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We present a family of exactly solvable models at arbitrary filling in any dimensions which exhibit super-
conductivity with interband pairing. By the use of the hidden SU~2! algebra the Hamiltonians were diagonal-
ized explicitly. The zero-temperature phase diagrams and the thermodynamic properties are discussed. Several
properties are revealed which are different from those of the BCS-type superconductor.

Superconductivity is one of the most remarkable phenom-
ena in condensed-matter physics. Recently possibilities of a
superconductor are proposed by Kohmoto and Takada.1 They
investigated the superconducting instability of insulators by
the mean-field treatment. A two-band system which is insu-
lating without interactions becomes superconducting by a
sufficiently large interband attraction. It has many properties
which are different from those of the BCS-type
superconductors.2 Note that the Cooper instability is irrel-
evant here, since there is no Fermi surface. In Ref.3, possible
realization in organic materials is discussed, which is an ex-
tension of the Little’s idea for the room-temperature
superconductor.5.

We have constructed a family of exactly solvable models
at arbitrary filling in any dimensions which includes the
models proposed in Refs. 1 and 3. We have obtained the
ground state and the thermodynamic quantities explicitly.
Several properties have been revealed. An instability without
a Fermi surface, which was proposed by Kohmoto and
Takada, is realized in the models. This instability is quite
different from the Cooper instability. A finite strength of at-
traction is needed to produce the superconductivity in con-
trast to the BCS-type superconductivity. We also note that
there are possibilities that our picture realizes in a realistic
and complicated model.4

Let us consider a two-band model described by the
Hamiltonian

H5Hkin1H int , ~1!
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whereck
(v) andck

(c) are the fermion annihilation operators for
the valence band and the conduction band ande (v)(k) and
e (c)(k) are the energy dispersions of the valence band and
the conduction band, respectively. The momentum vectork

takes values in thed-dimensional Brillouin zone. We impose
a constraint ‘‘symmetric condition’’ on the band structure

e~v !~k!1e~c!~2k!5C, ~4!

whereC is independent ofk. Without loss of generality we
setC50. We setU positive and;O(N0), whereN is the
number of the momentum points in the Brillouin zone. The
interaction is an interband attraction. The spin degrees of
freedom are neglected for simplicity, since we do not con-
sider the spin-related quantities here.

Let us sketch the process of the diagonalization. The di-
agonalization consists of two steps. At first we show the
‘‘decoupling property’’ of the Hamiltonian. Next we map the
system to an exactly solvable quantum spin system. Then we
can construct all the eigenvalues and the eigenvectors.

We represent the states in the Hilbert space diagrammati-
cally ~ see Fig.1!. Let us span the Hilbert space by the base
vectors
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where $p1 ,•••,pN
e
v,q1 ,•••,qN

e
c%5S and k1 ,k2 ,k3 ,•••,kM

PD (The setsS andD will be defined below!. Hereu0&S is
defined byck

(c)u0&S 50(kPS ) and ck
(v)u0&S 50(2kPS ).

u0&D is defined by ck
(c)u0&D50(kPD) and

ck
(v)u0&D50(2kPD). Consider a pair which consists of the
momentum point2k in the valence band and the momentum
point k in the conduction band. We denote the pair byk,
wherek takes values in the Brillouin zone. Define the sets
S andD as follows. If k is single occupied,k belongs to
S . And, if k is empty or double occupied,k belongs toD .
NoteS ùD5f andS øD5the Brillouin zone.

Let us introduce an operatorP j which is a projection
operator to the Hilbert space whereS andD are fixed to be
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S j andD j . The index j denotes howS andD are fixed.
Using the properties ofP j , rewrite the Hamiltonian as

H5S ( jP
j DHS ( jP

j D5( jP
jHP j . ~6!

Using the relation~4!, we have

P jHP j5P jHkinP
j1P jH intP
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where1 is an identity operator andH I andH II are
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Here, the kinetic term and the interaction term decouple, the
‘‘decoupling property’’ of the Hamiltonian.

