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Abstract 

     Marine strata of the Il’pinskii section, northeastern Kamchatka, Russia, expose the 

complete Eocene/Oligocene (E/O) succession. Although diatom fossils are very poorly 

preserved in these mudstones and carbonate concretions, Oligocene mudstones contain 

typical diatom biomarkers, the C25 highly branched isoprenoids (HBIs), in 

concentrations that rise markedly above the E/O boundary. The abundance of the 

dinoflagellate biomarkers known as dinosteranes decreases through the late Eocene to 

Oligocene interval. A rise in the abundance of HBIs through this time interval suggests 

that the post-E/O diatom community of the northwest Pacific region was dominated by 

the genus Rhizosolenia. HBIs in sedimentary rocks spanning the E/O transition may 

show the appearance of the Oligocene marine diatom Rhizosolenia oligocaenica, and 

may therefore be useful as biomarkers in regional biostratigraphic correlation of the 
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northwest Pacific during this interval. An E/O boundary in the Il’pinskii section is 

proposed based on HBI distribution.  
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     The Cenozoic is a time of global cooling. The Eocene–Oligocene (E/O) interval was a 

critical time in Earth’s climatic history during which a transition from greenhouse to icehouse 

conditions took place. During the 10-my interval from the middle Eocene to the early 

Oligocene, deep ocean and surface waters at high latitudes cooled (e.g., Zachos et al., 2001). 

This rapid cooling is reflected in a faunal turnover in marine and terrestrial biotas (e.g., 

Prothero and Berggren, 1992). At a global scale, a positive shift in benthic foraminiferal δ18O 

values just above this boundary, called the Oi1 event (Miller et al., 1991), occurred at the same 

time as the opening of the Tasmanian gateway, which resulted in an increase in surface-water 

productivity and a change from calcareous-microfossil-rich sediment to biosiliceous ooze 

(Kennett et al., 1975; Kennett, 1977; Diester-Haass, 1992, 1995, 1996; Diester-Haass and Zahn, 

1996; Salamy and Zachos, 1999). Throughout the Cenozoic, diatoms tolerant of such chaotic 

conditions increased in diversity relative to other phytoplankton (e.g. Falkowski et al., 2004). 
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Information about E/O boundary biotic events in the high-latitude North Pacific is lacking, 

however, due to a dearth of continuous stratigraphic sections that contain abundant diatom 

fossils (Baldauf and Barron, 1990).  

     Diatom fossils were obtained from late Oligocene sedimentary rocks in the Navarin Basin 

Province, Bering Sea, by Baldauf and Barron (1987), and detailed studies of Oligocene diatoms 

from Komandorski Island in the high-latitude North Pacific were undertaken by Gladenkov 

(1998, 1999). Gladenkov and Gladenkov (2007) recently found biostratigraphically useful 

diatom remains in casts of fossil mollusks and in carbonate concretions from the Paleogene 

marine succession of the Il’pinskii Peninsula. In spite of these advances, a complete E/O 

succession with a robust diatom record has not yet been documented from the North Pacific 

region. 

     Poor preservation of siliceous diatom frustules commonly precludes unambiguous 

taxonomic identification. More than 90% of suspended biogenic silica is dissolved and 
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recycled in the water column, and does not become part of the sedimentary record. Diatom 

frustules are easily destroyed by the transformation from opal-A to opal-CT during diagenesis 

(Hein et al., 1978). The generally poor diatom record for the E/O transition interval may be 

predominantly due to the unstable nature of diatom frustules. As a result, abundance and 

diversity patterns for North Pacific diatom communities during the E/O transition remain 

poorly understood.  

