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Abstract

It is shown that errors due to spatially correlated noises can be corrected by
the quantum error-correction code and error-correction procedure prepared for
those for independent noises. A model of noisy-channel which is under the in-
fluence of spatially correlated quantum Brownian motion is investigated within
the framework of non-equilibrium thermo field dynamics that is a canonical
operator formalism for dissipative quantum systems.

Dissipative interactions between the system of qubits and its environment pro-
duce unexpected transitions of the qubits in a stochastic manner, and cause er-
rors in the quantum information (codeword) stored in the qubits. In order to
recover the original information, quantum error-correction codes have been devel-
oped [1, 2, 3, 4, 5]. However, the existing quantum error-correction codes are de-
signed under the hypothesis that each qubit is suffering from noises that are spatially
and/or temporally independent [1, 6, 7, 8, 9]. However, the validity of the hypothe-
sis is not evident in practical circumstances of quantum information processing [1].
The spatial independence of noise is realized only when the distance between adja-
cent qubits is quite large compared to the correlation length of noise. Therefore, it
should be investigated how well the existing quantum error-correction codes, created
under the hypothesis, function in such realistic situations where noise is considered
to be correlated.

In this paper, we will show that errors due to spatially correlated noises can be
corrected by the same quantum error-correction code and error-correction procedure
as those for independent noises by investigating a model of noisy-channel which is
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under the influence of spatially correlated quantum Brownian motion. This result
is valid generally for the stabilizer code [5], which is quite a large class of quantum
error-correction codes including the 3-qubit bit-flip code, Shor’s 9-qubit code [1],
the CSS code [3, 4].

Our analysis is presented in terms of non-equilibrium thermo field dynamics
(NETFD) [10, 11, 12, 13, 14] that provides us with a full set of methods to tackle
problems in quantum information theory, especially, those related to decoherence
or dissipation. NETFD is a canonical operator formalism to treat non-equilibrium
quantum systems in a similar way as quantum field theory, i.e., the sophisticated
interpretations of nature is possible based on both the operator algebra and the
representation space. Within NETFD, the dynamics of dissipative quantum systems
is described by the “Schrodinger equation” for unstable vacuum, which has the
same amount of information contained in the quantum master equation for density
operator. In fact, a consistent and unified system of stochastic differential equations
in operator formalism, together with a theory of quantum Brownian motion, allows
one to analyze time-evolution under correlated noise in a practical manner. In
addition, by the introduction of tilde degrees of freedom, completely positive maps
(CP maps) describing the error or the error-correction procedure are represented
within NETFD by operators acting on both bra- and ket-thermal vacuums for
qubits, which makes analyses of error-correction procedures transparent; this makes
a contrast to the case within the density operator formalism where CP maps are
super-operator acting on density operator.

The dynamics of the noisy channel, described by the “Schrédinger equation”
d|0(t))/dt = IT|0(t)) for the ket-vacuum |0(t)) within NETFD, is solved, with
the initial condition |0(t = 0)) = [0), to give |0()) = &(t)|0) with the spatially
correlated error operator [15]

Ey=c, Ir :% S Diy (208~ pa—af). (1)
a,Beg™

Here, a and 3 stand for an element in G = {X;,Y;, Z;}7, where X;,Y; and Z; rep-
resent the Pauli operators acting on the qubit at the ith site. The c-number matrix
D, the correlation matrix, is an Hermitian matrix with positive eigenvalues char-
acterizing physical nature of noises affecting qubits. Since the noises are supposed
to be spatially correlated, Dy, s, # 0 (for i # j) in general, where a; € {X;,Y;, Z;}
and §; € {X;,Y}, Z;}. Note that II has zero eigenvalue for bra-vacuum (4, i.e.,

(0111 =0, (2)

which is a manifestation of the conservation of probability, i.e., (|O(t)) = 1. Note
also that the bra-vacuum has the property

(0la = (0] of (3)

for a € G| which is called thermal state condition for the bra-vacuum.



