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Quantum homodyne tomography as a non-parametric estimation
problem
Madalin Gutal *

YUniversity of Nijmegen, Departinent of Mathematics
Postbus 9010. 6500 GL Nijmegen, The Netherlands

Abstract. Quantwn homodyne tomograply is a quantuin optical measurement scheme which can be used
to estiimate the state of a quantum oscillator or the associated Wigner funetion. The reconstruction of the
state from the probability distribution of the data is an ill posed inverse problem, and varions expressions
of the inverse map have been found in the physics literature. However, as the density matrix way in
general be indinite dimensional, the problem of controlling the statistical error of estimation becomes very
nnportant. The purpose of this paper is to introduce a few statistical concepts and methods related with
nou-paraetric estimation, and to formulate some open problems in quantun towography.

Keywords: Quantum homodyne tomography, Wigner tunction, density watrix, Non-paranietric statis-
ties, maximum likelihood estimators, minimax estimators

1 Introduction

In quantum mechanies measureinents are intrinsically
stochastic, the theory making predictions over the prob-
ability distributions of the outcowmes. The forward map
from the state p of the system to the probability distribu-
tion P of results of a measurciment M, is described in
the language of POVM’s (positive operator valued mea-
sures). The study of the corresponding statistical inverse
problem, that is of reconstructing the state p from the
measurement results, has been initiated by Helstrom [1]
and Holevo [2] and grew significantly in the last decade
stimulated by technological developments in quantum en-
gineering and measurement teclimiques.

An illustrative exawuple of a “new” statistical recown-
struction problem is that posed by quantum homodyne
towography, a technique proposed in [3] and realized ex-
perimentally for the first time in 1993 by Swithey et al.
14].

Let us consider a quantumn oscillator with canonical
variables Q aud P satisfying the commutation relations
[Q,P] = i1, and let p be its state represented by an in-
finite dimensional density matrix on the space L2(R) on
which Q and P are represented as position and momen-
tum respectively. The main idea of quantum homodyne
tomograply is that p is in oue to one correspondence with
the family {p,(z|@) : ¢ € [0, 7]} of probability densities
of the quadratures X := Qcos ¢ + Psing for plases ¢
sweeping the interval [0, 7]. This suggests the following
experimental set-up for reconstructing p: given n sys-
tems identically prepared in state p, we generate random
phases &1, ..., ®, which are independent, uniformly dis-
tributed over [0, 7] and then weasure X, on the i—th
system obtaining a result X;. If we denote the joint den-
sity of (X, @) by pu(z, ¢) == 2pu(x]@), then the tomog-
raply map

T: prs polz,9),
is invertible and thus with sutficiently many data points
we may hope to obtain a good estimate of the state p.

This is a typical statistical inverse problem where the

data is distributed according to a linear transform of the
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paramcter of interest. There are two aspects whicl inake
the problem difficult: firstly, we deal with an il posed
inverse problem in the sense that the wap 77! is un-
bounded with respeet to the natural norws on the two
spaces and thus small errors fn esthmating the density p,,
frow the data may lead to big errors for p; secondly the
parameter of interest p is infinite dimensional, (infinite
nunber of matrix clements), thus we deal with a more
technical non-parametric statistical estination problem
compared with the usual case where the dimension of
the density watrix is finite. The last aspect is usually
disregarded in the physics literature by either assuming
that the density watrix is actually finite or by making
cut-off in the dimension of the matrix and neglecting the
clements falling outside the finite block. However a quan-
titative analysis of the performance of such procedures is
lacking and it is our goal to fill this gap by adopting a
wodern statistical perspective.

In quantuwn optics one often represents the state p
by its Wigner function [5] W,(q,p) which is a quasi-
probability distribution over R? iu one-to-one correspon-
dence with the density matrix p, and then the problem
becomes very similar to a classical inverse problen, that
of positron emission tomography (PET) [6] where the role
of W), is played by a two dimensional probability distri-
bution. The wap frow Wy(g,p) to pa(z|é) is the Radon
transforin defined as

R[fl(z.¢) = /’L flzeosg —tsing, xsing + t cos @)dt.

Quantumn tomography is thus about inverting the
Radou transform which is known to be an ill posed prob-
lem 7] in the sense that we can formally write R™1 as

™
Rblle.p) = [ [ Klgeoss +puing - alplaloldods.
Jo
(1)
where the kernel K is not a bounded function but a dis-
tribution (generalized function)

K(z) = / " el expli€z)de. (@)

= 2
an? f_
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Similarly, the map 77! : p(x,¢) — p is unbounded if
we consider ||-||; on both sides. However it turns out that
the individual matrix clements of p with respect to the
Fock basis {¢;(z) = (V727 j))"Y2H;(z)e > 125 >0}
can be obtained by kernel integration

1/ f i(i—k
s == [ [ feat)e S gtz o), (3

where fi, ; are bounded oscillatory functions called pat-
tern functions [8, 9, 10]. The ill poseduess is illustrated
here by the fact that the range of fi ; is unbounded as
we vary k, j.

2 Consistent estimators of the density
matrix

The results of this section draw largely on [11] to
which we refer for the proofs. Let us formulate the
statistical problem in the case of estimating the deu-
sity matrix. Given the data (X1, ®1),..., (X, ®n) in-
dependent identically distributed with probability den-
sity pp(z, @) on R x [0, 7], we consider estimators p, =
P (X1, 1), ... (Xn, ©,)) . taking values in the space of
trace class operators on L*(R) and judge their perfor-
mance at parameter p by the risk

E(|[pn — pll1.2)

where the distance function may be the trace norm
or the Hilbert-Schmidt norm. As a weakest desir-
able property we would like p, to be consistent, i.e.
lim,, e R1,2(pn, p) =0 for all p.

Based on formula (3) we define the unbiased estimator
for the matrix element py ;:

Ry 2(fn, p) :=

ﬁ(") —— ZFK,J Xo, By), (4)

l 1

where Fy ;(x,¢) = frj(2)e”"U8)¢ The average square
error for this element is bounded as follows

A(n L
B - pesl) < 3 [ [ 1Peste, 0o, )dode

1 /dxfk,j(:c)z / polz, @)dg

+ k42
—Ilfull2<022*m

H

| /\

where the constants Cq,Cs are independent on 7, k, n.
Clearly the estimator p, with the above matrix elements
will not be consistent as the errors for estimating different
matrix elements add up to infinite! We can keep the vari-
ance bounded by considering the cut-off estimator p(®
whose matrix elements are given by (4) for 5,k < d and
zero outside this d x d block. We have now a trade-off
between the bias and variance of the ignored elements:

—pl3) < o*(nd)+b(n,d)

Cod® + Z

max{k,j)>d

E([lp

Ipﬂ»'|23 (5)

I

and we still have the freedom to choose d in a advanta-
geous way depending on n. If d(n) — oo as n — oo we

have that the bias term converges to zero and a sufficient
condition for consistency is d = o(n/3). Similar results
can be obtained it we consider the trace norw instead of
the Hilbert-Schinidt norm, and also for sieved maximum
likelihood estimators [11].

However, without additional information on the state
p we cannot say much about the rate of convergence or
the optimal choice of d as a function of n. Thus, we will
assuine that p belongs to a class of exponentially decaying
density matrices

E(e,B) = {p: Te(e™Np) < B},

where N is the number operator N, = ny,, and
o, 8 > 0 are constauts. Then by the positivity of p we
have: |pjx]? < pjjpre < B2e” UK Tn this case the bias
b2(n, d) is bounded from above by Cy(a, B)e” ¢ and

. Ciod®
E (I3 - pl?) < Cafa, Ble™ + =

By choosing d = X logn we obtain

. logn)®
E () _ 12 <C ( . 6
(1 = o) < CurB, (©)

a rate which is slightly worse then usual paramnetric rate
1/n.

Several questions remain to be answered within this
approach. Why consider exponentially decaying matri-
ces? Surely, stronger assumptions ou the class lead to
faster rates of convergence but we should also worry
whether the states created in the lab satisfy our assump-
tions. To put it differently, does there exist a natural class
of states which contains the ones produced in the lab?
Assuming that the state belongs to the class A(e, 8),
what can we then say about the optimality of the above
estimator? In order to avoid trivialities where an estima-
tor is performing very good at a fixed point but very bad
elsewhere, one should define optimality in such as way
as to take into account the performance of the estimator
over the whole class

sup  R(6™Y p),
pEE (e .3)

R(é nd):

and compare it with the best (smallest) such maximuin
risk among all estimators, that is the minimar risk

R, =inf R(6,) =inf sup R(0..p).
0, 6, pEE(w,B)

An estimator is called minimax if it achieves the minimax
risk asymptotically. Furtherinore, even if the exponential
decay property seems natural for a large set of states
produced in the lab, how can we know in advance to
which class £(a,3) the state belongs ? It is desirable
to construct an adaptive estimator whose definition does
not depend on the parameters of the class, but which still
performs almost as good as the minimax estimator when
the class is known.

A step in the direction of achieving this goal would be
to allow the dimension d to depend on the data in such
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a way that d = d{((X;, P1)..... (X, ©,)) is close to the
optilal dimension

d*(n, p) = f Ry(p™V . p) = nf B[ o — pl3.

« o
Clearly, d* depends on p and thus cannot be caleulated
from the data, but we can use an unbiased estimator of
Ry (pt4 | p) to estimate d*:

d—1 n

RO
1A OB+ 1o~ =
J,L =0 izl

Now we define the cross-validation estimator 54" whose
dimension d is the minimizer of

d=1 n

Z > Fja X0 ) Fy (X0 ).

JI\ 0 il

e e

Although there exist general theoretical results concern-
ing the cousisteney of such estimators, a complete anal-
ysis of the convergence rate is still lacking.

3 Filtered back-projection estimation of
the Wigner function

In this section we turn to the problem of estimating
the Wigner function {12]. In [13] a similar problem is
studied for the case of PET for a class of very smooth
functions. Our result extends those of [13] to the class of
smooth Wigner functions

WI(B, L) = {W,, : 4;

]Wp )| exp(28|w|) dw < L} .

where Wp is the Fourier transform of W,. By replac-
ing W, by a probability density we obtain the class
A(B, L) from [13] and we notice that none of the two
is contained in the other: there exist Wigner functions
in W(8, L) which are not positive, and conversely there
exist densities in A8, L) which do not satisty the bound
W, ]|OO < 1 characteristic for the Wigner functions [5).

If W,L is an estimator of W,, we define the poiutwise
risk in a fixed point z := (g,p) € R® by

R.(W,,W,) =E [(Wn(z) - Wp(z))ﬂ .

The estimator called filtered back projection is based
on the inverse Radon transform (1):

— 1 "
a(2) = =3 K[z, & — X))
i=]1

where K; is a regularization of the kernel (2) given by
the cutoff §

1,
K5(11.) = ZF/ re“"‘dr,
)

with Fourier transform K 5(t) = 51;|t|15(t) where I is the
indicator function of {t : |¢] < 1/48}.

Z > FjulXi, @) Fj (X0, &),

We define the dual operator R# on Ly (R x [0, 7)) by

R#[h}(z):/o. h([z. ¢|, ) do
Then

RER[W](2) /in][~¢}¢

4]
represents the ntegrals of Woover all lines passing
through the point 2. Note that in general R#FR[W](z2) >
0 for all Wigner functions W oand all z € R?, but
there exist states such that i, with & odd for which
R#*FR[W](0) = 0.

The paramcter § plays a similar role to that of the
dimension d of the estimator of the density matrix p de-
seribed in the previous section and the question is what
is the optimal dependence 6 = §(n)? The following the-
orem gives an upper bound for the risk of the estimator
with a specially chosen cut-off 4,,.

Theorem 1 [12] Let 6, = logn/(283), then for any W €
W(B, L) and any fized z € R? such that R*R[W](z) > 0
we have as n — oo,

log, n)®

E[(Wa(2) - W(zng] CRAR[W](z)x 22 (1-40(1))

where C* = 3n(4nB)~>

The proof consists in bounding the risk by a sum of a
bias termn and variance term similarly to (5) and choosing
d, in such a way that the two terms balance each other:

E [(Wu(z) - W(z))g} -

(Eule) - Wia) +
= b2(2) + 02(2).

FE[(Wa(2) - E(Wa(2))?)

I order to show that the estimator is minimax we need
to prove that no other estimator can perform strictly bet-
ter asymptotically. This amounts to proving that there
exist a lower bound for the global risk of any estimator,
and this lower bound is asymptotically equal to the rate
of W,(z). For technical reasons we consider the sightly
modified class of Wigner functions [13)

L): R¥R[W](2)

W(B. L, cv) = {W € W(B, >an},

for a sequence q, such that lum, .o, = 0 and
litm, oo (v (log n)l/ 3) = 00. Let us denote

1/2
[C’*R#R[W] —l"igni)-} .

ru(z) = sup

WEW(v.L,a,,)

Theorem 2 For a fized z € R?, we have

~ 2
sup E M 2 1
WeW(y,L,an) ra(2)

where infg  denotes the infimum over all estimators of
W(z).

liminf inf
0 'ﬁ .
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The proof of the lower bound is based on finding
a “most difficult” parametric subfamily of W(8, L, a,,)
such that the lower bound still holds when restricting to
the subfamily and replacing the supremum with the av-
erage of the risk with respect to a specially designed dis-
tribution over the subfamily. By applying the van Trees
inequality we obtain a lower bound which is an analogue
of the Cramér-Rao inequality in a Bayesian set-up [14].
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Abstract.

Quantum state estimation has been widely investigated and there are mainly two approaches

proposcd: One is based on point estimation of an unknown paramecter and the other is based on Bayesian

method.

In exchangeable quantum wodels with an arbitrarily chosen measurement it is shown that

Bayesian predictive density operators are the best predietive density operators when we evaluate them
by using the average relative entropy based on a prior [13]. We caleulate the Bayesian predictive density

N 5 . . 3 . Y - y
operator for the Gaussian states family with the heterodyne measuremert and confirm that their statement

holds true in this model.

Keywords: quantum estimation, Gaussian states, relative entropy

1 Introduction

In classical statisties, tlie problem of predicting an un-
observed variable y by using an observed variable 2 has
been investigated. Suppose that a parametric model

P = {p(yl) : 0 € &},

whicli is a set of probability densities, is given, where @
is a parameter space. Randowm variables z and y are dis-
tributed according to the same true probability density
p(+f) in P. We predict the unobserved variable y with
a predictive density p(y;2) coustructed by using the ob-
served variable z. The closeness of the true density p(y|6)
and a predicted density p(y; z) is evaluated by using the
Kullback-Leibler divergence
(yl9)

Dillp) = [ pulo) s By,

Aitchison [1] showed that a Bayesian predictive density
p=(ylz) = [, p(yl@)n(8]x)df, where n(flx) is a poste-
rior distribution, is the best predictive density when we
evaluate a predictive density py; 2) by using the average
Kullback-Leibler divergence f x(8) [ D(p|ip)p(z|6)dzdb,
where 7{8) is a probability density. Intuitively speak-
ing, if we have some uncertainty on 8, then moderate
averaged estimation from the data z is better than one
based on a point estimation. We extend this result in
classical statisties to the quantum setting and consider
the Bayesian prediction problan of the Gaussian states
fanily.

In quantum statistics. problems of statistical inference
and state estimation has received a lot of attention over
the past several years with recent developments of ex-
periniental techniques. Historically speaking, parameter
estimation problem on quantum systems dates back to
a quarter century, when Helstrowm, Holevo, and other re-
searchers vigorously investigated the topic and gave some
extension of mathematical statistical concepts on classi-
eal probability.

"ftanaka@stat.t.u-tokyo.ac.jp

Bayesian approach for quantum statistios has also been
investigated [7.8]. Joues [9] has derived a quantuin Bayes
rule for pure states with the uniform prior. Later, Buzek
et al. {3] pointed out that it can be applied to mixed
states with purification ansatz. Schack et ol [11] ex-
tended his result to a more general framework of ex-
changeable states. They showed that a quantum state
after ameasurement can be interpreted as the state av-
eraged over the posterior. Buzek ef el [3] recommended
to use Bayesian techuique especially when the sample size
of experinental data is swall. They proposed to use a
posterior state corresponding to a posterior distribution
in classical counterparts.

Frowm the viewpoints of information quantity and Bayes
rule, however, Bayesian estimation on quantum states
has not been fully discussed.  Performmances of the
Bayesian approach compared with other approach such
as the maximal likelihood method have not been dis-
cussed theorctically. Tanaka and Komaki showed that
the Bayesian method has better performance than the
phug-in method when exchangeable states are consid-
ercd [13]. In the present paper, we review it and calculate
the Bayesian predictive density operator for the Gaussian
states fanily with the heterodyne measurement.

2 Preliminary

We brietly sutmarize some notations of quantum wmea-
surenent. Let H be a separable (possibly infinite dimen-
sional) Hilbert space of a quantum system. An Hermitian
operator p on H is called a state or density operator if it
satisfies,

Trp=1, p=0.

We denote the set of all states on H as S(H).

Let © be a space of all possible outcomes of an ex-
periment (e.g.. 2 = R") and suppuose that a o-algebra
B := B(Q) of subsets of  is given. An affine map p from
S(H) into a set of probability distributions on Q, P=
{u(dz)} is called a measurement. There is a one-to-one
correspondence between a measurement and a resolution
of the identity [8]. A map from B into the set of positive
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Hermitian operators
M : B~ M(B),
where M satisfies
M(¢)=0,M(Q)=1,
M(U;B;)=Y_ M(Bi), BinB;=¢, VB,€B,

is called a positive operator valued measure (POVM).
Any physical measurement can be represented by a
POVM.

The rule describing a post-measurcment state is as fol-
lows (e.g., Kraus [5], Nielsen and Chuang [10]). For sim-
plicity, we consider only discrete outcome cases, where
2 is a countable sct. Then, a family of linear operators

{A,} satisfying

Y AlA =1

reQ)
describes a measurement when considering {M, =
At A,} as POVM. Performing such a measurement for
an arbitrarily fixed p yields an outcome z with probabil-
ity py = TrpM, = TrpA%LA; and the quantum state p

changes to
A pA
Dx
after the outcome z is observed.

Now we describe our setting of state estimation. As-
suie that a state pg on H is characterized by an unknown
finite-dimensional parameter § € © C R?.

A quantum state for n systems, p(™, is described
on the n-fold tensor product Hilbert space H®*. Sup-
pose that a system composed of n+m subsystems is
given and that a measurement is performed only for se-
lected n subsystems with the other m subsystems left.
Then, the measurement is described by {4, ®I}, where
{A,} is a family of lincar operators on H®” such that
{M, :=A*A,} is a POVM and I is the identity operator
on HE™,

Our aim is to estimate the true state gg = p§™ of
the remaining m subsystems by using a ncasurement
{M_.} on the selected n subsystems pf™. We fix an ar-
bitrarily chosen measurement. Note that M is given as
a POVM on H®". It is not necessarily in the form of
a tensor product M¥", which represents a repetition of
the same measurement M, for each system. Thus, all
possible measurements on n subsystems, which may use
entanglement, are considered.

The performance of a predictive density operator 6(z)
is evaluated by the relative entropy D(oy||6(z)), a quan-
tw analogue of the Kullback-Leibler divergence in clas-
sical statistics. The quantum relative entropy from p to
o is defined by

D(pllo) := Tr[p(log p — log o). (1)

It satisfies the positivity condition D(p|lo) > 0 and
D(plle) = 0 & p=o. Thus, it can be used as a measure
for the gooduess of state estimation.

There are mainly two approaclies on inference of state
oy for the parametric model above. One approach is to
use Gg .y, where f(2) is an estimator of 6. depending
on the observation 2. The other approach corresponds
to the Bayesian predictive density approach in elassical
statistics [9, 3]. We shall briefly review the idea. First,
we assuine a probability density m(0) on the paramcter
space. In mathematical statistics ©(8) is usually called
a prior density. When there is no knowledge about pa-
rameter 8, which is often called noninformative, several
people have discussed what kind of prior should be used
[12], [2]. From the data z obtained from a measurement
{M,}, a posterior distribution 7{fz) is constructed as

p™ (z|6)7(6)
T 6 pM (2]6)7(6)’

w(f|z) :=

where pM(2]6) = Trpl" M,. Next, taking an average of
og with 7(8|z), one can obtain the Bayesian estimator

ox(z) = /(10 oem(|x).

We call this state estimator, as in classical statistics, a
Bayesian predictive density operator. In order to distin-
guish two estimators we call o5, an estimator based on é,
a plug-in predictive density operator. In the next section,
we show that Bayesian predictive density operators are
better than plug-in predictive density operators.

If we assume a prior probability density 7(6) on the
parameter space €, the mixture state is given by

ol = /(10 m(0) pi™. (2)

A state of the form (2) is called an exchangeable state [11],
and arises, e.g., if cach subsystew is prepared in the same
unknown way, as in quantuin state towography.

In a quantum exchangeable model (2), as Schack et
al. [11] showed, a posterior distribution n(6f]z) naturally
arises.  As described above, a post-nieasurement state
with outcome z obtained is given by

) 1 n+tm *
p&u—l—m) — p—[(AL ®I) (/(10 W(@)p?( + )) (A% ®I)]

After the measurement of the selected n subsystems, we
restrict our attention only to the remaining m subsys-
tems. Taking a partial trace, we obtain the resulting
state pon H®™ (for partial trace, see, e.g., [10]).

The final state p7* can be rewritten using a posterior
7(f)z) in the formn of exchangeable model {11].

' m 1 n-r
o = Tralpt ] = / A8 w(0)Tralof "™ M, @ 1]
£

1 ]
= = a6 ©(6)pM (z|6)p5™

/ d6 = (0)z)p¥™,

where p, = Tr[p**™)(M, ® I)] = [d8 =(8)pM(z]6).
Thus, one can interpret 7(8]z) as a quantum analogue of
the posterior distribution in classical statistices.
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Now we consider comparing two methods for estimat-
ing the true state oy € S(H¥™). Let é(z) and &(z) be
two predictive density operators. When the difference
between two estimates a{z) and 6(z) € S(H¥™)

D(aollo(x)) = D(ayl||6(x)) = Tr[oe(log 6 (z) - log ()]

(3)
is positive, a(a) is better than 6(x) as au esthmate of
the true state gy, Since o(z) and 6(z) depend on ob-
served data z for arbitrarily chosen measurewent {A, }
on H®¥" the difference (3) depends on the true parameter
value 6 characterizing the true state and on the data z
obtained frour the measurciment. Thus, we take an aver-
age of (3) over pM (2]6) := Trop M, and 7(6), and cvalu-
ate E"EM[D(oy|6(2z)) ~ D(0y||5(2))]. where ET and EM
denote taking an expectation with respect to w(@) and
pM(2]6). In the next section we compare plug-in predic-
tive density operators with Bayesian predictive density
operators using this quantity.

3 Bayesian predictive density operators

In classical statistics, Aitchison [1] showed that the
Bayesian predictive  density  pr(ylz) has better per-
formance under the Kullback-Leibler divergenee than
any plug-in predictive density p(y]é) when a proper
prior w(@) is given. Tanaka and Komaki derived the
corresponding  result for quantum  predictive  density
operators.[13]

Theorem 1 Suppose that we perform a measurement for
selected n subsystems p§" of a system p;jo(”‘L"”) composed
of n + m subsystems in order to estimate the remaining
m subsystems oy = p3™. The true parameter value 6 is
unknown and a prior probubility density w(0) is assumed.
Let 6(x) be any predictive density operator, where x is
an outcome of a measurement {M,} for the n subsys-
tems. Performance of ¢ predictive density operator &(x)
1s measured with the average relative entropy

E"EM[D(oallo(el)] = [a0 (0] [z 5" (@l6) Dlouo(e))

from the true state og. Then, the Bayesian predictive
density operator oy(x) bused on the observation x and
the prior w(8) s the best predictive density operator.

Proof.

First of all, for arbitrary &(a),d(2), we rewrite the
difference of two average relative entropy.

E"EY[D(04]|6(2)) ~ D(os]|5(2))]
/(19 w(6) /(1.7: p'”(xl@)'I‘r[ag(lugé(:z) —logo(x))]

i

i

/ dz p,/d() 7(8lz)Trios(log d(x) — log ()]

il

/da: peTrjo(2)(log&(z) — log &(x))].

The positivity of the above forin indicates that &(z) is
better than a(x). We set a(z) = o.(2).then we obtain

E"EY|D(04][6(2)) - D(ovllox(2))
- faz n Do) 20

The last inequality holds due to the positivity of the rel-
ative entropy D(egl|o’) 2 0 and p, > 0. Siuce &(z) is

arbitrarily chosen, it is shown that or(z) is better than
any other o(z).

Remark. Our argiinent holds when a prepared state
is deseribed as py 2oy, where pg € S(H) and oy € S(K),
and H and K are distinet Hilbert spaces. This setting is
a generalization of that introduced in Seetion 2.

In different setting, Krattenthaler and Slater obtained
siiilar result [4]. While they consider a prior density =(8)
with respect to an unknowu state, we consider a posterior
density w(8]z) with respeet to a post-liucasurcient state.

4 Prediction of unknown Gaussian state
from one sample

We consider the prediction problem of the Gaussian
states fanmily below (Sce, e.g., Holevo [¥] for the Gaussian
states family).

M = {pyn: 6€C}, (4)

and assuming that the photon expectation parameter
N(> 0) is known. We owmit N unless otherwise neces-
sary.

The paratscter estination problem of the model (4)
was investigated by Yuen and Lax [14] and Holevo [8].
They obtain the Cramdér-Rao type bound, ie., the lower
bound of the trace of the mean square error wmatrix with
an arbitrary weight wmatrix, based on the RLD Fisher
information matrix. They showed that the heterodyne
Leasurement {%'—I} achieves the bound and it is opti-
mal. This measurement is optimal also in an asymptotic
sense, whichh was shown by Hayashi [6].

Here, we cousider the prediction problem in the
Bayesian framework. Assuine that unknown parameter

0 is distributed subject to () = =y exp (—M)

2n7r? 272

PN ==

where € € C, 72 > 0 are so-called hyperparameter.
Although one can perform a measurement for n sub-
systems pi™ and prediet the remaining m subsysteus, we
consider n = m = 1 case for simplicity. When n = 1. it
is natural to adopt the heterodyne measurement above.
Then the estimator of 8 is given by 8(a) = o, where the
measurerient ontcowe o is distributed by

M _ 1 . *\a~012
o~ pt{c|d) = W(N+I)Q‘Xl)< N1 )

We caleulate the average relative entropy for two pre-
dictive deusity operator pg and pr. Straightforward cal-
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culation yields

2
fi = = foew (557 ) isneies,

. 1 1B — 6] )
pria) m/cexp( N T oAz 13)(BI1d" 8,
wlere
N41\-1 2y-1
g :( ) f;‘{'(T ) f) (A%)1= (N“I' 1>~1+(72)~1_
(5D ) ?
(9)
The average relative entropy for them is also obtained by
: N+1
Ry = ETEMD(pilloy) = (N +1)log (T> ,
Re = E"EM[D(pu||px)]
1 N
= k)g’N+l +NlogN+1
1 5 N +2A?
— P e 2A ) log ———————
log ygaryy ~ W2l moey

where we used the formula for the Gaussian states family

N M+1

M 41 _
D(penllperm) = k)g(N+1> + Nlog (N+ BT,

M )
+log ( - 1) IC - ¢,

Since Ry Is mouotone increasing witl 72,

sup Ry = lim Ry

7250 7200

1 N
= log —— + Nlog —~—
BN TN T

2
~ (2N +1)lg AL

2N +2

_.l ; 1
Y6 ON 12

= R,.

In addition, from the straightforward calculation we can
show R, > Ri > Ry. Thus, it is shown that the
Bayesian predictive density operator gr is better than
the plug-in density operator p; based on 6(cx).

5 Concluding remarks

Since the model M is translation invariant, it seems
natural to adopt the Lebesgue measure 7;(0)d?8 o« 426
as a noninformative prior. Although f7,(6)d?8 = o,
as classical statisties, various quantities are obtained by
taking the limit 72 — oo. Since 2A? = N + 1, Bayesian
predictive density operator iz given by

.1 o (_18=8?
Prs = mﬂ‘xp(

2N +1

and the average relative entropy is equal to R, (< 00).

Strictly speaking, the proof of theorem 1 is valid only
for finite-dimensional cases (i.e., dimH < oc). However,
from the result above, we expect that it holds even when
dimH = oo under some regularity conditions such as
the exchangeability of the order of Tr and [ df 7(8) and
integrability of pz(z) = [ d8 n{(6)x)ps.
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Differential geometrical aspects of quantum estimation theory
— On the geometry of generalized RLD metric —
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Abstract.

The SLD (symmetric logarithimic derivative) and RLD (right logaritlonic derivative) are very

important in quantu estimation theory. They are also interesting in that they give two extremes of
wonotone Riemannian metrics. Compared with the SLD, however, the geometrical position of RLD is not
s0 clear. The aim of the present article is to provide a general framework to treat the geometry of RLD,
where the complexified cotangent space plays an essential role rather than the (real) tangent space.

Keywords: quantinn estimation, differential geometry, SLD, RLD. monotone netrie

1 Introduction

Let M = {p(, I 6= (6',---.0™) e O} be a family of
faithful (i.c., strictly positive) density operators sinoothly
parametrized by an m-dimensional parameter 8 ranging
over an open set € in R, We cousider M as a smooth
wanifold with the coordinate system 8 = [¢¢]. For cach
point pg, the synunetric logaritlmic derivatives (SLDs)
L= L‘;’:(, (i=1,...,m) arc defined by

1 , .
Oipy = E(poL? + Lpy), (1)

where 8; := oo, and the SLD Fisher information matrix
G3 = [¢5;(0)] is defined by

Siilarly, the right logarithmic derivatives (RLDS)}:J,R =
LR, and the RLD Fisher information matrix Gff =
(35 (8)] are defined by

Bipo = poLY, (3)
5 (0) = tr[pe LY. (4)

The inverse matrices of G and G R give lower bounds for
the variance-covariance matrix of any unbiased estimator
(unbiased measurement) of the parameter 8 (: quantuin
versions of the Cramér-Rao inequality [1, 2, 3]). We also
introduce the real part of the RLD Fisher information
niatrix:

R _ R R/gy — R R
Gy = [gij(g)L gij(e) =Re 91j(9)~

From a differential geowetrical viewpoint, these quan-
tities define two Riemannian metrics g° and g? on the

T Y SR .Y — 45 aned R N — LR
manifold M by ¢>(8;,8;) = g5 and ¢°(0:,9;) = g;;-
Moreover, these metrics are known to be the mininnn
and maximum, respectively, among the class of norual-
ized wonotone Riemannian metries [4]. Here, the mono-
tonicity of a Riemannian metric! g on the quantuin state

*nagaoka@is.uec.ac.jp

IMore precisely, the monotonicity is meaningful not for a Rie-
mannian metric on a single manifold but for a way of assigning a
Riemannian metric to an arbitrary manifold of quantum states.

space weans that the length of a tangent vector wea-
sured by g does not iucrease nuder any quantin oper-
ation (TPCP map), and the normality of g means that
it coincides with the classical Fisher information on a
manifold of mutually connnutative states?. The original
RLD Fisher information matrix also defines a “complex
wounotone wmetrie” gt by (8. 9;) = g, although it is
not a Riemannian metrie in the usual sense.

A remarkable difference between SLD and RLD is that
L5 and Gj are definable for a manifold of non-faithful
states, including pure states in particular, while f;tn and
GR are not. Neverthieless, a substitute for (GF)™! is
properly defined even when GR does not exist for which
a quantumn Cramér-Rao inequality holds(; see [5)] for co-
herent models).

The aim of the present article is to provide a general
framework to treat the geometry of RLD, where the com-
plexified cotangent space plays an essential role rather
than the (real) tangent space.

2 Basic definitions

Let H be a d(< oc)-dimensional Hilbert space, and de-
note the totality of linear (hermitian, resp.) operators on
H by £=L{H) (L), = Ly(H), resp.). The set of density
operators is denoted by § = S(H), which is decomposed

as
Ll
s=Us.
r=1

where S, = {p € §|rankp =r}. Note that S, is nat-
urally regarded as a smooth manifold with dim S, =
2dr — r? — 1. In particular. §; is the set of pure states,
which ean be identified with the complex projective space
P4=1(C), and Sy is the set of faithful states.

Let a state p € S, be arbitrarily fixed, and let T, =
T,(S,) be the tangent space of S, at p, which is a real
linear space of dimension n := 2dr—r® — 1. Given a local
coordinate system [0 of S, around p, we have T, =
spang{ (725), o

2Every monotone metric is shown to be a constant multiple
of the classical Fisher information on a manifold of commutative
states.
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The complexification of T}, is d( noted by T‘C =T,&
C=T,®/-1T, = spanc{(7 m) p g whic h is an n-
dimensional complex linear space. The complex cou-
jugate of z + V=1y € T,F with 2,y € T, is de-
fined by £+ V=1y = z — \/—— y aud we have T, =
{u € Tp(C ] = u}

We denote the cotangent space at p and its complexi-
fication by Ty = spang{( dé), 1, and T,j‘C =T;eC=
;o v—1 T = spang{( d6*) iy, respectively. Ty is the
set of real hnod.r funetionals : T, — R, while T/j‘c is the
set of complex linear functionals : T,)C — C. The complex
conjugate £ of £ € Ty € is similarly defined.

We somctimes write as T, = T and T*
distinguish them from their (umplexlh( dtmns

R’
T; to

3 (Pre-)inner products on the cotangent
space
Define (4), = tr[pA] for a state p € S and an operator
A e L{H). Considering (4) : p — (A), as a function on
S, its differential (d(A)), at a poiut p € S, is defined
as an element of T;‘“", which we denote by Ap(4) =

(d{A))p. Then we can represent T;C and T[j‘“ by the
image of &, as
T*C =A (ﬁ) = A/J(['U,p)) (5)
T*u& /z(ﬁh) == p(ﬁh().p)y (6)

where Lo, = {A € L]tr[pA] = 0} and Lo, = Lo, N
Ly,.
Following [2], let us define

(4,B)F = tr[pBA*] (A, B); =

((A B)Y +(4,B);)

tr[pA* B]
and (A, B), =

for A/B € L. When r = d, or equivalently when
p is faithful, these are complex inuer products on
L. Otherwise, they are pre-inner pmdut ts with non-
trivial kernels KF := {A € L] (A4, A)f =0} and K, =
{Ae L| (A 4), =0}. Note that (, p 18 real on Ly.
Since we have

A, (A) =0 iff (4,4), =0,
for A € Lo, it follows from (5) and (6) that
Ty~ Lop/Kop, Typ¥ = Luop/Knop, — (7)

where Ko p = K, N Lo, and Kypop = K,y N Lpo,p-
From (7), (-,-), defines a complex inner product on

T, € and a real inner product on T b R the former of which

is the complexification of the latter. We denote both of
them by g. On the other hand, since K, C IC,, , a pair of

complex pre-inner produets are defined on T, Chy (-, )3:
which we denote by §%. Note that §*(£1, &) = § (€2, &)
holds for &,& € T €.