     Biomarkers of zoo- and phytoplankton, eubacteria, and archaea in sedimentary rocks have 

been applied to reconstructing paleoenvironments and paleoecological systems. Among the 

various biomarkers, the highly branched isoprenoid (HBI) alkenes are known to be produced 

by a limited range of diatom species. The genus Rhizosolenia, for example, can produce either 

C25 and/or C30 HBI alkenes (Volkman et al., 1994; Sinninghe Damste et al., 2004). Diatom 

biomarkers in sedimentary rocks may provide clues to the variations in diatom community and 

biomass during the E/O transition in the North Pacific.  
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     This paper focuses on HBIs in sedimentary rocks spanning the E/O transition. A succession 

of marine sedimentary rocks exposed at the Il’pinskii section, Kamchatka Peninsula, Russia, 

includes the E/O boundary, as indicated by assemblages of benthic mollusks and 

foraminiferans (Beniamovskii and Gladenkov, 1996; Gladenkov and Gladenkov, 2007) as well 

as magnetic polarity (Minyuk and Gladenkov, 2007). The latter data indicate that the long 

reverse-polarity interval Chron 12r is very compressed in this area. The Eocene Kilakirnun and 

Gailkhavilanvaym Formations consist of marine turbiditic sandstone and mudstone. The Early 

Oligocene Alugivayam Formation consists predominantly of hemipelagic siltstones. The E/O 

boundary has been defined by the disappearance of the foraminiferan Caucasina eocenica 

Kamchatika Zone (Serova, 1976) and by mollusk biostratigraphy (Kafanov and Ogasawara, 

2004). The general geology and benthic faunas of the Kamchatka region have been described 

by Gladenkov (1980). Stratigraphic variation in diatom production as revealed by biomarker 

analysis for sedimentary rocks from the Il’pinskii section would help to elucidate diatom 
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evolution during the E/O transition, as well as possibly provide globally relevant 

biostratigraphic information.  

 

2. Materials and methods 

2.1. Geological setting and samples 

     Paleogene marine sedimentary rocks, including the E/O transition (Serova, 1976; 

Kovalenko, 1992; Gladenkov and Shantser, 1993; Maxwell and Chinakayev, 1999) are well 

exposed in the Il’pinskii section of the Kamchatka central basin, on the eastern side of the 

Kamchatka Peninsula, Russia (Fig. 1). The Paleogene succession is about 2500 m thick and is 

divided into the Yuzhnoilpin, Kylan, Kilakirnun, Gailkhavilanvaym, and Alugivayam 

Formations. Thirty-seven mudstone samples from the Kilakirnun and Gailkhavilanvaym 

Formations (Eocene) and the Alugivayam Formation (Oligocene) at the Il’pinskii section were 

used for the present study.  
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2.2. Experimental procedures 

     Samples were crushed and pulverized to finer than 200 mesh size in preparation for 

geochemical analysis. Total organic carbon (TOC), inorganic C (IC), total nitrogen (TN), and 

total sulfur (TS) were determined using the EA3000 CHN analyzer (EuroVector Co., Milan, 

Italy). The samples were weighed and placed in a silver capsule with a few drops of 1 N HCl to 

remove any carbonate. The sample was then dried at 120°C for 2 h and placed into a tin capsule. 

All elemental compositions reported are on a dry weight basis. The error of C, N, and S 

analysis was ±3% for TOC and TN, and ±5% for TS, respectively.  

     X-ray fluorescence (XRF) spectrometry was performed to determine the inorganic 

elemental composition. Major elements, SiO2, Al2O3, and Fe2O3 were analyzed using an 

energy-dispersive X-ray fluorescence spectrometer (JSX3211; JEOL, Tokyo, Japan) and 

pressed powder tablets of 20 mm i.d. The rhodium tube was set at 30 kV and 0.2 mA. 
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Elemental composition was quantified with reference to the standard samples, JA-1, JA-2, 

JA-3, JCh-1, JG-2, JGb-1, JR-1, JR-3 and JSl-1 (Imai et al., 1995, 1996, 1999). Repeated XRF 

analysis gave standard deviations of 0.9% for SiO2, 0.4% for Al2O3, and 0.2% for Fe2O3.  

