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1. Introduction

This paper deals with 2-D region-of-interest (ROI) reconstruction from truncated

projection data in Computed Tomography (CT) (Lewitt 1979, Ogawa et al 1984,

Natterer 1986, Louis and Rieder 1989, Maass 1992, Olson and DeStafano 1994,

Ohnesorge et al 2000, Clackdoyle et al 2004, Noo et al 2004, Zhuang et al 2004, Zou

and Pan 2004, Pack et al 2005, Pan et al 2005, Ye et al 2005, Zou et al 2005, Defrise

et al 2006, Kudo 2006, Yu et al 2006, Courdurier 2007a, 2007b, Kudo et al 2007, Ye

et al 2007, Zhang and Zeng 2007). This problem aims at reconstructing an object on

a ROI (smaller than the whole object) from the limited set of projection data which

corresponds to all lines passing through the ROI. For a long time, due to the non-local

nature of Filtered Backprojection (FBP) method, it had been believed that the solution

to this problem is not unique. However, the concept of Differentiated Backprojection

(DBP) introduced by Noo et al (2004) and Pan et al (2005) clarified that this problem

can be exactly solved for imaging configurations satisfying some geometrical condition.

Furthermore, very recently, Defrise et al (2006) showed that the geometrical condition

which assures a unique solution of the ROI reconstruction can be significantly relaxed.

Their approach is also based on the DBP concept. It is also known that the DBP

concept can be generalized to cone-beam tomography and other imaging geometries in

a natural way (Rullgard 2004, Zhuang et al 2004, Zou and Pan 2004, Pack et al 2005,

Ye et al 2005, Zou et al 2005, Yu et al 2006). Furthermore, it became clear that Gelfand

and Graev (1991) had already developed the same method before the community of

image reconstruction discovered this innovative idea. Clackdoyle et al (2004) presented

an alternative approach to enable exact reconstruction of the ROI from the truncated

projection data. An important problem which has not been investigated yet using the

DBP concept is the so-called interior problem shown in figure 1(a). In this problem,

the ROI S is wholly contained inside the object f(x, y) and we can measure the limited

set of projection data which corresponds to all lines passing through S. Long time

ago, Natterer (1986) had already proved that the solution to this problem is not unique

even if we know exact information on the object support. Though the interior problem

has been a topic in image reconstruction for a long time (Lewitt 1979, Ogawa et al

1984, Natterer 1986, Louis and Rieder 1989, Maass 1992, Olson and DeStafano 1994,

Ohnesorge et al 2000, Zhang and Zeng 2007), to our knowledge, no one have investigated

this problem with the DBP concept.

The purpose of this paper is as follows. First, we show that the solution to the

interior problem is unique if a tiny a priori knowledge on the object f(x, y) is available in

the form that f(x, y) is known on a small region B located inside S. The proof is based

on the DBP approach similar to that by Defrise et al (2006), i.e. we reduce the image

reconstruction to the inversion of 1-D Hilbert transform along a set of straight lines by

using the DBP and then show uniqueness of the Hilbert inversion. Second, we advance

the uniqueness result for the interior problem to obtain more general uniqueness results

which can be applied to a wider class of imaging configurations. Third, we develop
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a reconstruction algorithm which can be considered an extension of the DBP-POCS

(Projection Onto Convex Sets) method described by Defrise et al (2006), where we

not only extend this method to the interior problem but also introduce a new POCS

algorithm to reduce computational cost of the DBP-POCS method. Finally, we present

experimental results which show evidence that the inversion corresponding to each

obtained uniqueness result is stable.

Apart from the theoretical contribution, we note that the results in this paper

possess an important application which is to reduce patient dose in CT imaging. In

many situations of CT imaging, physicians are interested only in a relatively small

ROI containing heart, breast, or some specific organ. Current CT systems are unable

to properly handle the interior problem and, therefore, in such a case, they require

exposing x-rays to the whole section containing the ROI. Our exact approaches for the

interior problem have the potential to allow decreasing the radiation exposure outside

the ROI while keeping a good signal-to-noise ratio within the ROI. Other applications

would be to reduce necessary detector size and to achieve higher image magnification

factor in the ROI imaging.

We note that earlier versions of this work have been already disclosed in some

seminars and conferences since November, 2006 (Kudo 2006, Courdurier 2007a, 2007b,

Kudo et al 2007). We note also that, very recently, Ye et al (2007) published a paper

related to the topic of this paper, the results of which partly overlap with our results.

The details of this overlap are clarified at the end of this paper.
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Figure 1. Various imaging configurations in the interior problem which correspond

to (a) Result 1, (b) Result 2, and (c) Result 3.
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2. Uniqueness Results

2.1. Uniqueness for the Interior Problem

This section describes the main uniqueness result for the interior problem under the

assumption that a priori knowledge on the object is available in addition to measured

projection data. Let f(x, y) denote a 2-D object. We assume that f(x, y) is a continuous

function having a finite support. Let p(r, φ) denote parallel-beam projection data

expressed as

p(r, φ) =

∫ ∞

−∞

ds f(r cosφ − s sinφ, r sin φ + s cosφ), (1)

where r is the radial variable and φ is the angle. We consider the interior problem shown

in figure 1(a). In this problem, we would like to reconstruct f(x, y) on a ROI S wholly

contained inside the object. We assume that S is a convex set‡. We can measure the

limited set of projection data which corresponds to all lines passing through S. The

aim in this section is to show that this problem can be exactly solved if a tiny a priori

knowledge on the object f(x, y) is available in the form that f(x, y) is known on a small

region B (having non-zero measure) located inside S (figure 1(a)). For simplicity, we

assume that B is also a convex set.

The proof is based on the DBP approach similar to that by Defrise et al (2006), i.e.

we reduce the image reconstruction to the inversion of 1-D Hilbert transform along a set

of straight lines by using the DBP and then show uniqueness of the Hilbert inversion.

Let us consider a particular point ~z = (x0, y0) to be reconstructed located inside S (and

outside B). Then, we take a (directed) straight line L(~z) passing through both ~z and B

(such L(~z) always exists). We apply the DBP to the projection data p(r, φ) along the

line L(~z) where the angle θ in the sign reversal factor sgn(·) is set to the tilt angle of

L(~z) (figure 1(a)) (Noo et al 2004, Pan et al 2005, Defrise et al 2006):

gθ(x, y) =
−1

2π

∫ π

0

dφ
∂

∂r
p(r, φ)

∣

∣

∣

r=x cos φ+y sin φ
sgn(cos(φ − θ)) (2)

Then, the relation between the outcome gθ(x, y) and the object f(x, y) is as follows

(Noo et al 2004, Pan et al 2005, Defrise et al 2006). We define the 1-D coordinate

t along the line L(~z) such that the direction of the t-axis coincides with that of

L(~z). We represent f(x, y), gθ(x, y) restricted to L(~z) by 1-D functions f(t), g(t),

respectively. Take the points (a, b, c, d, e, f) on the t coordinate as shown in figure

1(a), i.e. a < b < c < d < e < f , the interval a < t < f corresponds to the object

support, the interval b < t < e corresponds to the ROI S, and the interval c < t < d

corresponds to the region B. Then, the Hilbert transform of f(t) equals to g(t) as

g(t) =
1

π
p.v.