Now we map the system to an exactly solvable quantum
spin system~see Fig. 1!. Here the SU~2! algebra hidden in
spinless fermions in a two-band system plays a crucial
role.6–8 Let us define the ‘‘spin’’ operatorsŜk
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whereHspin is defined by
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The operators defined above satisfy the relations
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where k and k̃ take values inD j . Thus Ŝk
x ,Ŝk

y ,and Ŝk
z

(kPD j ) are the components of as5 1
2 quantum spin. Now

we can identifyk with a ‘‘site’’ on which a s5 1
2 quantum

spin is defined. In the language of spin, if the pairk is empty,
the spin on the sitek is ‘‘up’’ and if the pair k is double
occupied, the spin on the sitek is ‘‘down.’’ Note that, since
k takes values inD j , all the pairs we now consider are either
empty or double occupied. Now diagonalizeHspinwhich can
be identified with the Hamiltonian of the quantum spin sys-
tem (s5 1

2!. Define uS,Sz& by an eigenstate of (Ŝ)2 and Ŝz

which satisfies (Ŝ)2uS,Sz&5S(S11)uS,Sz& and ŜzuS,Sz&
5SzuS,Sz&. The energy is specified byS and Sz @see
(10)#. There is, however, nontrivial degeneracy which is
given by

~2Smax!! ~2S11!

~Smax2S!! ~Smax1S11!!
,

whereND j
is the number of elements inD j and Smax is

ND j
/2. This degeneracy is crucial for the thermodynamic

properties. Let us consider the state
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where $p1 ,•••,pN
e
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e
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system(9), it canbeen seen that this is an eigenvector of
H with an eigenvalue
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where Ne
pair and r (0<r<ND j

/2,r : integer) are defined by

ND j
22Sz and ND j

/22S,respectively. The total number of

the fermions is given byNe
v1Ne

c1Ne
pair. Varying the index

j , H is diagonalized completely.
Now let us consider the physical properties of the system

in the thermodynamic limit (N→`). For simplicity, we con-
sider the half-filled case, namely,Ne

v1Ne
c1Ne

pair5N. When
the interaction is absent, the system is insulating.

FIG. 1. The classification of the pairs and mapping to a quantum
spin.

8562 53Y. MORITA, Y. HATSUGAI, AND M. KOHMOTO



Let us first consider the zero-temperature phase diagrams.
The ground state was obtained by minimizing the energy
(14). The competition between the kinetic term and the in-
teraction term gives a rich phase diagram. We present the
phase diagrams of two cases: the one-dimensional two-band
model, as shown in Fig. 2, and a system with a constant
density of states, which resembles that of the two-
dimensional systems~Fig. 3!. We find three types of different
phases as shown in Figs. 2 and 3. All the phases are sepa-
rated by the first-order phase transitions. The phases are
characterized byD (5 the amplitude of the off-diagonal
long-range order for thes-wave superconductivity11! which
is defined by

D5A 1

N2E dxE dy^c~c!†~x!c~v !†~x!c~v !~y!c~c!~y!&.

~15!

Here c (c)(x)5 1/AN(ke
ikxck

(c) and c (v)(x)
51/AN(ke

ikxck
(v) . WhenD takes finite value, the pairing of

electrons occurs as in the BCS superconductivity. The con-
tents of the three phases are as follows:

Phase 1: D50.5, which is the upper bound forD. It is
superconducting.11,12

Phase 2: 0,D,0.5. It is also superconducting.
Phase 3: D50. The ground state is a band insulator as the

noninteracting case.

Note that a sufficiently large attraction is needed to pro-
duce the superconductivity, which is totally different from
the BCS superconductivity.

Now let us discuss the Meissner effect, namely, estimate
the superfluid density Ns . Ns is defined by
mc/e2uu j uu/uuAuu, wherem denotes the effective mass,j is the
current density, andA is the vector potential. Since we have
diagonalized the Hamiltonian explicitly, it is straightforward
to obtainNs by the use of the Kubo formula. In the insulating
phase we obtainNs /N50 and there is no Meissner effect.
This is the direct consequence of the effective mass
theorem.13 In the superconducting phase we can also obtain
Ns /N511O(1/U) in the largeU limit, which means the
Meissner effect.