     The lipid fraction was obtained by solvent extraction (15 min) with 

dichloromethane/methanol (1:3), dichloromethane/methanol (1:1), and dichloromethane using  

a BIORUPTOR RD-1 ultrasonic cell crusher (Cosmo Bio Co., Tokyo, Japan). The aliphatic 

hydrocarbon fraction was eluted with hexane using silica-gel column chromatography (gel 

Q-23; Wako, Osaka, Japan). The hydrocarbon fraction was analyzed by gas chromatography 

(GC) and gas chromatography–mass spectrometry (GC–MS). GC was performed using an 

HP6890 GC (Hewlett–Packard, Palo Alto, CA, USA) equipped with a splitless injector, fused 

silica capillary column (HP-5, 30 mm × 0.25 mm; J&W Scientific Inc., Folsom, CA, USA) and 

flame ionization detector. Helium was the carrier gas. The oven temperature for the GC was 

programmed for 2 min at 50ºC, then increasing from 50ºC to 300ºC at 4ºC/min, and finally 20 
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min at 300ºC. GC–MS was carried out using HP6890 GC with a fused silica capillary column 

(HP-5, 30m × 0.25 mm; J&W Scientific Inc.) and HP5973 inert XL mass selective detector 

(MSD) operated at 70 eV with a mass range from m/z 50 to 550. The same oven temperature 

program was applied to GC–MS analysis.  

 

3. Results and discussion 

3.1. Sedimentary facies and geochemical characteristics 

     Eocene to Oligocene marine sedimentary rocks exposed in the Il’pinskii section consist 

predominantly of silty mudstone with carbonate concretions (Fig. 2). Eocene mudstone 

samples are from the upper part of the Eocene Kilakirnun Formation (2 samples), and the 

Gailkhavilanvaym Formation, which conformably overlies the Kilakirnun Formation. The 

lower part of the Gailkhavilanvaym Formation is characterized by glauconitic sandstone and 

by the Laperalamskii tuff at its base (Fig. 2). The Oligocene mudstone samples are from the 
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Alugivayam Formation, which conformably overlies the Gailkhavilanvaym Formation. 

Volobueva et al. (1994) and Gladenkov and Gladenkov (2007) place the contact of the 

Gailkhavilanvaym and Alugivayam Formations 120 m below the base of the Mulatkhanskii 

Sandstones, which are intercalated with the lower part of the Alugivayam Formation. 

According to the same authors, the E/O boundary is tentatively located at the boundary of 

Gailkhavilanvaym and Alugivayam Formations, where changes in benthic faunal assemblages 

are noted.  In the present paper, the contact of the Gailkhavilanvaym and Alugivayam 

Formations and the E/O boundary are placed close to the base of the Mulatkhanskii Sandstones 

(Fig. 2), for reasons to be discussed below. 

     XRF analyses of mudstone samples from the Il’pinskii section showed that SiO2 

concentration generally ranges from 62.5 to 71.4%. Other major inorganic elements are Al2O3 

and Fe2O3, which range from 11.8 to 16.4% and 5.5 to 9.7%, respectively. The SiO2 

concentration is high compared to that of average shale (58.9%; Wedepohl, 1971), whereas 
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Al2O3 and Fe2O3 concentrations are generally lower than those of average shale. Some 

mudstones are rich in CaO and inorganic C, indicating the presence of carbonate minerals. 

Such calcareous mudstones are most common in the Kilakirnun and Gailkhavilanvaym 

Formations. Stratigraphic variations of SiO2, Al2O3, and Fe2O3 contents are not pronounced 

(Table 1). 

     The TOC, TN, TS, and IC of the samples are shown in Table 1. The carbon to nitrogen 

(C/N) ratio, and carbon to sulfur (C/S) ratio of the samples are shown in Fig. 3. The TOC 

concentration ranges from 0.3 to 0.9%, and has no significant stratigraphic variation. Mudstone 

samples from the Eocene Gailkhavilanvaym Formation are characterized by high C/N ratios 

(10 to 20), whereas those from the Eocene Kilakirnun Formation and the Oligocene 

Alugivayam Formation have comparatively low C/N ratios of less than 10. Marine organic 

matter is generally characterized by C/N ratios in the range of 6 to 9, whereas the C/N ratio of 

terrestrial higher plant is much higher (Krishnamurthy et al., 1986; Meyers and Ishiwatari, 
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1993). Comparatively higher C/N ratios of mudstones from the Eocene Gailkhavilanvaym 

Formation, therefore, indicate a significant contribution from terrestrial organic matter, which 

could be related to a contribution from turbiditic sandstones and mudstones. The C/N ratios of 

Kilakirnun and Alugivayam Formation mudstones are low (generally <10), suggesting a 

greater contribution from marine planktonic organic matter.  