∫ f

a

ds
1

t − s
f(s) (b < t < e), (3)

‡ The convexity assumption of the ROI S is natural because, for any limited set of the projection data

p(r, φ), the maximum region on which the backprojection from a 180◦ angular range can be computed

is necessarily a convex set or a union of disjoint convex sets.
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where p.v. denotes Cauchy’s principal value of the integral. The significance of this

result is that the reconstruction of f(x, y) along the line L(~z) can be reduced to the

inversion of Hilbert transform expressed by equation (3). We make the following remark

on the interval on which g(t) can be accessed in equation (3). Since p(r, φ) is measured

for all lines passing through S, g(t) can be accessed on the interval b < t < e using

the DBP of equation (2). However, outside b < t < e, g(t) cannot be accessed because

p(r, φ) is not measured over the 180◦ angular range required to compute the DBP. From

this fact, in the interior problem, the measured interval of g(t) in equation (3) is smaller

than the support of f(t). In this sense, the Hilbert transform expressed by equation (3)

should be called the truncated Hilbert transform.

If g(t) is measured on a larger interval a < t < f , we can use well-known Tricomi’s

inversion formula of the finite Hilbert transform to invert equation (3) (Tricomi 1957,

Gakhov 1966, Pandy 1995):

f(t) =
1

W (t)
(Caf +

1

π
p.v.

∫ f

a

ds
1

s − t
g(s)W (s)) (a < t < f)

W (t) =
√

(f − t)(t − a)

Caf =
1

π

∫ f

a

dt f(t), (4)

where we note that the constant Caf is the projection data p(r, φ) measured along the

line L(~z) (divided by π), which is known. However, given g(t) on the limited interval

b < t < e, the integral equation of equation (3) does not admit a unique solution for

f(t) on any interval. Therefore, we use the a priori knowledge that f(t) is known on the

interval c < t < d. We assume that we know a priori that f(t) = f (p)(t) on c < t < d

where f (p)(t) is a known function. In this case, the problem can be formulated as solving

the integral equation constrained on the solution f(t):

g(t) =
1

π
p.v.

∫ f

a

ds
1

t − s
f(s) (b < t < e)

subject to f(t) = f (p)(t) for c < t < d (5)

The inversion of equation (5) for f(t) has essentially the same structure as that

investigated by Defrise et al (2006). However, there exist the following two differences

between the both. The first difference lies in the location of the interval on which we

know f(t), i.e. in Defrise et al (2006) f(t) must be known on a segment containing a

boundary of the object support, but now we only need to know f(t) on the internal

segment c < t < d in equation (5). The second difference lies in the form of known

function f (p)(t), i.e. f (p)(t) = 0 in Defrise et al (2006) but f (p)(t) is a general function

in equation (5). Taking these differences into account, we followed the same approach

as that in Defrise et al (2006) to show that f(t) is uniquely determined on the interval

b < t < e (containing ~z). We leave the proof for this part to Appendix A. Since the

above explanation can be applied to any point ~z located inside S, we immediately obtain

the following result.
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[Result 1] Let S be a convex ROI (wholly contained inside the object). Assume that

we can measure projection data p(r, φ) for all lines passing through S. Assume that we

know f(x, y) a priori on a region B (having non-zero measure) located inside S. Then,

f(x, y) is uniquely determined on S.

A surprising fact is that B can be an arbitrarily small region having non-zero measure.

Therefore, the a priori knowledge to assure the uniqueness can be tiny. Though we

think that stability of the inversion becomes worse if the region B diminishes closer to

a single point, the simulation results shown later demonstrate that a relatively small

region B works well in practice.

2.2. Further Extensions

In this section, we extend the uniqueness result in section 2.1 to a wider class of imaging

configurations. The main limitation of Result 1 is that we need to measure the projection

data p(r, φ) for all lines passing through the ROI S. This seems not to be an absolute

requirement when a strong a priori knowledge on the object f(x, y) is available. For

example, if we know f(x, y) on a larger region K inside S as shown in figure 1(b),

the necessary amount of projection data would be significantly reduced. Unfortunately,

Result 1 is not valid to demonstrate such possibility. Hereafter, along this direction, we

first describe a new uniqueness result (Result 2) and then show its proof.

[Result 2] Let S be a convex ROI (wholly contained inside the object). Let H be a

subset of S on which we can access the 1-D Hilbert transform gθ(x, y) using the DBP.

Let K be a subset of S on which the object f(x, y) is known a priori. Then, f(x, y) is

uniquely determined on S if the following two conditions are satisfied.

(1) The subsets H and K satisfy H ∪K = S, i.e. we know either the Hilbert transform

gθ or the object f itself on every point inside S.

(2) Let B = H ∩ K, i.e. B is the subset of S on which we know both the Hilbert

transform gθ and the object f . Then, B is a non-empty set having non-zero measure.

To avoid a confusion in the used symbols, we again note that the symbol H (”Hilbert”)

denotes the region on which the Hilbert transform gθ is accessible, the symbol K

(”Known”) denotes the region on which the object f is known, and the symbol B

(”Both”) denotes the region on which both gθ and f are known. We also note again

that, for any limited set of the projection data p(r, φ), the maximum region H on which

the DBP can be computed is necessarily a convex set or a union of disjoint convex sets.

In figure 1(b), we show two imaging configurations for which Result 2 can be applied

to show the uniqueness but Result 1 is not valid (of course, these ROIs S are wholly

contained inside the object, which is not shown in the figure). In the top example, the

rectangular ROI S is a union of two squares (left and right). We can measure p(r, φ)

only for all lines passing through the left square H , i.e. the Hilbert transform gθ(x, y)

is accessed using the DBP on H . We know f(x, y) on the right square K. In addition,

there exists a small region B on which we know both gθ(x, y) and f(x, y). Notice that,
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in this case, rays not passing through H need not be measured (recall that H always

contains B from the definition). These simple examples would be enough to convince

readers that Result 2 is stronger than Result 1, in the sense that it clearly succeeds in

reducing the necessary amount of projection data when the subset K, on which f(x, y)

is known a priori, is large.

We show the proof of Result 2 below. For each point ~z to be reconstructed located

inside S (and outside B), we take a (directed) straight line L(~z) passing through both

~z and B (such L(~z) always exists), and apply the DBP along L(~z). Then, from the

definition of the symbols (K, H, B), the DBP of equation (2) allows us to access the

1-D Hilbert transform gθ(x, y) on the region H but not on the region K \B (recall that

both H and K always contain B). Therefore, in the same way as in equation (5), the

integral equation (constrained on the solution f(t)) to be inverted takes the following

form:

g(t) =
1

π
p.v.

∫

Λ

ds
1

t − s
f(s) (t ∈ ΛH)

subject to f(t) = f (p)(t) for t ∈ ΛK , (6)

where Λ, ΛH , and ΛK denote the intervals (or unions of disjoint intervals) on the t

coordinate axis corresponding to the object support, the subset H , and the subset K,

respectively. On the other hand, from the two conditions (1),(2) of Result 2, we know

that

ΛH ∪ ΛK = ΛS, ΛB = ΛH ∩ ΛK 6= {φ}, (7)

where ΛS and ΛB are the intervals on the t coordinate corresponding to the ROI S and

the subset B, respectively. Clearly, equation (6) with equation (7) can be considered a

generalization of equation (5). The analysis of equation (6) under equation (7) along

the similar line to Defrise et al (2006) clarifies that f(t) is uniquely determined on the

interval ΛS (containing ~z). We leave the proof for this part to Appendix B. Since the

above explanation can be applied to every point located inside S, we immediately obtain

Result 2.

