaction in the presence of gas-phase 
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oxygen also contributed to the temperature increase at the bed inlet. In contrast, the temperature 

profile on Rh−Co/MgO (Co/Rh = 1) was rather flat. This result indicates that addition of an optimum 

amount of Co is effective for suppression of hot spot formation over Rh/MgO. 

Figure 6 shows the effect of contact time on the highest bed temperature and catalytic 

performance in the partial oxidation of methane. Here, the contact time was increased by the decrease 

in flow rate at a constant catalyst amount. Conversion decreased with decreasing contact time, given 

a constant catalyst temperature. In the present case, CH4 conversion increased with decreasing 

contact time, which indicates that the conversion is influenced by temperature increase more strongly 

than contact time decrease. On the other hand, Rh−Co/MgO (Co/Rh = 1) gave higher methane 

conversion than Rh/MgO at the same contact time and at lower bed temperature. Table 6 presents a 

comparison between the results of the activity tests and the equilibrium gas composition calculated on 

the assumption that the reaction proceeds in an indirect reaction mechanism [18], where methane 

reforming reactions proceed after methane combustion. In this case, methane conversion is limited by 

the reaction equilibrium of methane reforming reactions with H2O and CO2, and the gas composition 

at the outlet temperature in the catalyst bed is determined on the basis of the equilibrium. Both 

Rh−Co/MgO and Rh/MgO catalysts gave higher conversion and selectivity than those at equilibrium 

based on the bed outlet temperature. In addition, the conversion and selectivity on Rh−Co/MgO was 

comparable to those at equilibrium based on the observed highest bed temperature. This behavior is 

explainable by a much smaller contribution of steam reforming on Rh−Co/MgO (Rh/Co = 1) than that 

on 0.3 wt% Rh/MgO. This behavior is observed in partial oxidation of methane in the presence of 
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steam more clearly, as described below. In addition, it is characteristic that the Rh−Co/MgO gave 

higher methane conversion when both highest bed and outlet temperatures were lower than Rh/MgO. 

It has been reported that higher conversion and selectivities are favored at higher temperature [44], 

and hot spot formation can promote the partial oxidation of methane through heat transfer over 

Ni/Yb2O3. This can be interpreted by the steam reforming of methane promoted by the heat from the 

combustion reaction. In contrast, the tendency was opposite in the present case, which is explainable 

by a much smaller contributions of steam reforming and a much higher contribution of direct partial 

oxidation as discussed below.    

Figure 7 shows the effect of steam addition on temperature profiles of the catalyst bed. For 

Rh/MgO, the highest bed temperature decreased remarkably with increased partial pressure of steam. 

This behavior can result from an increasing contribution of steam reforming of methane, which is 

highly endothermic. Based on the previous reports [45, 46], the kinetics of steam reforming of 

methane are independent of steam partial pressure. Therefore, we interpret at present that the steam 

addition increased the amount of the active metallic species through the increase of the H2 partial 

pressure because the Rh species are partially oxidized at the inlet of the catalyst bed. In contrast, 

steam partial pressure did not affect the temperature profiles on Rh−Co/MgO (Co/Rh = 1) 

significantly. This tendency is also supported by lower catalytic activity in steam reforming over 

Rh−Co/MgO (Co/Rh = 1) than Rh/MgO, although the details are not shown here. Flat temperature 

profiles on Rh−Co/MgO (Co/Rh=1) can be affected by two factors simultaneously.  One is a higher 

selectivity for the direct catalytic partial oxidation of methane, which is less exothermic reaction. The 
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other is a reduction in steam reforming reaction, which is highly endothermic reaction. Both aspects 

can contribute to the suppression of hot spot formation through Co addition. 