Next we consider the thermodynamic properties.
For simplicity, we consider a system with flat bands
(e (v)52e e (c)5e.) When the two bands degenerate,
namelye50, the thermodynamic properties are investigated
by Thouless.8 The grand partition function is

Zgrand5 (
Ne
v ,Ne

c

0<Ne
v

1Ne
c<N

(
r ; integar

0<r< ND j
/2

(
Ne
pair

52r

2ND j
22r

C exp~2b E !, ~16!

whereC andE is defined by

FIG. 2. The one-dimensional two-band
model, where e (c)(k)522tcosk12t1G/2 and
e (v)(k)52tcosk22t2G/2. The zero-temperature
phase diagram.

FIG. 3. The model which has a constant den-
sity of states. The density of states and the zero-
temperature phase diagram.
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In the thermodynamic limit (N→`) we use the saddle-point
method. The chemical potential is setm50 and the system is
half-filling. A direct calculation leads to analytic forms of the
thermodynamic quantities. For example,D(T) is given by

D~T!50.5
y221

y21ay11
, ~17!

where y is the largest root of ln x
5 1

2UT
21(x21)(x11)(x21ax11)21 anda5ee/T1e2e/T.

As shown in Fig. 4, the second-order phase transition occurs
at a finite temperature. The critical temperatureTc is propor-
tional to U whenU@e. The entropyS(T) per unit cell is
given by

S~T!/N5 ln~y21ay11!2eT21
~ee/T2e2e/T!y

y21ay11

20.5UT21
y~2y1a!~y221!

~y21ay11!2
. ~18!

The heat capacity@5T(]S/]T)V# per unit cell is shown in
Fig. 4. In the superconducting phase it behaves as
Aexp(2B/T) at a sufficiently low temperature, whereA is a
constant andB5U/222e is the excitation gap. In the high-
temperature phase it is a decreasing function ofT, since the
band widths are finite.

We find thatD(T50)/Tc andDC/Cn are not universal in
contrast to the BCS-type superconductivity, whereDC is the

jump of the heat capacity atT5Tc andCn is the heat capac-
ity at T5Tc10. A more detailed study of the thermody-
namic properties will be presented elsewhere.

The half-filled case considered here seems to be most pro-
spective to be realized. The crucial point is the origin of the
attractive interaction. One of the possible candidates is the
exciton mechanism proposed in Refs. 3 and 5. There the
attraction is envisaged as arising from a polarizable medium
sandwiched between the two chains, where the ‘‘effective’’
interaction between electrons in different chains becomes
statically attractive. This is because electrons share positive
charge induced in the medium. They have confirmed that
there are cases in which this attractive interaction is stronger
than the direct Coulomb repulsion between electrons in dif-
ferent chains.~ In Ref. 9, another example of attraction was
proposed in the two-band repulsive Hubbard model. The
electrons in one band experience attractive interaction medi-
ated by an accompanying Mott-insulator band.! Then, if we
consider the filling other than half-filling, the exciton-
electron interaction which leads to the attraction is reduced
considerably by screening. Thus the half-filling case is best
for our purpose. Without the screening, a strong attraction is
rather easily achieved.10

In summary, a recent proposal by Kohmoto and Takada of
the pairing state between a conduction electron and a valence
electron was investigated through a family of exactly solv-
able models. We obtained all the eigenvalues and the eigen-
vectors explicitly. The zero-temperature phase diagrams were
obtained. The superconducting instability without a Fermi
surface which was proposed by Kohmoto and Takada were
confirmed. It was also proved that a sufficiently large attrac-
tion between states in the two bands is needed to produce
superconductivity. The thermodynamic properties were also
dicussed. The properties are quite different from those of the
BCS-type superconductor. The models we consider may be
realized in specially synthesized double-chain organic mate-
rials. Although we have presented the results for the cases
where fully analytical treatments are possible, the results for
the more general cases are not different from the present
cases in essential ways. They will be presented elsewhere.

FIG. 4. The temperature de-
pendence of the order parameter
and the heat capacity when
e50.3 andU52.
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