     C/S ratios of mudstones from the Il’pinskii section range from 1.0 to 3.5, with the exception 

of those around the contact of the Gailkhavilanvaym and Alugivayam Formations. These 

values are close to the average C/S ratio of normal marine mudstones (Raiswell and Berner, 

1986). The C/S ratio is related to both oxic/anoxic conditions and salinity in the water column 

(Berner and Raiswell, 1984; Muller, 2001). The high C/S ratio in the vicinity of the contact of 

the Gailkhavilanvaym and Alugivayam Formations suggests the abrupt formation of suboxic to 

oxic depositional conditions during the E/O transition. 
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3.2. Organic maturity 

     The sedimentary rocks from the Il’pinskii E/O transitional section are poor in microfossils, 

likely due to their dissolution during settling and early diagenesis. Organic sediment 

constituents may be a useful substitute for microfossils in reconstructing the paleo-oceanic 

conditions at the time of sediment deposition. To this end, molecular parameters and 

source-specific biomarkers from mudstones were used. Thermal maturity of the samples was 

first evaluated because biomarker distribution is generally sensitive to thermal maturation. In 

the material analyzed, the C24 to C34 n-alkanes show odd carbon-number predominance (Table 

2). The carbon preference index (CPI) of n-alkanes (C24 to C34) is commonly used to estimate 

the maturity of sedimentary organic matter, although it can also be a function of organism type. 

The CPI results show no systematic stratigraphic variation and are in the range of 1.2 to 2.6 

(generally >1.5), indicating that the samples are thermally immature. The sterane isomer ratio, 

20S/(20S + 20R)-C29, is also well known as a maturity parameter (Mackenzie and McKenzie, 
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1983; Suzuki, 1984, 1990). In the material analyzed, sterane isomer ratios are generally less 

than 0.1, indicating low thermal maturity (Table 2). Both CPI values and biomarker isomer 

ratios indicate a comparatively low degree of organic maturation (not near the oil window), and 

so thermal maturity is not a consideration in the discussions to follow.  

 

3.3. Highly branched isoprenoids in E/O transition mudstones  

     The C25 HBI alkenes known as haslenes are produced by few diatom taxa. The genus 

Rhizosolenia produces either C25 or C30 HBI alkenes, or both. The genera Haslea, Navicula and 

Pleurosigma produce only C25 HBI alkenes (Volkman et al., 1994; Sinninghe Damsté et al., 

2004). These components differ in terms of their biosynthesis from the most common acyclic 

and cyclic isoprenoid natural products because their skeletons are characterized by a distinctive 

"T branch." These alkenes are prone to sulfurization during sedimentation or early diagenesis 

(Kohnen et al., 1990; Sinninghe Damsté et al., 2006). Sulfurized C25 HBIs can yield C25 HBI 
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alkane through desulfurization during diagenesis (Katsumata and Shimoyama, 2001). The C25 

HBI alkane and C25 HBI thiophenes can be formed by the reaction of C25 HBI alkene with 

reduced sulfur during early diagenesis. Sulfurization is a major preservation mechanism for 

unsaturated or functionalized lipids in sediments (Sinninghe Damsté et al., 2006). HBI alkanes 

could be more readily preserved than siliceous diatom frustules. The first occurrence of HBI 

alkanes as a chemical fossil is about 20 million years older than that of classical diatom fossils 

(Sinninghe Damsté et al., 2004).  