The final goal of this section is to remove the requirement that the ROI S must

be convex in Result 2. A non-convex (but pathwise-connected) ROI such as those in

figure 1(c) might appear in some imaging situations§. We found that uniqueness of the

ROI reconstruction still holds even for the non-convex ROI if an additional geometrical

condition on the configuration of the subsets (K, H, B) is satisfied. We describe the

result together with the proof as follows.

[Result 3] Let S be a pathwise-connected ROI (wholly contained inside the object) where

S can be non-convex. Let us define the subsets (K, H, B) in the same way as in Result

§ In section 2.1, we assumed that the ROI S is a convex set because of the fact that, for any limited set

of the projection data p(r, φ), the maximum region H on which the DBP can be computed is a convex

set or a union of disjoint convex sets. However, when the a priori knowledge of f(x, y) on the region

K is available, it is natural to assume that the ROI S is a non-convex set. This is because S = H ∪ K

can be a non-convex set by the facts that a union of multiple convex sets can create a non-convex set

and that K itself can be non-convex.
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2. Then, f(x, y) is uniquely determined on S if the following condition (3), in addition

to the two conditions (1),(2) of Result 2, is satisfied.

(3) For every point ~z inside S (and outside B), as shown in the top case of figure

1(c), there exists a polygonal path constructed by vertices ~v1, ~v2, . . . , ~vN (N ≥ 3 is an

arbitrary positive integer) which starts from a point inside the subset B (i.e. ~v1 ∈ B)

and reaches to the point ~z (i.e. ~vN = ~z) such that (a) the path is contained inside S

and (b) all the intermediate vertex points ~v2, ~v3, . . . , ~vN−1 are located inside the subset

H (recall that H always contains B).

As described above, to apply Result 3, for any ~z ∈ S, all the intermediate vertex

points ~v2, ~v3, . . . , ~vN−1 of some polygonal path must be able to be located inside the

subset H . This is an additional restriction on the configuration of the subsets (K, H, B)

when the ROI S is non-convex. For example, the top example in figure 1(c) satisfies this

condition, but the bottom example does not because, to draw a polygonal path for some

~z ∈ S in this example, at least one of the intermediate vertex points ~v2, ~v3, . . . , ~vN−1

must be taken inside the subset K \B (not H). On the other hand, when the ROI S is

convex, it is easy to see that the condition (3) of Result 3 is automatically satisfied by

taking the polygonal path with N = 3 such that v1 ∈ B, v2 ∈ B, v3 = ~z for any ~z ∈ S

(figure 2(a)). Consequently, Result 3 coincides with Result 2 for a convex ROI. It is

still an open problem whether this additional condition can be dropped or not for the

non-convex ROI.
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Figure 2. (a) The polygonal path with N = 3 satisfying the additional condition (3)

of Result 3 when the ROI S is convex. (b) The illustration for the proof of Result 3.

The proof of Result 3 is as follows. See figure 2(b) for the illustration concerning

this proof. For each ~z ∈ S, we consider the polygonal path ~v1, ~v2, . . . , ~vN with N ≥ 3

satisfying the condition (3) of Result 3. For i = 1, 2, . . . , N − 1, we denote the line

segment connecting the successive two vertices ~vi, ~vi+1 by Li. For each Li, we can

always take a convex set Ai such that Ai ⊃ Li and Ai ⊂ S, i.e. Ai is the region

which contains Li inside and is contained inside the ROI S. Then, it is clear that

Di = Ai−1 ∩ Ai ∩ H (i = 2, 3, . . . , N − 1) is a non-empty set having non-zero measure

because ~v2, ~v3, . . . , ~vN−1 are located inside the subset H . We are ready to prove Result
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3. First, applying Result 2 to the set A1, f(x, y) is uniquely determined on A1 because

A1 contains a part of B. Therefore, we know both f(x, y) and gθ(x, y) on D2. Next,

applying Result 2 again to the set A2 by taking the set D2 as the set B, f(x, y) is

uniquely determined on A2. Therefore, we know both f(x, y) and gθ(x, y) on D3. This

process is repeated through A3, A4, . . . , AN−2 to AN−1 so that we can show that f(x, y)

is unique on AN−1. Since AN−1 contains ~z, f(x, y) is uniquely determined on ~z. The

proof is completed because the above explanation can be applied to every point ~z ∈ S.

As colloraries of Result 2 and Result 3, we also obtain the following results which

can handle more general imaging configurations including, in particular, the case where

the ROI S is a union of disjoint sets.

[Result 4] Let S be a ROI which is a union of disjoint sub-ROIs S1, S2, . . . , SI (wholly

contained inside the object), i.e. S = ∪I
i=1Si and Si ∩ Sj = {φ} for all i 6= j. Assume

that each sub-ROI Si is pathwise-connected but can be non-convex. Then, if every

Si (i = 1, 2, . . . , I) satisfies the conditions for uniqueness described in Result 2 or Result

3, f(x, y) is uniquely determined on S.

[Result 5] Let S be a ROI (wholly contained inside the object) where S can be non-

convex and can be a union of disjoint sub-ROIs. Let S ′ be a subset of S such that

S ′ ∪ K = S, i.e. the union of S ′ and K covers the whole ROI S. Then, if S ′ satisfies

the conditions for uniqueness in Result 2, Result 3, or Result 4, f(x, y) is uniquely

determined on S.

3. Reconstruction Algorithms

3.1. Overall Algorithm Structure

For all of the five results described in section 2, we do not have analytical inversion

formulae similarly to the case dealt with by Defrise et al (2006). Therefore, we use

the DBP-POCS method described in Defrise et al (2006), modified to enforce the a

priori knowledge on the object f(x, y) as a constraint during the Hilbert inversion. This

algorithm first performs the DBP of equation (2) along a set of straight lines (called

the Hilbert lines) passing through the region B to create the 1-D (truncated) Hilbert

transform of f(x, y) along each Hilbert line. Then, the Hilbert transform is inverted by

using the iterative POCS algorithm developed for signal and image recovery problems

(Youla and Webb 1982, Combettes 1993, Stark and Yang 1998). The overall structure

of the algorithm corresponding to Result 2 (containing Result 1 as a special case) in

section 2 is summarized as follows.

[Step 1] (Define the Hilbert lines) Given a configuration of the subsets (K, H, B), define

a set of the Hilbert lines L(u); u ∈ U (u is the 1-D parameter to parameterize a set of

the lines), such that (a) every Hilbert line L(u) passes through the region B and (b)

every point ~z inside the ROI S lies on a Hilbert line L(u(~z)). We denote the relation

between the (x, y) coordinates and the (u, t) coordinates by u(x, y), t(x, y), where t is the

coordinate along each Hilbert line L(u(~z)). In figure 3, we show two typical examples
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on how to choose the set of the Hilbert lines.

[Step 2] (DBP) Along each Hilbert line L(u), we compute the DBP by equation (2)

to obtain the 1-D (truncated) Hilbert transform gθ(x, y) on the subset H containing B

(not for the subset K \B). The angle θ in the sign reversal factor sgn(·) of equation (2)

must be set to the tilt angle of each Hilbert line L(u).

[Step 3] (Hilbert inversion by POCS) Along each Hilbert line L(u), we invert the

(truncated) Hilbert transform (solve equation (6)) by using the POCS algorithm to

obtain a function fu(t) which is same as f(x, y) but is represented on the (u, t)

coordinates. This step is explained in detail in sections 3.2.

[Step 4] (Coordinate transform) From the relation f(x, y) = fu(x,y)(t(x, y)), we obtain

f(x, y). In the special case where L(u); u ∈ U is well-defined (such as the example in

figure 3(a)), this step is unnecessary.