4 The SLD and RLD metrics

The inner product g establishes an R-linear isomor-
phism between T, and T, and induces an inner product

on T}, which is shown to coincide with the SLD metric
g%, This means that g and g% are essentially the same
thing, and we can express this fact as g = ¢°. Stmilarly,
when 7 = d, 37 establishes an anti-linear isomorphisin
between T ® and T,° and induces an inner product on
T,F. This is shown to be the complex RLD metrie gt
which we express by g+ = gi.

5 Generalized RLD metric and its mono-
tonicity

In the general case when the equality » = d does not
necessarily hold, we regard gt as a generalization of the
complex RLD wmetrie, although this is a singular pre-
inner product on T*(' and does not induce a (pre-)inner
product. on T,)”.

The monotonicity of a Ricmannian wetric g’ is usually
expressed in terms of tangent veetors as {4

g//;(uiu) Z g:a(p)(‘p* (u)vs‘q* (u))s (8)

where  is the state change defined by a quantum opera-
tion (TPCP map), ¢, = (di), is its differential at p and
u is a tangent vector at p. It is equivalently rewritten in
terms of cotangent vectors as

9p(27(£),0™(€)) < gy (£:), (9)

where ¢* is the transposed map of ¢, and € is a cotangent
veetor at @(p). The generalized RLD metric gt and its
conjugate g~ satisfy the latter form of monotonicity™:

TP ()¢ (€) S 33,66, VEeTiE, (1)

while the monotonicity corresponding to (8) is meaning-
less in general.

6 Generalized RLD for tangent vectors
Let

THo={ue

T, = {uE

where 0,p 1= Y, ¢’ € L for u =3, c*(55 ,, ), ({} C
C). T;;" (T, resp.) is a C-linear subspace of T/, consist-
ing of complexified tangent veetors for which RLD (LLD,
left logarithinic derivative, resp.) operators exists. Note
that TF ¢ T,F unless r = d.

Introducing the commutation operator D : T,,L — T/jc
defined by [2]

TE|3A e L, dup= pA}.
TE|34A€L, Bup= Ap}.

g(u, Dv) = 9\/__ (g% (u,v) =G (w,v))

2\/—— tr[p(L, Ly ~ Ly Ly)],

where L, and L, are the SLDs for u,v € TPC, and letting
E* .= ]+ /=1D, we have
TF =EN(TF) and T, = E~(T)F). (11)

3This is a direct consequence of the Schwarz inequality
F(AA*) < F(A)F(A)* which holds for any unital CP map F.
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From this we sce that a complex inner product gt on T/,' [5] A. Fujiwara, H. Nagaoka, “An estinmation theoretical
and a complex inuer product g7 on T are defined by characterization of coherent states.” J. Math. Phys..
vol.40. No.Y. 4227-4239, 1999,
ko opk T +
GHETw ETv) = 9w ETv). [6] S. Kobayashi, K. Nowisu, Foundations of Differential
arc nousingular on T/,i they define inner prod- Geometry 11, Wiley., 196,
ucts on the dual spaces (T;*)* and (T"f y* which are com-

Since gF

plex lincar subspaces of T3 Y. We can show that for
.

fl*%c'-’ € T;‘:‘ b

gH(EL &) = i (&l &y 2)- (12)

where fJI’I‘,,I € (Tf)* is the restriction of € ¢ Tlf - Con
the subspaces T,f“

For u,v e 7’," there exit RLDs A, B such that 9, p =
pAand 9. p = pB, ad we liave

gt v) = (A,B),f. (13)

The original construction of the RED metric is thus ex-
tended.

7 The case of pure states

Let 7 = 1. Then we have T,F N T, = {0} and hencee
there is no RLD for real tangent vectors. In this case, D
satisfies D? = —1, which is nothing but the almost com-
plex structure of the complex wanifold $; = P4 1(C).
often denoted by J in the references of complex geone-
try (c.g. [6]). We have

T ={ueTf{|Du=FvV-Tu}, (14)
C _ et gy
Ty =TraT,. (15)
T,’,* and Tp" are often called the anti-holomorphic and
holomorphic subspaces, respectively, and are denoted as

T;r =T9 and T = TH0. It is sowething interesting to
see that g% = 2gl,e as
2917

gt (Etu, E*v) = g(u. Efv) = ¢ (%(E+ + E7 )y, Eiv>
= %g(Eiu,Eiv).

where the last equality follows frow the orthogonality of
TF and T, .
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Abstract

In order to make a unified treatment for estimation
problems of a very small noise or a very weak signal in
a quantum process, we introduce the notion of a low-
noise quantumn channel with one noise parameter. It
is known in several examples that prior entanglement
together with nonlocal output measurement improves
the performance of the channel estimation. In this pa-
per, we study this “ancilla-assisted enhancement” for
estimation of the noise parameter in a general low-noise
channel. For channels on two level systems we prove
that the enhancement factor, the ratio of the Fisher in-
formation of the ancilla-assisted estimation to that of
the original one, is always upper bounded by 3/2.

key words : quantum estimation

1 Introduction

One of the formidable obstacles for the realization of
quantum computers is decoherence caused by the cou-
pling between computational qubits and the environ-
ment. Recent study of quantum error correction has
shown that fault-tolerant quantum computing is in
principle possible, but it requires that the noise caused
by the decoherence should be lower than the very strin-
gent threshold. Obviously, such a statement has a
physical meaning only if we have an efficient method
for quantitatively estimating very small noise in quan-
tum devices in real experiments. However, if the noise
is very small, so is our success probability of observ-
ing the disturbance caused by that noise. This diffi-
culty makes evident the demand for the study of opti-
mal quantum estimation of very small nose in general
quantum channels based on well-established quantum
estimation theory[1,2,3].

A typical problem of quantum estimation is to ask
what is the best observable, possibly in an extended
system with ancilla, to measure in order to estimate
the true value of § provided that the system is known
to be in one of the state in a given family {pp}. A well-

established solution for this problemn is given as follows.
We call an observable A a (locally) unbiased estimator
at § = fp if the cxpectation value Eg[A] of A in the
state py satisfies

Eou [A] = 60$ (1)
O Eo[Allo=0, 1. (2)

il

In general there are many unbiased estimators. In order
to select a good one, we consider the variance Vp[4]
of an arbitrary unbiased estimator A in the state py.
Then, the quantum Cramér-Rao inequality

1
Va[A] > T0o0) (3)

holds for any unbiased estimator A at 8, where

J(po) = Tr[pp L3} (4)

is the (quantum) Fisher information defined through
the symmetric logarithmic derivative (SLD) Ly that is
characterized by the relations

I

1
0o po ;(Lapo + poLyg), (5)

LY = L. (6)

The SLD is determined uniquely on the range of py,
ie., Lops = Ljpg holds for any two SLDs Ly and Lj.
The Cramér-Rao inequality (3) follows from a simple
application of the Schwarz inequality for the Hilbert-
Schmidt inner product. From the equality condition for
that the lower bound J, Yin Eq. (3) is always achieved
by any observable A satisfying

Aps = (J; Lo + 0)py, (7

see Refs.[1,2] and for a straightforward derivation see
Appendix of Ref.[4].

From the quantum estimation theory for state pa-
rameters mentioned above, we can construct an es-
timation theory for unknown parameters of physical
processes, such as coupling constants of the interac-
tion. Suppose that we prepare a quantum system in
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an initial state p,, and leave it in an cvolution pro-
cess characterized by an unknown paramecter 6. Then,
the final state pg.; () of this process depends on the
paramcter 6. The problem of finding the optimal esti-
mation of the parameter 6 is solved by maximizing the
Fisher information J; over all the possible initial states
pin and all the possible observable A in the final state
[5,6]. The above physical process can be represented
by a mapping I'p that transforin the initial state p,, to
the final state po,. as

Pout = FU [/)'L'n]~ (8)

It is now fairly well-known that every general state
change, called a quanturn operation or a quantun chan-
nel, such as Iy, physically realizable with probability
one should be a trace-preserving completely positive
(TPCP) mapping, and conversely that every TPCP
map can be realized as a unitary process of the sys-
tem augmented by an ancilla prepared in a fixed state
as shown by Kraus [7,8] see also Ref.[9,10] for the gen-
cralization of the above statement to generalized mea-
surements and see Ref.[11] for the latest claboration.

As pointed out in Ref.[12], one can improve the pa-
rameter estimation if a corrclation, or in particular an
entanglement, is allowed between the input system S
and an ancilla A. It should be stressed that in doing
so one needs no physical process to occur ou the an-
cilla systemm A while the system S passes through the
channel I'y. In this case, the extended channel is rep-
resented as I'g @ id 4, where id 4 stands for the identity
chanuel for A. Then, the improvement can be achiceved
by the initial preparation of the composite system in
an entangled state together with the mecasurement of
the composite system after the process.

In this paper, we arc devoted to the ancilla-assisted
enhancement of Fisher information derived by the
quantum Cramér-Rao bound. This enhancement cf-
fect not only projects a theoretical profundity of quan-
tum mechanics, but also suggests many physical appli-
cations including the low-noise estimation in quantum
computing, where the enhanced noise estimation is ex-
pected to contribute to devoting the noise reduction
technology. Hence it is very significant to estimate the
intensity of the low noise. In the estimation, the above
ancilla-assisted enhancement may cffectively reduce the
trial number of the experiment.

For these reasons, we study the estimation theory of
the parameter characterizing a small noise in a general
quantum channel on a system with finite dimensional
state space. We can formulate natural mathematical
requirements for the behavior of the low-noise parame-
ter. It is an interesting problem to figure out how much
ancilla-assisted enhancement can be achievable in the
estimation of the low-noise parameter. In this paper
we shall discuss this problem and obtain several upper
bounds for this ancilla-assisted enhancement factor in
the low-noise parameter estimation.

In a two level systemn Sy, we obtain a universal upper
bound for the enhancement factor n defined by

- ,C[Illa.)([.]s.‘,‘«‘-A]ps2 ; ,\]
I= C[Hlﬂx[c]}y‘zlpy.“,]

9)

for any finite level ancilla A. Here, pg, is the input in
the system S, Jg, is the Fisher information of T [pg,],
Pss+a 18 the channel input in the composite system
So 4+ A, Ja,44 15 the Fisher information of the output
states (e ® ida)ps,+4), and max[], stands for the
maximum over all the state p. The universal upper
bound of the enhancement factor n for all the two level
systems is given by

3 .
y < = 10
s (10}

This upper bound is attainable by various channels I,
and the corresponding optimal input state is a mnaximal
entangled state, and holds for any low-noise channels
on two level systems.

2 Low-Noise Channels

In this section, we introduce the notion of a low-noise
channel T, with unknown parameter €, which takes only
small values € ~ 0, by requiring a physically natural
assumption of the channel T, for the parameter values
near e = ().

As mentioned in the introduction, we will focus on
the ancilla extension of the low-noise channel defined
by I'. ® id4. The ancilla-assisted cnhancement factor
7 is also defined as the ratio of the Fisher information
of the ancilla-assisted estimation to that of the original
one and is analyzed in detail.

The concept of the noise in a quantun process to
implement a target unitary process can be understood
under the following cousideration. Suppose that we
would like to implement a unitary channel A for a
system S, so that the output state correspouding to an
input state p;, of S is designed to be

Pout = A(U)[ﬁin] = Umei'_ (11)

In real life, however, the system S is coupled weakly
with the environment F which causes the decoherence,
and the noise is brought from the environment. As-
sume that the noise is controlled by one unknown pos-
itive parameter v. Then the actual output state pf ,
deviates from the intended output state p,,; due to the
noise It is natural to represent the noisy process by a
TPCP map A, such that

Pout = Aulpin]. (12)

where the relation Ag = AY) holds as the noiseless
case. In quantun theory, the channel A, can be equiv-
alently described by a sequence of two channels (the
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Figure 1: A controlled unitary process usually suffers from
noise. The noisy process is described as a TPCP map, a
channel A,, parametrized by one noise parameter v (the
second line). In quantum theory, the disturbed process is
equivalently described by a sequence of two channels. The
first channel is the originally intended unitary channel A,
The second channel I',, describes the genuine noise effect.
We call 'y the noise channel (the second line).

second line of Fig. 1). The first one is the target uni-
tary chamnel AY) and the second represeuts the gen-
uine noise part. This means that the general noisy
process is equivalent to the noiseless unitary process
followed by an instantaneous noise process. The secc-
ond channel is called the noise channel I'), and defined
by

Llp = A[UTpU] = AJAD) T o] (13)
When the noise vanishes, the channel reduces to the
identity channel:

Ty = ids. (14)

It is stressed that despite that the noise channel T, is
conceptual constituent, it can be simulated in a real ex-
periment by use of the actual channel A,. In practice,
by adopting a known state pl,, = (AY))"1{p;,], which
is independent of v, as the input state of the actual
channel A, instead of the orginal input p;,, we exper-
imentally obtain the output state of the noise channel
[, (pin). Then in later analysis, we will concentrate on
estimation of the noise parameters for I',, which satis-
fies relation (14).

Next let us define mathematically the low-noise
channel I',. This is a kind of the noise channel and its
noise parameter v takes small positive values, which is
denoted by e. We call € the low-noise parameter. Phys-
ically, "¢ is expected to have an analytic € dependence
near € = 0. A rigorous mathematical formulation of
this requirement is given as follows.

Since the low-noise channel T, is a TPCP map, it
has a Kraus representations determined by a family of
Kraus operators. We shall define low-noise channels
in terms of their Kraus operators. A family of TPCP
maps ' with one parameter € > 0 is called a low-noise
channel with low-noise parameter ¢ if each ', has a

Kraus represeutation

Lelpl =3 Bu(e)p Bi(e) + €Y Cule)pClie)  (15)

with two classes of Kraus operators {B,(e)} and
{V/€Cx(€)} satistying the following conditions:

(i) B.(e) is analytic at € = 0, so that we have the
power serics expansion

oo

Bu(f) = K‘ulh’ - Z Nl(xn)é”\

na=1

(16)

in a neighborhood of € = 0, where &, and N,(L"} are
constant cocfficients and operators, respectively, inde-
pendent of e. The noise channel condition in Eq. (14)
requires

(17)

Z]na|2 = 1.

(ii) C.(€) is analytic at € = 0, so that we have the
power series expansion

oo
Cale) = My + > MU,

n=1

(18)

in a ncighborhood of € = 0, where M, and ZLL(,n) are

constant operators independent of e.
Needless to say, the Kraus operators satisfies the
trace-preserving condition

Ly =Y Bl(e)Bale) +€)_CL(e)Cule),  (19)

where 1g is the identity operator. By definition, the
relation

FI_;HEO T =idg (20)
is automatically satisfied.

It should be emphasized that our definition of the
low-noise channel is general from the physical point of
view. Except that T'. satisfies Eq. (20) and has analytic
dependence of € near the origin, the channel I, can be
said to be a general quantum operation acting on the
input state. The first-order relation in the ¢ expansion
of Eq. (19) is given by

Y OMIM, =Y (ke NOT 4+ £END).

a

(21)

One of our fundamental interests is to ask a ques-
tion: which input state for the low-noise channel does
maximize the Fisher information of its output state pe?
It has been shown in [12] that the Fisher information is
attained in a pure initial state, so that we can always
assume that the input of the channel is a pure state.
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Denote the tuput state by (o) (eo]. Then, from Eq. (16)
and Eq. (18). p. can be expanded as

pe = Uello)(ol] = 19} (o] - epr + O(€). (22)
Here py is given by

pro D IRl | N N oo

o

= Maloyle

@

wol

MY (23)

For this output state p.. we perturbatively solve the
cquation,

1.

Oepe = 5(Lepe + peLe). (243
in order to get the SLD operator L.. It is possible
to check that the following solution actually satisfies
Eq. (24) by substitution.

Le==[1-16)@l - + Ol (25)

By substituting Eq. (25) wto the definition of the
Fisher information, we get the value of the informa-
tion as

Islod = 2 37 [(BIMIMI) — 1OMLI#IE] +O(e).

€

(26)

We can obtain the Fisher information of the low-
noise channel in the ancilla-extended systoin S 4 A in
the same way as the original channel .S,

Tsealpd =+ 37 [D(aMEML ~ 1T 3 12] + O(E),
’ (27)

where g is S defined by § = Tra{|¥)(¥]], and |[¥) is
the input pure state of the extended system. Hence, p
is able to describe any possible state of S (we assumnc
here the dimension of A is not less than that of S).
By combining both results of Jg and Jg4 4, we have
the ancilla-assisted enhancement factor n such that

max [Za [Tr [psMIM,] — |Tx IP‘S'M"HQH,OS

a3, [(0s1MIMalds) — V(05 Melgs) ]|
(28)

n=

Here max| | o, means the maximum value over all pos-
sible states of S and max| };44) the maximum value
over all possible pure states of S. Because the set of
pure states of S is a subset of the set of states of S, the
following inequality trivially holds:

n>1. (29)

3 Channels on Two-Level Sys-
tem
We derive a universal bound on the ancilla-assisted en-

hancement factor in a two level system S5 [13] such
that

n<

(30)

| SR

The bound must Lold for all low-noise channels of Sy,
The equality iy = 3/2 can be attained by sowe channels
[13] with the maximally-cntangled input pure states of
5+ A
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Abstract.

Generation and characterization of entangled photon pairs by the spontaneous parametric

down conversion process. Quantum tomography shows that errors of density matrix from the maximally
entangled states are not equally probable. For example, two crystal geometry generates likely the mixture
of |®™)) and |®(—)). The hypothesis testing scheme for the entangled photon pairs has been proposed.
The test can be improved by optimizing the measurement time on the basis according to the un-isotropic

errors on the entangled states.

Keywords: entanglement, fidelity, hypothesis testing

1 Introduction

The concept of entanglement has been thought to be
the heart of quantum mechanics. The seminal experi-
ment by Aspect et al [1] has proved the 'spooky’ non-local
action of quantum mechanics by observing violation of
Bell inequality [2] with entangled photon pairs. Recently,
entanglement has been also recognized as an important
resource for information processing. Quantum informa-
tion technology has opened the way to novel information
processing devices and protocols, such as unconditional
sccurity in cryptographic communication and exponen-
tial speed-up in some computational tasks. It has been
revealed that entanglement plays an essential role, explic-
itly or implicitly, in the quantum information processing.
Entangled states are indispensable in quantum telepota-
tion, a key protocol in quantum repeater. Even in BB84
quantum cryptographic protocol, a hidden entanglement
between the legitimate parties guarantee the security. In
particulars, maximally entangled states are important re-
sources. The maximally entangled states provides high
fidelity on quantum teleportation. It has been shown
that universal quantum computation can be done with
the maximally entangled states initially prepared and
measurement on single qubits. Practical realization of
entangled states is therefore one of the most important
issues in the quantum information technology.

In the practical implementation, a problem arises how
to guarantee the maximal entanglement of the generated
(or stored) states. In other words, we need to determine
whether the states in hand are good enough to do some
quantum information tasks. Imperfections in the gener-
ation process, which are unavoidable in practice, reduce
the entanglement. Moreover, decoherence and dissipa-
tion due to the coupling with the environment degrade
the entanglement during the processing. Visibility of two
photon interference has been widely used to characterize
the entangled states since Aspect’s experiment [1]. Quan-
tum tomography [3] has recently applied to obtain full in-
formation of the density matrix. However, for practical
applications, the characterization is not the goal of the

experiment, but only the part of preparation. Therefore,
it is favorable to reduce the time and number of the con-
sumed particles as possible. In most application, we don’t
need to know the full information on the states; we only
need to know whether the entanglement is enough or not.
The test should be simpler the full characterization. Bar-
bieri et al [4] introduced an entanglement witness to test
the entanglement of polarized entangled photon pairs.
However, their entanglement witness method considers
the statistical fluctuations insufficiently. The statistical
hypothesis testing provides appropriate framework for
crror analysis. Recently, the optimal measurement has
been obtained with rigorous statistical treatment [5]. The
test can be further improved, if we utilize the knowledge
on the tendency of the entanglement degradation. As we
discussed in the following section, the error from the max-
imally entangled states is not isotropic. We can improved
the sensitivity for entanglement degradation by focusing
the measurement on the expected error directions [6].

In this article, we consider two-photon polarization en-
tangled states generated from spontaneous parametric
down conversion (SPDC) process. In section 2, we specify
the generation process and show the results of quantum
tomography. In section 3, we introduce the statistical
hypothesis test scheme for entanglement. In section 4,
we show the experimental setting and results.

2 Generation of entangled photon pairs
by spontaneous parametric down con-
version

SPDC is now widely used to generate entangled pho-
ton pairs. This method provide highly entangled states
with a simple experimental setting. In particular, Kwait
et al [7] have obtained a high flux of the photon pairs
from a stack of two type-I phase matched nonlinear crys-
tals. As shown in Fig. 1, the nonlinear crystals (BBO),
the optical axis of which arc set to orthogonal to on an-
other, are pumped by a pulsed UV light polarized in 45
deg. direction to the optical axis of the crystals. One
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Figure 1: Schematic of the entangled photon pair gener-
ation by spontancous paramectric down conversion. Cas-
cade of the nonlinear crvstals (NLC) generate the pho-
ton pairs. Group veloeity dispersion and birefringence
in the NLCs are pre-compensated with quartz plates
and a Bereck compensator. Two-photon states are ana-
lyzed with half wave plates (HWT), quarter wave plates
(QWDP), and polarization heam splitters (PBS). Inter-
ference filters (IF) are placed before the single photon
counting modules (SPCM).

nonlinear crystal genecrates two photons polarized in the
horizontal direction (|H H)) from the vertical component
of the pump light, and the other generates ones polar-
ized in the vertical direction (|V'V)) from the horizontal
component of the pump. If we use very thin (0.13 mmn
in our experiment) crystals, the directions of the photon
waves are almost the same, so that one cannnot distin-
guish which crystal generates photon from the direction
of the photons. Therefore, the two-photon state is given
by a super position:

O(a,¢) = a|HH) + /1 ~ a2e"? VV). (1)

The amplitude a and phase ¢ of the superposition are de-
termined by the polarization state of the pump light. The
45 deg. polarized pump light will provide a = 1/v/2 and
¢ = 0. The two-photon state 1 then refers to the maxi-
mally entangled state |®()) = (1/V2)(|HH) +VV?))

A crucial condition to obtain a highly entangled state
in the above scheme is to keep indistinguishahility be-
tween the two SPDC processes. The group velocity dis-
persion and birefringence in the crystal may differ the
space-time position of the generated photons and make
the two processes to be distinguished [8]. For exam-
ple, in the case of 266 nm pump light wavelength and
532 nm SPDC light wavelength, the horizontally polar-
ized SPDC light travels through the first crystal carlier
than the horizontally polarized pump light by 135 fs
due to the group velocity dispersion and birefringence.
The vertically polarized SPDC light generated in the
second crystal takes 33 fs more than the horizontally
polarized light to travel through the crystal. There-
fore, the horizontally polarized SPDC light arrives at
the detector 168fs carlier than the vertically polarized
light. This time delay is comparable to the inaccuracy
of the SPDC generation cqual to the pump pulse du-
ration of 150 fs. The two SPDC processes can be dis-

§uaf V03 |
-
Foe '“‘x*\ A
& XA
Frertas N
2
2
TN e T e e e -
Angle of HWP Angle of HWP Angle of HWP
{d (&) (U]

Figure 2: Density matrices estinmated by quantum tomog-
raphy (a)-(¢), and the interference fringes (d)-(f) of the
two photon states, without compensation (a), (d), opti-
mal compensation (h), (), aud over compensation (c¢),

(f).

tinguished. Fortunately, this timing information can be
crased by compensation; the horizontal component of the
pup pulse should arrive at the nonlinear crystals ear-
lier than the vertical component. The compensation can
be done by putting a set of birefringence plates (quartz)
and a variable wave-plate before the erystals. The two-
photon states were analyzed by quantum state tomog-
raphy and visibility of two-photon interference.  The
quantum state tomography provides 4timesd density ma-
trix from the coincidence counts of the 16 combina-
tions, {|H), iV, D). L)} o2 {{H), V), |D),| L)}, where
|D) and |L) stand for the linear polarized state in the 45
deg., and the circular polarized state in the anti-clockwise
direction, respectively. When the pre-compensation is
optimal, the density matrix is close to that of the maxi-
mally entangled state, and the visibility is close to unity,
as shown in Fig. 2 (b) and (e). It should be noted
that onlv HHHH, VVVV, VVHH, HHVV clements
are dominant even in the density matrices for inadequate
compensation[8], as seen in Fig. 2 (a) and (c¢), which
implies that the density matrix can he approximately
given by the classical mixture of the [®(+))(®(H)| and
(@NG(). We can improve the hypothesis testing
based on this property of the present photon pairs, as
given in the following sections.

3 Hypothesis test scheme for entangle-
ment

This section introduces the hypothesis test for entan-
glement. We consider the two-photon states generated
by SPDC described in the previous section. The SPDC
generates a state given by a density matrix 0. We as-
sume cach two-photon gencration process to be identical
but individual. The target state is the maximally entan-
gled i®(+)) state. Here we measure the entanglement by
the fidelity between the generated state and the target
state:

B = () 7idH)y (2)
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We introduce the hypothesis Hy that the entanglement
is not enough and H; that the entanglement is enough,
that is,

Hy : 0 <6y versus Hy : 6 > 8y, (3)

with a constant 8. In the hypothesis testing, two types
of the errors may occur. Type I error is rejection of Hy,
though Hy is true, and type II error is acceptance of Hy,
though H, is true. The type I error is more serious in
applications, because insufficient entanglement increases
crror rate, whereas the type I error only reduces the
cfficiency. Therefore, we first determine a, the upper
limit of the type I error probability, then optimize the
test. to reduce the type II error probability. The test is
called level-a, if the type I error is kept at most a.

The fidelity is estimated from the coincidence counts
measured with a basis set of

B = {|VH).|HV),

XD),

DX).|RR),ILL)}, (4)

where |X) and {R) stand for the linear polarized state
in the 135 deg., and the circular polarized state in the
anti-clockwise direction, respectively. The target state
&)} yields no coincidence counts in this basis, thus
the coincidence counts will detect the error from the tar-
get state with high sensitivity. The coincidence counts
gy with the basis [2y) for measurement time ¢, will be
a random variable according to the Poisson distribution
p(ngy) of mean Ay t,,:

(Atrytay)"v

p(n'f'y) = exp(- ’\H.rytury) S
Ny

where A is a normalization constant related to the photon
flux and detection efficiency, and fi,, is a density matrix
element defined by p,y = (2ylojzy).

Inversely, the experimental data of the coincidence
counts yield the estimation of the fidelity

. 1 i
b=1-5 3 i, (©)

(zy)ess

through the estimated value fi,, = /\"7‘7.,,9, where 7,
is the average of coincidence counts. We then test the
hypothesis based on the rule
0 (=accept Hy) if 6 < 6,
T: (‘p 0).’\-—0 (7)
1 (=reject Hy) if 8 > 6y

where the level of the test T' is determined by the variance

V(6) as

a=1- /-w.. exp[—2%/2]dz (8)
Wy = @:—?—, (9)
40

For example, if we obtain w, = 1.65, the test is level-
a = 0.05. We assume Gaussian distribution of 8, which
is a good approximation for a large number of samples.
In this case, the probability of type II error equals to a.
The variance of 6 is calculated by the sum of the variance

of fiy, since the coincidence counting is an independent
process. The variance refers to

- 1
UOES >V (pay)
(xy)en
! 2
Ry Z Ty (10)
(ry)els

where nf,’;y is the unbiased variance of the coincidence
counts defined by

Mey [ 2

B My n.. .
2 Ty 2y =2
oy = ———— _;_ -0y, |- (11)

May — 1 Moy

i=1

The limit m,, of Eq. (11) is given by t,, = m,,At,
where "Af is unit of measurement time. Performance of
the test can be characterized by the level; the smaller o
implies the better test.

In the following, we consider a situation often encoun-
tered in a actual testing, where the total measurement
time is fixed to tyor = D, t,,. The problem is to optimize
the measurement time to obtain the smallest value of a,
which is equivalent to minimize the variance V(@). If the
two-photon state deviates from the maximally entangled
state isotropically, the uniform division of time should be
optimal, d.e., tyy =tyy =txp =tpy =tpp =t =
tiot/6. However, if the error is no longer isotopic, the
weighted measurement time by Neyman allocation

VHxy
vV Haxy

(xy)en

th)h (12)

fay =

will yield a better test. Because we don’t know the ex-
act values of p,,, we use the estimated values fiy, to
determine the measurement time according to Eq. (12).
We employ a two stage measurement strategy: first we
estimate gy, by a uniform measurement tyy = tyy =
typ = tpy = typ = to = t;, and then measure the
coincident counts with the weighted time Eq. (12), the
total time of which now equals to t4,; — 6f,.

4 Experiment

The experimental set-up for the hypothesis testing was
almost same as the one shown in Fig. 1. The second har-
monic of the mode-locked Ti:S laser light of about 100 fs
duration and 150 mW average power was used to pump
the nonlinear crystal. The wavelength of SPDC photons
is thus 800 nm. Figure 3 shows the coincidence counts
measured for 40 second each on the basis given in Eq.
(4), when the visibility of the two-photon states was es-
timated to be 0.92. The distribution of the coincidence
events obeys the Poisson distribution. Only small num-
bers of coincidence were observed on |[HV') and |V H) ba-
sis. Those observations agree with the prediction, there-
fore, we expect that the hypothesis testing in the pre-
vious section can be applied. In the following, we show
the weighted measurement time improves the hypothesis
testing. The optimal time for #; is derived in [5, 6], how-
ever, it requires the information on the two-photon state.
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We took £{ = Af = ls in the present experiment. We
compared the result with the optimal weighted time.

The sctting and results are summarized in the table,
where (a): wuniform time measurement, (b): weighted
time measurement with 71 = 1, (¢):optimized weighted
time measurement; the optimal allocation estimated from
the average coincidence counts. Those values yield the es-
timated values of 6 and & = V(8). We obtained ((5. ) =
(0.960,4.64 x 1072).(0.960.4.54 x 1073),(0.960.4.54 x
1073), for the uniform time measurement, the weighted
time measurement with fp = 1, the optimal weighted
time measurement, respectively. The results of the opti-
mal allocation were same as those using the estimated
distribution with the measurement for £ = 1 in the
present experiment.  The weighted time measurements
provided better testing than the uniform time measure-
ment. For oxample, if we set the eriteria 8y = 0.952, the
level of the test o = 0.0432 in the weighted time mea-
surement, while the uniform time measurement yvielded
a = 0.0657. This implies that we can conclude "entan-
glement is cnough’ with the accuracy of & % from the
weighted time measurement, whereas we cannot conclude
it from the uniform time measurcment.,

Theory predicts that the improvement should -
creased as the fidelity. However, the experiment showed
almost no gain when the visibility was larger than 0.95.
In such high visibility, errors from the maximally entan-
gled state are covered by the noise of the detectors. Siuce
the dark counts are independent of the setting of the mea-
surement apparatus, the allocation shows only a small
difference form the uniformly divided one. The levels of
the tests are thus similar. The weighted time measure-
ment improves the test in a range of the entanglement.
The range would depends mainly on the dark count rate
of the detector.

VH HV DX XD RR LL

—
)
Ra¥

tay 40 40 40 40 40 40
firy 3.625 3250 16575 17.1  13.975 15675
o2, 30676 2910 14.866 18.650 9.204 15917
(b)

tey 28 20 42 51 38 55
My, 3536 33  16.738 16.922 13.974 15509
o2, 3.888 3.484 15954 16.718 9216 13.069
()

try 23 21 49 49 45 47
ey 3.565 3.3  16.857 16.959 14.222 15213
o?, 3439 3.566 14.417 17.373 10.131 13.389

5 Conclusion

We have discussed the generation of entangled photon
pairs by spontaneous parametric down conversion, and
state estimation by the quantum tomography. We also
consider the hypothesis testing scheme that tells whether
the entanglement is enough (above a certain level) or not
with a level. The test can be improved by optimizing
the measurement time to cach coincidence basis. The
improvement results from un-isotropic errors in the on-
tangled photon pair generation.

0.3 -

0.25 | BB v
> ENHY,
£ 02 } | 0
Fe) . XD!
B 015 | 4 ==
9 01 \CILL}
a. : %+vn‘

HY|

0.05 g l—-—ux

o EERE o e xol
"
0 5 10 15 20 25 30] ]

Figure 3: Coincidence counts measured for 40 second
cach on the basis VA HVLXD)  DX) IRR), and
JLL). Bars present the measured nunibers, and lines
show the Polsson distribution with the mean values esti-
mated from the experiment.,
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Abstract.

We investigate entanglement witness operators of four-qubit cluster states.

We deseribe a

local decomposition of a projector-based entanglement witness and show the munber of local measurement

settings is optimal.
high noise tolerance.

We also show stabilizer-based witnesses with fewer local measurements which have

Keywords: cutanglament witness, four-qubit cutanglement, cluster state, local measurement.

1 Introduction

Entanglement is known to be a resource of quantum
contputation and connnunication. It was shown that spe-
cial entangled states called cluster states can be utilized
for quantuin computation with one-qubit measurements
[1]. The cluster state [D)¢ is defined as

O_J(Ea) ®

a' €ngbh(a)

ol0)e; = £[B) (1)

where ngbh(a) specifies the sites of all qubits that interact
with the qubit at site a € C. The linearly connected four-
qubit cluster states are known to be equivalent to

1
|Cs) = —2-([0000) +]0011) +]1100) — |1111})  (2)
under local unitary transformation [2]. Furthermore,

Ix) = [ 00) + [11))]00) + (]01) + [10)[11)]  (3)
is also equivalent to |Cyq) under local unitary transforina-
tion. |x) Las been shown as a resource of teleportation-
based controlled-NOT gate [3].

Up to now, some schemes of experimentally producing
a four-qubit cluster state have been proposed [4, 5, 6, 7).
In such experiments, we need to verify whether the pro-
duced state is a desired genuine multipartite entangled
state or not. One of the ways of verification is to use
entanglement witness operators. An entanglement wit-
ness of the four-qubit cluster state which discriminates
all biseparable state frow R, 9] is known to be

We, = %11 —Ca)(Cl. (4)
This guarantees that Tr(We,pp) > 0 for all bisepara-
ble states pp, and that a negative expectation value of
the observable W, signifies that the observed state is
a genuine four-partite entangled state which is close to

)

*tokunaga.yuuki@lab.ntt.co. jp

It such entanglement witness operators are decom-
posed iuto local projection operators, then the mea-
surclients can easily be hmplemented in experiments
[10, 11, 12]. For cxample, we can casily make a projec-
tion weasurement for a photonic qubit using a polarizing
beam splitter and a detector.  Morcover, the smallest
number of local measurement setting should be selected
to decrease experimental effort [11, 13]. However, the
necessary number of local measurement setting of the
projector-based withesses secins to grow exponentially
with the number of qubits. To overcome the problem,
different kinds of witnesses, which are called stabilizer
witnesses, have been proposed and witnesses with only
two measurement settings have been shown in [8, 14].