     Gas chromatograms showing the distribution of C25 HBI alkane 

(2,6,10,14-tetramethyl-7-3-methylpentyl)-pentadecane), C25 HBI thiophene I 

(2-(2'-methylbutyl)-3,5-di-(2'-16'-methylheptyl) thiophene, and total two isomers of C25 HBI 

thiophene II (2,-dimethyl-5-[7'-(2',6',10',14-tetramethylpentadecyl)] thiophene) in mudstones 

from the Il’pinskii section are shown in Fig. 4 and Table 2. The mass spectra of the C25 HBIs 

permitted their structural identification by comparison with published data (Sinninghe Damsté 
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et al., 1989; Katsumata and Shimoyama, 2001). The relative abundance of the C25 HBIs in 

sedimentary rocks from the Il’pinskii section increases markedly above the E/O boundary. In 

mudstones from the upper Alugivayam Formation, the major constituent of the hydrocarbon 

fraction is C25 HBIs, including HBI thiophenes I and II (Fig. 4). Stratigraphic variation of HBI 

alkane and HBI thiophenes show different patterns (Fig. 5). C25 HBI alkane concentrations 

have a maximum value of about 2.56 μg/g TOC, and are highest in samples from the 

Alugivayam Formation. Concentrations of total two isomers of C25 HBI thiophene II, with a 

maximum value of about 2.53 μg/g TOC (similar to that of C25 HBI alkane) show the highest 

values in mudstones from the uppermost three samples from the Alugivayam Formation. 

Concentrations of C25 HBI thiophene I are very low (<0.51 μg/g TOC). Concentrations of HBI 

I are highest in mudstones of the Alugivayam Formation and increase gradually above the E/O 

boundary, together with the other HBIs (Fig. 5).  

     HBI thiophenes are formed when sulfur is incorporated into C25 HBI alkenes during early 
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diagenesis. The incorporation of H2S sulfur into double-bond structures at the sediment–water 

interface is well known as the process by which organic sulfur compounds are formed 

(Sinninghe Damsté et al., 2006). A high abundance of HBI thiophenes, therefore, reflects 

elevated concentrations of both HBI alkenes and H2S in the sedimentary environment. 

Elevated concentrations of both HBI alkanes and HBI thiophenes in mudstones from the 

uppermost Alugivayam Formation suggest higher production and/or preservation of 

diatom-derived organic matter under reducing depositional conditions.  

     According to Sinninghe Damsté et al. (2004), the contribution of diatom-derived C25 HBI 

alkane is accurately reflected by the ratio of HBI alkane to phytane (Ph) derived from all 

photosynthetic algae and cyanobacteria. Mudstones from the Oligocene Alugivayam 

Formation have elevated HBI/Ph ratios that range from 0.19 to 4.34 (Table 3). Eocene 

mudstones have considerably lower HBI/Ph ratios below 0.5 (Table 3). Putting these data into a 

broader context, the Early Oligocene Menilite Shale in Poland has a HBI/Ph ratio of 3.31 
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(Sinninghe Damste et al., 2004), which is in the range of HBI/Ph ratios yielded by mudstones 

from the Oligocene Alugivayam Formation in the present paper.  

 

3.4. Source of HBIs in Oligocene marine mudstones 

     The paucity of diatom fossils through the E/O transition in the Il’pinskii section is likely due 

to the unstable nature of diatom frustules. Although Eocene to Oligocene sedimentary rocks in 

the Il’pinskii section contain very few diatoms, Gladenkov and Gladenkov (2007) found rare 

examples in mollusk casts and carbonate concretions from the same section; taxa documented 

include the genus Cavitatus (C. cf. jouseanus) and species Odontella sawamurae, but the genus 

Rhizosolenia was absent above the Mulatkhanskii Sandstone beds. The earliest representatives 

of the genus Cavitatus (C. jouseanus) appeared in the North Pacific in the early Oligocene 

(about 31 Ma; Akiba et al., 1993; Gladenkov and Barron, 1995). In high latitudes of the 

Southern Ocean, the diatom Rhizosolenia oligocaenica is a lower Oligocene index fossil 
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(Baldauf and Barron, 1991; Harwood and Maruyama, 1992). The R. oligocaenica Zone is 

divided in two subzones separated by the first occurrence of C. jouseanus at about 31 Ma. The 

first occurrence of the genus Cavitatus corresponds to the upper part of the R. oligocaenica 

Zone in the North Pacific (Gladenkov, 1998, 1999).  