ROI S ROI SB B

u 1u
2u

Hilbert lines

Hilbert lines

(a) (b)

Figure 3. Two typical choices of a set of the Hilbert lines.

3.2. Hilbert Inversion by POCS

This section proposes two different POCS algorithms for the Hilbert inversion which

appears in Step 3. The problem here is to solve the integral equation given by equation

(6) along each Hilbert line L(u). We note that equation (5) corresponding to Result 1

is a special case of equation (6). The first POCS algorithm called POCS-1 is a direct

extension of the method described by Defrise et al (2006). Let (Hf)(t) denote the

Hilbert transform of f(t) ∈ L2(R). Then, this method aims at finding f(t) ∈ L2(R)

which belongs to the intersection of the following five convex sets:

C1 = {f ∈ L2(R) | (Hf)(t) = g(t) for t ∈ ΛH}
C2 = {f ∈ L2(R) | f(t) = 0 for t /∈ Λ}
C3 = {f ∈ L2(R) | f(t) = f (p)(t) for t ∈ ΛK}

C4 = {f ∈ L2(R) |
∫

Λ\ΛK

dt f(t) = C
(p)
Λ }

C
(p)
Λ = πCΛ −

∫

ΛK

dt f (p)(t), CΛ =
1

π

∫

Λ

dt f (o)(t)



Tiny A Priori Knowledge Solves the Interior Problem in Computed Tomography 11

C5 = {f ∈ L2(R) | f(t) ≥ 0 for t ∈ R}, (8)

where f (o)(t) used in the constant CΛ denotes the true object f (o)(x, y) restricted to each

Hilbert line L(u). We note that CΛ is known, because it is equal to the projection data

of f (o)(x, y) along each Hilbert line L(u) (divided by π) and this quantity is measured.

The iteration formula to find f(t) which belongs to the intersection C = ∩5
i=1Ci is given

by

f (0) : arbitrary, f (k+1) = P5P4P3P2P1f
(k), (9)

where k denotes the iteration number, and Pi denotes the projection operator onto the

set Ci (Youla and Webb 1982, Combettes 1993, Stark and Yang 1998). The detailed

form of Pi for each i is as follows. P2, P3, P5 have straightforward expressions (omitted

here), and P1, P4 are expressed as

(P1f)(t) = (H−1MHf)(t)

(Hf)(t) =
1

π
p.v.

∫ ∞

−∞

ds
1

t − s
f(s)

(H−1h)(t) =
1

π
p.v.

∫ ∞

−∞

ds
1

s − t
h(s)

(Mh)(t) =

{

g(t) (t ∈ ΛH)

h(t) (t /∈ ΛH)
(10)

(P4f)(t) =























f(t) +

C
(p)
Λ −

∫

Λ\ΛK

dt′ f(t′)
∫

Λ\ΛK

dt′
(t ∈ Λ \ ΛK).

f(t) (t /∈ Λ \ ΛK)

(11)

We note that P1 is computed by taking the Hilbert transform H followed by enforcing

the constraint (Hf)(t) = g(t) for t ∈ ΛH and then taking the inverse Hilbert transform

H−1. In this formulation in the L2(R) space, the operators H, H−1 must be the pair

of the Hilbert transform on the real axis (called the infinite Hilbert transform). It is

well-known that the iteration of equation (9) converges to an element of C = ∩5
i=1Ci

if C is not empty, i.e. if there exist at least one solutions f(t) compatible with the

measured Hilbert transform g(t) and all the other constraints (Youla and Webb 1982).

The most intensive computation in the POCS algorithm is the implementation

of the operator P1. In POCS-1, P1 must be implemented using the infinite Hilbert

transform to avoid data truncation in the Hilbert transform domain, because the support

of (Hf)(t) is (−∞,∞) even if the support of f(t) is a finite interval Λ. If the operator

pair H, H−1 in POCS-1 can be replaced by the finite Hilbert transform pair (Tricomi

1957, Gakhov 1966, Pandy 1995), the computational cost will be significantly reduced

thanks to the elimination of dealing with a function having infinite support. To achieve

this aim, we propose an improved version of POCS-1 called POCS-2 below. First, we

assume that X = (−1, 1) ⊇ Λ, where we recall that Λ denotes the interval corresponding

to the object support. This assumption does not lose generality because, if X ⊂ Λ, we
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can translate and rescale the t coordinate such that this condition is satisfied. Next, we

define a weighted L2 space L2
W (X) in which the inner product and the norm are defined

by

(f1, f2)W =

∫ 1

−1

dt f1(t)f2(t)W (t), ‖ f ‖2
W = (f, f)W

W (t) =
√

1 − t2. (12)

At this stage, the rationale behind using such a space may not be obvious. However,

as explained later, this definition was intended to assure that the operator obtained by

replacing H, H−1 in equation (10) by the finite Hilbert transform pair HX , H−1
X becomes

the projection operator P1. POCS-2 aims at finding f(t) ∈ L2
W (X) which belongs to

the intersection of the following five convex sets:

C1 = {f ∈ L2
W (X) | (HXf)(t) = g(t) for t ∈ ΛH}

C2 = {f ∈ L2
W (X) | f(t) = 0 for t /∈ Λ}

C3 = {f ∈ L2
W (X) | f(t) = f (p)(t) for t ∈ ΛK}

C4 = {f ∈ L2
W (X) |

∫

Λ\ΛK

dt f(t) = C
(p)
Λ }

C5 = {f ∈ L2
W (X) | f(t) ≥ 0 for t ∈ X} (13)

Now, X is a finite interval containing the object support Λ so that we need not deal

with a function having infinite support in implementing the POCS algorithm. P2, P3, P5

have again straightforward expressions (omitted here), and P1, P4 are expressed as

(P1f)(t) = (
1

π

1

W (t)

∫ 1

−1

dt′ f(t′)) + (H+
XMHXf)(t)

(HXf)(t) =
1

π
p.v.

∫ 1

−1

ds
1

t − s
f(s)

(H+
Xh)(t) =

1

π

1

W (t)
p.v.

∫ 1

−1

ds
1

s − t
h(s)W (s)

(Mh)(t) =

{

g(t) (t ∈ ΛH)

h(t) (t /∈ ΛH)
(14)

(P4f)(t) =























f(t) +

(C
(p)
Λ −

∫

Λ\ΛK

dt′ f(t′))/W (t)
∫

Λ\ΛK

dt′ 1/W (t′)
(t ∈ Λ \ ΛK).

f(t) (t /∈ Λ \ ΛK)

(15)

The derivation of P4 is easy (omitted here). However, we need to prove that P1 defined

above is actually the projection operator onto the set C1. This is not trivial because

the finite Hilbert transform HX is not a unitary transform unlike the infinite Hilbert

transform. We leave the proof to Appendix C. The convergence proof of the POCS

algorithm is valid for weighted norms as in equation (12) (Youla and Webb 1982), so

that the convergence of POCS-2 to an element of C = ∩5
i=1Ci is assured.
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We confirmed that POCS-1 and POCS-2 achieve comparable image quality, but

POCS-2 significantly reduces the computational cost by eliminating the necessity of

involving a function having infinite support. In all the experimental results shown later,

we used POCS-2. We also note that the choice of the interval X relative to Λ affects

numerical behaviour (i.e. numerical stability and convergence speed) of POCS-2. We

confirmed that a good choice of X when Λ = (−0.6, 0.6) is X = (−1, 1), i.e. the tight

choice X ≃ Λ was not good due to the singularities of 1/W (t) = (1− t2)−1/2 at t = ±1.