In this paper, we describe a local decomposition of
the projector-based entanglement witness of a four-qubit
cluster state with nine measurement settings and show
the number of local measurement setting is optimal. We
also show stabilizer witnesses of a four-qubit cluster state
with more than two local measurcinent scttings which
tolerate higher noise compared to the two measurenient
case. Especially, the noise tolerance of the witness with
four local measurement settings is close to that of the
projector-based witness which needs nine measurement
settings.

2 Local decomposition of entanglement
witness
First, we describe a local decomposition of Wer, and
show that it can be measured with nine settings. |Cyq)(Cyl
is locally decomposed as

(Ca{Cal = (IIIT + 1ZXX + ZIXX + XXIZ

+XXZI+ ZZII+ XYXY + XYY X (5)
+YXXY +YXYX+HIIZZ -YYIZ
“YYZI-IZYY - ZIYY + ZZZZ)

using Paull operators. We use the notation X =
Y =0y, Z = o, for simplicity. and sometimes also use
the notation o9 = I, 07 = o, 09 = 0y. 03 = 0,. This
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caleulation can be done using the following relations

0)0] =
0)(1] =

l
S(L+Z). ] = (- 2).
" (6)

SOV +IV) ] Sy - i),

[SR e l\zl'——‘

Thus, an entanglement witness with local measnreinents
is described as

Wi, ,—_-l_(n - F(M’\ X+ ZIXX + XXIZ
)

+XXZI v ZZIT+ XYXY XYY X (7)
FYXXY v+ YXYX + 1127 -YYIZ
~YYZI - 12Z2YY - ZIYY v ZZZZ).

Here, for example, IZXX and ZIXNN can be nieasured
by one measurcment setting ZZ.X X, Therefore, the wit-
ness can be weasured with the following nine settings
ZZXX XXZZ XYXY. XYYN.YXXY )
- N
YXYX YYZZ ZZY'Y ZZ7 7.

Next, we show that Wee, cannot be decomposed into
less than nine local measurement settings, ic., the de-
composition ix optimal. The proofs of two-qubit (Bell
state) and- three-qubit (GHZ and W ostate) cases were
shown in [11, 13]. Here, we extend the proofs to four-
qubit cluster states. First, consider a decomposition with
cight local measureient settings:

S YD ctATAT BB )

m=1rs.tu=0

10 (C) 0 1D (DY
where {|A™)}, {{B2) ) {1C4) ), and {|DI)} are ar-
thonormal bases for Ha, Hy, He:, and Hy,. respectively.
We can write any projector of (9) as a vector in the
Bloch sphere; ]A’“)( o= Y s ey i represented

=0 "
by the veetor s AT = (1287 5'3‘ CosT) and AP (A
by s = (1/2, —314 , sf .—s3"). The other projec-

tors can be written similarly. Then, we can expand (9)
inthe (6, 20; op @

R 3
Z Z f’J‘k,a, EojR o & (10)

In order to consider measurement settings, we focus ou
1 . :
the reduced 3 x 3 matrices (;II;A',“ )jk=1. 3 for all il

They can be written as

o) basis such ax

alf (B 88T s (81 sy s (11)

7

where aff are constants. Next we write the withess (7) in

; ~3
the (o, &0, Zop&oy) basis: Wi, = le ik d=0 Ao, E
g ay oy, then the matrices (X)) je=o..3 = (Aijkt) jb

are written as

7000 0 0 040
00040 0O 0 090
{Aojro)jn = 0000 AXojer )y = 00 00
0000 0 -1 00

0000 000 —1
0000 0o o
(Aogkz) b 0000 | Puia=1090 0
0010 000 0
000 0 00 0 0
000 -1 00 0 0
(Atjo)rs 000 o |1y 21 g
000 0 00 0 0
0 0 00 0000
00 00 1000
(Atsha)pn 0 100 | Pusslie =g g g
00 0o 0 000
0000 00 0 0
00U 00 -1 0
i |y g g [Pt =g g 0 o
0000 00 0 0
00 00 0000
0 -1 00 0000
{Najia) i 00 00 AAorn)jn = 1000
G 0 00 0000
0000 0 -100
0000 0000
(Aol 0000 Peshie=1y 9 o0
~10 00 0000
0010 000 0
000 000 0
(Asghz)jn oo 00| Pdis=14090 ¢
0000 000 -1

The rednced 3 x 3 matrices that appears when the fivst
rows and the first colmnns are dropped from the following
uine watrices (Aojai)ja- ogaz) ks (Awo)jae (Aixn)jses
(Aja2) b ageod i zjnn) jes (Aagna)jn and (Aajas)ja
are lincarly independent. However, any linear comnbina-
tion of eight matrices (11) cannot express a nine linearly
independent matrices. Therctore. the setting of nine local
weasureinents (8) is optimal.

3 Entanglement witness with fewer local
measurements

It has been shown that we can construct stabilizer-
based entanglement witnesses with fewer local measure-
ment settings than that of projector-based  witnesses
[%. 14]. A stabilizer witness for cluster states with two
measurennent. settings which discriminates any bisepara-
ble state from a cluster state is described in [14]. Tn this
case. the noise tolerance for a four-qubit cluster state is
33%. The noise considered here is white noise defined
in Eq. (16). If there exists withesses with higher noise
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tolerance, we can detect entanglement more seusitive in
various situations. Here, we show stabilizer-based wit-
nesses for |Cy) with three or four measureinent settings
which give 40% or H50% noise tolerance, respectively.

The local decomposition of the projector (5) also de-
rives the stabilizer group of the state. The stabilizing
operators of |Cy) are

S, =I1ZXX, Sy =ZIXX,

Sy = XXIZ. Si=XXZI (12)
and their products
Sy =27711, Sg = XY XY,
S;=XYYX, Sy =YXXY,
Sy =YXYX, Sw=11ZZ, (13)
Sii=-YYIZ, Sy=-YYZI, ’
Sis=—-I1ZYY, Syy=-ZIYY,
515:ZZZZ, S](;:I]II.
For all Sy,
Sk|Ca) = |Cy) (14)

iy satisfied. The cigenvectors of the generators of the
stabilizer (12) form a complete orthogonal basis. We call
it the four-qubit cluster state basis. All the elements of
the stabilizing operators are diagonal in this Dasis.

As shown in [8, 14], a stabilizer witness for |Cy) with
two local measurement is deseribed as

Wy =21 - %(IZXX +ZIXX + Z2ZII
+XXIZ+XXZI+11Z7).

The two measurement settings are ZZXX and XXZZ.
Here, Wa — 2We, > 0 holds. Thus, for any state p de-
tected by Ws we have Tr(pWh) > 2Tr(pWe:, ), then the
state is also detected by We,. Therefore, Wh also works
as a witness. We can simply verify We — 2We, > 0 us-
ing the expression in the four cluster basis state. Since
both Wh and We, are diagonal in this basis, we can di-
rectly check diagonal elements are all non-negative. We
consider the following type of noise

p(pnuise) = p'nuisrll/24 + (l - pnnisc‘)‘c-lﬂctd (1(3)

and from TrWsp(Ppoise) < 0, we obtail ppyise < 1/3 thus
it tolerates noise up to 33%.

Here, we construct a witness with four local measure-
ment setting. From the symmetrical structure of the sta-
bilizers, we put a witness

Wi = BI-(IZXX + ZIXX + XXIZ + XX ZI
~YYIZ-YYZI-IZYY - ZIYY) (17)
~ 81122 + ZZ1I)

with four wmeasurement settings ZZXX, XXZZ,
YYZZ, and ZZYY. Sinilarly as Wa, Wy must sat-
isfy the inequality Wy — aWc, > 0 for soine positive
constant «. From Wy — 2W¢, > 0, we can derive six-
teen inequalities by calculating the diagonal elements in

the four cluster state basis and the inequalities are put
together as

3-8y=2041>0, (1%)
B+8y—28—1>0, (19)
B—2/0 —1>0. (20}

From Te(Wap(prima)) = 0, the limit of noise tolerance is
calculated [8] as
P _ - <W> ')
Plimit — .
Whiar = (Whey

(21)

Then 8, 7, aud ¢ are chosew such that prige is naximized
on the condition that the inequalities (18) (20) are sat-
isficd.  Then, we obtain 3 = 1, v = 1/4. and & = 0.
Therefore the witness with four measurement settings

Wy =1- %(IZXX +ZIXX + XXIZ+XXZI
-YYIZ-YYZI - [ZYY - ZIYY")

(22)

is obtained. This witness tolerates noise up to H0%. The
projector-based witness We, tolerates noise up to 53.3%.
So the stabilizer-based witness with four measurement
settings is comparable in noise tolerance to the projector-
based witness with nine measurement settings.

We also show a witness with three local measurerment
settings. We put a witness from the symunetrical struc-
ture

Wy =0l - y(IZXX +ZIXX +XXIZ +XXZ1) (23)

~8(I1ZZ + ZZIT) - n(ZZZZ) -
with three measurement settings ZZXX, XXZZ,
ZZZZ. From Wy — 2We:, > 0 and by maximizing the
noise tolerance, we obtain 8 = 3/2, 7 = 1/2, § = 0,
and 7 = 1/2 with similar caleulation as in the four local
measurement settings. Therefore the witness with three
measurement settings

3001
Wi= 51— s(IZXX+ZIXX + XXIZ
Y XXZI+Z2ZZ2)

(24)

is obtained. This witness tolerates noise up to 40%.

4 Summary

We have deseribed a local decomposition of  the
projector-based entanglement witness of a four-qubit
cluster state. It can be weasured with nine measure-
ment settings. We have shown that the witness needs at
least nine local measurement settings, thus the decompo-
sition s optimal considering the number of measureinent
setting. We have also described stabilizer-based entangle-
ment witnesses for a four-qubit cluster state with fewer
local mecasurement settings. We Lave shown o witness
with three measurement settings whicl tolerates noise up
to 40%, and a witness with four measurement settings
which tolerates noise up to H0%. The projector-based
witness with nine measurement settings tolerates noise
up to 53.3%. So, the noise tolerance of the stabilizer wit-
ness with four local measurement settings is close to that
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of the projector-based witness with nine measureient
settings for a four-qubit cluster state. These witnesses
would be usetul for experiments such as verifications of
preparing four-photon cluster states.
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Abstract. The geowmetric phase for the case of two interacting spins and nonzero magnetic field is cal-
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derived. The correspouding nnification scheme for t

hat geometric phase is

ormulated. This unification

formulae covers the results for precessing and for isotropically interacting spins.
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1 Introduction

The important ingredient in geometric phases {1, 2, 3]
has played a key role in recent advances in the study
of quantum mechanics, quantum computation and many
other disciplines. Many obscrvable quantum phenomena
are related to the geometric phase shift. The Berry's
geometric phase has been exteusively studied and gen-
eralized in various directions, for example, nonadiabatic
cyclic evolution [4], noucyelic evolution [5], a kincmatic
approach [6], and the conditions of adiabaticity, unitarity,
and the cyclic nature of the evolution [7]. The geometric
phiase for mixed states was given within the mathematical
coutext of purification (8], starting from an interferome-
try setup and a kinematic description [9], and nonunitary
evolution for CPMs [10, 11].

Quantm entanglement has been one of the most wor-
thy aspects of quantum theory. Recently, the geomet-
ric phases of entangled states (See [12]) have been found
useful in quantumn information processing, quantum tele-
portation as well as the geometric gquantum computation
[13. 14, 15, 16, 17, 18, 19]. i.c., making the quantm
gate through the geometric phase shift. In particular,
several of them are based on the idea of using the Berry
phase [13, 16, 17] shift to the degencrate states. Re-
cently, it was reported [14, 18, 19] that the conditional
Berry phase (adiabatic cyclic geometric phase) shift gate
an be used in quantun computation. Also a scheme to
realize the NMR C-NOT gate through the nonadiabatic
cyclic phase shift on the dynamic phase free, and to de-
tect the geometric phase for a Josephison-junction system
was proposed [20, 21]. The experimental testing of ge-
ouletric phase s an interesting and important topic. In
Ref. [14]. an experiment was done with NMR technigue
122, 23. 24, 25] under the adiabatic condition. Recently,
the mixed state geometric phase has been confirmed ex-
perimentally using NMR [26].

In a recent paper [12], Sjoqvist caleulated the geomet-
ric phases for both a pair of entangled spins with two
spin precessing and with a spin-spin interaction in a time-
independent uniforin maguetic field. As the study of spin
svstems effectively permits us to expect design a solid
state quantion computer, the entanglement-dependence
geometric phase becomes an interesting development in
holonomic quantum computer. We first calculate in this

paper the geometric phase for a two-interacting spin and
nonzero magnetic field wodel. We then propose an ex-
plicit formula and obtain the corresponding wunification
scheme for entanglement-dependence geometric phase of
two interacting spin pairs under a time independent mag-
uetic tield. Naturally, one cau recover Sjogvist's results
for precessing spins and for isotropically interacting spins
models.

2 Geometric phase for two interacting
spins

As an exawple, we determine the geometrie phases for
two interacting spins. We first present the Hamiltonian
operator H in the matrix form,

H

i

wlo, @I +1®o,)

A
+; (O‘I @ Ty + U!j ®(7£/ -+ . & U:),

2w+3 00 0
_ 0 =3 A 0 )
0 A3 0
0 0 0 “2w+3

where w is the Larmor frequencies, A is the strengths of
the interaction, and oy, o,. 0, are the Pauli matrices.
The Hamiltonian operator H describes the isotropic in-
teraction and nonzero magnetic field. In this case, the
unitary evolution U(¢) is

Uty = 510

AR 0 u {
ST NNTEN Lm A et
0 ¢ L ¢ 2 U
~ 2t X" A L IRTEN H
—ax e :
() 3 o ¢ € 2 & (J
R,
0 0 0 AT
(2)
if we choose |W(0)) as below
L(0) =
e g, . . . N
e™"*(cos 5 cos (_12; cos i_,* + sin 5 sin L'ZL sin %‘)
ve Dy s Gy iy L s
Cos § cos 5 sin g sin § sin i cos =
cos $sin Lo cos % — sin $eos Lsin % )

i Do a0 Ly . i T,
e'?(cos & sin 4 sin % +sin g cos 5 cos )

—716—



wlhere o is the Schmidt paramecters, ¢ and 6,( = 1,2)
are the initial angle measured from the r-axis and z-axis,
respectively.

It is well known that the geometrie phase for a pure
state |U(0)) and the eutangled state [W(#)) = U(£)|¥(0),
can be obtained by removing the dynamical phase from
the total phase. Let @p, @), and @ are used to mark
total, dynamical, and geonetrie phases, respectively; and
we use ¢ and 7 to represent instantancous time and finite
time, respectively. The non-cyclic non-adiabatic geoet-
ric phase can be obtained as

Gei(r) = Op(1) = Pp(7) (4)
with total phase and dynamical phase

Dy () = arg(W(0)|U (1) L (0)),

—
g
—

T

Dp(r) = —i/ (W (O)[U ()T U (8)de (V). (6)

Jo

To obtain the total phase, we substitute that expressions

[(0)) in (3) and [W(2)) = U @) E0)) with U(t) in Eq. (2)

into (5) aud after some lengthy caleulations we got
K+ Kscosar+ Kysina

O (1) = —arctan - —, 7
(7 § Ky+ Krcosa + Kgsine (7)

with

K1 = 1—tan®wrcosb) cosbs,
Ky = —tanAttanwr(cosd) + cosfa).
Ky = - tan® wrsin g sin s,

] 1 .
Ky = tanAt|l+ 3(1 + tan® wr)

(sin? A7 (sin 8, sin @y — 1) + cos ) cos 0y)],
K, = —tanwr(cosf) + cosbs),
‘) .9 0 + 9‘_

K = tanr(l + tan®wr)sin’ _1__‘__;

Substituting the |T(0)) in (3) and the entangled state
[W(t)) = U@)|T0)) with U(?) in Eq. (2) into (6), we

obtain the dynamical phase © (1) as

Dp(r) = K7+ Kycosa + Kgsina (%)
with
AT . .
Ky = - —5(1 + cos By cosfs + sin 6y sinbs),
Ky = —(cosf) + cos8s)wr.
AT . .
K, = —2—(1 — 086 cos By — sin b sinbs).

From the total phase (7) and dynamical phase (8). the
geowmetric phase @ is readily given by equation (4). The
expression in the first line of Eq. (7) is valid ouly when
the resulting angle remains in the [—3, Z] interval. We
emphasize that the above result is new. The physical sit-
uation corresponds to experiments using magnetic mate-
rials under field. This result should be useful in further
study of geometric phases and their applications in quarn-
tum information processing.

3 More general result for geometric

phase

Consider a quantum system cousisting of two spin-2
particles in a time-independent wniform magnetie ficld
which is applied in the z-direetion. Hamiltonian for the
systews s

H = w8 +wSs;

(8N B)(a, SES? + 0,582 + a.5t52), (9)

vy

where wy and ws arve the Larmor frequencies, and A and
(@..ay. az) are the strengths of the interaction. The S,
and Sa ., are the corresponding z components of the spin
operators associated with the two particles, and the S =
(57,55, 8%) and Sy = (S7.57..57) arc the spin operators
pertaining to the spin pair. Thestate (U(8)) of the system
obeys Schrodinger equation

d
(D) = Hb(t) (10)

where H is the faithful matrix representation of the above
Hamiltonian (9),
H = wo.®I+wl&o,
+(2A/h) (a0 @ 0p +ayo, D oy + a0, © 0)
H, 0 0 Hy
0 Hy Hay 0
T 0 Hy Hy o | 1)
Hy O 0 Hy

Here, Hyp = wi +wo + ay, Hoy = w1 —ws — ag, Hyy =
—wy +ws —ay, Hyy = —w) —ws +ay, Hiy = Hy
a, — as, Hyy = Hyy = ay + as, and ay = (2A/h)a., as
(2A/h)ay,. as = (2A/h)az. The state |P(t)) is a 4 x 1
matrix, which is written as (@(¢)) = U(¢)|¥(0)). For
convenienee we parametrize the initial state [¥(0)) of the
system by

i

Ii

o) = e"g(’(‘)s%\n(()),m(l)))

it
L=

L
+e'7 sin 5! -n(0), ~m(0)). (12)
where @ and 3 are the Schmidt parameters, n and m
are two poiuts on the Poincaré sphiere and the subscripts

denote spin 1 and 2, respectively. We assume that the
initial spin states | £ n(0)) and | £ m(0)) are given by

i 6 L 0
n(0)y = e cos Ell T+ €7 sin —21—] 1,
e ; ey [
Im(0)) = e "% (',()8—0—2—2'{ 7+ e % sin —2’—| 1),
and
" 6 o %)
| —n() = e~ sin —2i! 1) — e cos —;)l\ 1),
Wy 9 22 9
[—m() = e*7F siu—{)—z! - % cos 72‘\ 1)-

Assuming that the initial spin state n(0)) makes an angle
# from the z-axis, the spin state at any later time ¢ is

Lol - B(L 6 .
() = e~ 4 ('osg\ DeeFandiny. )
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Here ¢(t) =
(0,1)", respectively. Then initial state
is given by

¢+ wt, and | T) and | |) denote (1,0)7 and
U(0)) in Eq. (12)

E
(e T cos § cos 4 cos —= + et i sin § sin -L sin % 3 )
_ by g :8 8
T (e 7 cos § cos —l sin —* - el“ sin 5 sin Ql cos = 0’ 5)
jimn 8
e (c 5 ((15;\111%(0\% - 2 ‘vlll—‘(,()b—!"\lll )

[ PL TP

- n
e T (e ‘Tws :

.
sin -('—L sin (—* + % sin §eos ‘zl cos )

(14
The unitary evolution of the state vector is given by
gt a—1 - ’ y—
—itSH'S™TH _ Se itH S 1
'it’\“,e_'il’\‘)S"l

Ult) = e H =¢
Sdiag(e™ M e 42 ¢
Un 0 [h] Uiy
0 Usp Uy 0 B
0 Usp Uz 0 ’ (15)
Un 0 0 Usm

Il

where the matrix H' = diag(A1, Aa, Az, Aq), the X\;(@ =
1,...,4) are the eigenvalues of the matrix H in (11) which
are found tobe AL = as+py, Ao = —ag+p_, A3 =
P-y A = ag—py, where pr = /(w1 £ ws)? + (a1 T ag)?.
The norma.hsed eigenvectors of the unitary matrix S =
(2}, x , 23, 2%), which su(h that H=S8H'S™! = SH’ST,
are (511,0 0, 541) R (U 522,5;2, ) s 3 =

—az—

(0, SQJ,SH, 0’ and z3 (514,() 0,S54)7, the matrix el-
cments Sy; are
y g wy + w2 + Py
S = Su= )
V2/pi(pt +wi +wn)
g . W —wy +p-
S22 = Siy= )
V2 /p-(p= +wi — w)
g — 4y
Sy = =Sa= s
V2/pr(s +wi +ws)
Sag = —Su= dt o

VZV/p- (- +wi —w)
Also the matrix elements Uj; are

U” _ (al (lg) —iAgt (w1+w2+p+)26'1’\"
2p4(p+ +wi +wy) '
Uy = (a1 +a2)2t’_")""‘+(w1 w4 po)PePat
2p-(p- +wi —wy) '
e - (a1 + @2)?e™ ™ 4 () —ws + po 2ot
2p-(p- + w1 —ws) '

U = (a1 —ag)?e™™ 4 (w1 +wy + poy)le M

2p1(py +wr +ws) ’

(a1 — az) (Wi +wy +py He
2p ¢ (p+ +wi +we)

(a1 + a)(wy — wy + p_ et — e iAaly
20— (p- +wy —wa)

—iAt —idgt
e )
Uy = Un=

)

Upy = U=

The non-cyclic non-adiabatic geometric phase can be ob-
tained as ®¢(r) = Qp(7) — p(7) with total phase
Op(7) = arg(¥(0)I¥(r)) and dynamical phase ®¢ (1) =
—i Jy (T(2)[F(t))dt. With |E(0)) in Eq. (12) and |¥(2)) =
U(t)|¥(0)), we arrive at the formulae for the total, dy-
namical, and geometric phase (5), (6), (4) of the entan-
gled state |W(t)) under a unitary evolution U(t) in (15).

4 Recovering Sjoqvist’s result
We use the general formulae (4),(5) and (6) with (12)
and (15) to discuss sowe special cases.
Let a; = 0,(¢ = 1,2,3). Thew, the Hamiltonian (9)
becoes
H = wLSL: + WQS"_)];, (16)
which is the Hamiltonian operator in case of the spin

precession in [12]. In this case, the unitary evolution
U(t) is expressed as

_“w twrg “u_'lf...v-l T St l{“’l twy

U(t) = diag(e T e T, e T I e T ) (1)
If we choose 3 = 0 of |¥(0)) in (12), the geometric phase
of the entangled state |W(2)) = U(¢)|W(0)) is given as
cos afcos 6 tan £+ cos 6 tan %1]

1~ K ‘r(m L tan <%

P (1) =

—arctan

+ ¢os a(“’_;: cos0; + —)I Cos 62) (18)

4

with
Ky = cos8; cos by + sin oy sin ) sin 0.

Note that the expression in terms of arctan is valid only
when the resulting augle remains in the [-F, 3] interval.
The geometric phase @ (7) in (18) of the (-n‘raugled state
(1)) = U@)|w0)} for Ut) in (17) and [L(0)) in (12)
agrees with Eq. (7) in Ref. [12].

Let w) = we =0 and a1 = as = a3 = a. Then, the
Hamiltonian operator H in Eq. (9) becowes

(BA/1)(arSySE + aySES2 + a.SLS?)
2Xa/R) (02 @ 0x + 0y R 0y + 0. ®02), (19)

H

il

Il

which is the Hamiltonian operator in case of the isotropic
spin-spin interaction in [12]. In this case, if we assume
a= %, the unitary evolution U(¢) is

c,»ib\ 1} 0 0
—EfA L uta L —ith_itx
0 e HA e & e 4]
U(t) = 0 RIS JETI RN 0 (20)
3 7 )
0 0 0 e

To investigate further the quantum system of two spin-
é particles with a spin-spin interaction on the Schunidt
sphere in the context of the geometric phase, it is conve-
nient to consider a superposition of the type

W) =cos S| Do e +sin T il le (1)

or

() = )H—)ll—)z

7(0013 + sin —
TV
1 +11) and =) = (1) - 1),

20) acts on [¥(0)) in (22), we have

(cos g — sin %)l~)1l+)2. (22)

where |+) = %
When U (¢) in

,\‘,._

o) = [(ew"’\‘cos—g—ke Slllg)|+>1|-—)2

%EIH

—i cosg — e gin §)|">1l+)2]' (23)
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The time-dependent Schidt paramcters a(t) and 3(t) is 3]
introduced by rewriting Eq. (23) on the synuetrice form

) A a(t) . 9]
wey = e W, .
ozt oot
+e' 2 5111-‘()—))]—)1[4-)3. (24)
= 0]
Inserting Eq. (24) into Eq. (4). we obtain the nonceyelic
two-particle geometric phases as 11|
af7)+ex () ,
€O ——m—" 3(r
D (1) = —avctan( “(T)i 5 tan - ( )) .
Cos —'—AjﬂL 2 112}
T 3T 1
+/ AT coma(tyat. (2
vH =
where a(0) = 5 — o, cosa(f) = sinacos(2Ad) [14]
and taud(t) = tan ﬂ'—(—')—;’i‘—@ = —tanasin(2At)
with ’(em%ﬂ = tw(A) 55 and tanﬁ—'—"._,("l = 15
- tuu(x\t)—l—z%;—‘. In this way. the geometric phase @ (7)

in (25) of the emtangled state [W(2)) = U(1)|W(0)) for )
U(t) in (20) and [¥(0)) in (22) agrees with Bq. (24) in 16]
Ref. [12].

.

5 Conclusions 1l
As a special example, the entanglement dependence 1y

on the noneycelie two particle geometric phase has been

determined for an isotropic interaction and nonzero wag-

netie ficld model. We then have extended the noncyclic

and non-adiabatic phase to the general case, proposed a [19]

gencralization of geometric phase and formulated the cor-

responding unification scheme for that geametric phasce.

Frowm the present formulae, the geometric phases for both 20}
a pair of spiu—% particles with two spin processing and an
isotropic spin-spin interaction are reprodoced. 21
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Abstract.

We find a necessary condition for the local, perfect discrimination of general multipartite states

in terms of three entanglement quantities, the global robustness of entanglement, the relative entropy of
entanglement and the geometric measure. These results lead to an upper bound on the number of pure,
multipartite states that can be perfectly, discriminated locally. The bound is explicitly found for pure
bipartite states and some known results are proved in a unified way. This bound is shown to be tight for
a set of m-party GHZ states. Further we extend the initial condition to the probabilistic case, leading to
a bound on the locally accessible mutual information for a completely random message.

Keywords: LOCC discrimination, multiparty, entanglement, local accessible information

1 Introduction

We consider the connection between distance like mea-
sures of general multiparticle entanglement and the prob-
lem of LOCC state discrimination [1].

Whenever we want to retrieve classical information
from a quantum system, we are essentially making a dis-
crimination of states (or subspaces). In quantum infor-
mation we often consider situations where separated par-
ties are restricted to using Local Operations and Classical
Communication (LOCC). As the final outcomes of any
quantum experiment are obtained from measurements,
it is hence important for us to understand the effects
of the LOCC restriction on the measurement of quan-
tum states. Indeed, the LOCC measurement of quantum
states is important for the study of cryptographic proto-
cols [2], channel capacities [3], and distributed quantum
information processing {4].

Defining entanglement for more than two parties be-
comes very complicated. There are two approaches to
quantifying entanglement, the first is to define entangle-
ment in terms of units of ‘useful’” entanglement. In the
bipartite case the standard unit is the singlet, which is,
for example, essential for faithful teleportation [5] or en-
tanglement based secure communication [2]. We then ask
questions like how many singlets is it possible to distill
from a state (the entanglement of distillation) or how
many singlets are needed to create a state (the entangle-
ment of creation). In the multiparty case however, we
have no clear idea of what the units of usefulness are
and we have inequivalent types of entanglement [6]. The
other approach is to define measures of entanglement in
an abstract way, such that they obey certain axioms, and
can be called entanglement monotones (the main axiom
being they must not increase under LOCC). Typical ex-

*markham@phys.s.u-tokyo.ac. jp
ts.virmapi@imperial .ac.uk
towariGeve .phys.s.u-tokyo.ac. jp

E(iee)

4
E{lp)
E(|p:))

E(1w))

To discriminate the states {|y;)} perfectly

Figure 1:
under LOCC, the sum of the entanglement distances
E(|¢;}) must be less than the total dimension D (Theo-
rem 1 and 2).

amples of these are the distance like quantities to the
clogest separable state (7, 8, 9]. Since the ouly reference
to the multiparty nature is in the definition of separa-
ble, these quantities are well defined in the multiparty
case. However, there is often no physical interpretation
in terms of the meaning for a state as a resource, or the
usefulness for tasks.

The counection between entanglement and LOCC
state discrimination is thusfar unclear. One of the earli-
est results on LOCC discrimination was the observation
of ‘non-locality without entanglement’, where sets of or-
thogonal product states were presented that cannot be
perfectly discriminated locally [10]. This was followed by
a proof that any two multipartite pure states may be op-
timally ambiguously, and unambiguously discriminated
using LOCC [11]. Subsequently there have been several
further interesting results on what can and cannot be
done using LOCC in variety of situations [12]. However,
due the lack of a simple characterisation of LOCC op-
erations, further general results seem to be difficult to
obtain and many results are specific to the bipartite case
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only, or valid for specitic sets of states or scenarious ouly.

We give a necessary condition for the perfect discrim-
ination of states by LOCC which Lold for all states, ir-
respective of the number of parties, or wether pure or
wixed [1]. In the pure state case this condition implies
that three distance like measures of entanglement can
be interpreted as upper bounds to the number of states
that can be discriminated perfectly by LOCC. By using
known entanglement results we will give examples of ex-
isting and new LOCC discrintination bounds in a unified
LEALLCT,

We further extend these conditions to the probabilis-
tic case which allows us to give a bound on the LOCC
accessible mutual infornation.

2 The condition and entanglement

Any measurcient in physics is deseribed mathemati-
cally by a POVM. Our condition stews solely from two
facts. First, that there must be a POVN which is de-
terministic in the outcomes for our states. Second, this
POVM must be LOCC. This is a very very hard problem,
and we actually use weaker versions of both these coudi-
tions. We use the result that any LOCC measurenent all
POVM elements must be separable [13]. The main math-
cmatical step is to then take an optimization of the trace
of the individual clements of the POVM, which vastly
simplifies the problem. A siwilar techuique was used in
{14]. This allows us to translate these couditions to a
statement about the entanglement of the states. The ex-
istence of a POVM satisfying these conditious, can be
rewritten to give the following necessary condition.

e Necessary condition for deterministic LOCC
discrimination of set {p;|i = 1..N}:

> tp)<D (1)
i
where,D is the total dimension of the systemn, and
t(p:) == | P + min A
stich that
I>A>0;P+AeSEPtr{AP} =0. (2)
where P, is the projector onto the span of each p;
and A is the trace of an operator A.

Now, the expression for t(p;) is what gives us the link
to entanglement. Although it may look obscure at first,
it turns out, that it is almost exactly the same as the
definition for the global robustness of entunglement R, (p)
(15]. In fact it can be shown

P; .
tpi) = s(p:) == | Pl {1 + R, (—Mﬂ - (3)
|P]
More, we can further relate it to the relative entropy

of entanglement Eg |8] and the geometric measure Eq;.
through the following bound

t(pi) > s(pi) > oER(p S, > 21'7(:(1)‘): (4)

where S(p;) is the von Neumann eutropy.
This gives, for example, a hierarchy of bounds;

e Bounds on the number of states NV that can
be discriminated perfectly by LOCC
N < D/t(pi) < D/s(p;) < Dj2Eulpd+sie
<D R (5)

where for o quantity r,, we denote IT; =
N .
/N300 2y, the average’

Heuce, in the pure state case, where the bounding quanti-
ties reduce to the geometric measure of entanglement, the
relative cutropy of entanglement and the robustness of
entanglement (from right to left), we can interpret these
three distance like entanglenent measures as bounds to
the number of states we can diseriminate perfectly by

LOCC.

3 Examples

Given this hicrarchy we can apply known results on
entanglement to the bounds, Given sets of states with the
same entanglement, for the bipartite case (Syipariice), for
G HZ states, and for W ostates, we have the set of bounds,
provided by known entanglement results [15, 16]

dids /() ai)?

DU

[\;(Sbl]m:rl!lt ) <

N(GHZ) <

N(W) 2" (m - 1/m)t" ™Y (6) -

I

wliere ¢; are the Sclunidt coefficients for any one of the
bipartite states in the set Spiparrize. [0 fact, we show that
the bound is tight for GHZ by explicit construction. In
addition. in the paper we show that these examples prove
some known results in a unified way. [17].

4 Probabilistic Case and Locally Acces-
sible Information

It can casily be shown in an analogous way to the de-
terministic case, that a necessary condition for the am-
biguous probabilistic local discrimination of states {p;},
where for a state p; the probability of correct inference
from the measurciment is p(ii), is that the following -
equality holds:

> tp) <D, (7)

where

t'(p;) == mintr{M}
such that
I>M!>0,M! € SEP,tr{M!p;} = p(ili).  (8)

Another, very mnch related problem to local state
discrimination, is the problem of sending and receiv-
ing /decoding messages under LOCC. If we now imagine
that the states to be diseriminated are actually those cho-
sewn to send a message, cach state associated to a classical
signal, then decoding the message is a similar task to the
discrimination of the states. If we can give a bound on
the best probability of sucecess py for the discrimination,
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intuitively we might expect that we can get a bound on
the accessible information. This is indeed the case as
shown by the known bound [18],

H(I:0) < H(I) + loga(ps)- (9)

Given this, for a completely random message encoded
on the states {p;]i..N'}, the locally aceessible information
is bounded from above as

H(I:0) <logy, D — min Eg(p;). (10)

We note that in the bipartite pure case, this looks like a
special case of the bound given in [19]. There, they give a
general bound in terms of the entanglement of formation
(which for pure states leads to a generally tighter bound
than above). The bound found here is only equivalent
for the case where all the encoding states have equal en-
tanglement, are all equally likely and for where geometric
entanglement is equal to relative entropy of entanglement
(which is equal to entanglement of formation for pure
states [8]). However the bound (10} applies to the wore
general multiparty mixed state case, and in certain mixed
state cases can lead to a better bound (since it also takes
into account the mixedness of the state).