Because of spatial correlation of noise, £ (t) cannot be written as a product of
error operators for individual qubit. Note that £ (t) is completely positive due to
the positivity of the correlation matrix D. A block of n qubits can suffer errors
like X;, Z;, Vi, X;X;, X;Y;Zy, etc.. Thus, it is natural to consider the group G =
{+1,+X, +iY,+7Z}®" the Pauli group, which is formed by all possible products of
operators {£1;, £X;, +1Y;, £ Z;}™ , for n qubits. The properties of the Pauli group
read, for Vg,g' € G, 1) g> =T or —1,2) g~' =g, and 3) [g,¢'] =0 or [9,¢']+ =

When the adjacent qubits are well separated, the noise affecting each qubit
becomes statistically independent, i.e., Dy, g, < d; j. In a more extreme case where
the noises acting on each qubits are mutually independent, we have Dog = Dy 04, 3-
This “fully independent” correlation matrix leads to

Et)=e, o= Y Da(ad-1). (4)
acg®)

Note that, within the first order in ¢, f:'o(t) gives the depolarizing channel.

For a given subspace C (# {0}) of the total Hilbert space H5", elements g (€ G)
that behaves as I on C form an Abelian subgroup S = {g € G | g|¢) = |8), V|p) € C}
which is called the stabilizer of C. Note that g~ = ¢g' = ¢ (i.e., g> = I) for Vg € S.
The set of elements g (€ G) commuting with all the elements of the stabilizer S, i.e.,
Ns={9€G]|l[g9,9'] =0, Vg’ € S}, is called the commutant of the stabilizer. Since
S is Abelian, S C Ns. Note that (¢'|g|¢) = 0 for Vg € G — Ns and V|o), |¢') € C.
This is because, for such a g (€ G — Ns), there exists at least one element ¢’ (€ S)
satistying g, '] = 0, and thus, (¢/]l6) = (¢/]¢'g16) = —(/]9g'|6) = —(&/]g|@) for
vig), |¢') €C.

One can say, without loss of generality, that the quantum error-correction codes
are constructed for the error operator of the form

& = Zpu E,E,, with E, € G and Zpu =1 (p, >0). (5)
p=0 pn=0
The condition for errors created by the error-operator to be corrected on the code
C stabilized by S reads

E,, EZEV €(G—Ns)US forall p,v. (6)

The condition E,, € (G—Ns)US ensures that the error E,, is detectable or harmless.

On the other hand, the condition ELEV € (G — Ns) US ensures that two errors

E,, E, are distinguishable or equivalent. Note that E,, transforms the code C into

a subspace E,,C of the same dimension, since E,, (€ G) is unitary. In the following,
we arrange E, as By = I and E,>1 # 1.

The recovery operator R against the error operator (5) with {E,, } satisfying the
error-correction condition (6) is given by

S
R = Lol P, P = AN M. 7
xgz:; Ix 9x I'xx x al;[l B (7)



Here, Py is the projection operator [9], and {Mg}5_; the generator of S satisfying
EM,E" = (=1)*() 0, (8)

with x(E) = [21(E),...,2s(E)] (2.(E) € Z3, s = dim S) being the syndrome of an
error E (€ G). Here, Zy = {0, 1} is the binary field. The element gx (€ G) appeared
in (7) satisfies x(gx’) = x’, and is determined by the algorithm:

if X' = 0, then g = I, (9)
if X' =x(E,), then gx = (one out of {E, |x(E,) = x(E,)}). (10)

Here, “one out of” means that any one out of the set is equally eligible for g,/. !

Py is the projection operator onto the simultaneous eigenspace of generators M,
with eigenvalues (—1)*+. Each factor [1 + (—1)%+M,]/2 on the rhs of the second
equation in (7) is the projection operator onto the eigenspace of M, with eigenvalue
(—=1)*=. Thus, the product of them is the projection operator onto the intersection
of those eigenspaces. Especially, Po = F,... 0] is the projection operator onto the
code C. Py’s satisfy the orthogonality condition

PxPx’ = 5x,x’ PX7 (11)

where 0x x = szl dz,,2, and the completeness condition
Y Pe=1 (12)

that is consistent with

(BIR = (0] (13)

which follows from the thermal state condition (3) and the completeness condition
(12). We see that, for Vg € G,

9Pog" = Py (14)