3.3. Algorithm for Result 3

Reconstruction algorithms corresponding to Result 3 (non-convex ROI) become more

complicated compared to that described in section 3.1. In this case, the proof of

Result 3 suggests the following multi-step method. For a given configuration of the

subsets (K, H, B), we first find a sequence of convex regions A1, A2, . . . , AN (N ≥ 2

is an arbitrary positive integer), such that (a) B ∪ (∪N
i=1Ai) = S (i.e. the union of

B, A1, A2, . . . , AN covers the whole ROI S), (b) A1 ∩ B 6= {φ} (i.e. A1 contains a part

of the region B), and (c) Di = (B ∪ (∪i−1
j=1Aj)) ∩ Ai ∩ H 6= {φ} for i = 2, 3, . . . , N

(i.e. the union of the past regions B ∪ (∪i−1
j=1Aj) and the current region Ai have an

intersection on the region H)‖. We show examples of valid sequences of convex regions

A1, A2, . . . , AN satisfying these conditions in figure 4(a),(b). Then, an exact algorithm

can be constructed as follows. The main idea is to propagate information of the object

f(x, y) on the region B along the polygonal or tree-structured link of the convex regions

A1, A2, . . . , AN (as in the proof of Result 3). First, the reconstruction is performed on

the region A1 which allows us to use information of f(x, y) on the set D2 in the next

step. Next, the reconstruction is performed on the region A2 by taking the set D2 as

the region B, the reconstruction is performed on the region A3 by taking the set D3 as

the region B, and this process is repeated till AN to complete the reconstruction on the

whole ROI S.

In figure 4(a), we show a typical example of the multi-step method. In this example,

the reconstruction is performed according to the following three steps. The lines with

an arrow in the figure represent a set of the Hilbert lines along which the DBP and the

Hilbert inversion are performed at each step. The first step reconstructs f(x, y) on the

left rectangular region A1. By using f(x, y) on the set D2 obtained in the first step, the

second step reconstructs f(x, y) on the bottom rectangular region A2 reaching to the

part D3 of the right rectangular region A3. The third step reconstructs f(x, y) on the

right region A3 by using f(x, y) on the set D3 obtained in the second step. It is likely

that the similar multi-step methods can be empirically designed for many other imaging

configurations. It is still an open problem to clarify a general mechanism to design such

an efficient method for every case satisfying the conditions of Result 3.

‖ The two convex regions (Ai, Aj) (i 6= j) can overlap.
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HD ⊂3HD ⊂2

HD ⊂2

H H

K

ROI
S

1-st step Hilbert lines

2-nd step
Hilbert lines

3-rd step Hilbert lines

B

B

1A
3A

2A

ROI
S

2D 3D

(a) (b)

B1A

2A
ROI
S

1A

2A 3A

B

ROI
S

Figure 4. (a) An example of the multi-step reconstruction method corresponding to

Result 3. In the first step, the reconstruction is performed on the set of the 1-st step

Hilbert lines (polar broken lines). In the second step, the reconstruction is performed on

the set of the 2-nd step Hilbert lines (real lines). In the third step, the reconstruction

is performed on the set of the 3-rd step Hilbert lines (parallel broken lines). The

corresponding choice of the polygonal link of the convex regions A1, A2, A3 is also

shown. (b) Other examples of the valid sequence of convex regions A1, A2, . . . , AN .

4. Experimental Results

4.1. Simulation Studies

We first performed three simulation studies each of which corresponds to Result 1,

Result 2, or Result 3. Throughout the simulations, we used the Shepp-Logan phantom.

The ordinary definition of the Shepp-Logan phantom was enlarged 2.5 times such that

it is contained inside a square of side 5.0, where we placed a square ROI of side 2.0 at

the center (figure 5). We computed 1,200 parallel-beam projections over 180◦ angular

range with the radial sampling ∆r = 2.0/256, and then truncated them such that rays

not passing through the region H are not used for reconstruction dependent on each

situation (recall that H always contains B). Reconstructed images consist of 256× 256

pixels with the sampling ∆x = ∆y = 2.0/256 for every case. The iteration number

of POCS-2 in the Hilbert inversion was 500, and the object support constraint C2 was

enforced by assuming that the object is known a priori to be contained inside an ellipse

which is 1.2 times larger than the true object boundary (figure 5).

In figure 6 (left), we show the setup of Simulation 1 corresponding to Result 1,

where the Hilbert transform gθ(x, y) is known on the whole ROI and we know the
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object f(x, y) a priori on the thin strip B of size 0.1 × 2.0 located at the center. The

natural choice of the Hilbert lines in this setup is horizontal as shown in figure 3(a).

We show a reconstructed image (left) together with a reconstructed image when the a

priori knowledge on f(x, y) is not available (right) (figure 6). As is observed, without

the a priori knowledge on f(x, y), the reconstructed image suffered from the DC shifts

and the low-frequency artifacts. In figure 7 (top left), we show the setup of Simulation

2 corresponding to Result 2, where the Hilbert transform gθ(x, y) is known on the right

region H , the object f(x, y) is known on the left region K, and both gθ(x, y) and f(x, y)

are known on the thin strip B of size 0.1×2.0 located at the left edge. The natural choice

of the Hilbert lines in this setup is again horizontal. To demonstrate that the conditions

of Result 2 are important for accurate reconstruction, we tried reconstructions for three

other configurations of (K, H, B) which do not satisfy the conditions of Result 2. We

show reconstructed images for all the cases (figure 7). As is observed, for all the cases

where the configuration of (K, H, B) does not satisfy the conditions of Result 2, the

reconstructed images suffered from the DC shifts and the low-frequency artifacts. In

figure 8 (left), we show the setup of Simulation 3 corresponding to Result 3, where the

ROI is a (reversed) L-shaped region, the Hilbert transform gθ(x, y) is known on the

right region, we know the object f(x, y) a priori on the left bottom rectangle, and both

gθ(x, y) and f(x, y) are known on the strip B of size 0.2 × 0.5 located at the left edge.

The reconstruction was performed according to the following two-step method (section

3.3). The first step reconstructs f(x, y) on the bottom rectangular region by taking the

Hilbert lines as a set of horizontal lines (broken lines). The second step reconstructs

f(x, y) on the right rectangle by taking the Hilbert lines as a set of vertical lines (real

lines). We show a reconstructed image (figure 8).

ROI S

5.0

5.0

2.0

2.0

ellipse to enforce the
object support constraint C2

Shepp-Logan phantom
2.3 (long semi-axis)
1.725 (short semi-axis)

1.2 x 2.3 (long semi-axis)
1.2 x 1.725 (short semi-axis)

Figure 5. The phantom and the ROI S in the simulation studies.

We also performed the above three simulations with noisy projection data. The

Poisson noise corresponding to 1.0 × 106 incident photons per detector bin was added

to the projection data, by assuming the length of the long semi-axis of the phantom

to be 20 (cm) and the realistic values of attenuation coefficients in x-ray CT. In figure

6 (bottom), we show reconstructed images corresponding to the setup of Simulation 1.