5 Conclusions

The conditions and bounds found here are apply to the
discrimination of general imnixed, multipartite states. Far-
ther, the simplicity of the bounds and their derivatiow,
leads to sets of weaker conditions, so that for pure states,
we can always find at least some calculable condition.

For example, our crucial condition of separability can
be changed to a weaker condition, that is possibly easier
to compute but still necessary for LOCC, for example
PPT, or bi-separability [20]. It can easily be seen that
these conditions would follow through to give bounds of
entanglement type quantities, defined by the respective
sets [20]. In the case of bi-separability, the example for
bipartite states above shows it always gives an easily com-
putable bound.

We have given an interpretation of the global robust-
ness of entanglement, the relative entropy of entangle-
ment and the geometric measure of entanglement as a
bound to the number of pure states that can be discrim-
inated perfectly by LOCC. Our general mixed state re-
sults imply that entanglement guarantees a certain diffi-
culty in the LOCC discrimination of states. It is known
that this problem is fundamental to various quantum in-
formation tasks, (such as quantum data hiding[13] e.t.c.),
which may indicate that all entangled states are useful.
This is the topic of ongoing investigations. In this direc-
tion, we have seen it is also possible to extend theoremn
1 to the case of imperfect discrimination. This leads to
bounds on the LOCC accessible information.
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Abstract.

We address a problem of identifying a given pure state with one of two reference pure states,

when 1o classical knowledge on the reference states is given, but a certain nmumber of cupws of them are
available. We consider two versions of this problem; one is without no-cerror conditions ("state identifica-
tion”) and the other is with no-error conditions ("unambiguous state identification”). In both versions we
give a complete solution for the optimal mean success probability for an arbitrary number of copies of the

reference states in general dimension.

Keywords:

1 Introduction

Suppose we are presented with an unknown gquantum
pure state p on a d dimensional vector space ct. We
know that the input state p is cither one of two reference
states p; and po, each being also a pure state on c.
What is the best strategy to identify the input state with
one of the two reference states?

We can cousider two cases depending on what kind
of information on the reference states is available. In
the first case, we are given complete classical knowledge
on the reference states p; and pp. This is the problem
of quantum state discrimination, which was solved by
Helstrowm [1].

On the other hand, we can also cousider the case where
only a certain nunber (V) of copies of p; and py are pre-
sented, with no classical knowledge on them available.
In this case, we could obtain only limited classical in-
formation on the reference states, due to the no-cloning
theorem. In this report, this problem is called "state
identification”. If the number of copies N is infinite, the
problem is reduced to quantum state discrimination.

In the case of qubit (d = 2), similar problems but in
different setups have been studied [6]. Sasaki et al. stud-
ied quantun matching problem | where a certain number
of copies of input and reference qubit states are indepen-
dently distributed on a great circle of the Bloch sphere.

In the problem of unambiguous discrimination, we are
not allowed to make an ervor but our measurement can
produce an inconclusive result [2, 3, 4]. Similarly we can
consider the unambiguous state identification problemn
with no-error conditions. Bergou aud Hillery [7] recently
discussed this problem when the number of copies N =1
and the dimension d = 2 (qubits). They called the op-
:imal strategy a programmable state discriminator since
:he strategy is not “hard wired” but supplied by the ref-
arence states stored in registers in the machine.

In this report we assume that the input state p is guar-
wnteed to be prepared in oune of the two reference states
71 and po, and the two reference states are independently
listributed on the whole d-dimensional pure state space
2hin a unitary invariant way. No classical knowledge
m the reference states are available, but ouly a certain
wmber (N) of their copies are presented. Our task is

*hayashi@soliton.fukui-u.ac. jp

state discriinination, unambiguous discrimination

to successtully identify the input state with one of the
reference states.

We will study two versions of state identification prob-
lems; with and without the no-error conditions [8, 9]. In
both versions we will give a colplete solution of optimal
strategies and the mean success probability as a function
of the number of copies N of the reference states and the
dimension d of the state space. The large IV limit of the
optical mean success probability is also studied.

2 Mean identification probability

We assune that the input state is given in system 0
and N copies of each reference state p, are prepared in
systems ay, as,...,ay (a = 1,2). We denote the sub-
systeml a1 ® a2 ® --- ® ay simply by a (a = 1,2). We
specify the systein which an operator acts by the system
nuwber in the parenthesis; namely, p(0) means that this
is an operator acting on systeim 0 for example.

Our task is then distinguish between the states
PO (L)*N (2PN and pa(0)pr(1) %N pa(2)% V.
Clearly the corresponding sct of POVM {Ey, E;} can
be assumed to act on the subsystem Viyn, where each of
systems 1 and 2 is totally symunetric.

The mean success probability is given by

P =35 3 (t[Bun0n() @] ()

u=1,2

Here < --- > represents the average with respect to the
two reference states p; and pg, each of which is indepen-
dently distributed over C? in a unitary invariant way (sce
[10] for the precise definition).

It is very helpful to use the following formula for the
unitary average of the tensor product of n identically
prepared pure states [10]:

(2)

where &, is the projector onto the totally symetric sub-
space of {C‘l}‘”” and the dimension of the subspace is
ﬁ;iV(“.ll b.V dn‘ =tr [’Su] = /L+(l-1C:l—1»

Then the optimal mean success probability can be cal-
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culated as follows:

1 1
Md) = =+ z=—rtr|E1D
P (d) 2+2dN+1dNn[ 1D
1 1
< =4 ————tr|D
S 3 menay Pl
= plld(d). (3)
The operator D is defined to be
D= SN.H(Ul) - SN+1(02), (4)

where Sy41(01) is the projector onto the totally syni-
metrie subspace on systems (0,1) = (0,11, 1a,...,1xn)
and other projectors S are defined siwmilarly. The opti-
mal POVM measurciment can be taken to be a projective
measurement, since the equality in Eq. (3) holds if By is
the projector onto the positive-cigenvalue invariant space
of D. Note that Sy(1) =1 and Sy (2) = 1 in V.
Thus we need to determine non-zero eigenvalues of the
operator D in Vi, in order to evaluate the optimal mean

identification probability p.(,ﬁl&(d).

2.1 Case of qubits (d = 2)

In this case, the algebra of angular momentun is very
useful. In the subspace Viyy,, the total angular momen-
tum of systems 1 and 2 is N/2. Furthermore, the projee-
tor Sy+1(0a) can be written as

Swa(08) = (2j<a) s+ X+ 1) R

where $(0) is the spin operator of systew 0 and j(a) is
the angular momentum operator of system a = 1, 2. Let
us calculate D? by the use the properties of the Dauli
matrices and the commutation relations of j(a). The
result is given by
21 1 3. e .
D = NI ((N+2)(N+2) J), (6)

where J = j(1)+7(2) + s(0) is the total angular momen-
tum operator.

Thus we find the optimal mean identification probabil-
ity for the qubit case to be

1

1
Ngeoy = Lo 1
max(@ = 2) 5T ANT DN T2 *

N-% T+ 12
(27 +1) 1—(N+21>. (7)
J=3%

We list explicit values of pﬁff&(d = 2) for some small N's.

11 ,
(@) = 5+ 5V3 = 0644,
11
P2 = 5+ (V24 VE) = 0703,
‘ 11
G2 = S+ G(VIE+aVEaVT) = 0734

O T«TITI] - (Il
. s [T11] .,y J

Figure 1: Decompaosition of the product of three U(d)
irreducible representations [1] & [N] ® [N]. The decow-
positiou leads to the three orthogonal subspaces V,, (n =
1,2, 3) according to the mumber of rows n of Young dia-
gran..

2.2 Case of arbitrary dimension d

Let us introduce the orthonormal base of the total
space (CHRENTY yecording to irreducible representa-
tions of the symmetric group Son41 and the uuitary
group U(d). We write states in this base as

I\ ab). (8)

Here A represents an irreducible representation of Spy 41,
which is specified by a Young diagram. By the expression
A= [A1, Az, . -], we denote a Young diagram consisting of
a set of rows with their lengths given by Aq, As,.... The
label o indexes orthogonal vectors in a particular Ssn41
representation space and it runs from 1 to the dimension
of the Son 41 representation. It is known that the A also
specifies irreducible representations of the unitary group
U(d}, and its vectors are indexed by b, which runs from
1 to ma(d), the multiplicity of representation A of Say1
on (CHHEN+),

Possible Young diagrams A appearing in Viyy and
the range of the index a associated with a particular A
can be determined by decomposing the product of three
U(d) irreducible representations [1} @ [N] @ [N]. We de-
compose the space Vyy into three orthogonal subspaces
V.. (n = 1,2,3) according to the number of rows n of
Young diagram (see Fig. 1).

It turns out that the all cigenvalues of the operator D
are zero in spaces Vi and Vi, And the eigenvalues of D
in Vo are the same as those in the qubit case (d = 2).
since the operator D involves only permutations. Using
the results in the preceding subsection, we find the mean
optimal success probability to be

1 1
(N) = o
pmax(d) 2 + 2dN+ldN X
2N 2
AL —N
> mpady1i- (357) . ©
Ar=N+1

where my, 3,)(d), (A2 = 2N +1 — A1) is the multiplicity
of the Sopn 4 irreducible representation [A1, Ao}, which is
realized in Va.

M td =)+ d =2 — A+ 1)

M, ) (d) = @-d-200 + )igt 0

2.3 Large N limit

In order to compare the obtained mean identification
probability with the discrimination probability [1]. we
average the optimal diserimination probability for given
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Figure 2: The optimal mean identification probability

p;‘l’.il((d) as a function of the number of copies (V) of the

reference states. As N iucreases, pf.{\!&(d) approaches the

mean optimal discrimination probability shown by the

solid lines.

reference states p; and pg

@) = {3 (1+ gelon - pgl> ). (11)
We find
1 d-1
Pmax(d) = stog—T (12)

Now what is the limit value of the mean identification
probability p,(r{Qc(d) when the munber of copies N goes to
infinity? In the large N limit, we can replace the sum in
p,(,{iz((d) of Eq. (9) by aun continuous integral. The result
is

.1 ‘
&ﬁi(d) — % + (d — 1)/0(1332(1 —12)4“’3

_ l n d-1

T2 241

= Pmax(d), (N — c0). (13)

This is an expected result, since when the number of
copies of the reference states are infinite, we can acquire
complete knowledge of the reference states; the problem
is reduced to the standard discrimination problem.

Figure 2 displays how the identification probability ap-
proaches the discrimination probability as the number of
copies increases.

3 Mean unambiguous identification
probability
Here we study how to unambiguously distin-

guish between the states p1(0)p1(1)%Vp2(2)%N  and
p2(0)p1(1)®N py(2)®N | which we call the unambiguous
identification problemy. The POVM acting on Viyy, now
consists of three elements {Eqg, F1, E2}. When the out-
come of the POVM is a(= 1, 2), we identify the input p
with p, with certainty. Outcome 0 of the POVM means
we have an inconclusive result.

The niean success probability is given by the same forin
as Eq. (1) and we can perforn the average by the formula
(2) as before.

. L ]

Q(N)(d) = 3 Z <tr [E‘Lp”(())pl(l)]\pg(‘z)N] >’
a=1,2

- m(tr [E1Sn41(0L)] + tr [E28A1+-1(()2)]>.

(14)

The big difference is that we are not allowed to make an
crror in the unambiguous identification setting. This is
formulated by the following no-error conditions: for any
p1 and po

tr [Erpa(0)pFN (15N (2)] = 0,
ir [Bap1(0)p7" (1)p5N (2)] = 0, (15)

which are evidently equivalent to

E\Sn+1(02) = Sn41(02) By = 0,
EsSna1(01) = Snp1(01)Bs = 0. (16)

We observe that the set of POVM’s satisfying the no-
error conditions Eq. (16) is convex. By this convexity
of the legitimate POVM’s and the symmetries intrinsic
to the problem, we can hnpose two properties on the
optimal POVM without loss of generality (sce [9]). One
is the exchange symmetry between systems 1 and 2

Es = TE\T, Ey =TET, (17

where T is the operator that exchanges systems 1 and
2. The other is that the optimal POVM element is a
U(d) scalar; namely, E, commutes with U¥ZN*1) for
any unitary U. These two properties are very helpful in
determining the optimal POVM.

3.1 Optimal mean unambiguous identification
probability

We just sketch the outline of the derivation (sce (9] for
details). It is convenient to use the base | A, a,b) and the
decomposition Vyy = Vi & Vo @ V3 introduced in Sec.
2.2.

We find that the no-error conditions Eq. (16) and the
symmetries of the POVM lead to the following form for
the optimal POVM elements:

By = e(1-Sn:(02),
By = e(1-Snn(0n),
. -

> eala, (18)
A

where T'y is the projection operator outo the U(d) rep-
resentation space specified by A. The positivity of Eq =
1 — By — E; requires the operator e should satisfy

2 e, (19)
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i subspaces V,oand Vi where we witroduced the operator
A i the subspace Vi, as

A= Syal0l) + Syp(02) - L (20)

The mean suceeess probability Beag.(14) s then expressed

15

¢"(d) =

- trfe(l - A% 9
2dN+ldN“ [e(l — A%)]. (21)

In the above equation, we tind that the subspaces Vyoand
Vs have no contribution to the trace sum. And [A] in the
upper bound of e in Eq.(19) commutes with 1 — A% in
the trace. Therefore, we inmmediately obtain the optimal
mean suceess probability as follows:

; 1 1 ;
My < tr LA
N < gt )
I
" By M
= Guld): (22)

The optimal succeess probability is thus attained by the
nts sive . 18 i S S
POVM elaments given by Eq. (18) with e = AT aud
_ A+]a
E() = Wh&

We can compute the non-zero cigenvalues of A in Vi,
assuming d = 2 in the sanie way as the computation of
the ecigenvalues of D. When d = 2, 4% can be calcu-
lated by Eq. (5) and the algebra of angular momentum
operators.

3 1 5 1
A= (J% - 2
TRt (J +4), (23)

from which we can casily read off the cigenvalues of |A].
Finally we obtaiu the formula for the optimal success
probability to be

1
(N) = —_—
Tnax(d) Tomdy
2N
= A - N
> mysag(d) (1~ zif+1)‘ (24)
A =N+1

where myy, 2,)(@) (A2 = 2N +1 — Ap) is the multiplicity
given in Eq. (10).

3.2 Large N limit

Let us study the asymptotic value of qf,ﬁ,)c(d) when
the number of copies N is very large and cowmpare it
with the unambiguous diserimination probability [2, 3, 4].
First we average the optimal unambiguous discrimination
probability for given reference states p; = | @1 }( @1 | and

Pz =|¢2){( 2|

Gmax(d) = (1= [(91162)])- (25)

We obtain
2¢4=1(g — 1)! .
duax(d) = 1 — Gd-1n (26)

Unambiguous identification probability

o
o

3
R_Z

el
c

3
o

success probability
o
>

o
w

02

01 . s i _ L " .

0 5 10 15 20 25 30 as @0 45 50
N (number of copies)

Figure 3: The optimal mean unaubiguous identification
probability qf,',\;‘l_i(d) as a function of the mnber of copies
(N) of the reference states. As NV oincereases, ql({:\.'&(d) ap-
proaches the mean optimal uuambignons discrimination
probability shown by the solid lines.

which is certainly less than the mean diserimination prob-
ability Eq. (12).

On the other hand, the large N limit of qﬁm(d) can
be calculated by replacing the swin in Eq. (24) by an
continnous integral. The result is again an expected one.

o1
¢ M(d) — 2d-1) [ dz(l+2)*"H1L—z)¢?
SO
24— — 1)t
= 1= - (N — o), (27)

which is equal to gnax(d) given by Eq. (26).

References

[1] C. W. Helstrom. Quanturn detection and estimation
theory (Academic press, New York, 1976).

[2] I. D. Ivanovie. Phys. Lett. A 123, 257 (1987).
[3] D. Dicks. Phys. Lett. A 126, 303 (1988).

[4] A. Peres. Phys. Lett. A 128, 19 (1983).
{

5] Janos A. Bergou aud Mark Hillery. Phys. Rev. Lett.
94, 160501 (2005).

[6] Masahide Sasaki and Alberto Carlini. Phys. Rev.
A66, 022303 (2002).

(7] Janos A. Bergou and Mark Hillery. Phys. Rev. Lett.
94, 160501 (2005).

[8] A. Hayashi. M. Horibe, and T. Hashimoto. quant-
ph/05607237, to be published in Phys. Rev. A 72,
(2005).

[9] A. Hayashi, M. Horibe, and T. Hashimoto. to be
published.

[10] A. Hayashi, T. Hashimoto, and M. Horibe. Phys.
Rev. A 72, 032325 (2005).



Implementation of binary projection measurement with linear optics
and photon counting

Masahiro Takeoka! 2 *

Masahide Sasaki! 21

Norbert Liitkenhaus®

L Quantum Information Technology Group,
National Institute of Information and Communications Technology (NICT)
4-82-1 Nukui-kitamachi, Konganei, Tokyo 184-8795, Japan.
2 CREST, Japan Science and Technology Agency, 1-9-9 Yaesu, Chuoh-ku, Tokyo 103-0028, Japan.
3 Quantum Information Theory Group, Zentrum fir Moderne Optik,
Undversitdt Erlangen-Nirnberg, 91058 Erlangen, Germany.

Abstract.

We discuss the implementation of binary projective measurement with linear optics, photon

counting, and classical ancillary states. The problem can be regarded as a discrimination of two orthogonal
pure quantum states. We show that any sets of two orthogonal states can be perfectly discriminated via
only linear optics, photon counting, coherent ancillary states, and feedforward, at least, in the asymptotic

limit of large number of these resources.

Keywords: state discrimination, linear optics, photon counting, feedforward

In various applications of optical quantum information
processing, one is often required to make a measurement
which projects the state onto complicated superposition
states or entangled states. It is, however, a nontrivial
problem how to implement such a device physically. One
of attractive approach is to use linear optics and classi-
cal feedforward associated with photon counting which
effectively generate optical noulinearity in measurement
process [1].

Recently, the criteria to decide whether one can imple-
ment a given projective measurement with wnit success
probability has been derived under the condition that one
can use linear optics, photon counting, arbitrary ancil-
lary states and classical feedforward but the amount of
these resources are always finite [2]. In this talk, we ex-
tend this scenario to the asymptotic limit of large number
of resources. We discuss the implementation of a given
binary projection measurement {|¥),|®)} via linear op-
tics and photon counting. This problem is equivalent to
that of discriminating two orthogonal quantum signals
{|¥),]®)} unambiguously [3]. We show that, in prinei-
ple, any set of {|¥),|®)}, including the sets in which the
above criteria state no-go, can be perfectly diseriminated
by using only linear optics, photon counting, and coher-
ent ancillary states, at least, in the asymptotic limit of
large number of these resources.

Before starting a discussion of linear optics implemen-
tation. it would be worth mentioning the distinguisha-
bility of two orthogonal states via local operations and
classical communication (LOCC). The necessary condi-
tion for exact local distinguishability is that, after doing
a measurement at some local site, every possible remain-
ing states must be orthogonal to each other. Walgate et
al. [4] showed that there always exists a local projective
measurement satisfying this orthogonality condition for
two orthogonal muti-mode states and thus one can per-
fectly discriminate them via a series of local projective

*takeoka@nict.go. jp
Tpsasaki@):xic\: .g0.JP
Inorbert.luetkenhaus@physik.uni-erlangen.de

measurements where the choice of the measurcment basis
at each local site is conditioned on the previous measure-
ment outcomes. This result means that if one can show
a physical scheme that can exactly diseriminate any two
orthogonal single-mode states, its sequential application
can achieve an exact diserimination of any two orthog-
onal multi-mode states. In the following, therefore, we
concentrate on a diserimination of two single-mode sates.

An arbitrary set of two single-mode orthogonal states
are described by

o0

|\IJ> = Z C-m.!7n>0, I(D) = Z d.,n]nz)()‘ (1)

m=0 m=0

where |m) is a m-photon number state and (¥|®) =
Z::;=o ¢ dm = 0. Figure 1 is the schematic of the mea-
surement apparatus. The states are equally split into N
modes by asymmetric N — 1 beamsplitters [5],

Bn_10(0n-1) - B1o(81)|0)*N 1),

— €~a}~,_lao . _e—h’;&ge&(ﬁc‘au ]n(l/\/ﬁ)m)MN—ll\IJ>0'
(2)
where B, 0(6,,) = exp|0,(al,ao — ana))] and
1
tan g, = (3)

Wit

The outputs at N ports are completely symmetric and
the effective power reflectance for each output is given
by sin?@ = 1/N. At each port, one makes some mea-
surement in sequence by using linear optics and photon
counters, where the information about the measurement
outcome at each port is feedforwarded to design the next
measurement.

First, we briefly sketch how two states are discring-
nated by such a scheme in the limit of N — oc and then
provide a rigorous proof afterward. Suppose to put |¥)
and |®) into the first beamsplitter. For sufficiently small
1/N, the reflectance of more than two photons can be
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negligible. The states after beawmsplitting are given by

B1,0(61)[0)1]¥)o [0}

Q

[10 o-l-\/_ll 1)
(4)

Q

By 0(61)]0)1]®)0 [0} |v0)o + \/_.|1 N2

(%)

where, {mojvo) + (mlv)/N = 0, since a beasplitting
operation is unitary. Then a partial state on the mode 1
is measured. The measurement here is required to keep
the orthogonality of any conditional outputs of [¥) and
[®). The local measurentent satisfying this condition is
given by a two-dimensional projective measurement. (4],

o = M) - . (6
I ] m

where, My, M, and @ are the functions of ¢d;.

The projective ieasurement of Eqs. (6) and (7) cal be
huplemented by the displaccient operation D( (B./VN)
and photon counting as shown in Fig. 1(b). Since both
the signal and displacement are weak enough, we have

(\%){0) ~ e IhP2N (‘0) 51 )

(8)
- Ji) ) —|A|%/2N 51
DT<— 1) = —e RN ZLg) 1)),
7% )11 TR0+ 1)
(9)
as the measurement vectors of such apparatus. Appar-

ently, they have sinilar structures to that of Egs. (6) and
(7) and, therefore, by choosing appropriate £y, one cau
make a projection measurement that satisfies the orthog-
onality condition (¥/|®') = 0 for any conditional states
[T, |@') after the projection measuremcnt.

The conditional states after the first measurement can
be rewritten as

W= dam), @)= dam). (0)

m=0 m=0

Since an N-splitter splits a state synunetrically, one
can repeat the same procedure for the remaining state
with the second beamsplitter, the displacement opera-
tion b(ﬁg /VN), where B35 is conditioned on the previous
measurement outcome, and a photon counter. After re-
peating the same procedure to the modes 1 to N — 1
with appropriate g;'s, the final states at the mode 0 in-
clude maximally one photon and are still orthogonal to
each other. As a consequence, applying the final (N-th)
displacement and photon counting, one can exactly dis-
criminate |¥) and |®) with unit suceess probability.

It should be noted that this is a generalized version of

the scheme so-called “Dolinar receiver” [6, 7, 8, 9] which
was originally proposed as a physical model attaining the
minimum error diserimination of the binary coherent sig-
nals {|e), | —a)}-

HeNAH

V-splitte- i Min ....3‘._.. Fout
(N b,
. P ),E Hy o A .
W 0 |t / S Al ! v/[\'siml)—-. g0
or ) ' D= { conerent state
e P cies
1 l j photon
(w] i ) A counting
77 \\?/ 7 ( ek
(@) (b)
Figure 1: (a) N- \phttu and (b) a measurement appara-

tus at each step. A displacement operation D(8,/vVN)
is realized by combining the signal with a colierent state
local oscillator |8,) via a beamsplitter with sufficiently
swall power reflectance 1/NV.

Now, we discuss the scheme again more rigorously. In
thie above deseription, we neglected reflections of wmore
than two photous at cach beamsplitter. When it is in-
chuded, the state space at each port does not remain
two-dimensional, and thus the two conditional states af-
ter each measurenent step are not orthogonal any more.
We show that the diserimination error due to such non-
orthogonality converges to zero in the limit of lagre N.

Let us denote the operation of the i-th photon counting
as

(k| D(B:/ VN)Bio(8.)|0),|¥) = EX|®),  (11)

where & is the number of the detected photons. Here, we
treat only physical states as inputs, that is, the average
power of |¥) and |®) are always finite. Moreover, we
assune that all local oscillators satisfy

18:* <Cs Vi N, (12)

wlere Cy is some constant independent of N. This also
implies that the average power of each local oscillator is
finite. At the i-th measurement step, a probability of
detecting & photons is given by

B = TE ) E
) k

182\ (1\"* 1.

= €exXpP *-2-77 ']V /3[ - 1- —ﬁao
2

1 .

IREIR WRACESY

N) [T o

_ s, |\W-“>)+O( 1 )

X exXp (flz)&() In

Nk NE+1
CI(»J B
Nk

IA

Vi, k (13)

where [T~} is the conditional output for the input of
) after the i — 1-th measurement, and

C,E.”(,B;, [LGE=1)) is a coustant depeunding on 8 and
-1 put independent of N. Due to the power con-
straints of the inputs and local oscillators, one can obtain
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the inequality at the final line in which P,ft) is bounded
by some constant C,ff’B that is independent of N. Appar-
ently, Eq. (13) is also held for |®).

After finishing a whole process of N measurement
steps, one can classify the results according to the se-
quential patterns of detected photon numbers. Let us
denote the events in which all the photon counters de-
tected less than one photon by ‘success’ events and the
others by ‘failure’ eveuts. The probability of resulting
the success event Pyuce is given by a sum of 2V success
cvents as

'Psucc

i

oN
> P(M)

2N-—l

> PNy (P(O]ﬁ(Nq)) +P(1|ﬁ(N‘1>))

2N~I
> PEY) (1- PN ) - )

I

> 251)(11“““”)( C”B+o< - ))
> (1—(”;]f+o(]—vl§>)]v
= I_CN +O(]$D>, (14)

where §(N) denotes a pattern of the length N sequence
of 0- and 1-photon detection results and

P(k|fN=1)) is the probability of detecting k photons at
the N-th measurement conditioned on the detection pat-
tern of the first N — 1 measurements. Then, we can
easily show that the probability of resulting the failure
event Pyqy is bounded by

CUB
Pfailzl*Psucch +0( ), (15)

N

which implies that the failure probability approaches to

zero in the limit of large N, at least with the order of

1/N.

To see the residual non-orthogonality, let us revisit
to the first beamsplitter By o(61). The states after the
beamsplitting can be described by

B1o(61)|0)|%) = [0)lmo) + N1/211>|771)+ | M) +
= 10)|n0>+ﬁ75l1>lm)

+ i +0(5) (16)
where [no) = Yo jcm(l = 1/N)™2%m), |nf) =
Yommt1 Cm(m/N)2(L = YN) D 2m — 1), |m) =
Z‘oozl em(1~(1-1/N) m)l/2|m—1>aa~nd [7:) = [m)—Im)-

Similarly,
. 1
Bro(60)]0)1®) = [0)afro) + <575 (1))

L) 40 (—lﬁ) ()

where {(nolvo) + {mlv1)/N = 0 is exactly satisfied and
O(1/N) includes the terins of more than two photon re-
flections. The terms |n.) and |v), that have been ne-
glected in the previous discussiol, cause the residual non-
orthogonality. Note that the leading terms of these vee-
tors are independent of N.

We can design 81 such that, after the photon counting,
the orthogonality between Eqs. (16) and (17) is satisfied
up to the order of 1/N/2. Then, the conditional outputs
for the 0- and 1-photon detection events are given by

BY L (-20)
P(El) Pél) 2N
< (1m0 = S imy - iy +0 (1)),
(1
By 1

]ﬁlP)
e (-
P1(1) /Npl(l) 2N

< (mimd +1my + gzind +0 ().
(19

respectively, where the third and fourth terms cause the
residual non-orthogonality.

Now, suppose that the same strategy is applied to
the choices of §; for further measurement steps. Here,
the leading order of |n,), which is about 1/N, does not
change during these measurenment processes because, in
Eqs. (16), (18) and (19), the order of the zero photon re-
flection ter [0);]no)o, which is also about 1/N, does not
change during the whole operations and, similarly, after
beamsplitting |7,.), the state always includes the term
[0):)77.)0 which keeps the leading order of 1/N the same.
After the N — 1-th measurement, when all the photon
counters detected less than one photon, the conditional
output is given by

EWN-1), - EM|w)
VPIN-T) ... p()

(N 1)
Nl/"
(IH(l‘)>+|H(i2))+~-~)

)

o™ ”10>

1)+

N3/2
R (‘H(]1)>+lH(J))>+ )

(20)

Nl/”

where |H, ,E,l)) is the residual non-orthogonal vector caused
by the k-photon detection at the [-th measurement.
Denote the final N-th measurement by |Di) =
DY(Bn/VN)|k) (k =0,1). Suppose that By is designed
such that |@(V-1)) and I<I>(N ~1} are mostly projected
onto | Do) and |Dy), respectively. The error probability
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that [TV D) i projected onto [Dy) is given by

[(Di V=2
I

1 i
WZ(DMH(%‘))

r=1

P =

Il

J 2

+'%F > _(DiHEP)| (21)
o=/

Here, I and J are the muubers of the events of detecting

zero and one photouns, respectively. The leading order of

<D1|H,f,j)) is independent of N for every 7 and k.

Now, let us consider the limit of large N. One can show
that, as N increases, JUWV) exponentially approaches to
SN PY) with the help of Azuma’s inequality [10, 11].
Let us define the random variables Z; = JO -3 P(”
(i = 0,..,N) where JE is the muuber of the 1- plmton
detection event up to the i-th measurcment. In the se-
quence {Zo, Zy,...}, Z;’s are not independent to cach
other sinee Pl(l) always depends on the previous @ — 1
measuremients.  Howcever, it i able to show that Z,’s
satisfy the couditions E[Z;|Zy, Z1, -+ Z;-1] = Z;-1 and
|X; — X;-1] < 1for j > 1, where E[Y}X] denotes the
conditional expectation. To the random variables satis-
fying these conditions, one can apply Azuna’s incquality
and it implies that

Prob[|Zy — Zo] > Ne| < 2~ V72, (22)

for all N > 0 and any € > 0, which means that, in the
limit of large N, J™) approaches to ZN P(I) m\pu—
nentially, and also V) = N — JWV), Th(mimo Py,
satisfies

1 Cllldx 1
P, < N l(l B +0 <N§) +€) (Dh[Ho)av

N 1 ’
+ (Cinax +0 (N) + Ne) (D1]|H1)av

Cg 1 .
< ];+o( )-I—eO(NU) (23)

where (Dy|Hp)ay = S (D1|H{Y/N (k = 0,1) and Cp
is some constant independent of N. Also, we cawt choose
that Cp satisfies the same relation for [(Do|@N—1)}2.
Then, sumuning over all detection patterns, the average
error probability is bounded as

success failure
PRY = > PP + > P(HPL()
Cmax CF max 1
< 1—
< ( N)(N*)J“ N +O(N°)
< %+O< )+e (24)

where C is some constant and € = eO(1/N%). As a con-
sequence, in the limit of N — oo, one can discriminate
|@) and |®) with the success probability arbitrarily close
to unit.

Finally, sumuning over all detection patterns from
Eqs. (14), (15), and (23), we can find that the average

crror probability is bounded by some constant C as

SUCCess failure
P = D POEN(®+ Y POPLM
C‘Vl”} T (YI)JB 1
< . 2. il
ps L - ) + N + O (]VQ)
C
< N (29)

As a consequence, when N s large enough, the sealing of
P s at least given by 1/N and in the limit of N — oc.
P — 0, 1o one can diseriminate | @) and |@) with unit
suceess probability.

In sununary. we have proved that oue can hple-
ment arbitrary projection measurement inoany two-
dimensional signal space by linear opties tools without
using any non-classical ancillary states in the asymptotic
liit of large number of detections and feedforwards. The
resources discussed here are mostly available with cur-
rent technology.  These results are valuable for various
quantu information protocols that require binary pro-
jection measurements. The remaining interesting ques-
tions are the derivation of the optimal convergence rate
of the error probability and the possibility to apply the
same approach to the problems of more than three states
discrimination.
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Programmable quantum channels and measurements
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Abstract. We review some partial results for two strictly related problems. The first problem consists
in finding the optimal joint unitary transformation on system and ancilla which is the most efficient in
programming any desired channel on the system by changing the state of the ancilla. In this respect we
present a solution for dim () = 2 for both system and ancilla. The second problem consists in findin

the optimal universal programmable detector, namely a device that can be tuned to perform any desirec
measurement on a given quantum system, by changing the state of an ancilla. With a finite dimension d
for the ancilla only approximate universal programmability is possible, with d = d(z ') increasing function
versus e 1. We show that one can achieve d(e~!) polynomial, and even linear in specific cases.

Keywords: Quantum information theory; channels; quantum computing; entanglement

1 Introduction

A fundamental problem in gquantum computing and,
more generally, in quantum information processing [?]
is to experimentally achieve any theoretically designed
quantum channel or detector using a fixed device,
through a suitable program encoded in the state of an
ancillary system. While a large branch of theoretical re-
search in quantum information addressed the design of
algorithms and of circuits to solve precise problems, a
parallel research line is that of designing devices that can
be programmed to achieve different tasks, just like classi-
cal computers do. Moreover, designing a programmable
quantum gate or detector is a problem of relevance for
example in proving the equivalence of cryptographic pro-
tocols, e. g. proving the equivalence between a multi-
round and a single-round quantum bit commitment [?],
or when trying to eavesdrop quantum-encrypted infor-
mation. What makes the problem of gate programma-
bility nou trivial is that exact universal programmability
of channels is impossible, as a consequence of a no-go
theorem for programmability of unitary transformations
by Nielsen and Chuang [?]. A similar situation occurs
for universal programmability of POVM’s [?, ?]. In both
cases, it is still possible to achieve programmability prob-
abilistically {7, ?, 7], or even deterministically [?], though
within some accuracy. In establishing the theoretical lim-
its to state-programmability of channels or POVM’s the
starting problem is to find the joint system-ancilla uni-
tary or observable, respectively, which achieves the best
accuracy for fixed dimension of the ancilla: this is ex-
actly the problem that is addressed in the present paper.
This problem turned out to be hard, even for low dimen-
sion. Here we will give a solution for the optimal device
for programming unitary channels for dimension two for
both system and ancilla. On the other hand, as regards
programming observables, we will give an upper bound
for the optimal ancilla dimension d(e~!) versus the ac-
curacy e—1 for programmable detectors. As we will see,
it turns out {?] that a dimension d{e~!) increasing poly-
nomially with precision e 7 is possible, and even a linear

*darianoQunipv.it
Tperinotti@f isicavolta.unipv.it

dependence is achievable for specific cases. This should
be compared with the preliminary indications of an ex-
ponential growth of Ref. [?7]. However, ¢ven the linear
dependence d(e ) is still suboptimal.