9)°

Simultaneous measurements of the generators {M,}5_; on the corrupted code-
word F|¢r,) tell the syndrome x(E) via the results {m,}_; of the measurements
as ma = (~1)%®), since Ma(ElgL)) = (~1)™FVEM,Jr) = (~1)%® (ElL))
for V|¢r) € C. The syndrome x(FE) provides us with necessary and sufficient in-
formation to detect and correct the error. By definition, it satisfies the properties:
x(EE'") = x(E) + x(E’') (mod 2), x(E) = x(E'"), and x(F) = x(F') & x(EE') =
0 & EE' € Ns. Due to the latter two properties, we have, for the error set {E,}
satisfying the quantum error-correction condition (6), the error syndrome:

when x(E,) = x(E,), EE, €S, (15)
when x(E,) # x(E,), E):El, €G—Ns. (16)

'When the code is degenerate [8, 9], there exist E,, E, (E, # E,) satisfying x(Ey) = x(Ey).



Furthermore, with the last property and the quantum error-correction condition
(6), we see, for all E,,
QL(E“)EM €s. (17)

Thus, according to the syndrome, one can apply E;l(: EL) to retrieve the original
codeword |¢r,). When two different errors E,, and E, yield the same syndrome,
i.e., x(E,) = x(E,), an application of E,* (= E/D correctly recovers the original
codeword even if the error actually occurred is E,. Note that the syndrome x(E,,)
do not depend on the codeword but only the error occurred on it. Therefore,
the syndrome measurement does not provide us with any information about the
codeword itself, which is necessary for quantum error-correction to be successful.

With the above preparations, we can show that the function of the recovery
operator R on the code C is just like é&l, ie.,

ﬁéopopo = ZpHﬁEILEHPOPO
n=0

= pr, RPX(E;L)px(Eu,) ENEN

p=0

_ b 5 -
= Y Pudkim,)Inm,) Pemn) Petm,) EnEy
pn=0

= D pu PoPo gl En 3, B
pn=0
= Z puPoPo
pn=0
= Pyby. (18)
Here, (14) has been used at the second and the fourth equality, (11) at the third,

and > u—oPu =1 at the last equality. At the fifth equality, used are (17) and the
property g = Py + erzg;(x;&o) cxPx (cx = +1 or —1) satisfied by Vg € S. It can

be proved, similarly, that the recovery operator R has the property
QEMEVP()?O = 6X(E/A,EV)70 ng(), for El‘«’ E,eq. (19)

Now, let us investigate the function of R on the error operator £ (t), caused by
spatially correlated noises. Let C,,, be a stabilizer code which can correct &y(t) up
to O((t1ly)™) for m # 0. The quantum error-correction condition

a1, oag, ..., Q1...09m € (G—Ns, )USn (Vaieg“)) (20)

m

is satisfied with S,;, being the stabilizer for C,,,. The corresponding recovery operator

R is determined by the algorithm (9) and (10) for E, € {a, -+, a1 - o} with
o, a; € G We observe that II™ is a linear combination of products of the forms

Qy...09m, Q1 ... 0pGpy1 ... Gom (1 <p<m), (21)



and their tilde-conjugates, with o; € G and &; € G, Tt is proved that all these
products satisfy the operator relation (19). Therefore, we have

’ﬁ,mﬁmpopochopo (form;«é()) (22)

with ¢ being a c-number that is proved to be zero as follows. Multiplying (6| on
both sides of (22), we have

0= (0)c P, (23)
where use has been made of (13), (2) and (8|Po = (8| Py. As (8| Py # 0, (23) gives
¢ = 0. Then, we have

R [T PoPy =0 (for m # 0). (24)
Similar results hold for IT¢ (1 < ¢ < m). Thus, we obtain [15]
R E(t)PoPy = PPy (25)

up to O((tﬁ)m) for a positive integer m.

Within the present model of spatially correlated noise, we have confirmed through
the result (25) that the spatially correlated errors happening on quantum codeword
are something which can be dealt with, at each order in II, by the existing stabilizer
code for independent errors, or something which does not contribute to the final
state after the correction procedure. This is the reason why spatially correlated
errors can be corrected by the same stabilizer code and recovery operation as those
for independent errors.
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