Furthermore, for each setup (Simulation 1, Simulation 2, Simulation 3), we evaluated
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H H
ROI

S

B

H
ROI

S

Figure 6. Reconstructed images in the Simulation 1. The left images were

reconstructed by using the a priori knowledge of f(x, y) on the thin strip region B. The

right images were reconstructed without the a priori knowledge. The display window

was set to [0.994,1.046] for the left images, and was set to [0.874,0.926] for the right

images to make the low-frequency artifacts other than the DC shifts visible. The top

images are reconstructions without noise and the bottom images are reconstructions

with noise.

the root mean square value of noise RMSN in the ROI S \ K:

RMSN =

√

√

√

√

√

√

√

√

∑

(i,j)∈S\K

(fn(i, j) − f(i, j))2

∑

(i,j)∈S\K

1
, (16)

where fn(i, j) denotes the reconstructed image with noise and f(i, j) denotes the

reconstructed image without noise. The value of RMSN was computed for both the
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K H
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S

K H
ROI

S

H

H
ROI

S

B

no
Info.

Figure 7. Reconstructed images in the Simulation 2. The top left image was

reconstructed from the configuration of (K, H, B) satisfying the conditions of Result

2. The other three images were reconstructed from the configurations violating the

conditions of Result 2. The display window was set to [0.994,1.046] for all the images.

DBP-POCS method (with truncated projection data) and the standard FBP method

(with non-truncated projection data). To make this comparison fair, we applied the

post-smoothing filter to the FBP image such that the spatial resolution of FBP image

approximately matches to that of DBP-POCS image. We summarize the result in
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H

ROI

S

B

K

2-nd step

1-st step

Figure 8. Reconstructed image in the Simulation 3 where the configuration of

(K, H, B) satisfies the conditions of Result 3. The display window was set to

[0.994,1.046].

K

H

ROI

S

B

H
ROI

S

B

Figure 9. Reconstructed images in the Simulation 4. The setup in the left case

corresponds to Result 1 and the setup in the right case corresponds to Result 2. The

display window was set to [0.994,1.046] for the both images. Though not shown here,

the reconstructed images suffered from the DC shifts and the low-frequency artifacts

when we changed the setups such that only one of the Hilbert transform gθ(x, y) and

the object f(x, y) is available on the region B.

table 1. This result demonstrates that the noise propagation of DBP-POCS method is

comparable to that of FBP method, and the inversion with truncated data is much more

stable compared to other limited-data problems such as the limited-angle and exterior

problems (Natterer 1986) as long as the conditions for uniqueness shown in this paper

are satisfied.
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Table 1. Root mean square value of noise RMSN in the ROI S \ K.

Reconstruction method Simulation 1 Simulation 2 Simulation 3

DBP-POCS (truncation) 1.27 × 10−2 1.24 × 10−2 1.56 × 10−2

FBP (no truncation) 1.17 × 10−2 1.18 × 10−2 1.15 × 10−2

4.2. Polar Hilbert Lines

In all the simulation studies in section 4.1, the region B was a thin strip as shown in

figure 3(a) so that a set of Hilbert lines L(u); u ∈ U could be chosen as the horizontal or

vertical lines. In this case, the coordinate transform (Step 4 of the algorithm summary

in section 3.1) to convert reconstructed images represented on the (u, t) coordinates to

those on the (x, y) coordinates can be avoided. However, such a simplification does not

occur when the region B is a small square or circular region as shown in figure 3(b). In

this case, a set of Hilbert lines must be chosen as a set of polar lines having its origin

at a point in the region B so that reconstructed images must be interpolated from the

(u, t) coordinates to the (x, y) coordinates after the Hilbert inversion. We performed

a simulation study (Simulation 4) in this case. We show the setups of Simulation 4

together with reconstructed images (figure 9), where the left example corresponds to

Result 1 and the right example corresponds to Result 2. The other conditions in the

simulation were same as those in section 4.1. As is observed, the overall tendency of the

results was similar to those explained in section 4.1.

4.3. Real CT Data

We performed reconstructions of real (head) CT data acquired with a third

generation CT scanner. The sampling of the acquired fan-beam projection data

was 512(channels)×600(views). This data was rebinned into the parallel-beam data

consisting of 512(bins)×1,000(angles), which was used for reconstructions. As shown in

figure 10 (top) (superimposed on the FBP reconstruction using the complete projection

data), we placed a rectangular ROI consisting of 160×120 pixels at the center of the

object. We considered two setups of the configuration of the subsets (K, H, B) as

shown in figure 10 (left). The first setup corresponds to Result 1 and the second setup

corresponds to Result 2. The natural choice of the Hilbert lines was horizontal for the

both setups. The object support constraint C2 was enforced by assuming that the object

f(x, y) is known a priori to be contained inside an ellipse which is approximately 1.2

times larger than the true object boundary. For the use of a priori knowledge on f(x, y),

we considered the following three scenarios.

[Scenario 1] (Perfect a priori knowledge) On the region K (recall that K always contains

B), the a priori knowledge of f(x, y) is created from the FBP reconstruction using the

complete data.
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[Scenario 2] (Imperfect a priori knowledge) On the region K (K always contains B),

we regard f(x, y) as a constant function, i.e. f(x, y) = α =const. for (x, y) ∈ K. The

value of the constant α is created by computing an average of the FBP reconstruction

using the complete data over K.

[Scenario 3] (No a priori knowledge) On the region K (K always contains B), the a

priori knowledge of f(x, y) is not available at all.

K

H

ROI SB

H

ROI SB

Scenario 1 Scenario 2 Scenario 3

ROI

S

Figure 10. Reconstructed images from real CT data. The top figure shows the

location of the ROI S superimposed on the FBP reconstruction using the complete

projection data. The middle row shows reconstructed images corresponding to the

setup of Result 1. The bottom row shows reconstructed images corresponding to the

setup of Result 2. For each setup, we compared the three scenarios on how to create

the a priori knowledge on the object, i.e. Scenario 1 (perfect a priori knowledge),

Scenario 2 (imperfect a priori knowledge), and Scenario 3 (no a priori knowledge).

The display window was set to [0HU,80HU] for the cases of Scenario 1 and Scenario 2,

and was set to [-320HU,-240HU] for the case of Scenario 3 to make the low-frequency

artifacts other than the DC shifts visible.

We show reconstructed images in figure 10. The images without the a priori

knowledge (Scenario 3) suffered from the DC shifts and the severe low-frequency artifacts

as expected. On the other hand, the cases of Scenario 1 and Scenario 2 succeeded

in producing acceptable images. In particular, the case of Scenario 2 produced the
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surprisingly good reconstructions comparable to those of Scenario 1. This result let us

think that the inversion is not sensitive to accuracy of the a priori knowledge on the

object. It is likely that even a rough knowledge on the object such as an estimate of

the average value of the object on some region K is sufficient to dramatically improve

image quality.