2 Statement of the problems

Programmable unitaries We want to program uni-
tary channels by a fixed device as follows

Pyelp) = TalV(p@ o)V, ()

with the system in the state p interacting with an an-
cilla in the state o via the unitary operator V of the
programable device (the state of the ancilla is the pro-
gram). For fixed V the above map can be regarded as a
linear map from the convex set of the ancilla states A to
the convex set of channels for the system C. We will de-
note by Py, 4 the image of the ancilla states A under such
linear map: these are the programmable channels. Ac-
cording to the well known no-go theorem by Nielsen and
Chuang it is impossible to program all unitary channels
on the system with a single V and a finite-dimensional an-
cilla, namely the image convex Py, 4 C C is a proper sub-
set of the whole convex U of unitary chanunels and their
convex combinations. This opens the following problem:

Problem: For given dimension of the ancilla, find
the unitary operators V that are the most efficient
in programming unitary channels, namely which
minimize the largest distance (V) of each channel
& €U from the programmable set Py a:

e(V)=max min §(%, F) = maxmind(%, Pvq).
UEU FEPy, 4 Y EU ocEA !
(2)

As a definition of distance it would be most appropriate
to use the CB-norm distance |6 — ], 5. However, this
leads to a very hard problem. We will use instead the
following distance

8%, #) = /1 - F(¥,.:#), (3)

where F(%,:”) denotes the Raginsky fidelity [?], which
for unitary map 6 = % = U - U' is equivalent to the
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channel fidelity [7?]

,{Zm clupe, (4)

Flw.,.7)=
where ¢ = Y. C - C,T. Such fidelity i also re-
lated to the input-output fidelity averaged over all pure
states Fio(#,:#), by the fornmula Fo (%, .#) = [1 +
dF (%, )] /(d + 1). Thercfore, our optimal unitary V
will maximize the fidelity

F(v)= ”61;;/1%1”) FU, V), FUV)= ntax F(w, 2v.,)
(%)

Programmable detectors The POVM of a measur-
ing apparatus is a sct of positive operators P; 2 0, 1 =
1,...n, n < oo normalized to the identity 3000, P, = 1,
which gives the probability distribution of the outcones
for each input state p via the Born rule

p(ilp) =

Clearly, the most general programmable detector is de-
seribed by an obscrvable F = {F;} jointly measured on
system and ancilla. The probability distribution of the
outcornes is given by

po(ilp)

By taking the partial trace in Eq. (7) over the ancilla
and using the polarization identity (Eq. (7) holds for all
states) one obtaing the POVM

Tr[pP,]. (6)

=Tr[(p® o) F}], Vi, Vp. (M

P, =Tr|(I®o)F)]. ()

From Eq. (8) it follows that the convex set of states
of the ancilla is in correspondence via the map Pp, =
Tro[(I ® o)F] with a convex subset #p ., C &, of
the convex set &, of the system POVM’s with n out-
comes. The symbol #p ., denotes the convex set of pro-
grammable POVM’s that can be achieved with fixed ob-
servable F and varying state o € «/. The no-go theorem
proved in [?, ?] states that for any fixed observable F
the programmable set Pg .y is strictly contained in 82,
since even just the observables cannot be programmed
with a fixed observable F and a finite dimensional ancilla.
We now restrict attention to programmability of observ-
ables only, whence n = dim(.5#), the case of nonorthogo-
nal POVM’s simply resorting to program observables on
a larger Hilbert space. In the following we will denote
by On the set of observables. The problem of measure-
ment programmability can then be stated in mathemat-
ical terms as follows

Problem: For given dimension of the ancilla, find
the joint observables F that are the most efficient
in programming system observables, namely which
minimize the largest distance e(F) of each observ-
able P € O, from the programmable set Py o:

e(F) = max

Pel, QEPr,o PcO,0€A

(9)

min §(P,Q) = max xuln(S(P Pg.).

We define the distance between two POVM's as the dis-
tance between their respective probabilities, maximized
over all possible states, namely

§(P,Q) = m;mZ |Tr[p(P - Q)1 (10)

The distance defined in Eq. (10) is hard to handle ana-
lytically, whence we bound it as follows

V<Y IR -QISY IR - Q. (11)

t

where A} is the usual operator norm of A, and [A], =

VTr[AT4] is the Frobenius norm.

3 Programming qubit unitaries

By some lengthy caleulation we can obtain the Kraus
operators for the wap 2y ()

"%V‘«T ([)) - Z C‘vu.lupC",t-,,, il

nin

§ it
um et I'U,, 1u| 7“

where |v,) denotes the eigeuvector of o corresponding to
the eigenvalue A, and * denotes complex conjugation in
the same fixed basis for which the operator ¥y have the
sane matrix clements as the matrix of coeflicients of the
ecigenvector of V- corresponding to eigenvalue s, We

then obtain
Z i 'I’] nmUH z e’((;l\ 0y)

nwm kh

=Tv[oTS(U, V)IS(U, V)|

(12)

TV U0 o™ U U,

(13)
where ‘
SW, V)= e ulUw,. (14)
k
and T denotes trausposition in the canonical basis. The
fidelity (5) can then be rewritten as follows
FU.V)= d—g 1S V). (15)

The operator S(U, V) in Eq. (14

lows

) can be written as fol-

SU.V)=Tn|UT @ )V*]. (16)

Changing V by local uuitary operators transforms
S(U, V) in the following faghion

=Wyswluwl,v)

(17)
namely the local unitaries do not change the minimum
fidelity, since the unitaries on the ancilla just imply a dif
ferent program state, whereas the unitaries on the system
just iply that the xuunmum fidelity is achieved for a dif-
ferent unitary —say W Uw)l 5 instead of U.

For systemn and anc llld both two-dimensional, one can
parameterize all possible joint unitary operators as fol-
lows [?, 7] (W1 @ Wa)V (Ws ® Wy), where

S, (Wr @ Wa) V(W3 @ Wy))

V = expli(0101 ®01T + 0000 @ 02T + 303 ®037)]. (18)
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The problem is now reduced to study only joint unitary
operators of the form of Eq. (18). It can be proved that
the coefficients of its eigenvectors are the matrix elements
of Pauli matrices 0, j =0, 1, 2,3 where oy = I, 01 = 0,
09 = 0y, 03 = 0,. This means that we can rewrite
S(U, V) in Eq. (14) as follows
13
—i;
S(U,V) = —éZe Yig;Uay, (19)
j=0
with
G.i = 204‘." - eu . (20)
Through the derivation described in Appendix 7?7 we ob-

tain that the fidelity minimized over all unitaries is given
by

6o = oy + as + a3,

F(V)= d_lz mjin 2. (21)

where

3
_ 1 § —if;
=52 (22)

j=0
ti=e 0 pei gy 1< <3,

The optimal unitary V is now obtained by maximiz-
ing F(V). We need then to consider the decomposition
Eq. (18), and then to maximize the minimum among
the four eigenvalues of S(U,V)IS(U, V). Notice that
ti=2,H ju€'% where H is the Hadamard matrix

11 1 1
1 1 -1 -1 ‘
1 -1 1 -1} (23)
1

-1 -1 1

B =

which is unitary, and consequently ), [t;? =
=, e |? = 4. This implies that min; |t;| < 1. We now
provide a choice of phases 8; such that |t;| = 1 for all j,
achieving the maximum fidelity allowed. For instance, we
can take 8y = 0,0, = 7/2,0, = 7,03 = 7/2, correspond-
ing to the eigenvalues 1,4, —1,7 for V. Another solution
is 6y = 0,0 = —7/2,6; = 7,03 = ~7w/2. Also one can
set 6; — —6;. The eigenvalues of S(U, V)1 S(U, V) are
then 1,1, 1, 1, while for the fidelity we have

F= max F(V)=-+=1

Vew (He?) ( 2 4

and the corresponding optimal V has the form
V = exp [:}:i%(aT@a,;:l:a:@cu) . (25)

A possible circuit scheme for the optimal V is given in
Fig. 1.

Such fidelity cannot be achieved by any V of the
controlled-unitary form

2
V=3 Vi@l )kl (le) =0, (26)

k=1

—b—{ 25z —b—

Figure 1: Quantum circuit scheme for the optimal uni-
tary operator V in Eq. (24). W, denotes e'2°%. For
the derivation of the circuit consider that o, ® o, =
Clor @ NC and 0, @ 0. = C(I @ 0,)C, where C de-

notes the controlled-not.

where V1, V5 are unitaries on 7" ~ C?. In fact, it is easy
to see that in this case the fidelity is given by

FU, V)= %lTl[V,:\U]]2 h = arg ul’iLx}Tr{V,jU} .

(27)
and for any couple of unitaries {Vi} there always exists
a unitary U orthogonal to both {Vi}, whence F(V) =
ming e (H) FU, V) =0.

4 TUpper bound on optimal size for pro-
grammable detectors

We will now derive an upper bound for the function
d = d(e71), where ¢ = minge(F), that gives the mini-
mal needed dimension of the ancilla to achieve accuracy
e~ ! in programuming observables for a finite-dimensional
quantum system. Clearly the function d = d(e™?!) must
be increasing, since the higher is the accuracy 71, the
larger the minimal dimension d necded for the ancilla,
namely the “size” of the programmable detector.

Consider now a d-dimensional ancilla and a system-
ancilla interaction U of the following controlled-unitary
form

d
U= ZW’k®’¢k><¢k|a (28)
k=1

where {¢r} is an orthonormal complete set of vectors for
the ancilla and Wy are generic unitary operators on J.
Cousider then a POVM E = UFU' of the form

E; = [¢)(¥il ® 14, (29)

where I, denotes the identity operator on the ancilla
space, and {1} is a complete orthonormal set for the
system. The observable to be approximated will then be
written as follows

p=w'

i) (i |W, (30)

W being a unitary operator on %, and we will scan
all possible observables by varying W. For the program
state of the ancilla we use one of the states ¢g, which
give the POVM's

Qi = W) (0| W. (31)

This special form simplifies the caleulation of the bound
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in Eq. (11

< 20— W) 2)
<V2Y \/ 2 — (i (WHWy — WIW) ),

), which becomes

(32)

and using the Jensen'’s inequality for the square root func-
tion we have

5(P,Q) < VIR W — Wi, . (33)

Now we can always take d sufliciently large such that we
can choose the d operators {W} in the unitary trans-
formation U in Eq. (28) in such a way that for each
given W there is always a unitary operator Wy in the
set for which v2n [W — W], is bounded by . This will
guarantee that for the given observable P correspond-
ing to W there is a program state for the ancilla such
that the POVM Q achicved by the programimable detec-
tor is close to the desived P less than e. The set of all
possible unitary operators W is a compact manifold of
dimension b = n® — n. We now consider a covering of
the manifold with balls of radius r = \75—:7 centered at
This guarantees that any W owould
from an operator Wy, which

the operators Wy.
be-within ‘a distance
in turns implies that fhe accuracy of the programmable
device 1s bounded by e via Eq. (33). Using the volume

4
V= ——Er—h—'ﬁ— of the h-dimensional sphere of radivs r, we

obtain the number of balls necded for the covering (for
sufficiently small ¢, corresponding to the upper bound for
the minimal dimeusion of the ancilla

1 n{n—1)
d < k(n) (—) . (34)

£

where k(n) is a coustant that depends on n. Eq. (34)
gives an upper bound for the dimension d which is poly-
nomial versus the accuracy €.

For qubits, the observable has only two elements, Py =
[) (| and PL = [y )(¥.] = I = By, and the distance in
Eq. (10) can be evaluated analytically as follows

§(P,Q) = max 2| Tx[p(FPo — Qu)]] - (35)
As regards now the programumability of all POVM’s
(i. e. including the nonorthogonal oues), just unotice
that one just needs to be able to program only the ex-
tremal POVM’s in #2,,, since their convex combinations
will corresponds to mixing the program state or to ran-
domly choosing among different detectors. Then, since
their maximum number of outcomes is n2, the extremal
POVM’s have Naimark’s extension to observables in di-
mension n?, whence we are reduced to the case of pro-
grammability of observables in dimension n2.

We will now give a programmable detector for ¢ubits
that achieves an accuracy that is linear in d. For the an-
cilla we use a generic d-dimensional quantum system, and
relabel the dimension in the angular momentum fashion
d = 27 + 1. The idea is now to design a programmable
detector in which the unitary trausformation correspond-
ing to the observable {P;} in Eq. (30) is programmed

by covariantly changing tlie program state of the ancilla.
By labeling unitary transformations by a group clement
g € SU(2), we write the obscrvable to be programmed
as Py = V,13)(31V] where {V,} = (3) is a unitary irre-
du( ible representation of SU(2) with angular momentuim
), whereas the program state will be written as I’I/qu
with {W,} = (J) a unitary rreducible representation of
SU(2) on the ancilla space with angular momentum j.
As already noticed, without loss of gencerality we can al-
ways choose the state o as pure. We will now show that
a good choice for the program state is o = [4,7){, jl,
{l7,m)} denoting an orthonormal basis of eigenstates of
J. in the irreducible representation with angular momen-
tu j. The tensor representation {V, @ Wy} = 1 ®7 can
be decomposed int() the dir(('t swn of two invdu(iblo
represeutations = ® j = j. @ j_, where jx = j + &
For the POVM F of rlw programmable detector we w1ll

use Fy = Z4 and Fy = Z_, Z1 denoting the orthogoual
projector on the invariant space for angular momentum
Jz
J
Fo= Y ljem){js.ml. (36)
== jy

Using the invariance (V, @ II/'[,)F”(VT ® W 4)
can write the programmed POVM as folluws

= Fy, we

Qv =Tral(1 @ W]5.5)(5. W, R
=V i Tra[(l & U~J)( J| JFu]Vy (37)

=V (155 (5 31+ i 15 -9) (53 ) W

where we used the only non vanishing  Clebsch-
Gordan cocfficients (4,741, 5015517 = 1, and
|<]+>J‘|%>~%)|J7J>12 = 5;1.';[ Cl(lﬁ.l‘ly, QU - H) =
e Vels ~5)(4. =51V, whence according to Eq. (35)
the accuracy is given by 6(P, Q) = 2/d. The scaling of
the dimension with the accuracy is then linear

d=2"", (38)

N . -9
whereas the bound (34) would be quadratic d « 7=,
Sublinear growth of d versus € 7! is not excluded in gen-
eral, but is not possible for the present model.
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Abstract. We consider probabilistic cloning helped by a party holding supplementary information. When
the number of states is two, we show that the best efficiency of producing m copies is always achieved by a
two-step protocol in which the helping party first attempts to produce m—1 copies from the supplementary
state, and if it fails, thewn the original state is used to produce m copies. On the other hand, when the
number of states exceeds two, we give examples in which the best efficiency is not achieved even if we allow
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any amount of one~-way classical communication from the helping party.

Keywords: Probabilistic cloning, Stronger no-cloning theorem

1 Introduction

The impossibility of deterministic cloning of
nonorthogonal pure states is well known as the no-
cloning theorem [1, 2]. The best one can do is to carry
out weaker tasks, such as allowing the copies to be
inaccurate (3, 4, 5, 6, 7, 8, 9, 10], or allowing a failure to
occeur with a nonzero probability (probabilistic cloning)
[11]. Another way to enable the cloning is to provide
some hints in the form of a quantum state. Jozsa has
considered [12] how much or what kind of supplementary
information g; is required to make two copies | ;)| ;)
from the original information [+;). He has shown that
for any mutually nonorthogonal set of original states
{|4:)}, whenever two copies |;)[v;) are generated
with the help of the supplementary information g;, the
state |1;) can be generated from the supplementary
information g; alone, independently of the original state,
ie.,

) © 6 T8 (i) ) = 4 T |, (1)
where CPTP stands for a completely-positive trace-
preserving map, implying that the transformation can be
done deterministically. This result, dubbed the stronger
no-cloning theorem, implies that the supplementary in-
formation must be provided in the form of the result | ;)
itself, rather than a help, thereby obliterating the neces-
sity of the cloning task itself.

An interesting question occurring here is whether we
can find a similar property in the case of probabilistic
cloning when we ask how much increase in the success
probability is obtained with the help of supplementary
information. Suppose that the success probability of
cloning the i-th state |1y;) without any help is ;. If
we are directly given a right copy of state |;) with
probability ¢;, the success probability would increase to
¥ = g;+(1—g;)7y:- Hence the counterpart of the stronger
no-cloning theorem in probabilistic cloning will be the

*azuma@appi.t.u-tokyo.ac. jp

implication

[1:) ® pi o, [i)| i)
= i 5 |, [9s) = [ ws) (2)

with v{ = ¢; + (1 — g:)v:. In other words, it huplies that
the best usage of the supplementary information is to
probabilistically create a copy | ;) from it, independently
of the original state.

If there are cases where the above implication is not
true, it follows that the supplementary information can
help directly the process of the cloning task in those cases.
Then, the next question will be to ask what kind of in-
teraction should occur between the supplementary infor-
mation and the original information.

In this paper, we consider probabilistic cloning of mu-
tually nonorthogonal pure states when supplementary in-
formation is given as a pure state. We prove that when
the number of the possible original states is two, the
above implication is true, namely, the supplementary in-
formation only serves to provide a copy with a nonzero
probability and it does not directly help the process of
the cloning. On the other hand, when we have more than
two states to choose from, the above implication is not
always true. To see this, it is convenient to assume two
parties, Alice and Bob, respectively holding the original
information and the supplementary information. We give
examples in which there is a gap between the efficiency
when Bob only communicates to Alice with a one-way
classical channel and the efficiency when they fully coop-
erate through a quantum channel.

This paper is organized as follows. In Sec. 2, we pro-
vide definitions and basic theorems used in later sections.
We discuss the two-state problem in Sec. 3 and prove
that the property similar to the stronger no-cloning the-
orem holds in this case. In Sec. 4, we give examples with
three or more states and show that there is a gap between
the success probabilities in the scenarios with classical
communication and quantum communication. Section 5
concludes the paper.
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2 Probabilistic transforiation theorem

Throughout this paper, we consider a class of ma-
chines that conducts probabilistic transformation of in-
put pure states into output pure states. We denote by
{|@) 25 | W) }imr. 0 & wachine having the following
properties: (i) It recelves a quantuin state as an input,
and returns a quantui state as an output, together with
one bit of classical output indicating whether the trans-
formation has been successful or not. (i) When the in-
put quantum state is | ®;), the transformation succeeds
with probability v;, and the successtul output state is
[0;). Note that if the output states {| ¥;)} fors an or-
thonormal set, namely, (Vi, 7) ((¥;|¥;) = d;;), the ma-
chine carries out unambiguous discrimination of the set
{|®,)} with success probabilities {v;}.

A necessary and sufficient coudition for the existence

of a machine {| ®;) e, [ U ) Vim0 is given by the fol-
lowing theorem, which can be proved by a shuilar way
as in the probabilistic cloning theorem by Duan and Guo
[11).
Theorem 1: There cxists o machine {|®;) -5
[ O iz, of and only if there are nornalized stotes
| P®Y (i = 1,...,n) such that the matric X — VTY VT
s positive semidefinite, where X = [(@;|®;)]. ¥V =
(T | U, (PO | PUY] and T = diag(m.72,---,70) are
n X n matrices.

When the initial state is chosen from the set {| @)}
with probability p;, we may define the overall success
probability vt of a wachine as

Yot 1= ZPH:‘- (3)
i

In this case, we can define the maxinnm success proba-
bihty Vtotmax A8

Ttotmax = 1{11'(1‘?: § Di%i, (4)
i -
1

where the maximum is taken over all combinations {v;}
for which there exists a machine {| ®;) =5 | ¥)}iz1 -
When the number of possible input states is two, we
can explicitly determine the achievable region (71, y2)
from Theorem 1 (the proof omitted):
Corollary 1: Let ny, = |{®1|®2)| and nowe =
(U, | Ws)|. There exists a machine {| ®;) — | ¥;)}iz1 2
tf and only if 1 2 0, 2 > 0, and

(1-=7)1=") = T+ Mou/7172 2 0.

ot
=

When 7in > 7out, the region (vy1,7v2) determined by
Eq. (5) is convex, and is bounded by the line v = 0,
the line 75 = 0, and the curve specified by the equal-
ity in Eq. (5), which connects the points (y1,72) =
(0,1 —n2) and (11,72) = (1 — 12, 0) through the point
=7 = (1 ~=%)/(1 = Nou) When nin < Nour,
Y1 = 72 = 1 satisfies Eq. (5), namely, a deterinistic
machine {| ®;) — | ¥;)};1.» exists. Note that Eq. (5)
still forbids regions of (71, v2) close to (1,0) and (0,1),
reflecting the indistinguishability of the two input states.

3 Probabilistic cloning of two states with
supplementary information

In this section, we consider the case where one makes 2
copies of states {]wg). ] y2)} with the help of supplemen-
tary information in the form of pure states {{o1).| @2)}.
We show that it is always better to try first the produce-
tion of m — 1 copies of the original inforiation from the
supplementary information alone, independently of the
original state, which is implied by the following theorem
(the proof owitted) :

Theorem 2: If there crists u machine

Hedle) 5 o)™ hiza,

then there crist w machine

WV
{le)) — v " =12

and a machine

1

. None-
{1i) == [y iz

with
W=t 2 (= 1.2). (6)

If the original information is held by Alice, and the sup-
plementary information by Bob, Theorem 2 implies that
the optimal performance is always achieved just by one-
bit classical conununication from Bob to Alice as follows:
Bob, who possesses the supplementary state | @), first

B

runs the wachine {| ¢;) L, [4)%m =1} i1 2, and tells

Alice whether the trial was successtul or not. In the suc-
cessful case, Alice just leaves her state |4);) as it is, and
Lence they obtain m copies in total. If Bob’s attempt has

A

failed, Alice runs the wachine {]4fy) X, [ 1) %™} izt 2-
The total success probability for input state | ;)] ¢;) in
this protocol is given by v2 + (1 — 7#)y/. Hence, by
Theoremn 2, we sce that the above protocol is as good as
any other protocol in which Alice and Bob commmmicate
through quantum chaunels. Note that when {|;)} in-
cludes no pair of identical states, linng, .o (10i | 105)™ = dy;
holds for any 7 # j. Hence in the lmit m — oc the
machine {| ;)| ¢,) LN [1)%™} =1 o effectively carries
out unambiguous discrimination of the set {{ ;)] ¢:)}.
Therefore, in this limit Theorem 2 reproduces the results
in [13], namely, local operations and classical conuu-
nication achieves the global optimality of unambiguous
discrimination of any two pure product states with arbi-
trary a priori probability p;.

When the initial state | ;)| @;) is chosen with proba-
bility p;, it follows from Theorem 2 that the maximum
overall success probability is achieved by the abave two-
step protocol. For a special case of py = pa = 1/2, we
can directly confirm this as follows. The maximum over-
all success probability Yiotmax can easily be calculated by
optimizing (71 +72)/2 over the region in Corollary 1, and
it is found to be

1—|ap|
i-— |a|m :

(7

VYtotmax =
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where o = {(1|v2) and 8 := (¢1]¢2). Corollary
RO

1 also shows the existence of a machine {|¢;) —
l@bi)@m'“l}i:l,g with

: 115
B_ B _
M =Y = 1— |O¢|m’—1 (8)

A 5
and a machine {|1) 2 | ;)%™ },21 9 with
1 — |a]
1 - lalm )

A _ A
M= = (9)
Hence, using these machines in the two-step protocol, we
obtain an overall success probability

1 —|aB|

B By A

+(1- = 10
N ( B! )’Yl 1— lal.,n, ( )
which coincides with Yotmax- For cases with general
(p1,p2), it is even difficult to represent Yiotmax i an ex-
plicit form, but Theorem 2 states that Yrotmax 18 always
achieved by the two-step protocol.

4 Probabilistic cloning with supplemen-
tary information for three or more
states

When the number of the possible states is three or
more, Theorem 2 is not always true, and there niay exist
B

a better protocol than just running machines {|¢;) <

A

[0 st n and {[ ) T [90)8"}im1 s, . We
will give such an example in this section, and also show
that a somewhat stronger statement holds about how
the supplementary and the original information should
be combined to give the optimal performance. For that
purpose, we assume that two separated parties, Alice and
Bob, have the original information |+;) and supplemen-
tary information | ¢;), respectively. We do not care which
of the parties produces the copies, as long as they produce
m copies of |1;) in total, namely, the task is successful
when

[9:)al 6i)p — [9a) 8™ 0B, (6 = 1,2,...,n), (11)

for any integer k. We consider two scenarios depending
on the allowed communication between Alice and Bob:
Scenario (I): Alice and Bob can use a one-way quan-
tum channel from Bob to Alice.
Note that this scenario is equivalent to the case where
a single party having both the original and the sup-
plementary information runs a machine {] ;)] @) ——
[1:)®™ }iz1,... n, and its success probabilities are deter-
mined by Theorem 1.
Scenario (II): Alice and Bob can use only a one-way
classical channel from Bob to Alice.
Note that the two-step protocol in the last section is in-
cluded in this scenario. In what follows, we construct an
example showing a gap between the two scenarios.
Consider an n-dimensional Hilbert space, and choose
an orthonormal basis {| j)}=1,.. - Let us define n nor-
malized states {| ;) }i=1,... n as follows:

luj) = V1=(n-12|5)— 2> _[i), (12)
i3

where z > 0. The inner product between any pair of the
states is given by

{uilp) =2 [('n, —2)z—2y1 - (n— 1)32} (13)

for 7 # j. The right-hand side is zero for z = 0, and is
—1/(n = 1) for z = 1/y/n{n — 1). By coutinuity, we sec
that for any a € [=1/(n — 1), 0], there exists a set of n
normalized states {|p;)}j=1....,, satisfying (p: | ;) = o

for i # j.
Now we consider a problem of producing m copies
of a state chosen randomly (p; = 1/n) from the set

{l9)}j=1,..,n satistying

1
Wilyy) =a=—lal (0<]ol<——7)  (14)
for any 1 # j, cach accompanied by supplementary infor-
wmation {| ¢;)}j=1,....n satisfying

(il 6) = f=—— (15)
for any ¢ # j. Both sets of states, {[9;)}j=1,.,. and
{l#)}i=1,....n, exist because they are special cases of the
set {| gj)}j=1,...,n above.

Let 'yt(:t)"mx and 783131&,( be the maximun overall prob-
abilities in Scenario (I) and in Scenario (II), respectively.
We show that for any n > 3 and auy m > 2, there is
a gap between the two scenarios ('yggmﬂx > qﬁjt’,ﬁm) for
sufficiently small (but nonzero) |e.

. . 1 .
First, we derive a lower bound for 'yf‘i,t)umx, written as

i o 1-18llel _ n-1-laf
Ttotmax = 1— lﬁ“a[m - n—1-— !a|m :

(16)

This relation can be proved via Theorem 1 with | ®;) =
[9i)] ¢:) and | W) = [ ;) ®™.

Next, we derive an upper bound on 'yt(itllzmx. We use
the following lemma (the proof omitted).
Lemma 1: Consider a linearly independent set of n
states {| W1),| ¥a), ..., | U,)}, and another set of n states
{]®1),|®2), ..., | Do)} satisfying

S b @) 0. ()

If bj # 0, there is no machine {| ®;) > | U)}ic1, n
with v; > 0.

In the problem at hand, the set of states {|;)®*} is
linearly independent for any integer £ > 1 since the eigen-
values of the n x n matrix [(¢; | ¥;)*] are only 1 —o* >0
and 1+(n—1)a* > 0. The set {| ¢;)} satisfies 3, | ¢s) =0
since ), i(¢i] #;) = nt+n(n—1)8 = 0. Then, we see from

B
Lemma 1 that any machine {] ¢;) 2, [1:)¥*}iz1,..n has
zero success probability, 7f =¥ = ... =48 =0. In
Scenario (IT), this fact implies that all of the m copies
must be produced by Alice, and Bob’s role is just to
provide classical information to help Alice’s operation.
Hence, we are allowed to limit Bob’s action to a POVM
measurement {E,} applied to his initial state | ¢;), pro-
viding outcome g with probability p; = (¢ |E',,] &i)-
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Depending on the outcome g received frow Bob, Alice

()
. . &
runs a machine {] ;) = [¥)%™ 210 to produce m
copies of state [4;). Since the initial state |) is ran-
domly chosen (p; = 1/n), the overall success probability

I . 7]
DS, (menf‘ J) R
"

i=1

18

where p,, == Elp““p, and pj, o= p,,,,p,-,/p,,.
. . G e Pima(~ ) ) )
From Theorem 1, T = diag(yy oy e )
should satisty

bt (X _ w/r(u)Y\/F(u)) b>0 (19)

for any b.  Here the cements of matrices X and
Y oare given by Xi; = (1 - a)dij + o and Y}; =
(1 — a™)3;; + a™(PO|PUN.  If we choose b =

(/i /Pals - -+ /Prjr )y after a somewhat  lengthy

computation, we have

i) < 1 *I(YI

w L 20
’7tnr,nmx - 1-— ('Il _ 1)|a|m (2( )

Cowbining Egs. (16) and (20), we obtain

(h an o (n=2)ja|(1 + o™ = njo™ )
Ytotmax th;tlxnm - (n —1 - Ialm)[l . (TZ _ 1)|Ci|""] 4
(21)
which shows that *y“) ax > 'y(”)A . when |a| is a small
totmax totmax
enough positive number.

5 Summary

In this paper, we have discussed probabilistic
cloning of a mutually nonorthogonal sct of pure states
{l91), ..., )}, with the help of supplementary infor-
mation. It has turned out that the situation is quite
different for n = 2 and for other cases. When n = 2,
the role of the supplementary inforination is limited to
Jjust produce copies on its own, independently of the orig-
inal state. This property is quite similar to the property
in deterministic cloning, stated in the stronger no-cloning
theorem. Forn > 3, such a simple property does not hold
any longer. We assumed that the original and the supple-
mentary information are held by separated parties, and
asked what kind of communication is required to achieve
the optimal performance. We have found examples in
which the optinum performance caimot be achieved even
if we allow any amount of classical comumunication from
the party with the supplementary information to the
other. If we limit to the one-way communication sce-
narios, this result means that a non-classical interaction
between the supplementary and the original information
helps to improve the performance. On the other hand,
if we allow the flow of information in the other direc-
tion, we are not sure the gap still exists. Analysis of such
two-way protocols will be an interesting problemt. The
cases where the set {|;)} includes a mutually orthogo-
nal pair, or the cases where supplementary information
is provided as a mixed state are also worth investigating.
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A quantum protocol to win the graph colouring game
on all Hadamard graphs

David Avis® * Jun Hasegawa? 3 1 Yosuke Kikuchi® ¥ Yuuya Sasaki 2 8
I Department of Computer Science, McGill University, 3480 University, Montreal, Quebec,
Canada H3A 2A7
2Department of Computer Science, Graduate School of Information Science and Technology,
The University of Tokyo, 7-8-1 Hongo, Bunkyo-ku, Tokyo 115-0053, Japan

SERATO QCI Project, JST, Hongo White Building, Hongo 5-28-8, Bunkyo-ku, Tokyo 113-0033, Jupan

Abstract. This paper deals with graph colouring games, an example of pseudo-telepathy, in
which two provers can convince a verifier that a graph G is e-colourable where ¢ is less than the
chromatic number of the graph. They win the game if they convince the verifier. It is known
that the players cannot win if they share only classical information, but they can win in some
cases by sharing entanglement. The smallest known graph where the players win in the quantum
setting, but not in the classical setting, was found by Galliard, Tapp and Wolf and has 32,768
vertices. It is a connected component of the Hadamard graph Gy with N = ¢ = 16. Their
protocol applies only to Hadamard graphs where N is a power of 2. We propose a protocol that
applies to all Hadamard graphs. Combined with a result of Frankl, this shows that the players
can win on any induced subgraph of G2 having 1609 vertices, with ¢ = 12. Combined with
a result of Frankl and Rodl, our result shows that all sufficiently large Hadamard graphs yield
pseudo-telepathy games.

Keywords: graph colouring game, pseudo-telepathy, Hadamard graph, quantuim chromatic

number

1 Introduction

It 18 known that quantum entanglement allows
for a phenomenon called pseudo-telepathy, that is,
two parties pretend to be endowed with telepathic
powers, as described in a survey paper by Brassard,
Broadbent and Tapp [1]. For two parties A and B,
a pair of question (¢q,qp) € Qa4 X @ p are given and
then a pair of answer (aq,ap) € Ag X Ap are re-
turned. In an initial phase, the parties can commu-
nicate with each other and share information. If the
parties share an entangled state, then this setting
is called shared entanglement. In the second phase,
the parties are no longer allowed to communication
with each other before revealing their answers. The
parties win this instance, if a, = ap & ¢o = ¢- A
protocol is successful with probability p if it wins any
instance that satisfies the promise with probability
at least p. This exchange is called a pseudo-telepathy
game if there is a protocol that is successful with
probability 1 with shared entanglement and does
not admit such a protocol that is successful with
probability 1 without sharing entanglement.

The graph colouring game is an example of
a pseudo-telepathy game (Brassard, Cleve and

*avis@cs.mcgill.ca
Thasepyon@is .s.u-tokyo.ac.jp
Ikikuchi@qci .jst.go.jp
§y_sasaki@is. s.u-tokyoc.ac. jp

Tapp [1], Cleve, Hpyer, Toner and Watrous [3]). In
a graph colouring game, there are two provers, called
Alice and Bob, and a verifier. A graph G(V, E) and
a integer ¢ is given to Alice and Bob. Alice and Bob
agree on a protocol to convinee the verifier that G is
c-colourable. The verifier sends a € V' to Alice and
gsends b € V to Bob such that a = b or (a,b) € E.
Alice and Bob are not permitted to communicate
after receiving a and b. Alice sends the colour ¢4 of
a to the verifier and Bob sends the colour ¢p of b to
the verifier. Alice and Bob win if a # b and c4 # ¢B
or a = band ¢cgq = ¢p, and lose otherwise. They win
the game if they convince the verifier.

The chromatic number x(G) of a graph G is the
the smallest number of colours that can be assigned
to vertices such that no two adjacent vertices receive
the same colour. If ¢ > x(G) then there exists a pro-
tocol to win with probability 1 by using a colouring
of G with ¢ colours. Otherwise, Alice and Bob can-
not win the game with probability 1 using classical
methods [2]. Using shared entanglement however,
there are graphs where they can win in this situa-
tion. The Hadamard graphs, defined by Ito [9, 10],
provide such examples.

Let N = 4k for any positive integer k. The
Hadamard graph Gy is defined as the graph whose
vertex set Viy = {0, 1}V and edge set En = {(u,v) €
Vildg(u,v) = N/2}, where dg(u,v) means Ham-
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ming distance of u and v. Hadamard graphs arc
related to Hadamard matrices, which are an impor-
© tant object of study iu combinatorics, especially de-
sign theory (e.g., see Stinson [12]). Oune of the open
problems is to decide whether for every k, there ex-
ists a Hadamard matrix of order 4k.