3.4 Reduction degree during the reaction and methane dissociation ability 

Table 7 lists the results of the CH4/O2 pulse reaction and subsequent titration of adsorbed oxygen 

species. In the CH4/O2 pulse reaction, the amount of CH4 and O2 feed was much larger than the 

number of surface metal atoms. The order of methane conversion in the pulse experiment was the 

same as that of activity tests under continuous flow conditions. Therefore, it is thought that the 

steady-state catalyst surface is reproduced in the pulse experiment. We measured the amount of 

adsorbed and absorbed oxygen by the reaction of H2 (O(a) + H2 → H2O) after the pulse reaction and 

the total amount of H2 consumed in the pulses gave the reduction degree of Rh and Co. The reduction 

degree was calculated on the basis of H2 consumption amount on catalysts oxidized under 100% O2 at 

873 K for 30 min. The values of reduction degree were rather small and these cannot be explained by 

the amount of adsorbed oxygen on the metal surface. In particular, the bulk metallic species were also 

oxidized during the reaction on Rh/MgO and Rh−Co/MgO (Co/Rh=2). A clear relation between the 

performance in partial oxidation of methane and the reduction degree was observed. The catalysts 

with lower reduction degree showed lower conversion and selectivity. This tendency indicates that 

methane can be activated on the metal surface and not on the oxidized surface [47, 48]. An interesting 

point is the order of the reduction degree during the reaction: Rh−Co/MgO (Co/Rh = 1) > Rh/MgO > 

Rh−Co/MgO (Co/Rh = 2). As might be apparent, the oxygen affinity of Co was much higher than that 

of Rh [49]; it is expected that higher oxygen affinity results in a larger amount of adsorbed and 
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absorbed oxygen during the reaction and lower reduction degree. This expectation is true for the case 

of Rh−Co/MgO (Co/Rh = 2), and not for the case of Rh−Co/MgO (Co/Rh = 1). The state of Rh and 

Co species during the CH4/O2 pulse reaction is dependent on the reduction rate of the oxidized species 

and the oxidation rate of the reduced species. The oxidation rate can increase with Co content because 

of its high oxygen affinity. On the other hand, regarding the reduction rate, when the reducibility 

agent is H2, the reduction rate of the Rh/MgO and the Rh−Co/MgO catalysts is expected to be almost 

the same as shown in the TPR profiles (Figure 2). However, in fact, the reducing agents during the 

reaction can be methane, H2 and CO, and the pressure of the reducing agents can also be dependent on 

the catalytic activity. The Rh and Co species tend to be present as metallic species when the amount of 

Co added is optimum because high catalytic activity can compensate for the increase of the oxidation 

rate. In contrast, when too much Co was added, the oxidation rate can exceed the reduction rate 

remarkably. 

Table 8 lists the CH4−D2 reaction results at 573 K for evaluation of the methane dissociation 

ability. The ability order is as follows: Rh−Co/MgO (Co/Rh = 1) > Rh/MgO > Rh−Co/MgO (Co/Rh = 

2). Rh−Co/MgO (Co/Rh = 2) showed a rather low ability in spite of the large amount of the H2 

adsorption. The Co metal surface has been shown to have lower methane activation ability than the 

Rh metal surface from studies on steam reforming of methane [50]. This property can be connected to 

the low performance in methane dissociation and partial oxidation of methane. In contrast, 

Rh−Co/MgO (Co/Rh = 1) has higher methane dissociation ability than Rh/MgO, which can be partly 

related to a larger amount of H2 adsorption on Rh−Co/MgO (Co/Rh = 1) (Table 3). Based on the 
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EXAFS results, it is suggested that the surface Co atoms on the Rh−Co alloy particles with a suitable 

composition can contribute to methane dissociation and partial oxidation of methane, whose 

performance is comparable to Rh atoms on Rh−Co alloy and Rh metal particles. At present, the 

promotion mechanism of methane dissociation ability on Rh−Co/MgO (Co/Rh = 1) is not elucidated. 

Further investigation is necessary. 

 

4. Conclusions 

For the partial oxidation of methane with N2 dilution, Rh−Co/MgO (Co/Rh = 1) exhibited higher 

activity and selectivities to H2 and CO than 0.3 wt% and 1.0 wt% Rh/MgO. Characterization using 

TPR and EXAFS indicates the formation of a Rh−Co alloy on Rh−Co/MgO catalysts, which is also 

supported by TEM and adsorption measurements.  