4.4. POCS-1 vs. POCS-2

For the Hilbert inversion, the main advantage of newly developed POCS-2 over POCS-1

is that POCS-2 does not involve the Hilbert transform function having infinite support

(Hf)(t) (−∞ < t < ∞). To demonstrate that this advantage leads to a significant

reduction in computational cost, we investigated how reconstructed images are degraded

when POCS-1 is approximately implemented by truncating the interval to compute the

function (Hf)(t) to a finite interval t ∈ X. In the setup of Simulation 1 where the

object support and the ROI on each Hilbert line L(u) are Λ ≈ (−2.0, 2.0) (512 sampling

points) and ΛS = (−1.0, 1.0) (256 sampling points), we performed the Hilbert inversion

by the approximate POCS-1 implementation with three different intervals X, which are

X = (−4.0, 4.0) (1,024 sampling points), X = (−16.0, 16.0) (4,096 sampling points),

and X = (−32.0, 32.0) (8,192 sampling points). For a comparison, we also implemented

POCS-2 in which the same intervals X as above were used as the whole interval to define

the finite Hilbert transform function (HXf)(t) (t ∈ X). We show reconstructed images

(figure 11). As expected, when the interval X was not sufficiently large, the images by

the approximate POCS-1 implementation suffered from the severe DC shifts and the

low-frequency artifacts due to the data truncation of the Hilbert transform function

(Hf)(t) outside X. On the other hand, the images by POCS-2 did not depend on the

choice of the interval X (unless X is too close to the object support Λ). In this setup, to

make the truncation error of the function (Hf)(t) almost negligible, POCS-1 had to be

implemented with X = (−32.0, 32.0), whereas X = (−4.0, 4.0) was enough in POCS-

2. The computational time of POCS-1 with X = (−32.0, 32.0) was approximately

eighteen times longer than that of POCS-2 with X = (−4.0, 4.0) (FFT was used to

compute the Hilbert transform). The superiority of POCS-2 to POCS-1 is apparent

from this experiment.

4.5. High-Contrast Objects

The Shepp-Logan phantom and the real data used in section 4.3 primarily consist of

low-contrast structures. An evaluation with a more challenging phantom containing

high-contrast structures would be interesting. Therefore, we performed an additional

simulation study (Simulation 5) using the FORBILD thorax phantom which contains

the high-contrast structures corresponding to the lung and the vertebra (an object

simulating the heart was added as in Defrise et al 2006). A rectangular ROI was placed

at the center. The conditions and the setups of the simulation were made similar to

those in section 4.1. We show the setups of Simulation 5 together with reconstructed
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POCS-1
X=(-4.0,4.0)

POCS-1
X=(-16.0,16.0)

POCS-1
X=(-32.0,32.0)

POCS-2
X=(-4.0,4.0)

POCS-2
X=(-16.0,16.0)

POCS-2
X=(-32.0,32.0)

Figure 11. (Top) Reconstructed images by the approximate POCS-1 Hilbert inversion

in which the interval X to compute the Hilbert transform function (Hf)(t) was

truncated to X = (−4.0, 4.0), X = (−16.0, 16.0), and X = (−32.0, 32.0). The object

support was Λ ≈ (−2.0, 2.0) in this setup. (Bottom) Reconstructed images by the

POCS-2 Hilbert inversion in which the same intervals X as above were used as the

whole interval to define the finite Hilbert transform function (HXf)(t) (of course, in

the implementation, the t coordinate was rescaled such that X = (−1, 1) to use the

equations in section 3.2). The display window was set to [0.994,1.046] for all the images.

images (figure 12), where the left example corresponds to Result 1 and the right example

corresponds to Result 2. The streak artifacts were a bit stronger along tangential

directions of the high-contrast objects compared to the case of Shepp-Logan phantom,

but the DC shifts and the severe low-frequency artifacts were not observed.

5. Conclusions and Discussions

In this paper, based on the concept of DBP combined with the Hilbert inversion (Noo et

al 2004, Pan et al 2005, Defrise et al 2006), we showed that the solution to the interior

problem in CT is unique if a tiny a priori knowledge on the object f(x, y) is available

in the form that f(x, y) is known on a small region located inside the ROI (Result

1). Furthermore, we advanced the uniqueness result to obtain more general uniqueness

results which can be applied to a wider class of imaging configurations (Result 2, Result

3, Result 4, Result 5). We also developed a reconstruction algorithm which can be

considered an extension of the DBP-POCS method described by Defrise et al (2006),

where we proposed a new POCS algorithm (POCS-2) for the Hilbert inversion which
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Figure 12. Reconstructed images of the FORBILD thorax phantom (Simulation 5).

The setup in the left case corresponds to Result 1 and the setup in the right case

corresponds to Result 2. The display window was set to [0.922,1.078] for the both

images.

significantly reduces computational cost of the DBP-POCS method.

Finally, we would like to make the following discussions. First, we note that a

stronger uniqueness result has been already obtained in our companion work (Courdurier

2007a, 2007b) using the Plemelj-Sokhotskii formula in complex analysis (Gakhov 1966),

which says that, if the region B (on which both the Hilbert transform and the object

are known) is non-empty, the object having a finite support is uniquely determined on

the whole 2-D space. The uniqueness results proved in this paper (using a different

mathematical technique) are weaker than that in Courdurier 2007a, 2007b. However,

the uniqueness does not imply the stability, i.e. the inversion can be severely unstable,

in the sense that the solution does not depend continuously on the data even if it is

unique, as in the limited-angle problem (Natterer 1986). Therefore, the most valuable

contribution of this paper was to show evidence of the stability for Result 1, Result 2,

and Result 3 by the experimental results. Second, we note that, again in our companion

work (Courdurier 2007a, 2007b), the stability has been theoretically analyzed for Result

1 using Nevanlinna’s principle (Defrise et al 2006). We think that the similar stability

analysis is possible for Result 2 and Result 3 because the main mathematical tool to

prove the uniqueness for these cases was a combination of the analytic continuations

(similar to that in Defrise et al 2006). We leave it as a future work. Another practical

issue would be to develop methods to acquire the a priori knowledge on the object in

various imaging situations.

As described in the introduction, there is some overlap between our work and

that published by Ye et al (2007). The overlap lies in Result 1, which was discovered,



Tiny A Priori Knowledge Solves the Interior Problem in Computed Tomography 24

independently and at the same time, by Ye et al (2007). To the best of our knowledge,

the uniqueness results and reconstruction algorithms corresponding to Result 2, Result

3, Result 4, Result 5 and POCS-2 are original contributions.

Appendix A. Analyzing Integral Equation of Equation (5)

We assume that a ≥ −1 and f ≤ 1 for simplicity. This assumption does not lose

generality because we can translate and rescale the t coordinate (such that −1 ≤ a <

f ≤ 1) if a < −1 or f > 1. Then, the inversion formula of the finite Hilbert transform

(Tricomi 1957, Gakhov 1966, Pandy 1995) is written as
√

1 − t2f(t) = h1(t) + h2(t)

h1(t) = Caf +
1

π
p.v.

∫ e

b

ds
1

s − t
g(s)

√
1 − s2

h2(t) =
1

π
p.v.(

∫ b

−1

+

∫ 1

e

)ds
1

s − t
g(s)

√
1 − s2. (A.1)

We can compute h1(t) from the measured Hilbert transform g(t) for t ∈ (b, e) and the

known constant Caf . However, h2(t) cannot be computed because we do not have g(t)

for t ∈ (−1, b)∪(e, 1). Therefore, we use the analytical continuation described by Defrise

et al (2006) as follows. Since we know f(t) = f (p)(t) for t ∈ (c, d), we have h2(t) for

t ∈ (c, d) from

h2(t) =
√

1 − t2f (p)(t) − h1(t) for t ∈ (c, d). (A.2)

If we replace t in h2(t) by the complex variable z ∈ C, h2(z) is an analytic function in

the complex plane having cuts along the segments z ∈ (−1, b) ∪ (e, 1) on the real axis.

The analyticity follows from the fact that h2(z) having the form of equation (A.1) is an

analytic function if g(t) is a continuous function, which is the case because we assumed

f(t) to be continuous (see pp.39 in Dennery and Krzywicki 1967). Therefore, h2(z) can

be analytically continued from the known interval (c, d) on the real axis to the larger

interval (b, e) on the real axis. Since both h1(t) and h2(t) are uniquely determined for

t ∈ (b, e), f(t) is uniquely determined for t ∈ (b, e).