With shared eutanglement Brassard |, Cleve and
Tapp [2] showed that Alice and Bob win the graph
colouring game with probability 1 for Gan and ¢ =
2™ by using the Deutsch-Jozsa protocol and by shar-
ing an entangled state. A result of Frankl and Rodl
[5] (Theorem 1.11) implies that for all large enough
n, x(Gan) > 27, and so asymptotically the game is
an example of a pseudo-telepathy game. Galliard,
Tapp aud Wolf [6] showed that this was already the
case for n = 16 using a rather complicated combi-
natorial argument. Thus the graph colouring game
for G16 and ¢ = 16 is a pseudo-telepathy game.

We extend these results in this paper to all
Hadamard graphs. In the next section we state
known results on the chromatic number of these
graphs. In Section 3, we design a protocol to win the
graph colouring game for all Hadamard graph with
probability 1. Combing these results it is shown
that the graph colouring game for Gy with ¢ = 12
is a pseudo-telepathy game. Furthermore this is
the smallest value of N for which Gy is a pseudo-
telepathy game with ¢ = N, and this holds for any
induced subgraph with at least 1069 vertices.. The
concluding section proposes a definition of quantum
chromatic number and gives some open problems.
of Hadamard

2 Chromatic number

graphs

It is easily seen that x(G4) = 4 and Ito [10] proved
x(Gg) = 8. Given a graph G = (V, E), the inde-
pendence number of the graph, denoted a(G), is the
cardinality of the largest subset of vertices such that
no two of them are joined by an edge. Let p > 3 be
an odd prime, ¢ > 1, and k = p?. Frankl [4] showed

that -
=N[4k — 1\ 4%
a(G4k)~4i§;O( . ) < 3
When p = 3 and ¢ = 1 we get a(G2) = 268. An
elementary result of graph theory is that x(G) >
|[V|/a(G). Therefore x(G12) > 4096/268 > 12. In
fact Gy consists of two identical conunected com-
ponents, each having independence number half of
that of Gy. Let H be any induced subgraph, having
1609 vertices, of one of the connected components of
Gi2. (In an induced subgraph, two vertices are ad-
jacent if and only if they are adjacent in the original
graph.) Then x(H) > 1609/134 > 12.

Since x(G4) = 4, G4 is not a pseudo-telepathy
game with ¢ = 4. Similarly, Gg is not a pseudo-
telepathy game with ¢ = 8. However we will see
that H is a pseudo-telepathy game with ¢ = 12.

3 A protocol with probability 1 using
QFT

In this section we extend the protocol by Bras-
sard, Cleve and Tapp [2]. Their protocol employs
the quantum Hadamard transform while our proto-
col emplays the quantum Fourier transform (QFT)
with any order, which can be exactly done as shown
by Mosca and Zalka [11].

We describe a protocol such that Alice aud Bob
win the graph colouring game of G with probabil-
ity 1 where 2771 < N < 2%, In this protocol, we use
the following two operations QF Ty and Pp,: QFT g
is a general quantum Fourier transform with order
N, not necessarily 2™, defined as

QFTy : i) Z il N €9

2r/—1
N

). Mosca and Zalka [11] show

that this QFT with any order can be performed ex-
actly. The operation P), is a phase shift correspond-
ing to the &-th bit of an input string {

Py« [iy = (—1)%[i). (2)

Our protocol has four steps. Alice and Bob can
communicate with each other at only step 1.

where w = ¢xp (

Step 1: Prepare initial state |¥ 45)

In step I, Alice and Bob prepare 2n-qubits |0)®" @
|0)#®™. Alice has the first n-qubits and Bob has the
second. Alice first applies QFT y to her N-qubits:

N-1
em e 0 Y LS e ()
v %

Bob then applies controlled-NOT operations to his
n-qubits with Alice’s qubits as control qubits for
sharing the initial entanglement states:

J— Z|z>®| =: [¥ 4p). (4)
i=0)

Step 2: Apply phaseshift F,, and P,
Alice and Bob compute

N-1
Z( 1)) @ [3). (5)

i=0

1
(Pa, ® P,)|¥ aB) = i
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Step 3: Apply the general quantum Fourier
transform
Alice and Bob compute

(QFTy @ QFTR') (P, @ Py,) | W 48)
>3N—1 N-1N-1

S S S @ =) i) 8lis).

#< !
VN Ja=03p=0i=0

(6)
where (w)' = (w)*0a=in),
Step 4: Measure
Alice and Bob mecasure her(his) qubits using the
computational bases and each obtain one of N basis
states. They output colours corresponding to their

measurement result to verifier.

We have the following theoretn for our protocol.

Theorem 1 Alice and Bob win the game with prob-
ability 1 by our protocol.

Proof.  Suppose that Alice(Bob) receives a(d) and
sends cq(cg). The probability that Alice and Bob
obtain basis states |7) ® [j) after measurenicnt is

712 G (QF TN @ QFTHY) (Pa, ® By)|W a)|°

1 3N-1 2
(o) Eeor

i=0

In case of a = b, it holds that a; & b, = 0 for any .
Thus the probability of c4 = ¢p is

Prcg = cp]l = L.

On the other case of a # b, it holds that dg(a,b) =
%, because of the definition of the Hadamard graph.
It means that

Prica = cg] = 0.
O

By cowmbining Frankl’s result [4] and Theorem 1,
there is a gap between the shared entanglement set-
ting and otherwise for G2, and for the smaller sub-
graph H mentioned in the previous subsection. We
have obtained the following result.

Theorem 2 The smallest Hadamard graph Gy
such that the graph colouring game is a pseudo-
telepathy game with ¢ = N is Gi12. Any of its
induced subgraphs with 1609 wvertices also has this
property.

Godsil and Newman have proved that a Hadamard
graph G has chromatic number strictly larger than
N whenever N = 4m > 8 [8]. Then next result
Lolds.

Theorem 3 The  graph  colouring  game  for
Hadamard graph Gy, is a pseudo-telepathy gume

with ¢ = 4m for all m > 3.

The final statement of this theorem uses the result
of Frankl and Rodl [5] wentioned in Seetion L.

4 Concluding remarks

In this paper, we have dealt with two party case
for the quantum colouring game. It may be interest-
ing to investigate the multi-party case for quantum
colouring game.

The chromatic number x(G) of a graph G is equal
to the minimum number of colours such that Al
ice and Bob win the graph colouring game for G
with probability 1 without shared entanglemwent.
Patrick Hayden [private communication] suggested
we define the quantum chiromatic mumber xg(G)
as the minimum number of colours such that Al-
ice and Bob win the graph colouring game for G,
using shared entanglement, with probability 1. It
is easy to sce that xo(G) < x(G), and the psendo-
telepathy graph colouring game is concerned with
graphs with xgo(G) < x(G). Characterizing such
graphs G would De interesting from both the stand-
point of quantum conmunication and of combina-
torics. What is the smallest such graph?

For Hadamard graphs Gape, there is an expo-
nential gap between the chromatic nmmber and the
quantum chromatic number. What is the largest
such gap as a function of the number of vertices of
G?
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Network Quantum Shannon Theory
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Abstract. I will talk about quantum channels which have many senders or many receivers. As such
channels can be used to simultaneously distribute classical and quantuin information among separated
parties in many different ways, I will focus on some special cases which generalize results from the literature
of classical information theory on broadcast and multiple access channels. Focus will be placed on channels
for which single-letter characterizations of their associated rate regions are obtainable.

Claude Shannon initiated the study of communication
theory as an abstract mathematical discipline. By model-
ing communication channels using conditional probabili-
tles, it is possible to obtain a theory which, in many cases,
reasonably models the underlying physics of the commu-
nication media, while also leading to a rich mathemati-
cal framework with well-posed problems and enlightening
solutions. In this area of research, nowadays known as
“Shannon theory,” the central theme is that of proving
whether arbitrarily good codes exist which send infor-
mation at a given rate. Mathematically, this amounts
to proving whether or not there exist sequences of codes
achieving a particular rate of R bits per channel use, in
the sense that the probability of a decoder error can be
made arbitrarily small, at a potential cost of requiring
many channel uses. The boundary between achievable
and non-achievable rates is the capacity C of the chan-
nel. The capacity is an efficiently computable function
of the transition matrix p(yiz) of the channel, and has
a simple characterization as the maximum of the mutual
information between the input and output of the channel
over all probability distributions on the input symbols.

The extension of Shannon’s initial theory to channels
with possibly many senders and receivers has been called
network Shannon theory. For a general such channel,
there are a multitude of ways in which it can be used to
distribute information from the senders to the receivers.
While no solution to this general problem is known, there
is a large literature on simpler versions of the problem.
Among these, two of the most central results are those
on multiple access channels [1, 2] and broadcast channels
[3].

A multiple access channel p(z|z,y) with two senders
and a single receiver can be used, for instance, to send in-
dependent information from each sender to the receiver.
The pairs of nonnegative rates (Rx, Ry) at which this
can be done is called a capacity region, whose boundary
is analogous to the single-user capacity described above.
For a generic two-dimensional capacity region, consider
the points in R? underneath the curve pictured in Fig-
ure 1. This picture reveals the tradeoff between the rates
at which each sender can transmit reliably. Namely, each
senders rate is maximal when the other’s is zero. For this
reason, the boundary of the capacity region is referred to
as a tradeoff curve.

Figure 1: Generic capacity region

A broadcast channel p(y, z|x) with one sender and two
receivers can be used to send a common message to both
receivers, as well as (say) a personalized or even private
one to one of the receivers. It is possible to characterize
the capacity region of pairs of rates at which such tasks
are possible in a similar manner as with the multiple
access chaunel. In this talk, I will discuss work that 1
have done in the last year or so with Igor Devetak and
Patrick Hayden which extends these early results from
the network Shannon theory literature to the quantum
domain [4, 5, 6, 7).

When quantum physics dominates the properties of a
channel, the replacement of conditional probabilities by
completely positive, trace preserving maps yields, on the
one hand, more refined channel models, and on the other
hand, the ability to prove capacity theorems which es-
sentially include earlier classical results as special cases.
As such quantum channels can be used to transmit clas-
sical and quantum information at the same time, there is
a classical-quantum tradeoff curve associated with each
channel [8]. Using n instances of a given channel, send-
ing classical information at a rate of R bits per channel
use amounts to enabling the receiver to distinguish a set
of of 2% input preparations arbitrarily well via measure-
ment. In this talk, I will focus on the simplest of the many
equivalent notions of quantum communication: namely,
that of generating entanglement across the channel. The
users of the n channels are said to generate entanglement
at rate @ if they are able to create, using the channels,
a state which is arbitrarily close to a rate Q@ mawimally

—744—



entangled state

ndd

1
DY = I
D) = ) E myim).

This therefore opens up the possibilities for analyzing
quantum versions of classical network Shannon-theoretic
problems in which classical and or quantum information
is transmitted simultancously. For instance, we will see in
this talk that associated to each quantum multiple access
channel is a four-dimensional capacity region containing
the quadruples of rates at which cach of the two senders
can send classical and guantum information simultanc-
ously.

One may do the same with a broadeast chanmel, but
there are new possibilities for states to generate. Anal-
ogous to transmitting a common classical message from
one sender to two receivers is to generate some sort of
large tripartite state. We have shown that this can be
done when that state is a rate Q GHZ state

Hnt

r = L Z Im)|m)|m),
m me=l
where the subsystems are held by the sender and the two
receivers.

There is, however, somewhat of a stumbling block
within this program. In the culture of classical Shan-
non theory, a capacity region is not generally considered
to be solved unless it is given in terms of a single-letter
characterization. These are usually only obtainable when
the given characterization is additive. Quanturn informa-
tion theory is currently plagued with additivity problems
[9]. To begin, the best known characterization of the
quantum capacity of a quantum channel is known not
to be additive for every channel. In additition, it is still
not known whether the classical capacity of an arbitrary
quantum channel is additive. Worse yet, the collections
of channels for which additivity has been proved in each
case have a somewhat narrow intersection, which limits
the classes of channels whose classical-quantum tradeoff
curves can be proven to be additive. Another issue is
that certain standard “tricks” involving entropy manipu-
lations for proving converse theorems in classical network
Shannon theory fail to carry over to the quantum exten-
sion, except for certain special cases which I will discuss
in detail.

This insistence on single-letter formulae describing the
capacity regions is not merely a cultural artifact. There
are generally many different ways to characterize a ca-
pacity region in terms of nonadditive quantities. We will
see how this arises for the case where each sender of a
multiple access channel sends quantum information to
the common receiver. I will give two characterizations of
this region — for the first, we have only been able to iden-
tify trivial channels for which it is additive. In the sec-
ond, the formulas are directly analogous to those which
arise in the original classical solution (which, incidentally,
is single-letter for every classical channel), although we
are able to find a nontrivial channel for which this sec-
ond characterization is additive, allowing us to explicitly
write down its associated single-letter capacity region.

It is thus reasonable to expect that as more be-
comes known about the additivity properties of single-
user channels for transmitting classical and or quantum
information, more possibilities will be opened for provid-
ing single-letter characterizations in the network theory
counterpart. On the other hand, network problemns show
us that, while regularizations of one-shot capacity for-
mulas can often casily be shown to cqual the actual ca-
pacity or capacity region for the problem at hand, such
characterizations are not necessarily the end of the road,
perhaps indicating that there is still more to be known
about the quantn capacities of single-user channcls.
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Dualities in quantum information theory
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Abstract.

Two quantum information processing protocols are said to be dual under resource reversal if the re-
sources consumed (generated) in one protocol are generated Sconsumed) in the other. We define quantum
feedback channels, and show that they may be reversibly decomposed into a perfect quantum channel
and pure entanglement. The dual protocols responsible for this decomposition are the “feedback father”
(FF) protocol and the “fully quantum reverse Shannon” (FQRS) protocol. Moreover, the “fully quantum
Slepian-Wolf” protocol (FQSW), a %'Jeneralizatiun of the recently discovered “quantuim state merging”, is

a

related to FF by source-channe] du
dualities.

ty, and to FQRS by time reversal duality, thus forming a triangle of

Keywords: quantuin information theory, time-reversal, source coding, channel coding, resource inequal-

ity, duality

The canonical example of an entangled state is an ebit,
or EPR pair, ®48 = 1/v2(|0)*0)” + |1)*|1)¥) shared
between two spatially separated parties Alice and Bob.
The systematic study of entanglement was initiated bg
the realization that a general pure bipartite state |¢)A
is asymptotically equivalent to a real number E of ebits,
where E = H(A)y, and H(A)p = ~Tré*log¢? is the
von Neumann entropy of the restriction ¢ = Trg(¢4%)
of the state ¢A% = |$) (4|4 to Alice’s system. For any
€,6 > 0 and sufficiently large number 7, there exists a
protocol which transforms n copies of |¢)A to a state
that is e-close (say, in trace distance) to [n(E —4)] ebits.
This protocol is called entanglement concentration [1],
and we can symbolically write the statement of its exis-
tence as a resource mequality (2]

(¢) = H(A)y g4l

Here (¢) is the infinite sequence (¢®7)5%,. The uotation
used for ebits [gq] = (®) was introduced in [3], along
with corresponding notation for qubit channels {g — g},
classical bit channels ¢ — ¢] and bits of common ran-
dommess [cc]. R{£) is defined as (€¥L1An1)2 . In general
we write an inequality > between (¢,)5% ; and (1,)22, if
for any €,6 > 0 and sufficiently large n there is a protocol
transforming ¢, into an e-approximation of ¥ 1_sy. . As
it turns out, the reverse is also true. The entanglement
dilution [4] resource inequality reads

H(A)plaql = {(9)-

Dilution additionally consuines a sublinear ayount clas-
sical commmunication, but this corresponds to an asyup-
totic rate of 0, and as such does not enter into the re-
source count. The two may be combined to give a re-
source equality

(¢) = H(A)s [q4]- (1)

A single number E thus suffices to characterize the as-
ymptotic properties of the state |¢) AB

Another known resource equality regards “colierent
conununication” and follows from coherent versions of

*devetak@usc.edu

teleportation and super-dense coding [

2lg—qq) =[g — ¢ +[q4]. (2)

Here [g — gq] represents the coberent classical bit chan-
nel (or cobit), an isometry A : A" — AB defined by

ALY S =01,

where {]0), |1)} is a preferred orthonormal basis of a qubit

systeril.

Fully quantum reverse Shannon inequality. The
first result of this paper is a resource equality that gen-
eralizes both (1) and (2). We first introduce the concept
of a relative resource. Usually, when Alice and Bob are
connected by a quantum chanuel N : A’ — B, 1o re-
striction is placed on Alice’s input density operator, as
long as it lives on a Hilbert space of the right dimension.
For a fixed blocklength n, possessing a relative resource
(N : pAI) wmeans that only if Alice inputs a density oper-
ator close to (p')®" is she guarantecd that the channel
will behave like N¥™  Relative resources come about
naturally in the context of quantum compression. Us-
ing Schumacher compression [6], Alice is able to convey
a good approximation to n copies of some state p"l to
Bob using &~ nH(A'), qubits of cormmunication (for suffi-
ciently large n, as usual). Letting ¢4 be a purification
of p? (i.e. a pure state such that TrppR4" = pA"), this
may be written as a resource inequality

H(R)ylg — g = (id? ™8 . p7y, (3)

i.e. we are able to simulate the identity channel id4'—B ,
assurning that the input density operator is close to
(p*)®". The same simulation could never work for an
input density matrix of a higher entropy, by the converse
to Schuinacher’s theorem [6]. What if one wishes to sim-
ulate an arbitrary chaunel N : A’ — B7 The quantum
reverse Shannon theorewm [7] gives us a way to do this:

H(B)olqq) + I(R;B)o lc — ] > (N =B pAy | (4)

where ,
01{8 — (IR®NA -*B)&PRA ;
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and the quantwm mutuel information is defined as
I{R;B) = H(R) + H(B) — H(RB). In fact, the pro-
tocol that achieves (4) accomplishes slightly more [7].
A noisy channel A norually arises from an isowetry
U : A — BE with a larger target Hilbert space that
includes the unobserved enviromnent E| followed by the
tracing out of E. In the simulation of A the environent

end of the protocol. Thus the channel we end up simu-
lating is the quantum feedback channel Y : A’ — AB, an
isometry from a system belonging to Alice to a system
shared between Alice and Bob, and the resource inequal-
ity becomes

H(B)o[qq] + I(R; B)o [c — ¢] 2 UV =45 p").

It is shown in [8] that the protocol can be made “coher-
ent” [5, 2], vielding the fully quantum reverse Shannon
(FQRS) inequality

1/21(R: B)ylg — ql+1/21(A: B)y lqq) = U™ = 2 p%),
(

where

Al — (gt ®UA’—»AIJ)¢IM' ©)
is a purification of o/#. Schumacher compression is a
special case of this inequality in which the feedback sys-
tem A is absent.

Feedback father. The “father” inequality [2] regards
entanglement-assisted quantum conununication over the
noisy quantum channel N:

WA=y +1/21(R; A)y [gq) > 1/21(R; B)y [q — q](.
7)
The state ¥48 is defined by (6), noting that entropic
coefficients are independent of the choice of i : A' — AB
for which N/ = Trg o Y. The first observation is that
there is a protocol implementing (7) that merely requires
the relative resource (N4 =8 : pA'} jnstead of the full

(N'A’—’B>,
WA M) 11/21(R; A)ylaq) = 1/21(R: B)yg — ql.

The second observation is that if the feedback channel 4
is given instead of the weaker N, then applying the pro-
tocol from (2] achieving (7), Bob is left with a purification
of Alice’s system A, yielding an additional H(A)|q q] at-
ter entanglement concentration. Thus
A AR %)+ 1/21(R; Ay L d)
> 1/2I(R;B)ylg— gl + H(A)y [g4]-

Canceling terms and using
H(A)y, =1/21(R; A)y +1/2I(A;B)y,  (8)
gives the feedback father (FF) incquality:

UAAB . pAY > 1/21(R; B)y g — q)+1/21(A: B)y [q4)-

(9)
A special case of (9) where there is no actual feedback is
the reverse of Schumacher compression:

(%8 ") > H(R), [q — dl. (10)

@ A ———— 3 (h) ‘\\ /

Figure 1: A channel (a) between Alice and Bob wmay
be used in a source coding problem (b) to convert the
channel from the Source to Alice, into a channel from
the Source to Bob.

Duality #1: FQRS is related to FF by resource
reversal. Clearly. (5) and (8) are reverses of cach other,
and together they give the resource equality

U =28 oAy = 1/21(R: B)ylg — q)+1/21(A; B)ylg ).

(11)
A special case is (1) in which U s the appending channel
Ay : A" — Aj A2 B, which relabels A7 as Ay, and appends
the state @27 (ic., it maps some p?t' to pM @ ¢A28).
Another special case is (3) and (10), in which 2/ is A
and A is null. The third special case is (2), where U is
the colierent classical bit channel A, and p is & maximally
mixed qubit state 7 (it can be shown that (A : ) is
equivalent to (A)).

A resource equality of this gencerality can tell us a lot
about optimal transformations between the resources in-
volved, such as the capacity of the quantum feedback
channel YA =48 for simultancous generation of quan-
tum communication and entanglement. The task is to
find the sct S(U) of rate pairs (Q, E) for which

U =) > Qg — gl + Elgql.

The answer is given by S(U) = 1/nSM(Uu®™),

where

L= OO

SW = J{1/2(1(R; B) ;5. 1/2I(4; B),)}.

o

Fully quantum Slepian-Wolf So far we lLave been
dealing with what is traditionally known as channel cod-
ing: there arc two parties Alice and Bob, and their task
is to effect conversions between resources, whether sta-
tic, dynamic or relative. In source coding there is an
additional protagonist, the Source. The Source holds a
state purified by sowe reference system R. Alice’s and
Bolby’s job is to cffect conversions between relative re-
sources originating at the Source. A simple example of a
source type resource inequality is

O R S N Lt L P Y )

illustrated in figure 1. Cowbining it with Schumacher
compression (3) gives

(A=A 6%Y + H(S), lg — g > (058 : p%).

While the two formwulations are equivalent, compres-
sion is traditionally thought of in terms of source cod-
ing. More generally, the source may be initially dis-
tributed between Alice and Bob via a general isometry
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Figure 2: The protocol implementing FQSW consists of
an isometry Vp : A — A Ay perforined by Alice, send-
ing A, of size |n(1/21(R;A)y + 6)] qubits, through
a quantum channel id* =8 to Bob, and an isometry
Vo : BBy — BgB performed by Bob; it approximately
transforms (4B)®™ into (p75)®" and |n/2 I{A; B)y)
ebits shared between Alice and Bob. The time reversal of
this protocol implements the FQRS resource inequality.

U : § — AB, and the goal is to divert it entirely to
Bob. A problem of this kind, the quantum Slepian-Wolf
problem, was first solved in [9]. The result of [9] is gener-
alized in [10] to the fully quantum Slepian- Wolf (FQSW)
inequality, which reads

US=AB 1 %) + 1/21(R; A)ylg — 4]
> 1/21(A;B)ylgq) + (10572 :p%),  (12)

where
RAB
Y

( IR @ us —AB ) (p

and oS = |p) (0] *¥ is a purification of p®, cf. (6).
Since neither Alice nor Bob have cm}_trol over the

Source, (12) holds when applied to p~, giving the

“mother” inequality (2]

(0"BYy + 1/21(R; A)ylg — q] = 1/21(A; B)ylgal,

which concerns quantum-communication-assisted distil-
lation of entanglement from o48 = Y545 (p%).

Duality #2: FF is related to FQSW via source-
channel duality. The FF inequality (9) may be com-
bined with Schumacher cowmpression (3), to give, after
cancellation of terms,

WA A8 pAY + 1/21(R; A)ylg —

> 1/2I(A; B)ylgq) + (id* 78 p*).

This is a channel version of the FQSW, obtained by for-
mally replacing S with A’! We refer to this phenomenon
as source-channel duality. In the case where A is null, the
inequalities reduce to the two equivalent formulations of
Schumacher compression; in general, however, the two
are incomparable. This observation sheds new light on
the mysterious mother-father duality (2], as the mother
and father inequalities stem from FQSW and FF, respec-
tively.

FQRS

TIME

RESOURCE
REVERSAL REVERSAL

SOURCE CHANNEL DUALITY

Figure 3: A triangle of dualitics.

Duality #3: FQRS is related to FQSW by time
reversal. We can nake FQRS (5) into a source type
inequality by adding (id‘q'""l 2 p) to both sides of the
equation:

(A5~ p%y + 1/21(A; B)ylgq] + 1/21(R: B)ylg — q|

> U ),

Interchanging the roles of 4 and B gives
(G572 o) + 1/21(4; Blylag) + 1/21(R: A)ylg  df
= U ),

This is precisely the time-reversal of the FQSW inequal-
ity (12)} Unlike the previous two dualities, this one has
operational implications: a protocol achieving (5) may
be transformed into a protocol achicving (9), and vice
versa (figure 2).

Our three dualities are sununarized in figure 3.

The classical counterpart. To what degree do these
dualities carry over to classical information theory? Let
us defiue a classical (relative) feedback channel to take
a random variable X as Alice’s input, and output a re-
lated random variable Y to Bob, while feeding XY back
to Alice. We shall use the simplified classical notation
(Xa — (XY)aYg) for such a resource. The same role
played by purification in the quantum world is played by
copying in the classical world. Initially the reference sys-
tem R contains a copy of Alice’s input state X; whereas
in the quantum case the feedback to A was a purification
of the RB systen, here it is a classical copy of the RB
system. Notice the breaking of “purification synunetry™:
while in the quantum case each of the R, A and B sys-
tems purifies the other two, here only A is left with a
copy of both R and B.

The classical analogue of FQRS is the classical reverse
Shannon theorem [11]

IX;V)c—d+ HY|X)ce = {(Xa — (XY)aYy).

The classical analogue of FF is a feedback version of
Shannon’s channel coding theorem [12]:

(Xa = (XY)aYp) > I(X:Y)[c = ]+ HY|X)|cc].
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We observe innnediately that the resource reversal dual-
ity #1 holds.

The classical analogue of FQSW is, not surprisingly,
the original Slepian-Wolf theorew [13]:

(XY)s = XaYn) + H(X|Y)[c - (|
> ((XY)s — (XY)g).

The synuuetry is now broken in a different way, with
R containing a copy of AB, and there is no basis for
dualities #2 and #3 to hold.

Conclusion. In sumwmary, we have investigated three
resource inequalities: FQRS, FF and FQSW. These are
implemented by variations on protocols exhibited else-
where, via the adding of feedback or placing restrictions
on channel inputs. All three involve only closed quantim
resources, meaning that there is no mixing with an unob-
served environment, but rather non-trivial distribution of
quantum information among the protagonists. With this
simplification, a beautiful structure emerges (figure 3):
FF and FQRS are related by the resource reversal dual-
ity #1; FF and FQSW are related by the source-channel
duality #2; FQRS and FQSW are related by the time
reversal duality #3. Along the way we provide insights
into the difference between source and channel coding,
the mother-father duality [2], and the breaking of “pu-
rification symmetry” in classical information theory.
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Abstract. It is well-known that no classical algorithm can solve exactly (i.e., in bounded time without error) the
leader election problem in anonymous networks. Recently, the author proved in collaboration with Kobayashi and
Matsumoto that the problem can be exactly solved when the parties are connected by quantum communication links.
A certain kind of entanglement plays a central role in the proposed algorithms. This paper focuses on applying

entanglement to the leader election problem.

Keywords: leader election, quantum communication, entanglement, anonymous networks

1 Introduction

Quantum entanglement plays a central role in quantum in-
formation processing. It is well-known that, with prior entan-
glement, r2/2-qubit communication is necessary and sufficient
to transfer an n-bit classical message. In quantum distributed
computing, which consists of quantum computation and com-
munication, entanglement sometimes makes communication
much more efficient than the classical equivalents.

The quantum communication complexity model first pro-
posed by Yao [17] has been extensively studied areas in the
field of quantum distributed computing. In the standard set-
ting, two parties, which are connected via a bidirectional com-
munication link, have to follow a communication protocol or
distributed algorithm to compute values that depend in some
predefined way on both of the inputs given to the two parties.

The goal is minimizing the number of communication
(qu)bits or messages between parties, even though the local
computation time required may be large (excellent surveys are
found in [8, 5]). Some of the major results are as follows:
there exists an exponential gap in communication cost (4, 11]
when inputs are assumed to meet some predefined condition,
while there is a case where the gap is quadratic [1, 12] when
each of the outputs is the value of a Boolean function of the
inputs. The communication complexity model can naturally
be extended to the multiparty case, for which there are also
several studies [6, 3, 7]. Since the communication complexity
model is often used as just a mathematical tool to analyze the
amount of resources required by other computation models
such as Boolean circuits and the Turing machine, most ap-
plications of this model assume that the underlying network
topology is a complete graph, i.e., every party is directly con-
nected to each of the other parties. Another traditional re-
search area of distributed computing (we call this research
area “traditional distributed computing™) involves the mathe-
matical analysis of problems that arise in practical distributed
computing environments, whose network topologies are ex-
tremely varied.

Recently the author, together with Kobayashi and Mat-
sumoto, showed, by giving polynomial-time exact quantum
algorithms for the leader election problem, that quantum dis-
tributed computing via entanglement is distinctly superior to
the classical equivalent in the setting of traditional distributed

*tani@theory.brl.ntt.co.jp

computing [13, 14].

This paper reviews the algorithms in [13], and discusses
a future research direction. The leader election problem is
a core problem in traditional distributed computing, and has
been studied for decades (see, e.g., [10]); there are many sit-
uations where parties have to decide which party should do
some task in order to solve distributed computing problems.
The goal of the leader election problem is to elect a unique
leader from among distributed parties. Obviously, it is possi-
ble to deterministically elect a unique leader if each party has a
unique identifier, and many classical deterministic algorithms
with this assumption have been proposed. As the number of
parties grows, however, it becomes difficult to preserve the
uniqueness of the identifiers. Thus, other studies have exam-
ined the cases wherein the network is anonymous, i.e., each
party has the same identifier [2, 9, 15, 16], as an extreme case.
In this setting, no classical exact algorithm (i.e., an algorithm
that runs in bounded time and solves the problem with zero
error) exists for a broad class of network topologies includ-
ing regular graphs, even if the network topology (and thus the
number of parties) is known to each party prior to algorithm
invocation [15]. Moreover, to the best of our knowledge, no
zero-error probabilistic algorithm is known that works for any
topology and runs in time/communication expected polyno-
mial in the number of parties.

The key to solving the leader election problem in an anony-
mous network is to break symmetry, i.e., to have at least one
pair of parties whose classical states are different from those
of each other. Initially, all parties are eligible to become a
unique leader. We can reduce the number of eligible parties by
at least one each time eligible parties break symmetry: if some
eligible party are in state 0 and others are in state 1, then only
the latter parties are allowed to remain eligible. For the num-
ber n of parties, they can elect the unique leader after breaking
symmetry n — 1 times among eligible parties. We call a clas-
sical string obtained by concatenating (the binary expressions
of) all parties’ classical states among which at least two states
are different from each other “inconsistent”. Our contribution
i8 to develop quantum protocols that prepare a superposition
of inconsistent classical strings shared by the eligible parties
in bounded time and without error. This implies that eligi-
ble parties can break symmetry by measuring such superpo-
sition, and that the unique leader can be elected in bounded
time and without error by repeating symmetry breaking and
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eligible party reduction.
This paper considers the quantum model (i.e., every party
- can perform quantum computation and communication and
each adjacent pair of parties has a bidirectional quantum com-
munication link between them, but parties do not share any
prior entanglement). Both of the two exact algorithms in [13]
elect a unique leader from among n parties in polynomial
time for any topology of synchronous and anonymous net-
works. We analyze the algorithms in terms of several com-
plexity measures: time complexity (i.e., the maximum num-
ber of steps, including steps for the local computation, neces-
sary for each party to execute the protocol, where the max-
imum is taken over all parties), communication complex-
ity (i.e., the number of (quantum/classical) communication
bits), and round complexity (i.e., the number of simultaneous
message passing in synchronous networks). The two algo-
rithms have their own characteristics in terms of these com-
plexity measures. More strictly, our first algorithm runs in
O(n?) time. The total communication complexity of this al-
gorithm is O(n*), but this includes the quantum communi-
cation of O(n*) qubits. To reduce the quantum communica-
tion complexity, our second algorithm incurs O(n®(logn)?)
time complexity, but demands the quantum communication
of just O(n?logn) qubits (plus classical communication of
O(n®(logn)?) bits). While our first algorithm needs ©(n?)
rounds of quantum communication, our second algorithm
needs only one round of quantum communication at the be-
ginning of the protocol to share a sufficient amount of en-
tanglement, and after the first round, the protocol performs
only local quantum operations and classical communications
(LOCCs) of O(nlogn) rounds. Both algorithms are easily
modified to support their use in asynchronous networks. Fur-
thermore, both algorithms can be modified so that they work
well even when each party initially knows only the upper
bound of the number of parties. This implies that the exact
number of parties can be computed when its upper bound is
given. No classical zero-error algorithm exists in such cases
for any topology that has a cycle as its subgraph [9].

2 Preliminaries

A distributed system (or network) is composed of multiple
parties and bidirectional classical communication links that
connect parties. In a quantum distributed system, every party
can perform quantum computation and communication and
each adjacent pair of parties has a bidirectional quantum com-
munication link between them. Every party has ports corre-
sponding one-to-one to communication links incident to the
party. Every port of party ! has a unique label 7, (1 <z < dp),
where d; is the number of parties adjacent to [. For ease of ex-
planation, we assume that port i corresponds to the link con-
nected to the sth adjacent party of [. In our model, each party
knows the number of its ports and the party can choose the
appropriate port whenever it transmits or receives a message.

Initially, every party has local information, such as its in-
ternal state, and global information, such as the number of
nodes in the system (or its upper bound). Every party runs
the same algorithm, which has local and global information
as its arguments. If all parties have the same local and global
information except for the number of ports the parties have,
the system is said to be anonymous. This is essentially equiv-

alent to the situation in which every party has the same iden-
tifier since we can regard the local/global information of the
party as his identifier. If message passing is performed syn-
chronously, such a distributed system is called synchronous.
The unitinterval of synchronization is called a round (see [10]
for more detailed descriptions).

Next we define the leader election (LE) problem. Suppose
that there is a distributed system and each party in the system
has a variable initialized to 0. The task is to set the variable of
exactly one of the parties to 1 and the variables of all the other
parties to 0. In the case of anonymous networks, Yamashita
and Kameda [15] proved that, if the “symmetricity” (defined
in [15]) of the network topology is more than one, LE cannot
be solved exactly by any classical algorithm even if all parties
know the topology of the network (and thus the number of
nodes). In fact, “symmetricity” is more than one for 4 broad
class of graphs such as regular graphs,

When the parties initially know only the upper bound of
the number of the parties, the result by Itai and Rodeh [9] im-
plies that LE cannot be solved with zero error by any classical
algorithm (including the one that may not always halt).