In the partial oxidation of methane without N2 dilution, Rh−Co/MgO (Co/Rh = 1) gave much 

lower catalyst bed temperatures than Rh/MgO. Addition of steam decreased the highest bed 

temperature remarkably on Rh/MgO. In contrast, the temperature profile was not influenced by steam 

addition on Rh−Co/MgO (Co/Rh = 1). These results indicate that Rh/MgO catalyzes the partial 

oxidation and combustion of methane at the bed inlet in the presence of gas-phase oxygen. This can 

enhance the temperature drastically. In the downstream, the steam reforming of methane is catalyzed 

in the absence of oxygen. Addition of Co promoted partial oxidation of methane and suppressed 

methane combustion over Rh−Co/MgO (Co/Rh = 1) in the presence of gas-phase oxygen; these bring 

the suppression of hot spot formation. The flat bed temperature profiles on Rh−Co/MgO (Co/Rh = 1) 
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can be simultaneously affected by two factors: one is higher selectivity for the direct partial oxidation 

of methane, the other is a reduction in steam reforming of methane. Titration of adsorbed oxygen 

during the reaction revealed that the reduction degree on Rh−Co/MgO (Co/Rh = 1) was higher than 

that on Rh/MgO, which is associated with higher methane dissociation ability. The results can explain 

high performance of Rh−Co/MgO (Co/Rh = 1), and the catalytic performance of Rh-Co/MgO can be 

dependent on the surface composition of the Rh-Co alloy particles. 
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Captions 

 

Table 1 Results of activity test in partial oxidation of methane with N2 dilution and H2 adsorption. 

 

Table 2 Results of activity test in partial oxidation of methane with N2 dilution and H2 adsorption. 

 

Table 3 Results of temperature programmed reduction and metal dispersion. 

 

Table 4 Curve fitting results of Rh-K edge EXAFS of reduced catalysts. 

 

Table 5 Curve fitting results of Co-K edge EXAFS of reduced catalysts. 

 

Table 6 Comparison between the results of the activity tests and the equilibrium calculation. 

 

Table 7 Catalytic performance of pulse CH4+O2 reaction and reduction degree after the reaction. 

 

Table 8 CH4-D2 exchange reaction over 0.3 wt% Rh/MgO and Rh−Co/MgO (Co/Rh = 1.0 and 2.0). 

 

Fig. 1 Reactor setup. (a) Partial oxidation of methane with N2 dilution for isothermal conditions, (b) 

Partial oxidation of methane without N2 dilution for the IR thermographical observation. 
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Fig. 2 TPR profiles of 0.3 wt% Rh−Co/MgO catalysts, as well as those of MgO and Co/MgO. 

Reduction degree was calculated as the following reactions: 

Rh2O3 + 3H2 → 2Rh + 3H2O, Co3O4 + 4H2 → 3Co + 4H2O. 

 

Fig. 3 Results of Rh K-edge EXAFS analysis of catalysts. 

(a) k3-weighted EXAFS oscillations, (b) Fourier transform of k3-weighted Rh K-edge EXAFS, FT 

range: 30–130 nm-1, (c) Fourier filtered EXAFS data (solid line) and calculated data (dotted line). 

 

Fig. 4 Results of Co K-edge EXAFS analysis of catalysts. 

(a) k3-weighted EXAFS oscillations, (b) Fourier transform of k3-weighted Co K-edge EXAFS, FT 

range: 30–120 nm-1, (c) Fourier filtered EXAFS data (solid line) and calculated data (dotted line). 

 

Fig. 5 Result of thermographical observation during partial oxidation of methane: 

(a) an example of a thermographical image on Rh−Co/MgO (Co/Rh = 1); (b) a picture of the catalyst 

bed; (c) temperature profiles of catalyst bed during the reaction from thermographical observation. 

Reaction Conditions: CH4/O2 = 2/1; total flow rate 300 cm3 min-1; total pressure 0.1 MPa; catalyst 

weight 10 mg; contact time 2.0 ms. 

 

Fig. 6 Effect of contact time in partial oxidation of methane without N2 dilution on the highest bed 
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temperature and catalytic performance. 

(a) 0.3 wt% Rh/MgO, (b) Rh−Co/MgO (Co/Rh = 1). 

Reaction Conditions: CH4/O2 = 2/1, total flow rate 300–150 cm3 min-1; total pressure 0.1 MPa; 

catalyst weight 10 mg; contact time 2.0–4.0 ms. 