     The diatom genera Rhizosolenia, Haslea, Navicula, Pleurosigma or their ancestors are 

considered to be major sources of HBI alkanes and HBI thiophenes (Volkman et al., 1994; Belt 

et al., 1996, 2000, 2001, 2002; Sinninghe Damsté et al., 1999, 2004). The fossil genus 

Rhizosolenia was globally widespread in the early Oligocene (Baldauf, 1992). In sediment 

from DSDP Site 138, Rhizosolenia represents between 1% and 5% of diatom individuals 

(Jousé, 1978). In contrast, the fossil genera Haslea, Navicula, and Pleurosigma did not flourish 

during the E/O transition. The pronounced change in the concentration of HBI biomarkers 

strongly suggests that Rhizosolenia prevailed in the diatom community of the northwest Pacific 

region after the E/O transition.  
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3.5. Paleo-oceanographic changes during the E/O transition 

     n-Alkanes are ubiquitous in the material addressed by this study; their long- and short-chain 

homologs are known to be derived from higher-plant wax and aquatic organisms, respectively. 

n-Alkanes in Il’pinskii section mudstones are dominated by lower-molecular-weight n-alkanes 

(Table 1). C27 to C29 steroids biosynthesized by all eukaryotes are also common compounds in 

the samples. C27 and C28 steroids are derived predominantly from aquatic phytoplankton and 

marine zooplankton (Volkman, 1986). The C29 steroids are characteristic of higher plants 

(Huang and Meinschein, 1979), although a microalgal source is also present (Volkman, 1986). 

The Il’pinskii section material generally contains four dinosteranes 

(4,23,24-trimethylcholestanes), which are known as dinoflagellate biomarkers. These 

compounds are four isomers (23S, 24S), (23S, 24R), (23R, 24R), and (23R, 24S), of C30 

4α-methyl steranes (Summons et al., 1987). The relative abundance of dinosteranes versus total 
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steranes (C27, C28, and C29 regular steranes) indicates the relative contribution of 

dinoflagellate-derived organic matter to the sediment (discussed below).  

     Paleo-oceanographic changes recorded in the Il’pinskii section during the E/O transition 

can be divided into four stages based on the geochemical characteristics of mudstones (Fig. 6). 

The first stage, corresponding to the Kilakirnun Formation and the lower Gailkhavilanvaym 

Formation (below the glauconitic sandstone) is characterized by low C/N (<10) and C/S (<1.1) 

ratios, reflecting the comparatively low contribution of terrestrial organic matter and the 

presence of an anoxic depositional environment. In the second stage, the terrestrial contribution 

abruptly increases coincident with the deposition of glauconitic sandstones. The significant 

increase in the C/S ratio at and above the glauconitic sandstones suggests that the upper 

Gailkhavilanvaym Formation records the development of a suboxic depositional environment. 

The upward change in the dinosterane/sterane ratio suggests that the contribution of 

dinoflagellate-derived organic matter to the sediment decreased through time from the late 
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Eocene to the Oligocene.  

     The third stage, corresponding to the lower Alugivayam Formation, is near and above the 

E/O boundary. This stage is characterized by a remarkably high C/S ratio (2 to 10), a low C/N 

ratio (<10), and an abrupt increase in HBI alkane concentration. The timing of the increase in 

diatom-derived HBI alkane in mudstones (above sample ILP-75) corresponds to the abrupt 

increase in the C/S ratio. The high C/S ratio in the lower part of the Alugivayam Formation 

reflects the abrupt formation of oxic bottom water, which is supported by the abundance of 

mollusks at the same level (Fig. 2). 