3 Quantum Leader Election Algorithm I

For simplicity, we assume that the network is synchronous
and that each party knows the number of parties, n, prior to
the algorithm invocation. Itis easy to generalize our algorithm
to the asynchronous case and to the case where only the upper
bound N of the number of parties is given [13].

First we introduce the concept of consistent and inconsis-
tent strings. Suppose that each party [ has a c-bit string z;.
That is, the n parties share cn-bit string 2 = 2125 - - - 2. For
convenience, we may consider that each x; expresses an inte-
ger, and identify string z; with the integer it expresses. Given
aset E C {1,...,n}, string z is said to be consistent over E
if z; has the same value for all [ in E. Otherwise z is said
to be inconsistent over E. We also say that the cn-qubit pure
state |1) = > or.|x) shared by the n parties is consistent (in-
consistent) over E if o, # 0 only for 2’s that are consistent
(inconsistent) over E. Further, for positive integer m, we de-
note the state that is of the form of (|0™) + 1)) /V/2, by the
m-cat state.

3.1 The Algorithm

The algorithm repeats one procedure exactly (n — 1) times,
each of which is called a phase. Initially, all parties are eligi-
ble to become the unique leader. Formally, every party has a
variable status € {“eligible”, “ineligible”}, which indicates
whether the party is eligible or not. In each phase, the num-
ber of eligible parties either decreases or remains the same,
but never increases or becomes zero. After (n — 1) phases the
number of eligible parties becomes one with certainty.

Each phase has a parameter denoted by k, whose value is
(n — i+ 1) in phase 7. Ineach phase i, let E; C {1,...,n}
be the set of all ls such that party [ is still eligible. First, each
eligible party prepares the state (J0) +|1))/v/2 inregister Ry,
while each ineligible party prepares the state [0) in Rq. Next
every party calls Subroutine A, followed by partial measure-
ment. This transforms the system state, i.e., the state in all
parties’ Rgs into either (|015+!) + 1150}y ® jon—1E:1) / /2 or
a state that is inconsistent over E;, where the first | E;| qubits
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Table 1: The definition of commute operator “o”

z y |zoyllx ylxzoyl| x y|xoy
0 0 0 1 1 1 * ok *
0 1 X 1 =% 1 x
0 = 0 1 x X

0 x X X X %

represent the qubits in eligible parties’ Ros. In the former
case, each eligible party calls Subroutine B, which uses a new
ancilla qubit, initialized to |0), in register R;. If k equals
| E4|, Subroutine B always succeeds in transforming the | E;|-
cat state in eligible parties’ Ros into a 2| Ey|-qubit state that
is inconsistent over E; by using the | E;| ancilla qubits. Next,
each eligible party [ measures his qubits in R and R in the
computational basis to obtain (a binary expression of) some
two-bit integer z;. Parties then compute the maximum value
of z over all eligible parties {, by calling Subroutine C. Fi-
nally, parties with the maximum value remain eligible, while
the other parties become ineligible. In what follows, we fo-
cus on only Subroutines A and B, which handle entanglement,
while we omit the description of Subroutine C, which is just a
classical algorithm.

Subroutine A

Subroutine A is essentially for the purpose of checking the
congsistency over E; of each string that is superposed to a
quantum state shared by parties. We use a commute operator
“o” over a set {0, 1, *, x} whose operations are summarized
in Table 1. Intuitively, “0” and “1” represent the possible val-
ues all eligible parties will have when the string finally turns
out to be consistent; “+” represents “‘don’t care,” which means
that the corresponding party has no information on the val-
ues any of the eligible parties have; and “x” represents “in-
consistent,” which means that the corresponding party already
knows that the string is inconsistent. The precise description
of Subroutine A is given below. Subroutine A is called with
Ry, S, status, n, and d, where the content of S is initially
“consistent,” and d is the number of adjacent parties. There-
fore, after every party finishes Subroutine A, the state shared
by parties in their Ros is decomposed into a consistent state
for which each party has the content “consistent” in his S,
and an inconsistent state for which each party has the content
“inconsistent” in his S.

Subroutine A

Input: one-qubit quantum registers Ro and S, a classical variable

39 &

status € {“eligible”, “ineligible”’}, integers n, d
Output: one-qubit quantum registers Ro and S
1. Prepare two-qubit quantum
x{,L,x0 L xe Y x e x .
If status = “eligible,” copy the content of Ry to Xé,l), oth-
erwise set the content of Xgl) to “x”

registers

2. Fort:=1ton — 1, do the following:
2.1 Copy the content of X{(f) to each ofX(I‘) yeens Xf:).

2.2 Exchange the qubit in X(i") with the party connected
via port i for 1 < i < d (i.e., the original qubit in X!"’
is sent via port 4, and the qubit received via that port is

set in XV
newly setin X;™').

2.3 Set the content of Xff Do 2l o‘r(l") o orlt)

U o

where avfl) denotes the content of Xf” for 0 <i<d.

3. If the content of X is *x . turn the content of S over (i.e.,
if initially the content of S is “consistent,” it is flipped to
“inconsistent,” and vice versa).

4. Invert every computation and communication in Step 2.
5. Invert every computation in Step 1.

6. Output quantum registers Ry and S.

Subroutine B

Suppose that, among n parties, k parties are still eligible
and share the k-cat state (|0*) + |1¥})/\/2 in their Ry’s. Sub-
routine B has the purpose of transforming the k-cat state to
a superposition of inconsistent strings with certainty by using
k fresh ancilla qubits that are initialized to |0), if k is given.
The precise description of Subroutine B is given below, where
{Uy} and {V} } are two families of unitary operators,

1 1 e_i%
=5 (ee 7))

1/v2 0 VERr et)v2

Vi - 1 1/v2 0 —x/_f—e;;;"% ek /V2

VR VR O e -VE
. 0 VEr +1 0 0

where Ry, and I, are the real and imaginary parts of e*F , re-
spectively.

Subroutine B
Input: one-qubit quantum registers Ro, R, an integer k
Output: one-qubit quantum registers Ry, R, ,
1. If k is even, apply Uy to the qubit in Ryy; otherwise perform

CNOT controlled by the qubit in R to that in R, and then
apply Vi to the qubits in Ry and R.;.

2. Output quantum registers Ro and R,|.

The point is that the amplitudes of the states |00)**, |01)%*,
|10)®*, and |11)®* shared by k eligible parties in their reg-
isters Ry and R, are simultaneously zero after each eligible
party applies Subroutine B with parameter &, if the qubits in
Rs of all eligible parties form the k-cat state.

4 Quantum Leader Election Algorithm II

4.1 The Algorithm

As in the previous section, we assume that the network is
synchronous and each party knows the number n of parties
prior to the algorithm. Again our algorithm is easily general-
ized to the asynchronous case. It is also possible to modify
our algorithm so that it can work well even if only the upper
bound N of the number of parties is given. This needs a bit
more elaboration, but is not mentioned further here.
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The algorithm consists of two stages, which we call Stages
1 and 2 hereafter. Stage | aims to have the n parties share a
. certain type of entanglement, and thus, this stage requires the
parties to exchange quantum messages. In Stage 1, each party
performs Subroutine Q s = [logn] times in parallel to share s
pure quantum states [¢()), .. .. |#{*)) of n qubits. Here, each
|¢()) is of the form (Jz) + |2(9))//2 for an n-bit string
29 and its bitwise negation z(¥), and the Ith qubit of each
|¢)} is possessed by the lth party. It is stressed that only one
round of quantum communication is necessary in Stage 1.

In Stage 2, the algorithm decides a unique leader among
the n parties only by local quantum operations and classical
communications with the help of the shared entanglement pre-
pared in Stage 1. This stage consists of at most s phases, each
of which reduces the number of eligible parties by at least
half. In each phase i, let E; C {1,...,n} be the set of all Is
such that party [ is still eligible. First every party runs Sub-
routine A to decide if state |¢(*)) is consistent or inconsistent
over E;. If state | ¢(9) is consistent, every party performs Sub-
routine B, which first transforms |¢(9) into the | E;|-cat state
(J0IE:ly 4 {11E:1y) /\/2 shared only by eligible parties and then
calls Subroutine B described in the previous section to obtain
an inconsistent state. Now each party [ measures his qubits
to obtain a label z; and performs Subroutine C that works in
the classical way to reduce the number of eligible parties by
at least half via minority voting. In what follows, we describe
the details of only Subroutine Q, which plays a central role in
Stage 1.

Subroutine Q is mainly for the purpose of sharing a cat-
like quantum state |¢) = (|z) + |Z))/v2. It also outputs a
classical string, which is used in Stage 2 for each party to ob-
tain the information on |¢) via classical communication. This
subroutine can be performed in parallel, and thus Stage 1 in-
volves only one round of quantum communication, First, each
party prepares the state LQL}}L) in register Ry and computes
the XOR of the contents of its own and each adjacent party’s
registers. The party then measures the qubits whose contents
are the results of the XORs. After these operations, the qubits
in Ry is in the state described as (|z) + |Z))/v/2. The pre-
cise description of Subroutine Q is given below. Subroutine Q
also outputs classical value y, which is used to check if |¢(*))
is consistent or not in Subroutine A.

Subroutine Q
Input: a one-qubit quantum register Ry, an integer d

Output: a one-qubit quantum register Ry, a binary string y of
length d

1. Prepare 2d one-qubit quantum registers R,..., R} and
S1,..., 84, each of which is initialized to the |0) state.

2. Create the (d+1)-catstate (J0+1) + [1971Y)/v/Zin registers
Ro, R,..., Ry

3. Exchange the qubit in R with the party connected via port
for 1 <4 < d(i.e., the original qubit in R is sent via port 4,
and the qubit received via that port is newly set in RJ).

4. Set the content of S; to g & xi, for 1 < ¢ < d, where x; and
2; denote the contents of Ry and R, respectively.

5. Measure the qubit in S; in the {|0},]|1)} basis to obtain a bit
yi, for 1 <i <d.
Sety :=y1 - Ya.

6. Apply CNOT controlled by the content of R., and targeting
to the content of each R/ for i = [.2...., d; to disentangle
R!s.

7. Output Ry and y.

5 Concluding Remarks

Our algorithms require a set of elementary unitary gates
whose cardinality is linear in the number 7 of parties. It is
open whether inconsistent states can be produced by using a
fixed set of gates in an anonymous network.
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Abstract. In order to construct a rigorous and universal formulation of the uncertainty principle on noise
and disturbance in quantum measurement, we reexamine the notions of guantum correlation, quantum
measurement, quantum noise, and quantum disturbance in the light of the modal interpretation of quantum
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1 Introduction

The long standing mathematical formulation of the un-
certainty principle, established by Heisenberg [1], Ken-
nard [2], and Robertson [3], has not served to provide a
reliable and general precision limit of measurements. In
fact, it has been clarified through the controversy [4, 5
on the validity of the standard quantumn limit for the
gravitational wave detection [6, 7] that the purported re-
ciprocal relation on noise and disturbance were found not
generally true [8, 9]. However, the rapid development of
the theory in the last two decades has made it possible to
establish a universally valid uncertainty principle [10] for
the most general class of quantumn measureinents, which
will be useful for precision measurcment and quantuin
information processing.

In Ref. [11] it was shown that the statistical properties
of any physically possible quantum measurement is de-
seribed by a normalized completely positive map valued
measure (instrument), and conversely that any instru-
ment arises in this way. Thus, we naturally conclude
that measurements are represented by instruments, just
as states are represented by density operators and ob-
servables by self-adjoint operators. Under this formu-
lation, we have generalized the Heisenberg-type noise-
disturbance relation to a relation that holds for any mea-
surements, from which conditions have been obtained for
measurements to satisfy the original Heisenberg-type re-
lation {10]. In particular, every measurements with the
noise and the disturbance statistically independent from
the measured object is proven to satisfy the Heisenberg-
type relation [12].

In this paper, we revisit the foudations of the the uni-
versal uncertainty principle. In particular, we show that
the observable to be measured and the meter observ-
able after the measuring interaction, though they are not
necessarily commuting, are perfectly correlated and in
the same maximal beable algebra of observables, so that
the Copenhagen interpretation warrants that the meter
observable after the measuring interaction possesses the
same value as one that the observable to be measured
has possessed just before the measuring interaction. The
formal aspect of this result also clarifies the meaning of
the root-mean-square noise and disturbance of meausure-
ments that generally obey the universal uncertainty prin-
ciple.

*ozava@math. is.tohoku.ac. jp

2 Beable algebras and modal interpretation

Let H be a Hilbert space. Denote by H; the unit
sphere of H and by L(H) the algebra of bouded linear
operators on H. Let B be a unital CF-algebra acting on
H. A dispersion-free state on B is a state w satisfying
w(A*A) = |w(A4)|? for all A € B. Let p be a density
operator on H. We say that B is beable for p iff there is
a probability measure g on the space S of dispersion-free
state of B such that

Diael = [ wld)duto) &

for all A € B. Any observables in a comunon beable can
be considered to possess sitnultancous determinate values
in the given state.

Let R be an observable (self-adjoint operator densely
defined) on H, and let p be a density operator on H.
Then, for any C*-algebra B on H, we say that B is R-
beable for p just in case:

(i) {Beable) B is beable for p.

(ii) (R-Priv) R € B.

(iil) (Def) For any unitary U € A, if [U, R| = U, p] = 0.
then UBU* = B.

We say that B is mazimal R-beable for p if and only
if B is maximal with respect to the properties (Beable).
(R-Priv), and (Def).

The cyclic subspace of H spanned by an observable R
and a state vector ¥ € Hy is the closed subspace C(R. ¥)
defined by

C(R, ) = the closure of {f(R}¢ | f € B(R)}, (2)

where B(R) stands for the space of bounded Borel fune-
tions on the real line R. Denote by Cy(R,v) the unit
sphere of C(R,vy) and by Pry the projection of H onto
C(R,1).

The following characterization is given by Halvorson
and Clifton {13], generalizing the Bub-Clifton uniqueness
theorem [14, 15].

Theorem 2.1 Let o be a vector state in H. Then, the
mazimal R-beable algebra for 1 is uniquely determined as
the form L(C(R,¥)') & {R}'Pr.y.

3 Quantum correlation

We say that two observables X and Y are perfectly
correlated (16, 17] in a vector state v iff their spectral
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measures EY and EY satisty
(EX(A)y. EY(T)y) =0 (3)

for any disjoint Borel sets A and T, We say that two
observables X and Y are identically distributed in a state
 iff

(BN (A)y) = (WIE" (D)) (4)
for all A € B(R). Then we obtain the following theorem.

Theorem 3.1 For any two observables X and Y and
any wvector state ¢ in H. the following conditions are
cquivalent.

(i) X and Y are perfectly correlated in 1.

(ii) X and Y are perfectly correlated in all ¢ €
CI(X a'l/”)'

(i) X and Y are identically distributed in all ¢ €
Cl (X » Qp)‘

(iv) The marimal X -beable algebra and the marimal Y -
beable algebre are the same, so that C(X,¢) = C(Y,y).
and X and 'Y satisfy X =Y on C(X, ).

4 Quantum instruments

Denote by me(H) the space of trace class operators on
H, by L(rc(H)) the space of bounded lincar transforma-
tions ou 7¢(H), and by S(H) the space of density oper-
ators. A linear transformation T € L{rc(H)) is called
completely positive iff T ®@id,, € L{Tc(H & C™)) is a pos-
itive transformation for any positive integer n. Denote
by CP(rc(H)) the space of completely positive maps on
Tc(H). An instrument is a countably additive normal-
ized completely positive map valued measure from B(R)
to L{Te(H)), i.e., a mapping T : B(R) — CP(rc(H)) sat-
isfying that Z(R) is trace-preserving and Z;‘il (4a;) =
Z(R) in the strong operator topology for any disjoint
Borel sets Ay, Ao, ... such that [J; A5 = R [11].

The dual map of Z(A) is the linear transformation
Z(A)* on L{H) defined by

TH(Z(A)* A)p] = TH{AZ(A)) (5)
forall A € L(H), p € T7c(H), and A € B(R). The relation
5 A) = (AT (6)

where A € B(R) defines a POVM, called the POVM of
T, which satisfies

(D) = TH[ITH(A) ) (7)
for all A € B(R) and p € S(H).

5 Measuring processes

A measuring process for H is defined to be a quadruple
(K,€,U, M) consisting of a separable Hilbert space K, a
state vector £ in K, a unitary operator U on ‘H & K, and
an observable M on K [11]. For any measuring process
M = (K, €, U, M), the relation

Im(A)p = Trc[(I @ EM(A)U(p ® [)(ENUT,  (8)
where p € S(H) and A € B(R), defines an instrument
T, called the instrument of M. Conversely, it has been
proved in Ref. [11] that for any instrument Z, there exists
a measuring process M = (K,€,U, M) such that 7 =
Tm.

6 Measurement operator formalism

A family M = {M,,} of operators with one real pa-
rameter mis called a family of measurcrnent operators iff
Son JW.,T,LJU.,“ = I. The relation

Im(B)p = Y Muphl), (9)
meA
defines a CP instrument called the instrament of M. The
POM IT of the iustrument Ty is given by
mA) = > MM, (10)
meA
where A € R. The TPCP wap T of the nstrument Iy
and its dual map T are given by
Tp = Y Muphl}, (11)
T

so that {M,,,} is a family of Kraus operators of T.

7 Noise of POVMs

Let TEbe a POVM on a Hilbert space H. The first and
the second moment operators of 11, denoted by O(IT) and
OGN (TT), are defined by

O(H):/a:dH(m), (12)
o) = / 2% dl(2). (13)
R

Let A and 2 be an observable and a vector state.
We define the root-rnean-square (rms) noise (10, A, )
of POVM II for A in % by
(11, A.y)

= (YOI — O(IA - AO(IT) + A*|y)"/*. (14)

Then, we have

Theorem 7.1 (i) If « POVMTI has a measuring process
(K,E,U, M), then we have

LAY = UM I &MU E) - (AR (v &) (1)

for all e Hy.
(ti) If a POVM II has measurement operators {M,,},
we have

(LA, ) = (O ([ M (m — A)yp|?)'2 (16)

for all ¥ € H;.

The rs noise can be statistically estimated from the
experimental data. In fact, we have [12]

dy(ILA? = (|A%y) + (0P (D)%)
+ (W|OID)|y) + (AY|O(I)|A)
—((A+ Dylo@)|(A+ D). (17)

In the above, (| A%|%) is the theoretical mean value of A%
in state 1, (|0 (IT)|x) is the mean of the squared out-
put x? in state v, and the other terms are the means of
the output x in the respective input states. Thus, the er-
ror £(I1, A, 9) can be statistically estimated, in principle,
from experimental data of the measurements in states 14,

Ay/|| Ayl and (A + DY/l[(A+ D).
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8 Precise measurements of observables

A POVM II is said to perfectly correlated with an ob-
servable iff we have (II(A)y, EX(Ga)y) = 0. An instru-
ment is said to satisfy the Born statistical formula (BSF)
in a state ¢

T(Z(A) ) (%] = (VIEA (D)%), (18)

where A € B(R). An instrument 7 with POVM I is said
to precisely measure an observable A on input state 9 iff
IT and A are perfectly correlated in state The following
theorem characterizes, up to statistical equivalence, the
precise measurements of an observable in a given state.

Theorem 8.1 Let T be an instrument. Let I1 be the
POVM of T and M = (K,€,U, M) be a measuring pro-
cess for . For any observaeble A and any state ¢, the
Jollowing conditions are all equivalent.

(i) T precisely measures A in .

(i) A® I is perfectly correlated with UY(I ® M)U in

.(z"ii) N7 is perfectly correlated with A in all ¢ €
Cl (Av 'd))
(iv) T satisfies the BSF for A for all ¢ € C1(A, ).
(v) e(I1, A, ) = 0 for all ¢ € C1(A,¥).
9 Disturbance of TPCP maps

Let T be a TPCP map and let B be an observable. We
denote by T*E® the POVM defined by

T*ER(A) = T"[E"(4)] (19)
for all Borel set A € R and by T*[f(B)] the operator
defined by

T°((B) = [ ST dEP () (20)

for any real-valued Borel function f.
The rms disturbance n(B, T, ) of B caused by T in ¢
is defined by

n(B,T,$) = (T*E®, B,y), (21)
or equivalently

n(B,T,¢)
= (Y|T*(B®) - BT*(B) — T*(B)B + B*[¢). (22)
Then, we have

Theorem 9.1 (i} If a TPCP map T has a measuring
process (K, &, U, M), then we have

n(T,B,¢) =U'BNU#®E) — (AR (&) (23)

for all € H.
(i) If a TPCP map T has Kraus operators {Mpm,}, we
have

(T, B, %) = (O |[Mm, Bp|*)"/>. (24)

for ally € Hy.

In what follows, we abbreviate £(A) = &(II, A, %) and
n(B) = n(T, B,¥), and (---) = (| ---|¢), where I, T,
and v are clearly identified in the context.

10 Projective measurements do not obey the
Heisenberg-type noise-disturbance relation

An instrument T is said to be of projective measure-

ment of a discrete observable A with spectral decowmpo-

sition A =3, mEZ if
I({m})p = EfppEj,. (25)

Now we shall show the following

Theorem 10.1 The disturbance of a bounded operator
B caused by any TPCP map T is at most 2|| B, i.c.,

n(B) < 2||B]. (26)

Theorem 10.2 No instruments of projective measure-
ment satisfy the Heisenberg-type noise-disturbance rela-
tion for (A, B), i.e.,

e(An(B) > 3|14, Bl). (1)

if B is bounded and (A, B]) # 0.

11 TUniversal uncertainty principle

We have argued that the Heisenberg-type noise-
disturbance relation is often unreliable. Recently, the
present author {10] proposed a new relation for noise and
disturbance with a rigorous proof of the universal valid-

ity.

Theorem 11.1 (Universal Uncertainty Principle)
Any instrument with POVM ¥ and TPCP map T satis-
fies the relation

(A(B) +e(A)o(B) + o (A(B) 2 5|14, B)l. (28)

for any A, B and state ¢, where {---) = (¢|---|¢), and
o stands for the standard deviation in the state .

12 When the Heisenberg-type noise-disturbance
relation holds?

We introduce the mean noise operator and the mean
disturbance operator of the measuring process M =
(K,&,U, M) by

ng =

(EINalk, (29)
(€lDsl&)k, (30)

dgp =

where (£]---|€)k stands for the partial mean on KC. The
noise operator N4 is said to be statistically independent
of the object S if na is scalar, and woreover the dis-
turbance operator Dg is statistically independent of the
object system S if dp is scalar. Then, we have the fol-
lowing characterizations of measurements that obey the
Heisenberg-type noise-disturbance relation.

Theorem 12.1 (i) For any measuring process M and
observables A, B, we have

(A(B) + 5\(na, B) — s, Al = 514 B (31
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(1) If the noise and disturbunce are statistically inde-
pendent of the object systern, we have the Hetsenbery-type
notse-disturbance relation.

(iii) An dnstrument with measurement operators {M,, }
satisfies the Heisenberg-type noise-disturbance relation if
we have

[> " mdf M, — A.B] = Y M} BM,, - B, 4. (32)

™ m

13 Typical violations of the Heisenberg-type
noise-disturbance relation

If the Heisenberg-type noise-disturbance relation were
to hold for bounded observables 4, B with ([4, B]) # 0,
we would have no precise measuremments with £(A) = 0
nor non-disturbing measurcments with 7(B) = 0. From
the universal uncertaiuty principle, we have correct lin-
itations on the noiseless or nondisturbing measurcients
[10].

The uncertainty principle for non-disturbing measure-
ments, i.c., n(B) = 0, is given by

(4)0(B) 2 1|([4, B]). ()

The uncertainty principle for noiseless mensurements,
ie., e(A) =0, is given by

o(A(B) 2 7 [(14, B]). (34

Frow the above, we have the following stateinents.

Theorem 13.1 For any instrument with measure-
ment operators {My,}, the relation Eq. (33) holds if
[Mp,, By = 0 for all m, and the relation Eq. (34) holds
if mMp = M, Ay for all m.

14 Projective measurements of Pauli operators

In order to figure out the disturbance in projective
measurements, let XY, Z be the Pauli operators on the
2 dimensional state space C2, and consider the projective
measurement of Z. In this case, the measurement opera-
tors are given by M_; = (I - Z)/2, My = (I + Z)/2, and
M., =0if m # +1. Let ¢ be an arbitrary state vector.
Then, from Eq. (16) we have

e(Z)y=0. (35)
On the other hand, we have
2 2 2
n(X)? = Y M, XJ9)? = 2] Yy,
m=%1

and since [|Y9|| = 1, we have
n(X)=v2. (:36)

We actually have n(X) = V2 < 2 = 2| X|| as Eq. (26),
and we have e(Z)n(X) = 0. Thus, the Heisenberg-type
noise-disturbance relation is violated in the state with
([X,Z]) # 0. On the other hand, the universal uncer-
tainty relation holds, as we have
e(Z)n(X) + &(Z)o(X) + o(Z)n(X)
= o(Z)n(X) = V20(Z) > o(X)o(2)

> SHIZ X))
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Abstract.

An approach to the unconditional security of quantum key distribution protocols is presented,

which is based on the uncertainty principle. The approach applies to every case that has been treated via
the argument by Shor and Preskill, but it is not necessary to find quantuimn error correcting codes. It can
also treat the cases with uncharacterized apparatuses. The proof can be applied to cases where the secret

key rate is larger than the distillable entanglement.

Keywords: Quantum key distribution, Uncertainty princple, Unconditional security

1 Introduction

One of the aims of the cryptography is to allow two
legitimate parties, Alice and Bob, to exchange messages
secretly without leak to a third party, Eve, who tries to
eavesdrop. It is well known that once Alice and Bob share
a secret key, which is a common random bit sequence un-
known to Eve, they can communicate a secret message of
the same length as the key. The task of quantum key dis-
tribution (QKD) is a way to produce or to amplify the
secret key using the properties of quantum mechanics.
For any protocol of QKD, it is vital to have a proof of
the unconditional security because the robustness against
any kind of attack allowed by the law of physics is the
main advantage of QKD over classical schemes aiming
at the same task. One of the well-known strategies for
the security proof is the argument [1] given by Shor and
Preskill, in which a reduction to an entanglement distil-
lation protocol (EDP) based on Calderbank-Shor-Steane
(CSS) quantum error correcting codes (QECC) [2, 3] is
used to show that the information leak on the final key
is negligible. This approach has turned out to be quite
versatile due to the simplicity of the idea: for example,
the original proof for the BB84 protocol [4] has been ex-
tended {5, 6] to cover the B92 protocol [7]. On the other
hand, invoking the CSS-QECC in the proof requires the
actual users to find a quantum code satisfying a cer-
tain property, which is not always an easy task. Even
the innocent-looking formula [(1) below] for the asymp-
totic key gain needs a complicated argument [8] for strict
derivation. Decoupling of the error correction and the
privacy amplification can be made by encrypting the for-
mer (9], but only when it satisfies a constraint coming
from the CSS-QECC.

If we look back to the first proof [10] of unconditional
security by Mayers, we notice that it also has its own
merits. One disadvantage, the complexity of the proof,
was recently remedied by a simple proof [11] by Koashi
and Preskill based on the same spirit, namely, reduc-
tion to a two-party protocol by omitting one of the le-
gitimate users by a symmetry argument. In this line of
approach, the error correction and the privacy amplifica-
tion are decoupled from the start, and we can just use any
conventional scheme for the error correction. The proof

*koashi@mp.es.osaka-u.ac. jp

also shows a peculiar and useful property, which allows
the use of basis-independent uncharacterized sources or
detectors. For example, if we use an ideal detector, the
source can be anything as long as it does not reveal which
basis is used in the BB&84 protocol. We can still use the
same formula for the key rate, indicating that any fault
in the source can be automatically caught in the form
of an increase in the observed bit errors. Unfortunately,
the argument of omitting one party relies heavily on the
symmetry of the BB84 protocol, and it cannot be applied
to the protocols with no such symmetry.

Here we present an approach to the unconditional se-
curity based on uncertainty principle. This argument has
the same advantages in the Mayers-Koashi-Preskill argu-
ment, while retaining the versatility of the Shor-Preskill
argument. In fact, in any protocol having a proof that
relies on the Shor-Preskill argument, we can decouple the
error correction and the privacy amplification just by en-
crypting the former, thereby relieve it from the constraint
of CSS-QECC. The new approach allows us to solve se-
curity problems with imperfect devices that were beyond
either of the previous arguments. For example, we can
derive a key rate formula for the BB84 protocol with an
arbitrary source, the properties of which are unknown
except for a bound on the fidelity between the averaged
states for two bases [12]. Our proof also provides an in-
sight into the recently predicted phenomenon of secure
key from bound entanglement [13].

2 Basic ideas in the security proof

Most of the QKD protocols can be equivalently de-
scribed by an entanglement-based protocol, in which Al-
ice and Bob share a pair of quantumn systems Ha ® Hpg
after discarding other systems used for random sampling
tests. The state py of H4 ® Hp at this point is not fixed
and may be highly correlated among subsystems due to
Eve’s intervention, but the results of the tests may give a
set of promises on the possible state. For example, in the
case of Shor-Preskill proof, Ha @ Hp is composed of N
pairs of shared qubits, and there is a promise that the fol-
lowing statements hold except for an exponentially small
probability: Suppose that each qubit is measured on z
or z basis. Then the number npi of qubits showing the
bit error (o, ® o, = —1) satisfies nyit /N < dpir, and the
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number npy, with the phase error (o, 0y = —1) satisfies
nph/N < 8p1,. Here Gy and &y, are determined frow the

results of the test. Here we consider more general cases,
in which the size of Ha®H g is arbitrary. We give a proof
for the unconditional security of the protocols having the
following fornu:

Actual Protocol - Alice and Bob make measurements
on Ha and on Hp, respectively. Through an encrypted
classical communication consuming 7 bits of secret key,
they agree on anr N-bit reconciled key Kpee, except for a
negligible failure probability. In the binary vector space
on N bits, one party chooses a linearly-independent sct
{Vi}r=1,.. ,N-m of N-bit sequences randomly and an-
nounce it. The k-th bit of the final key &gy is defined
as scalar product Koo + Vi-

This protocol newly produces N —m bits of secret key,
and the net secret key gain is G = N — r — m bits.
We first give an overview of our security proof, taking
the Shor-Preskill (SP) case as an example. The core
of our approach is to regard K. as the outcome of z-
basis measurements on N virtual qubits K®¥V. In the
SP case, we may just ideutify Hp with KV, Next, we
ask how we could have predicted the N-bit outcome X
if the N qubits had been measured in the z-basis. In
the SP case, we could have measured H 4 on the z-basis
to obtain an N-bit outcome yg. The random saanpling
tests assure that this outcome coincides with X within
~ Népp-bit errors, namely, the conditional entropy is
bounded as H(X|u) < NE with € ~ h(dyn), where
h(y) = —ylogy — (1 — y)log(l — y). Then, the uncer-
tainty of the cowplementary observable, namely, the z-
basis outconie Kree, should satisty H{Kpee) 2 N — NE ac-
cording to the entropic uncertainty relation [14]. Hence,
it is not surprising that Eve has negligible information
on the final key kg when m = N[h(8pn) + €]. Since the
error correction consumes 7 = N[h{dpie) +€] bits of secret
key, we arrive at the familiar asymptotic net key gain

G = N1 = h(6u) — h(pn)]- (1)

3 Main theorem

The rough sketch of the proof in the previous section
can be made strict and generalized as follows. First we
choose a quantum operation A that converts state p on
Ha®Hp to state A(p) on Hp @ KBV, where Hp stands
for an ancillary systemn R. We further consider a mea-
surement Mp on Hp, and define ¢ to be its outcome. As
we have seen, in the SP case we may choose A to be a
trivial operation Ag that just changes the definition as
Ha = Hp and Hg = K®V | and take Mp to be the z-
basis measurement. But the security proof Lere allows
almost free choices of A and Mg, except for the following
requirement:

Assumption 1 -~ The application of A followed by the
standard z-basis measurements on K®V js equivalent to
the measurement of Kree o1 H4®@H p in Actual Protocol.

Note that within the constraint of Assuwmption 1, it iy
even allowed to take A involving collective operatious
over H4 and Hy.

Let X be the outcome of z-basis measurciments on
K®N_ The next step is to replrase the condition
H(X|u) < NE in the rough sketeh in a more rigorous
and Hexible form:

Assumption 2 - There exists a set T, of N-bit se-
quences with cardinality |T,] < 2V¢ for cach g, such
that the pair of measurement outcomes (g, X) satisfies
X € T, except for an exponentially small probability g.

Now we can state the main theorem about the security:

Theorem 1 [f Asswimptions 1 and 2 hold form = N(§+
€) with € > 0, Fve’s infornation on Kan in Actual Pro-
tocol is at most h(n') + N’ with oy =n+ 2~ N

This theorem can be used as follows. First we choose
A and Mg under Assumption 1. Next, combined with
the promises obtained from the random sampling tests,
we obtaln a value of & with which Assumption 2 holds.
Then, Theorem assures that the unconditionally secure
key gain of at least G = N — r — N(£€ + €) is achievable.
For a good key gain, A and M), should be chosen such
that £ is as large as possible.

4 Proof of the main theorem

Thanks to Assumption 1, Eve's knowledge on kgy in
Actual Protocol is the same as that on kg, obtained from
Ha ® Hp by the following procedure.

Protocol 1 - Apply A and discard Hp. For the N
qubits K®N measure cach qubit on z-basis to determine
the N-bit key Kpe. Choose a linearly-independent set
{Vi}k=1,..N—m randomly, and announce it to Eve. Let
Krec - Vi be the k-th bit of the final key Kgy,.

In order to show that Eve has negligible information
O Ky, we consider yet another protocol, which is later
shown to be equivalent to Protocol 1. Define operator
SAW) = obol-..obv (v = z,2) acting on KBV for

N-bit sequence W = [bibs---by]. The new protocol is
defined as follows:

Protocol 2 - (a) Apply A and make measurement
Mp on Hg to obtain outcome u. (b) Choose N-bit se-
quences W;(j = 1,...m) randomly, and take an arbi-
trary linearly-independent set {Vi}r=1,.. N—yn of N-bit
sequences satisfying Vi - W; = 0 for any j, k. Announce
{Vi} to Eve. (c) Measure m observables {X,(W;)}
to determine an N-bit sequence X* as we will explain
later. (d} Apply unitary operation Z,(X™*). (e) Measure
{Z:(Vi)} to determine the (N — m)-bit final key xgy.