Appendix B. Analyzing Integral Equation of Equation (6)

First, we prepare two lemmas used to analyze equation (6). Let f(t) be a continuous

function having a support on X = (−1, 1). Let g(t) denote the Hilbert transform of

f(t). We take three points on the t coordinate (a, b, c) such that −1 < a < b < c < 1.

Then, the following two lemmas can be proved.

[Lemma 1] Assume that (a) both f(t) and g(t) are known for t ∈ (a, b) and (b) g(t) is

known for t ∈ (b, c). Then, both f(t) and g(t) are uniquely determined for t ∈ (a, c).

Proof: Omitted because this is just a special case of Appendix A.

[Lemma 2] Assume that (a) both f(t) and g(t) are known for t ∈ (a, b) and (b) f(t) is

known for t ∈ (b, c). Then, both f(t) and g(t) are uniquely determined for t ∈ (a, c).
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Proof: The Hilbert transform g(t) is written as

g(t) = h1(t) + h2(t)

h1(t) =
1

π
p.v.

∫ c

a

ds
1

t − s
f(s)

h2(t) =
1

π
p.v.(

∫ a

−1

+

∫ 1

c

)ds
1

t − s
f(s). (B.1)

Now, h1(t) is a known function because we know f(t) for t ∈ (a, c). However, h2(t) is an

unknown function because we do not know f(t) for t ∈ (−1, a) ∪ (c, 1). Therefore, we

use again the analytical continuation described by Defrise et al (2006) as follows. Since

we know g(t) for t ∈ (a, b), we have h2(t) for t ∈ (a, b) from

h2(t) = g(t) − h1(t) for t ∈ (a, b). (B.2)

If we replace t in h2(t) by the complex variable z ∈ C, h2(z) is an analytic function in

the complex plane having cuts along the segments z ∈ (−1, a) ∪ (c, 1) on the real axis.

Therefore, h2(z) can be analytically continued from the known interval (a, b) on the real

axis to the larger interval (a, c) on the real axis. The analyticity again follows from the

continuity of f(t) as in Appendix A. Since both h1(t) and h2(t) are uniquely determined

for t ∈ (a, c), g(t) is uniquely determined for t ∈ (a, c) so that both f(t) and g(t) are

unique for t ∈ (a, c).

BΛ

),,(
)1(

HKHKΛ

),,(
)2(

KHKHΛ

),,(
)3(

HKHKΛ

•Λ )(m

),,(
)1(

KHHK
−Λ

•
−Λ )( n

SΛ

Figure B1. The configuration of the intervals (ΛS , ΛK , ΛH , ΛB) necessarily takes the

form shown in this figure.

We are ready to analyze the uniqueness for equation (6). We assume that

X = (−1, 1) ⊇ Λ for simplicity. This assumption does not lose generality because

we can translate and rescale the t coordinate such that this condition is satisfied. Note

that X ⊇ Λ ⊃ ΛS. From equation (7), it is easy to know that the configuration of

the intervals (ΛS, ΛK , ΛH, ΛB) necessarily takes the form shown in figure B1, i.e. ΛH

and ΛK alternate in the both sides of ΛB¶. First, both f(t) and g(t) are known on ΛB

(located at the center). Therefore, by using Lemma 1 or Lemma 2, we can show that

both f(t) and g(t) are unique for t ∈ ΛB ∪ Λ
(1)
K(H,K,H). By using Lemma 1 or Lemma 2

again, we can show that both f(t) and g(t) are unique for t ∈ ΛB∪Λ
(1)
K(H,K,H)∪Λ

(2)
H(K,H,K).

By repeating this process, the interval on which both f(t) and g(t) are unique can be

enlarged unless the two successive subsets Λ
(i)
· , Λ

(i+1)
· are disjoint, which never occurs.

¶ Figure B1 assumes that ΛB is a single interval for simplicity. The proof for the case where ΛB is a

union of disjoint intervals is very similar.
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We repeat this process till Λ
(m)
· in the positive direction. We do the same in the

negative direction starting from ΛB till Λ
(−n)
· . Since ΛS is the union of ΛB and all

Λ
(i)
· (i = −n, . . . ,−1, 1, . . . , m), both f(t) and g(t) are uniquely determined on ΛS.

Appendix C. Projection Operator P1

The proof of the projection operator P1 is based on the norm equivalence (weighted

orthogonality) of the finite Hilbert transform (with W (t) defined by equation (12)):
∫ 1

−1

dt f 2(t)W (t) =

∫ 1

−1

dt (HXf)2(t)W (t) + πC2
X

CX =
1

π

∫ 1

−1

dt f(t) (C.1)

For unfamiliar readers, using the operators HX , H+
X defined by equation (14), the

inversion formula of the finite Hilbert transform (Tricomi 1957, Gakhov 1966, Pandy

1995), and the property (f, H+
Xh)W = (HXf, h)W which holds for any functions

f(t) ∈ L2
W (X), h(t) ∈ L2

W (X), we give a derivation of equation (C.1) as follows.

L.H.S. = (f(t), f(t))W

= (f(t),
CX

W (t)
+ (H+

XHXf)(t))W

= (f(t),
CX

W (t)
)W + ((HXf)(t), (HXf)(t))W

= CX

∫ 1

−1

dt f(t)+ ‖ (HXf)(t) ‖2
W

= πC2
X+ ‖ (HXf)(t) ‖2

W = R.H.S. (C.2)

From the definition of the projection operator, given f(t), we would like to find

f̃(t) ≡ (P1f)(t) ∈ C1 minimizing ‖ f − f̃ ‖2
W . From equation (C.1), the minimized

function reduces to

‖ f − f̃ ‖2
W =‖ HXf − HX f̃ ‖2

W +πD2
X

DX =
1

π

∫ 1

−1

dt (f(t) − f̃(t)). (C.3)

From the inversion formula of the finite Hilbert transform (Tricomi 1957, Gakhov 1966,

Pandy 1995), the general solution minimizing the first term ‖ HXf − HX f̃ ‖2
W subject

to f̃(t) ∈ C1 can be written as

f̃(t) =
1

W (t)
(C +

1

π
p.v.

∫ 1

−1

ds
1

s − t
h̃(s)W (s))

h̃(t) =

{

g(t) (t ∈ ΛH)

(HXf)(t) (t /∈ ΛH),
(C.4)

where C is an arbitrary constant which arises due to the null space of the finite Hilbert

transform, i.e. the finite Hilbert transform of 1/W (t) = (1 − t2)−1/2 vanishes on the
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whole X (Tricomi 1957, Gakhov 1966, Pandy 1995). Note that the function f̃(t) in the

form of equation (C.4) minimizes ‖ HXf − HX f̃ ‖2
W for any value of C. Therefore, the

problem of finding f̃(t) reduces to determining the constant C minimizing the second

term πD2
X in equation (C.3). Substituting equation (C.4) into DX = 0 and using the

property (which holds for any h̃(s))
∫ 1

−1

dt (
1

W (t)
p.v.

∫ 1

−1

ds
1

s − t
h̃(s)W (s)) = 0, (C.5)

we have
∫ 1

−1

dt (f(t) − C

W (t)
) = 0. (C.6)

Solving equation (C.6) for C yields

C =
1

π

∫ 1

−1

dt f(t). (C.7)

Equation (C.4) with C given by equation (C.7) is same as the expression of P1 in

equation (14). This completes the proof.
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