     The C/N and C/S ratios of mudstones from the Upper Alugivayam Formation are similar to 

those of the first stage (below the glauconitic sandstones). This final stage is characterized by 

the highest HBI alkane and HBI thiophene concentrations and the lowest dinosterane/sterane 

ratios, indicating a large contribution from diatom-derived organic matter and an anoxic 

depositional environment. The incorporation of sulfur into HBI alkenes to form HBI 
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thiophenes proceeds rapidly under reducing, H2S-rich conditions (Sinninghe Damsté et al., 

2006). The high concentrations of HBI thiophenes supports the inference of an anoxic 

depositional environment as indicated by the low C/S ratios (<1.0). HBI thiophene II is 

generally more abundant than HBI thiophene I, suggesting that the HBI thiophene II is more 

readily formed during early diagenesis. The highest concentration of total HBI compounds and 

the lowest dinosterane/sterane ratio in the fourth stage indicate an increased proportion of 

HBI-producing diatoms in the planktonic community (Fig. 6).   

     In the Ceara Rise region of the western equatorial Atlantic, the accumulation of biogenic 

silica abruptly increased during the early Oligocene, possibly in response to increased diatom 

production due to global cooling (Mikkelsen and Barron, 1997). In the Il’pinskii section, 

however, stratigraphic variation in SiO2 content is muted, even though the concentration of 

HBI diatom biomarkers increased with the passage of time. The preservation of biogenic silica 

in marine sediment is controlled by the surface area and surface characteristics of diatom tests, 
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and the degree of amorphous biogenic silica saturation in seawater and pore water. The SiO2 

concentration of mudstones from the Il’pinskii section is generally less then 70%, reflecting a 

small contribution of biogenic silica to the seafloor. A low concentration of amorphous silica in 

the water column and sediment and/or the unstable nature of diatom frustules may have caused 

dissolution of siliceous diatom tests. Our present findings, however, indicate that biogenic 

silica preservation in sediment is not essential in the evaluation of diatom productivity because 

their biomarkers can be used instead. In the material studied, a major change in the 

concentration of HBIs suggests that diatoms gradually became the main primary producer in 

the northwest Pacific region after the E/O transition.  

     Considerable amounts of diatom biomarkers are present in mudstones below and close to 

the Mulatkhanskii Sandstones. The abrupt increase in HBI concentration in these strata may 

reflect an abrupt climatic cooling event during the E/O transition, as was documented at the 

Ceara Rise in the equatorial Atlantic. The presence of HBIs in sedimentary rocks that record 
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the E/O transition may reflect the appearance of the Oligocene marine diatom R. oligocaenica. 

In the Il’pinskii section, the lowest part of the R. oligocaenica Zone can be located between 

ILP-75 and ILP-75.5. According to the Baldauf and Barron (1991), the E/O boundary would be 

located below the R. oligocaenica Zone. The E/O boundary in the Il’pinskii section, therefore, 

can be located below and close to the Mulatkhanskii Sandstones as is the case of the Ceara Rise 

in the equatorial Atlantic. The abrupt formation of oxic bottom water recorded by an increased 

C/S ratio may reflect abrupt climatic cooling during the E/O transition. Our present results 

demonstrate the utility of HBIs as biomarkers for regional biostratigraphic correlation in the 

northwest Pacific during the E/O transition.  

 

4. Conclusions 

     Rapid global lowering of atmospheric and oceanic temperatures initiated the formation and 

expansion of polar ice sheets during the E/O transition. Dramatic changes in diatom 
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communities and a large increase in diatom community diversity took place through the E/O 

transition. The diatom record through the E/O transition in the northwest Pacific is poor, 

however, owing to poor preservation of siliceous diatom tests.  HBIs, which are diatom 

biomarkers, are present in sedimentary rocks from the Il’pinskii section, Kamchatka Peninsula, 

which exposes Eocene to Oligocene strata containing the E/O boundary.  

     Diatom biomarkers such as C25 HBI alkanes and C25 HBI thiophenes are common in 

mudstones from the Il’pinskii section. Concentrations of these diatom biomarkers in Oligocene 

mudstones are clearly higher than those in Eocene mudstones. HBIs increase abruptly above 

the E/O boundary, whereas dinosteranes, the dinoflagellate-specific biomarkers, decrease 

gradually from the Eocene to the Oligocene. This suggests that diatoms gradually became the 

dominant primary producers in the northwest Pacific region throughout this interval. 