If we measured K®V on the 2-basis before step (¢), the
outcome X would be one of 2¥¢ candidates T}, except
for probability n (Assumption 2). Each measurement of
Z(W;) in step (c) gives a random parity bit X - W,
which halves the number of candidates. Hence, as in the
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hushing method of EDP [15], by knowing m = N{£ + ¢)
random parity bits we can derive an estimate X* of X
with an expounentially small failure probability Pr(X* #
X) <75 = n+2°N Then, if we measured K&V on
the z-basis after the phase flip in step (d), the outcome
would be X* — X, which is 0 except for probability n'.
This implies that the state o of the qubits after step (d)
is a nearly-pure state satisfying (09V]g|0%V) > 1 — ¢,
where [0%V) is the z-basis eigenstate for X = 0. Since
the measurement in step (e) is applied on this nearly-pure
state, Eve has only negligible (at most S(o) < [h(n') +
Nn']-bit) information about kgy.

The equivalence of the two protocols are easy to be
seen. In Protocol 2, the operators {Z.(Vi)} commute
with £,(X™) and with ¥.(W}) since Vi.- W; = 0. Hence
we can omit steps (¢) and (d) and still obtain the same
final key. We further notice that Mp is now redundant,
and the choosing method of {Vi} can be simplified to
a random selection. Noting that {X.(Vz)} can be also
obtained through a z-basis measurement on each qubit,
we are lead to Protocol 1. This completes the proof.

5 Discussion

We have described a method of proving the uncon-
ditional security which unifies two major previous ap-
proaches and retains the advantages in both of them.
The proof relies on the observation that Alice can guess
the z-basis outcomes of virtual N qubits with r-bit uncer-
tainty in the actual protocol, and Alice and Bob can guess
the 2-basis outcomes with m-bit uncertainty in a equiv-
alent protocol. The “excess” over the uncertainty limit,
N — r —m, amounts to the key gain. Note that if they
share a maximally entangled state (MES), Alice alone can
guess for both of the bases. The condition for the secrecy
is weaker than that since it allows her to collaborate with
Bob nonlocally for the z basis, through any operation A
satisfying Assumption 1. This difference is considered to
be a reason for the gap between distillable entanglement
and secret key gain [13]. In fact, examples in [13] are
constructed by applying a nonlocal “twisting” operation
to pap @ parpr, where pap is an MES. Their twisting
operations do not change the outcome of z-basis mea-
surement on Hg, which can be regarded as Kee. Hence,
we can define A to be the reverse of the twisting followed
by Ao, which satisfies Assumption 1. This shows that the
present method potentially gives a key rate exceeding the
amount of distillable entanglement.
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Abstract. This paper provides a security proof of the Bennett-Brassard (BB84) quantum key distribution
protocol for arbitrary source and detector. The only asswption in the seeurity proof is that the source
is characterized; that is, the proof requires no restrictions on the source and detector, and, moreover, the
detector can be unclaracterized. The proof is performed by lower-bounding adversary’s Réuyi entropy
about the key before privacy amplification. The bound reveals the leading factor which reduces the key

generation rate.

Keywords: Practical quantum key distribution, Unconditional security

1 Introduction

One of the fundamental problems in cryptography is
to provide a way of sharing a secret random number be-
tween two parties, Alice and Bob, in the presence of an
adversary Eve. A quantum key distribution scheme is
a solution to this problem(1, 2]; indeed it allows Alice
and Bob to generate a shared secret key securely against
Eve with unbounded resources of computation. The se-
curity of quantumn key distribution against general at-
tacks was first proved by Mayers[10]. After that, Shor-
Preskill{11] provided a simple sccurity proof based on the
observation that a quantuin key distribution (BB&4 pro-
tocol) is closely related to quantui error-correcting codes
(CSS codes). Gottesmann et al.[6] showed that the Shor-
Preskill proof is still valid as long as the source and detec-
tor are perfect enough so that all defects can almost be
absorbed into Eve's attack (see also {7, 13] for the achicv-
able rate of quantum codes in the security proof). In con-
trast to the security proof based on quantum codes, the
Mayers proof has a remarkable characteristic. Namely, in
the Mayers proof, although the source has to be (almost)
perfect, there is no restriction on the detector; in partic-
ular, it can be uncharacterized. By exchanging the role
of the source and detector in the Mayers proof, Koashi-
Preskill{9] provided a security proof which applies to the
case where the detector is perfect, but the source can be
uncharacterized (except that the averaged states are in-
dependent of Alice’s basis). The aim of this work is to
extend these security proofs in ideal settings to the one in
the real setting where both the source and detector can
be arbitrary. We provide a security proof of the BB84
protocol in which the only assumption is that the source
is characterized. In the same way as Koashi-Preskill[9],
this can be transformed into a security proof which is
based on the characteristics of the detector. Further we
note that the security proof also applies to other quantum
key distribution protocols such as the B92 protocol[1] and
the DPSQKD (Differential phase shift quantum key dis-
tribution) protocol{12].

2 Preliminaries

Let us first recall the BB84 protocol[2]. Let H be a
Hilbert space, and for a Hilbert space H, Iy denotes the
identity on H. Let A = {1,--- ,N}, and for B C A,

denote the cardinality of B by ng. The BB84 protocol
is deseribed as follows: (i) Alice generates two binary
strings o = {a;}ies ad 24 = {2;};ea according to
the probability distribution p(a?,24) = T[], pla:)p(z:).
(ii) Bob generates a binary string 6% = {b;}ea ac-
cording to the probability distribution p(b2). (i) Al-
ice sends the quantun state p;ﬁI = Qica Pu. 2, O HPN
to Bob. (iv) Bob applies the measurement {Eg‘}y}yA =
{®icaBo.y }y A (0,08 OB H¥N to the received quan-
tum state, where Eg o = Ep 4 is the measurement cor-
responding to the result that Bob camnot detect a state.
(v) Alice and Bob respectively open a? and b4, Let
D= {Z € A|yt 75 ¢} and C = {l S ’D|a, = b,} Alice and
Bob seleet a random subset 7 < C according to a bino-
wial distribution pe(7) = B(|T|;ne, pr). Let K =C—-T.
(vi) Alice and Bob cowmpare 27 and y7, and count the
munber of errors, n = |{i € T|z; # y;}|. (vil) Bob
estimates 2% by exchanging error-correction information
with Alice. (viil) Alice and Bob generate a secret key s
by applyiug a cowpression function to 2.

We next provide basic definitions which will be used
later (see e.g., [8] for details). Let p and g be probabil-
ity distributions. The relative entropy between p and
g is given by D(pllg) = >, p(w)(logp(w) — logg(w)).
The variation distance between p and ¢ is given by
dv(p, g = S {plw) — ¢(w) > 0}, where, for a ran-
dowm variable X, {X(w) > 0}* takes the value X{w) if
X(w) > 0 and 0 otherwise, i.e. {X > 0}* = X{X > 0}.
The guantum analogue of the variation distance is called
the trace distance. Let p and o be quantum states. For
an Hermitian operator X with the spectral decomposi-
tion X = 3 2;E;, define the projection {X > 0} by
{X >0} = ¥, 50 Ei. The trace distance between p
and ¢ is then given by dp(p,0) = Tr(p — o){p — 0 > 0}.

3 Security of the BB84 protocol

To prove the security of the BB84 protocol, previous
works[6, 9, 10, 11} assume that either Alice’s source or
Bob’s detector is sufficiently perfect in the sense that
all defects in the device can almost be absorbed into
Eve's attack. Note that the previous security proofs have
been based on directly bounding Eve’s mutual informa-
tion about the final key, i.e. the key after privacy ampli-
fication. In the present work, we first lower-bound Eve’s
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Rényi entropy about the key before privacy amplification,
and then apply privacy amplification given in the classi-
cal information theory, which makes use of a compression
function chosen at random from a universal hash family
(see [3] for the classical theory of privacy amplification).

We begin with introducing a simpler protocol whose
security implies that of the original protocol. Let X =
{(0,0), (0, 1),(1,0),(1,1)}, and o, B € X. We construct
a set of pure states, {fa }aex, such that a physical trans-
formation from {ja}ecx t0 {patacx exists. Let us first
write p,, in the form of a decomposition

pa = / X (6) [ (€)) () . (1)

Then we can define the Gram matrix G by

(Glap = [ (has) ¥ (Gald) (b,

where |¢a) = |9 (£)) is a state on an ancilla system Hy.
Here it should be stated that the decomposition (1) and
the choice of |¢a(€)} are not unique; they should be de-
termined so that the length of the final key will be max-
imized. It is clear from the definition of G' that G > 0,
and so a square matrix C exists such that G = CC.
Further, since all the diagonal elements of G are 1, we
can define a pure state g, on a four-dimensional Hilbert
space Hy4 by
pa = |Ca)(Cal,

where C,, denotes the a-th column of C. It follows from
this construction that there exists a physical transforma-
tion from {patacx t0 {pPatacy (see [4]). Consider here
a modified protocol in which Alice uses j, instead of p,,.
By using the above transformation, one can convert an
arbitrary adversary attacking the original protocol into
an adversary attacking the modified protocol. Therefore,
if there exists an adversary which can break the original
protocol, i.e. if the original protocol is insecure, then the
modified protocol is also insecure; or equivalently (con-
traposition), if the latter is secure, then the former is
also secure. Based on this consideration, we will treat
the modified protocol instead of the original protocol.
We next introduce a protocol which approximates the
modified protocol. Let Hs be a two-dimensional subspace
of Hy, and {ca}acxy be a set of states on Hsy such that

0o = Z p(z)oq z-

re{0,1}

0o = 01,

Here the choice of o, is not unique; it should be deter-
mined so that the distance dp(42,, o7l,) will be mini-
mized. Now we can introduce an approximate protocol
in which Alice sends o7, with probability g(a?,z4) =
I1,pu(as)p(z:), where py denotes the uniform distribu-
tion.

Let n € N, and for 1 < i < n, let X; be a random
variable distributed over {0,1} with Pr{X; = 1] = p.
Define X = > ; X;. Then, for § >0,

Pr[X > n(p + )] < nexpy(—nD(Bi(p)||Bi(p +6))),

where exp,(x) = 2% and B; denotes a Bernoulli distri-
bution (see e.g., [5]). This inequality can be used to

estimate the error rate pk at K from p% = ng/nr. the
error rate at 7. Define for 6, > 0,
. ng -
PE=Pr+ 0,
ne

e = nt expy (— nrD(Bi(p7)l| BilpT +6,)).

Then the probability that pg- > p}é is bounded as
Prrlpy > pi] € f, (2)

where probability Pro is taken over the randomness in
choosing 7.

Let z be the output of the measurement by Eve. Thew,
without loss of generality, the probability distribution of
the random variables can be written as

pa,b,z,y,2,T) = pla, 2 )p(b™ )pe (T)Tx o, M,

where M,;f‘gz denotes the positive operator-valued mea-
surement (POVM) performed by Bob and Eve. In the
approximate protocol, the corresponding probability dis-
tribution can also be written as

g'(a,b,2,y,2,T) = qla”, 2*)p(b)pe (T)Txo !, MR,

It thus follows from the monotonicity of the trace dis-
tance that

dv(p?,q*) < ea; (3)
€A = dv(p(a‘A))pU(aA)) + Z p(aAyxA)d'l'(puA,1~:U:ﬂz)‘

PR

Consider now the probability distributions p7, and g7,
defined by

pap(z,y,2) = p(aT,y7, 2|a?, b4, D, T),

a2 (z, 9, 2) = q(z7,y7, 2|a*, 64, D, T),

respectively. It will help to remember Markov's inequal-
ity for a non-negative random variable X and a constant
c> 0,

Pr[X > cE(X)) <L

Here the expectation E(X) mnay be replaced by its upper
bound. If we define X = {pA—q4 > 0}*/p(a?. b4, D, T),
then Markov's inequality for X and a constant ¢y > 0,
together with (3), gives

Prpal{p” — ¢* > 0} > creap(a”, 4, D.7)] < &5
Similarly, it can be shown that
Proa({g” —p? > 0} > creap(a®, 64, D. 7)) < ;L.
Consequently, we obtain
Pryaldv(pdy, aip) = crea] < 27" (4)
The probability distribution g7, can be represented as

p(zT)Trel - M,
TroAMA

aop(z,y. 2) =
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Here we have used the definitions

6:1.4,1‘T = Zp(lﬂll‘ u I di\ - Zp [ JT
ME,, = Z M. MP = Z MP 7.

A (vT

with O = {57 = y7 AP~ € (0.7 T AgA-P =
#1=P}. Now, for a basis a?, let a4
such that

denote the basis

— [lk, d.A*}\. :aA_}'\.‘

ok
where @ denotes the bit-wise inversion uf binary .\hiug' a.
It can then be verified that Frfr, U L7 oand M, T =
ng‘yTz, because 5'() = gy and E()»() + E(),l = El,() -+ El,la
respectively. Therefore, it is deduced that the probability
distributions g7, and thb are identical. It thus follows
frow (4) that

dv (vl q),) < crea, (%)

which holds with probability at least 1 — 20“
Consider next the probability <hstr1bun(>ns PN, and ¢b
defined by

y*, zla?, 0467 07, D, T),
K ozla b4, 67,97, D, T),

pfb("”‘v Y, Z) = p(llk
‘Iﬁ'b(l',y, Z) = Q(l"\
respectively. The probability distribution ¢&(z,y, 2) can
be represented as
K
p(z )rﬁ (7(, Jn y)cz

o éjwb 1)

ah(z,y,2) =

Here we have used the definitions

=A SA)LK 2T A
O, xk Zp(l‘ I.’L‘ 75 )Uu,i'v u,é

> M, M = Z M,

g4Cx <z

il

A —
My ye. =

with CE: = {’Q’C = yK A g'f = 'r)T A yD“C = {U‘ 1}'D-—C A
7477 = ¢4~ P}. Note that ErfJK can be expressed in the
form ’

A ® ATk

&zt,.t’c = Oy, r aé

where, for B C A and a state p? on HA, pf is given by
taking the partial trace over HA'B, ie. pf = Trya-sp.
Here 0“‘1f K is independent of 2%, and hence there exists

a POVM {Mgcy’} on HX such that

qtt:&(x7y)z) = (l//\) ITYU(L .LMb 2!

where vg = Tra"M ’“ = Tra’“M ’” s the normalization
constant.
Now, inequalities (2) and (5) lead to

Z q&(r.y,z) < wi,

I’C,y‘c,z:lx®y[>n(p£

wi = €7 +CTEA;

or equivalently

Z’H

Zp AR

where we have defined

K §
aﬁ.y -

2K epyl<n K’[JK

p(a®)ok

[ e

Lt should be stated that Egp + Eyy = Eyo + Ep 1, and
sa phi(z,z) =p h(:c, z). That is, the joint probability of
the randow variables 2 aud 2 is indepeudent of the basis
used for the Bol's weasurement. Hence, in the sequel,
we will consider p’“ (z,y,z) rather than pﬁ:b(x Y, %)

Lot R" (Xly, 2
defined by

RE(X|y,2) = —log, . (N (X =2y = . Z = 2))°,

K

lenote the conditional Rényi cutropy

where a capital letter (say X) denotes the randow vari-
able which samples the corresponding small letter (say

z). To lower-bound R" we now upper-bound the con-
ditional probabilities p (z]y, 2) and q’%(;r[y, 2). Let 7ig

be the smallest 01gvnvnluv of O'}\'. Then 7g is given by
1
= nAz )

where nb = [{i € Kla; = b}| for b € {0,1}, aud X,
denotes the smaller elgenvalue of a state o. By definition
of T, it is clear that

- 0
T = exXpal—ng Az,

qﬁ(y,z) >dTe. T = (ve)” Iy M(ﬁ/a-

To upper-bound q’%(x,z , 2), we expand qﬁ;(z‘,y, z) by us-
ing the identity o, = (V, + V,)1ok (V, + V), where

V, = (6'K)d%(a§ Gx )% Vy = Iy = V.

@ a,y

Cousidvr first the term iu(luding V afli—/ On using

ok =gk and g8 > 68 - Gk o It can be shown that
K K\=%:K (=K\~%
T\I‘Vt LLJV <’I‘10-u,r( ) 20&‘1_./(0—(1) 2'
Therefore
(v) " p(a™ )TV ol VMY bye < TETK,
K\=3-K (=K\~%
7")&—])(1 )TL‘O’ ( ) : 2',9(0}1) )

It is now convenient to define
a2y = Q@ expa(h(pf) - (1~ pf)ok,, +pfoks),
i€k
where h(p) = —plogap— (1 —p)logs(1 —p). Since 5£y <

5}‘2};, we call take m i a more convenient form

K K K
me = p(a™)Troy o (65) %?u (%)%,
Consider next the terw including VoV, ie.
- -1, K
q;[,(l';ys Z) = (VK:) 1p($ )’I\IVJ l}LCIV ]L{[:Cy-,

Inecquality (6) now leads to

q'5(z,y,2)

X ab

g5z, y, 2)—— <wk.
ZZ W g (2,9, 2)
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Hence Markov’s inequality for X = q:ti)/qf[’ and a con-
stant ¢ > 0 becomes

Prqu[q,ILB(I)y7 z) = ch:Qf[,(x7 Y, Z)] < C-I‘

Finally, the remaining terms can be bounded, by use of
Schwarz’s inequality, as

— 1
TV p(a®)olk V,ME < (nxredy(z,y,2))2,

byz

TV, p(z*)ek v, MF

1
byz S (ﬂl}C'r/Cq;B(‘r7 Y, z))g‘ -

It therefore follows that
1 2
S (2,,2) < (mee)? + (d5(2,9,2))2)

and so
K

Proc (g (2ly, 2) = ] < ¢ Mg = ——————.
qab ab %K(l—(cw,c)%)z
In the same way as before (see (4)), Markov’s inequality

for a constant cx > 0 can be used to show that

Prpldv (p5(zly, 2), ¢5(2ly, 2)) > cxea] < 2,
and hence

Prpfs[pf;,(ZIy, 2) 2 Tk + exea] <7,

which holds with probability at least 1 — 2c7! — 2cg!

(with respect to probability distribution p4). We note

that the constants ¢, ¢ and ¢ should be determined so

that the length of the final key will be maximized.
Define

Rl = ~logy max {Tlc + cxeal,
™y

and let m be an integer such that | = RS —m > 0.
Choose a function g at random from a universal family of
hash functions from {0,1}™ to {0,1}™. If Alice and Bob
choose s = g(z*) as their secret key, then Eve’s expected
information about S, given Z and G, satisfies I(S :
Z,G) < me. +27!/In2, where e, = ¢! + 27! + 2¢5?,
I denotes the mutual information, and we consider Y as
an auxiliary random variable (see [3] for details). Note
that R is not explicitly dependent on the characteristics
of the detector, and hence the detector can be uncharac-
terized. Further, the term €4 approaches 1 as ng — oo
unless fo,x = 0q,. This shows that the leading factor
reducing the key generation rate is the asymmetry of the
source represented by the term e 4, and hence eliminating
the asymmetry is of practical importance in implement-
ing efficient quantum key distribution schemes.

To see that our result is consistent with the previous
ones, we suppose that the source is perfect. In this case,
we can take pa» = Pox = Ouz, G0 = F1 = (1/2)In,,
a5 = (1/2)"Is, ea = 0, p(zX) = 7 = (1/2)"*, and
Trof 685 = expy(—ni(2—h(pf))). Sincewx = & — 0
as nx — oo for fixed &,, R /ni approaches 1 —h(p%) for
sufficiently small ¢7!, ¢7', cg! and §,. This is consistent
with the results in the previous works(6, 9, 10, 11].

4 Future problems

We close this paper with mentioning some extensions
of the above security proof. In the same way as Koashi-
Preskill[9], we can provide a security proof of the BB84
protocol where the ouly assumption is that the detector
and basis dependence of the averaged states are charac-
terized. It is also of hmnportance to give a security proof
of the B92 protocol|1] in practical implementation. Sup-
pose that the source generates pg with probability pe and
p1 with probability p1. Define then 5, by introducing the
Gram matrix as above. Note that g, is a pure state on a
two-dimensional Hilbert space Hs. Hence, the asymime-
try mentioned above automatically vanishes in this case,
which could be considered as an advantage of the B92
protocol. More detailed investigation concerning these
extensions will be the subject of future work.
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Abstract.

We derive a novel version of information-disturbance theorems which are erueial in the security

proof of BB84 quantum key distribution protocol. We show that the information gain by Eve inevitably
makes the outcomes by Bob in the conjugate basis not only erroncous but random.

Keywords: Information-Disturbance Theorem, BBR4 QKD protocol.

1 Introduction

In 1934, Bennett and Brassard[l] proposed a quantum
key distribution protocol whicll is now called as BB84
protocol.  Its unconditional sccurity was first proved
by Mayers[2] in 1996 and after his proof the various
proofs[3, 4, 5] have appeared. Among them, a proof
by Biham, Boyer, Boykin, Mor, and Roychowdhury[4]
is based upon a so-called dnformation disturbance theo-
rem and is related with the present paper. According
to the theorew, the information gain by Eve inevitably
induces errors in outcomnes obtained by Bob. This distur-
bance enables Alice and Bob to notice the existence of an
eavesdropper. As well as its application to BB&4 proto-
col, since it can be regarded as an information theoretic
version of uncertainty relation, the theoreimn is very inter-
esting by itself. Receutly, Boykin and Roychowdhury (6]
showed a simple proof of the theorem in an arbitrary di-
mension by using purification technique and trace norm
inequality. We, in this paper, derive a different version of
the theorem. Our information-disturbance theoremn is an
inequality between the information gain by Eve and the
randomness (rather than error probability) of the out-
comes obtained by Bob. We compare our theorem with
the former one and discuss its implication.

2 Setting

Let us begin with a setting. Three characters, Alice,
Bob and Eve play their roles. Our setting is a simplified
version of BB84 quantum key distribution protocol. The
following analysis, however, can be easily applied to the
full BB84 protocol with proceeding public discussion pro-
cedures. Let us consider two pairs of orthogonal states,
b= {|0),]1)} and its comjugate b := {|0),|T)} in C*.
They are assumed mutually unbiased with each other.

That is,
(ilk) = \/g(-l)'“"

holds for each pair of i,k € {0,1}. Alice first selects b
or b which is used to encode a random number. Alice
next randomly generates an N-bits sequence i € {0, 1}V
with probability p(i) = ?IV We write A a random vari-
able representing this N-bits sequence. Alice encodes

*niyadera-takayuki@aist.go. jp

this information on N-qubits and sends them to Bob.
For instance, suppose that Alice seleets b and generates
a sequence ¢o= iydy -+ iy, she sends the corresponding
state i) = [) ® @ ®lin) e CP® - ® C? =
Ha =~ Hp to Bob. If the conjugate basis b and a se-
quence o= 1149 -- - iy are chosen, the state sent to Bob
s i) = |1) & |l2) ® - ®|iN) € Ha. Alice, after con-
Arming that Bob actually Las received N-qubits, inforns
him of the basis she used. Bob makes a measurement
with respect to the basis and obtains an outcome. Let us
write B the random variable representing this outcome.
If there is no cavesdropper, A = B naturally follows.
Eve wants to obtain the information of the random vari-
able A, For the purpose, Eve prepares an apparatus and
makes it interact with the N-qubits sent to Bob by Al-
ice. Let us denote Hy a Hilbert space describing Eve’s
apparatus. In general, Eve's operation is described by a

‘unitary operator U,

U:Hp®Ha — HpHp
el — Y |E;) @), (1)
J

where |0) is a normalized vector in Hp and {|Ey;)} C
7:([;; sa,f,isﬁcs unitarity condition: Zje {O,I}N<Eilekj> =
di. After this interaction, Eve tries to make an optimal
measureinent on her apparatus to extract the information
of A.

3 Information-Disturbance Theorem

3.1

One can show that if Eve’s operation yields herself to
gaiu large information, error probability in qubits sent to
Bob in the conjugate basis becomes inevitably large. It
has been ecalled as information-disturbance theorem and
was proved by [4, ¢].

The representation (1) depends upon the choice of the
basis. It is useful to rewrite the same unitary operator in
the conjugate basis, b. Using [1) = 3¢ (o 1y~ |0)(I]7) and
[6) = e qonyn [7)(F18), we obtain

Y [Ew e,

s€{0,1} ¥

where [Eq) = 2ije{o N |Ei;) (313)(]T).

Information v.s. Error

vy |ly =

—765—



When Alice chooses basis b and a sequence i € {0, 1}V,
a state obtained by Eve is computed as

Pove = D |Eg)Eyl.
je{0,1}N

Later we consider how much information Eve can ex-
tract from it. When Alice chooses another basis b and a
sequence i, Bob obtains a state

> (EuEs)H{ (2)

3ie{0,1}N

—i _
PBob =

in the presence of Eve. Later we consider the error it
induces to the outcome.

Let us begin with Eve's information gain. Eve per-
forms a measurement (POVM) X := {X,} on her
state. (POVM is a family of positive operators satisfying
Yoo Xa =1.) We put E[X] a random variable represent-
ing this outcome. Probability to obtain an outcome c is
p(eli, b) = tr (Xapl,. ) Information gain (mutual infor-
mation) by Eve with respect to a POVM X is calculated
a'S)

I(A:E[X)b) =

—;NZZp(aH) logp(a[i)~log2p(a|j) + N.
« z 7

What we are interested in is its optimal value with re-
spect to all the possible measurements by Eve:

I(A: Elb) =
sup {1 (A : E[X][b) |X = {Xa}is a POVM in Hg} .

Now we consider outcomes obtained by Bob in the con-
jugate basis. Remind that when Alice chooses basis b, the
state sent to Bob is (2). Bob makes a measurement of an
observable 3" j|7) (5} on it. We put B a random variable
for this outcome. The probability to obtain each outcome
is expressed as p(jli,b) = (E;;|Ey;). Thus probability to
obtain an outcome whose difference from input is c, is

— 1 i -
p(B=A@db) = ) sgpliec,b)
1 . —

= ‘2‘NZ<E1 iwe|Eiige),  (3)

where ¢ € {0,1}" and the symbol “&” is a a bit-
wise XOR operation. By use of these quantities, the
information-disturbance theorem obtained by Boykin
and Roychowdhury is expressed as

I(A: E|b) <4N [> p(B = A p), (4)
e£0

whose right hand side means the square root of the error
probability in Bob’s outcome. That is, their theorem
claims that the information gain by Eve makes Bob’s
outcome in conjugate basis erroneous.

3.2 Information v.s. Randomness

In this subsection, we derive a new information-
disturbance theorem which relates information gain by
Eve with randommness in Bob's outcome.

To estimate the information gain by Eve, we intro-
duce a symmetrized attack as in [4]. We add N auxil-
iary qubits to Eve’s apparatus and thus the Eve’s Hilbert
space is dilated to Hg = C*®---® C*®Hg. Introduce
a set of new vectors {|E;)} in this Hilbert space Hp as

8 1 me (3D g
‘E}j> = V oN Z (=1 (l@”lm> ® | Eigm jam),
me{0,1}N

where “@” is again a bit-wise XOR operation and “”
represents bit-wise multiplications followed by their sum-
mation. Consider a new symmetrized attack as

U:Hp ®Has — Hp ®Hp
oy ®) — Y B @)
7

which can be extended to satisfy unitarity condition [4].
Although this symmetrized attack is different from the
original attack, it is shown below that to treat this new
attack is useful.

If we employ the symmetrized attack, Eve has a state
desceribed as

D IEGES

Je{o,}N

i —
PEve,sym ‘=

To extract the information from it, she can measure the
value of the auxiliary N-qubits and then apply a POVM
X = {X,} on the original apparatus Hg. It is shown
that this strategy gives same amount of information with
the original attack. The values obtained by the first mea-
surement are equally distributed, that is, each value m
is obtained with probability §1N After obtaining a value
m, the reduction of wave packet forces the state into

pﬁn = Z |Ei65‘m jd)frt)(E‘iﬁ)m jé{jml-.
J

The second measurement gives a probability

Ps(ali, m) = Z(Eitbm jmelXa,EiG}m jeEm);
J

from which it is easy to see that
p*(ali,m) = p(ali & m)

holds. Thus by using conditional probability p* (e, m|i) =
ﬁp(a]i @ m), mutual information can be computed to
coincide with I(A : E[X]|b). Taking a supremum over
all the possible POVM over the full Hilbert space Hpr
can make it larger and therefore the following inequality
holds,

I(A: E|b) < I(A: E|b)sym, (5)

where the right hand side is the optimal information gain
by the symmetrized attack.
Now we can state our theoreni.
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Theorem 1 The following inequality holds:
I(A: Eb) < H(A& B|b), (6)

where H(-) is the Shannon entropy. That is, the infor-
mation gain by Eve in the basis b makes the outcome of
measurement by Bob in the conjugate basis b random.

Proof: We can prove the theorem by first synunetrizing
the attack as in [4] and next bound Eve’s information
gain by Holevo's inequality. Thanks to (5), it is suflicient
to estimate the quantity 7(A, E[b)eym, for our purpose.
Holevo’s theorem|7] bounds it from above as

I(A : Eb)sym

Ny Loy
S (2_,"\']' Z ph‘ur,sym) - Z 2_}\/—3 (plz‘u(',sym}

|

= X ({pliy‘w‘,sym }) ’

where S(p) is voun Neumann entropy of a state p. There
exists a useful representation of this quantity y. Con-
sider another additional N-qubits Hilbert space Hp and
a state over Hp @ Hyr,

0= Z §7V'|Z><ZI @ pf’v’ué,sym'

i

Its quantum mutual entropy between Hp and Hy s
shown to coincide with the quantity X ({0e sgm )

1(8) := S (8]) + S (Olp) = S(0) = x ({Phucsym}) »

where O, is a restricted state to Hyy of © and O, is
defined in the same manner. To estimate this quantity,
we consider a purification of ply,, ..., Introduce another
N-qubits system Hp and states over Hyy @ Hp [4],

loe) =D 1By @i @ j).

One cau ecasily show that they are normalized. A state
© over Hp @ Hpr ® Hp defined by

0= i)l ® o) el

1

gives © if restricted to Hp® Hpr. By using subadditivity
for the entropy difference[8], the mutual entropy 1(©)
between Hp and Hgr ® Hp is shown to be larger than
I(©). Therefore we estimate the quantity,

165 (8,,) +5(8],) -5 (6)
Now we compute the restricted states over the subsys-
tews,

8|, = X ow(EHIELI = 51
6|, = 4‘;5},7w<¢i1.

The von Neumann eutropy of (-~-)I!t is V.

To compute the von Neumanun entropy of @ itself, we

purify this by adding an additional N-qubits Hp and
define a state over Hp @ Hp @ Hy @ Hp,

1. .
1) = 35wl &1 @ o
Taking partial trace over Hp @ Hp @ Hp leads

S s leiledlidil. = o1

i

IS

whose entropy also v N. Thus the mutual entropy is
determined by @

o

1(6)=$ (Z ‘—Z—lﬁlmw)‘

z

Now let us caleulate the von Neumann entropy of @\

HI
Again a purification using an additional N-qubits Hy to
Hpy & Hp gives a state

0= 8100

on Hy @ Hp & Hp. Its restriction to Hy gives
1 s , N
0= o D B sl B i) 1)
iy 1

whose entropy agrees with 7(0). Let us consider its com-
pouents with respect to the basis {|i)}. Since

1
Z(E; j(bu'Ef i(w) = 57\/“ Z Z(Ejebu j({)u(bu[Eie)u -ét’Bn(Bu)

u n (13

holds, it depends upon ounly i & j. Let us write it as
fi® 7) to represent o as

o= 5w Y S il

It can be diagonalized by an orthonormalized vectors

) = \/}; S (=1
!

o= Mlu)(ul,
1

as

with Ay = ¢ 35, f(t)(—1)"". The eigenvalue A, is calcu-
lated as

M= gy 2 fO(-1)

1 .
= 2_1\[ Z(Ev ue})nIEteBu l&)ve}an)(—l)”

i,nv

2
- (2—1,\7) > NN (BylEuy) Glo @ n)(ofi)

Linw i @y’

teven|f)@Tltev)(-1)""
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Since we are treating mutually unbiased case,

(iF) = /5 (-1

holds, where i - k := Z,,'le inkn. 1t leads
1\* — =
A= (@v‘) Zdz‘iﬁjdji’ﬁ)_‘i'ﬁo‘sjﬂaj’,Odj’ebi‘ejl,O(Eij‘Ei‘j’>

1 _— e
5N Z(Ez il Ei o)

which is nothing but p(B = A & I[b) introduced in (3).
Finally we obtain the following inequality,

I(A: E|b) < H(A® B[b).
QED.

4 Discussions

Below we discuss the implication of our theorem by
comparing it with the former one. Since the right hand
side of our inequality is determined by {p(B = A &c|b)}
it can be reduced to include only the ter ). ,p(B =

A@cfp).

Corollary 2 The following inequality between the infor-
mation gain by Eve and the error probubility in Bob’s
outcome holds:

H{A: E[p) < ~61ogd — (1 — ) log(1 — &) + NG,
where § :=3,.,p(B = A®clb).

Proof:

Under the constraint § = 3, p(B = Aepclb) for fixed 4,
the distribution which makes the Shannon entropy H( A%
Bl[b) maximum is p(B = A|b) =1 —-dand p(B = A&
cfb) = 55— for all c # 0. It gives

H(A® B[b) = —6logé — (1 — 8)logd + dlog(2N — 1)

and ends the proof. Q.E.D.

For a fixed error probability § = 3 ., p(B = A®clb),
for sufficiently large N, the term N¢ becomes dominant
in the right hand side of the above equation. Thus our
inequality becomes tighter than (4) in such a case.

Finally we present a situation which shows a drastic
difference between the two inequalities. Suppose that Eve
employs the following “attack”: Eve does not make the
qubits sent by Alice interact with any apparatus, but she
Jjust converts the each value. That is, for each qubit, Eve
performs a unitary operation |i) — (—1)!i) (i = 0,1).
One can easily see that also for the conjugate basis this
operation works as conversion. In this case the error
probability § becomes 1 and thus if they employ the in-
equality (4) Alice and Bob cannot rule out the possibility
of Bob's information gain. On the other hand, since the
error in Bob’s outcome is deterministic, the right hand
side of (6) vanishes. Thus Alice and Bob can be con-
vinced that there is no information gain by Eve.

In this paper we showed a novel version of information-
disturbance theorems. According to our theorem, one
can see that the information gain by Eve induces ran-
dommess to Bob’s outcowe in the conjugate basis. The
both sides of the inequality are expressed in terins of en-
tropy and thus seems to be natural. For large N case, in
which we are usually interested in, our inequality gives
tighter bound than the previously proposed ones. More-
over, our theorem can rule out the cases when Eve just
turns over the qubits and gains no information. Our the-
orew, as previous oune, also relies upon the assumptions
of fair probability of the random variable A and mutually
unbiasedness between b and . It will be very interest-
ing and crucial to generalize the theorem to more general
setting.
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