 

Fig. 7 Effect of steam addition to the partial oxidation of methane on temperature profiles. 

(a) 0.3 wt% Rh/MgO, (b) Rh−Co/MgO (Co/Rh = 1). 

Reaction Conditions: CH4/O2/H2O = 200/100/0–50 cm3 min-1, total flow rate 300–350 cm3 min-1, 

H2O/CH4 = 0–0.25; total pressure 0.1 MPa; catalyst weight 10 mg; contact time 2.0–1.7 ms. 



Table 1 Results of activity test in partial oxidation of methane with N2 dilution and H2 adsorption. 

Partial oxidation of methane 

Catalyst 
H2 adsorption 

(μmol g-1-cat.) a 
CH4 conversion 

 (%) b 

H2 selectivity 

 (%) b 

CO selectivity 

 (%) b 

TOF 

 ( s-1) c 

0.3 wt% Rh/MgO 3.1 59 86 75 388 

0.6 wt% Rh/MgO 5.5 67 86 77 248 

1 wt% Rh/MgO 8.3 74 90 83 180 

2 wt% Rh/MgO 15.9 78 92 88 99 

3.2 wt% Rh/MgO 29.5 79 93 89 54 

Rh−Co/MgO 

 (Co/Rh = 1) 
3.7 76 95 89 420 

Rh−Ni/MgO 

 (Ni/Rh = 1) 
3.9 71 90 82 369 

Rh−Fe/MgO 

 (Fe/Rh = 1) 
3.2 60 78 75 382 

0.6 wt% 

Rh−Co/MgO 

 (Co/Rh = 1) 

6.3 83 95 90 268 
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a H2 adsorption at 298 K, 

b Reaction conditions: CH4/O2/N2 = 4/2/94, total flow rate 1500 cm3 min-1; TTC = 973 K; total pressure 

0.1 MPa; catalyst weight 10 mg; contact time 0.4 ms,  

c Turnover frequency (TOF) in partial oxidation of methane is calculated on the basis of methane 

conversion rate and the amount of H2 adsorption at 298 K.  



Table 2 Results of activity test in partial oxidation of methane with N2 dilution and H2 adsorption. 

Partial oxidation of methane 

Catalyst 
H2 adsorption 

(μmol g-1-cat.) a 
CH4 conversion 

 (%) b 

H2 selectivity 

 (%) b 

CO selectivity 

 (%) b 

TOF 

( s-1) c 

0.3 wt% Rh/MgO 3.1 59 86 75 388 

Rh−Co/MgO  

(Co/Rh = 0.5) 
3.3 63 90 78 391 

Rh−Co/MgO 

 (Co/Rh = 1) 
3.7 76 95 89 420 

Rh−Co/MgO  

(Co/Rh = 1.5) 
3.7 71 88 83 391 

Rh−Co/MgO  

(Co/Rh = 2) 
4.1 59 79 72 291 

Rh−Co/MgO 

 (Co/Rh = 3) 
4.1 54 75 71 266 

0.2 wt% Co/MgO ―   1   2 30 ― 

a H2 adsorption at 298 K, 

b Reaction conditions: CH4/O2/N2 = 4/2/94, total flow rate 1500 cm3 min-1; TTC = 973 K; total pressure 

0.1 MPa; catalyst weight 10 mg; contact time 0.4 ms,  

c Turnover frequency (TOF) in partial oxidation of methane is calculated on the basis of methane 
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conversion rate and the amount of H2 adsorption at 298 K.  



 

Table 3 Results of temperature programmed reduction and metal dispersion. 

 

Loading amount 

(μmol g-1-cat.) Catalyst 

Rh Co 

H2-TPR

H2 consumption

(μmol g-1-cat.)

Amount of 

reduced Co a 

(μmol g-1-cat.)