Paleo-oceanographic changes in the Il’pinskii region through the E/O transition can be divided 

into four stages based on stratigraphic changes in C/N ratio, C/S ratio, and concentrations of 
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HBI alkane and HBI thiophenes. In addition to the abrupt increase in diatom biomarker 

concentrations, the E/O boundary is also characterized by the abrupt formation of suboxic to 

oxic bottom ocean water, which may reflect a change in ocean circulation due to rapid global 

cooling during the E/O transition. A position for the E/O boundary in the Il’pinskii section is 

proposed based on stratigraphic changes in depositional environment and on the abundance of 

HBIs. Poor preservation of siliceous diatom tests in marine mudstones of the E/O transition in 

the northwest Pacific region may be due to dissolution during settling and early diagenesis. The 

high concentration of HBIs in these mudstones may represent biogeochemical evidence for the 

appearance of the Oligocene diatom, the genus Rhizosolenia. Finally, HBIs may be useful as 

biomarkers in regional biostratigraphic correlation during the E/O transition, particularly in the 

northwestern Pacific.  
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Figure Captions 

Fig. 1. Location of the study area on the Kamchatka Peninsula. 

 

Fig. 2. Schematic stratigraphic and lithologic sections of the Il’pinskii area. Numbers adjacent 

to the column indicate sample locations.  

 

Fig. 3. Stratigraphic variation in total organic carbon (TOC) concentration, total sulfur (TS) 

concentration, TOC/total nitrogen (C/N) ratio, and TOC/Total S (C/S) ratio of Eocene to 

Oligocene mudstones from the Il’pinskii area. M.S.: Mulatkhanskii Sandstones; L.T.: 

Laperalamskii tuff; GL: Glauconitic sandstones; dark-shaded areas in stratigraphic column: 

tuff; light-shaded areas in stratigraphic column: mudstone.  

 

Fig. 4. Partial total ion current chromatograms for hydrocarbon fractions from Ilpinskii 
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mudstones. Pr: pristane; Ph: phytane; C25 HBI alkane: 

2,6,10,14-tetramethyl-7-(3-methylpentyl)-pentadecane; C25 HBI thiophene I: 

2-(2'-methylbutyl)-3,5-di-(2'-16'-methylheptyl)thiophene; C25 HBI thiophene II: two isomers 

of 2,3-dimethyl-5-[7'-(2',6',10'14'-tetramethylpentadecyl)]thiophene; ∗: inner standard, 

n-tetracosane-d 50. Number in the figure shows the carbon number of the n-alkane. 

 

Fig. 5. Stratigraphic variation in concentrations of C25 HBI alkane 

(2,6,10,14-tetramethyl-7-(3-methylpentyl)-pentadecane), C25 HBI thiophene I 

(2-(2'-methylbutyl)-3,5-di-(2'-16'-methylheptyl) thiophene, and C25 HBI thiophene II (∑two 

isomers of 2,3-dimethyl-5-[7'-(2',6',10',14-tetramethylpentadecyl)] thiophene) and 

dinosterane/sterane ratio for the Il’pinskii section. The dinosterane/sterane ratio is based on the 

mass chromatograms of m/z 231 (∑four isomers of 4,3,24-trimethylcholestanes) and m/z 217 

(∑(αααR-C27-αααR-C29)). M.S.: Mulatkhanskii Sandstones; L.T.: Laperalamskii tuff; GL: 
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glauconitic sandstones; dark-shaded areas in stratigraphic column: tuff; light-shaded areas in 

stratigraphic column: mudstone. 

 

Fig. 6. Schematic paleo-oceanographic changes during the Eocene-Oligocene transition. M.S.: 

Mulatkhanskii Sandstones; L.T.: Laperalamskii tuff; GL: glauconitic sandstones; dark-shaded 

areas in stratigraphic column: tuff; light-shaded areas in stratigraphic column: mudstone. 