Dispersion b 

(%) 

0.3 wt% Rh/MgO 31 0 52 － 10.1 

Rh−Co/MgO 

(Co/Rh = 1) 
31 31  63 23  6.9 

Rh−Co/MgO 

(Co/Rh = 2) 
31 62 107 45  5.3 

 

a Assuming that all the Rh species are reduced (Rh3+ → Rh0) and stoichiometry of the Co reduction 

(Co3O4 + 4H2 → 3Co + 4H2O), 

b Dispersion was calculated as (2 × H2 adsorption)/(Rh + reduced Co) × 100. 
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Table 4 Curve fitting results of Rh-K edge EXAFS of reduced catalysts. 

 

Catalyst Shell CN a R b (10-1 nm) σ c (10-1 nm) ΔE0 
d (eV) Rf 

e (%)

0.3 wt% Rh/MgO Rh−Rh 10.6±0.1 2.68±0.01 0.076±0.002 -0.2±0.4 1.0 

Rh−Co/MgO Rh−Rh 7.4±0.2 2.64±0.01 0.080±0.004 -0.9±0.4 

(Co/Rh = 1) Rh−Co 3.2±0.2 2.63±0.02 0.080±0.002 -2.2±0.6 
0.5 

Rh−Co/MgO Rh−Rh 5.7±0.1 2.62±0.01 0.078±0.001 -1.7±0.9 

(Co/Rh = 2) Rh−Co 4.8±0.1 2.57±0.01 0.083±0.005 -5.5±0.7 
1.0 

Rh foil Rh−Rh 12.0 2.68 0.060 0  

 

a Coordination number. 

b Bond distance. 

c Debye-Waller factor. 

d Difference in the origin of photoelectron energy between the reference and the sample. 

e Residual factor. Fourier filtering range: 0.153–0.273 nm. 
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Table 5 Curve fitting results of Co-K edge EXAFS of reduced catalysts. 

 

Catalyst Shell CN a R b (10-1 nm) σ c (10-1 nm) ΔE0 
d (eV) Rf 

e (%)

Co−Co 3.8±0.1 2.50±0.01 0.086±0.016 -5.7±2.1
0.2 wt% Co/MgO 

Co−O 2.9±0.3 2.00±0.03 0.093±0.037 -6.6±5.7
0.7 

Co−Co 3.3±0.1 2.56±0.01 0.084±0.005 -9.5±5.3

Co−Rh 3.3±0.1 2.62±0.01 0.073±0.010 10.0±0.8
Rh−Co/MgO 

(Co/Rh = 1) 
Co−O 2.4±0.3 2.09±0.01 0.070±0.009 4.0±0.2

0.4 

Co−Co 3.6±0.2 2.54±0.01 0.076±0.005 -3.9±0.5

Co−Rh 2.4±0.1 2.57±0.01 0.081±0.004 4.6±0.6
Rh−Co/MgO 

(Co/Rh = 2) 
Co−O 2.6±0.3 2.13±0.01 0.075±0.015 8.3±1.3

0.6 

CoO Co−O 6.0 2.13 0.060 0  

Co foil Co−Co 12.0 2.51 0.060 0  

 

a Coordination number. 

b Bond distance. 

c Debye-Waller factor. 

d Difference in the origin of photoelectron energy between the reference and the sample. 

e Residual factor. Fourier filtering range: 0.157–0.272 nm. 
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Table 6 Comparison between the results of the activity tests and the equilibrium calculation. 

 

Temperature (K) Catalyst or 

condition Highest bed Outlet 
CH4 conv. (%) H2 sel. (%) CO sel. (%) 

0.3 wt% Rh/MgO a 1093±5 899±5 73 86 90 

Rh−Co/MgO a 

(Co/Rh = 1) 
955±5 885±5 75 87 89 

 Temperature (K) CH4 conv. (%) H2 sel. (%) CO sel. (%) 

 885 56 82 65 

Equilibrium b 899 62 84 70 

 955 75 91 85 

 

a Reaction Conditions: CH4/O2 = 2/1, total flow rate 300 cm3 min-1; total pressure 0.1 MPa; catalyst 

weight 10 mg; contact time 2.0 ms. 

b Equilibrium gas composition was calculated on the basis that the partial oxidation proceeds in an 

indirect route (the reforming reactions after the complete combustion of methane). 
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Table 7 Catalytic performance of pulse CH4+O2 reaction and reduction degree after the reaction. 

 

Pulse CH4+O2 reaction a 

Catalyst 
CH4 conversion 

(%) 

H2 selectivity 

(%) 

CO selectivity 

(%) 

Reduction  

degree (%) b 

0.3 wt% Rh/MgO 56 62 55 59 

Rh−Co/MgO  

(Co/Rh = 1) 
66 78 75 89 

Rh−Co/MgO  

(Co/Rh = 2) 
  5   9 13 33 

a Reaction conditions: CH4/O2 = 4.06/2.03 μmol (300 cm3 min-1 He carrier); TTC = 873 K; total 

pressure 0.1 MPa; catalyst weight 10 mg (0.31 μmol-Rh). 

b Reduction degree was based on H2 consumption in titration of adsorbed oxygen with H2 pulses and 

calculated as (the H2 consumption after the pulse CH4+O2 reaction) / (the H2 consumption after O2 

oxidation treatment at 873 K) × 100. 
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Table 8 CH4-D2 exchange reaction over 0.3 wt% Rh/MgO and Rh−Co/MgO (Co/Rh = 1.0 and 2.0). 

 

Composition (%) a 
Catalyst 

CH4 CH3D CH2D2 CHD3 CD4 

0.3 wt% Rh/MgO 94 0.5 0.6 1.6 3.6 

Rh−Co/MgO (Co/Rh = 1) 92 0.4 1.0 2.4 4.3 

Rh−Co/MgO (Co/Rh = 2) 97 0.3 0.3 0.5 2.1 

a Reaction conditions: CH4/D2 = 3.05/3.05 μmol (30 cm3 min-1 N2 carrier); TTC = 573 K; total pressure 

0.1 MPa; catalyst weight 10 mg (0.31 μmol-Rh). 
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Fig. 1 Reactor setup. (a) Partial oxidation of methane with N2 dilution for isothermal conditions, (b) 

Partial oxidation of methane without N2 dilution for the IR thermographical observation. 
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Fig. 2 TPR profiles of 0.3 wt% Rh−Co/MgO catalysts, as well as those of MgO and Co/MgO. 

Reduction degree was calculated as the following reactions: 

Rh2O3 + 3H2 → 2Rh + 3H2O, Co3O4 + 4H2 → 3Co + 4H2O. 
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Fig. 3 Results of Rh K-edge EXAFS analysis of catalysts. 

(a) k3-weighted EXAFS oscillations, (b) Fourier transform of k3-weighted Rh K-edge EXAFS, FT 

range: 30–130 nm-1, (c) Fourier filtered EXAFS data (solid line) and calculated data (dotted line). 
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Fig. 4 Results of Co K-edge EXAFS analysis of catalysts. 

(a) k3-weighted EXAFS oscillations, (b) Fourier transform of k3-weighted Co K-edge EXAFS, FT 

range: 30–120 nm-1, (c) Fourier filtered EXAFS data (solid line) and calculated data (dotted line). 
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Fig. 5 Result of thermographical observation during partial oxidation of methane: temperature 

profiles of catalyst bed during the reaction from thermographical observation. 

Reaction Conditions: CH4/O2 = 2/1; total flow rate 300 cm3 min-1; total pressure 0.1 MPa; catalyst 

weight 10 mg; contact time 2.0 ms. 
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Fig. 6 Effect of contact time in partial oxidation of methane without N2 dilution on the highest bed 

temperature and catalytic performance. 

(a) 0.3 wt% Rh/MgO, (b) Rh−Co/MgO (Co/Rh = 1). 

Reaction Conditions: CH4/O2 = 2/1, total flow rate 300–150 cm3 min-1; total pressure 0.1 MPa; 

catalyst weight 10 mg; contact time 2.0–4.0 ms. 
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Fig. 7 Effect of steam addition to the partial oxidation of methane on temperature profiles. 

(a) 0.3 wt% Rh/MgO, (b) Rh−Co/MgO (Co/Rh = 1). 

Reaction Conditions: CH4/O2/H2O = 200/100/0–50 cm3 min-1, total flow rate 300–350 cm3 min-1, 

H2O/CH4 = 0–0.25; total pressure 0.1 MPa; catalyst weight 10 mg; contact time 2.0–1.7 ms. 

 

 

 


